Symmetry Breaking in Subgraph Isomorphism
Stéphane ZampelliV, Yves Deville), Mohamed Réda Saidi¥, Belaid Benhamou?

(1) Université catholique de Louvain,
Department of Computing Science and Engineering,
2, Place Sainte-Barbe 1348 Louvain-la-Neuve (Belgium)
?)Centre de Mathématique et d’Informatique
39, rue Joliot Curie - 13453 Marseille cedex 13, France

Abstract

The present work studies symmetry break-
ing for the subgraph isomorphism problem.
This NP-Complete problem decides if a pat-
tern graph is isomorphic to a subgraph of a
target graph. The first part of the paper shows
how to detect and break all variable and value
global symmetries. The second part studies lo-
cal symmetries, and shows that subgraphs of
the initial instance allow to efficiently compute
local variable and value symmetries. Experi-
ments show that global symmetries are an effi-
cient technique for subgraph isomorphism, and
that limited local symmetries may be useful for
difficult instances.

1 Introduction

A symmetry in a Constraint Satisfaction Problem (CSP)
is a bijective function that preserves CSP structure and
solutions. Symmetries are important because they in-
duce symmetric subtrees in the search tree. If the in-
stance has no solution, failure has to be proved for equiv-
alent subtrees regarding symmetries. If the instance
has solutions, many symmetric solutions will have to be
enumerated in symmetric subtrees. The detection and
breaking of symmetries can thus speed up the solving
of a CSP. Symmetries arise naturally in graphs as au-
tomorphisms. However, although many graph problems
have been tackled [Beldiceanu et al., 2005] [Cambazard
and Bourreau, 2004] [Sellman, 2003] and a computation
domain for graphs has been defined [Dooms et al., 2005],
and despite the fact that symmetries and graphs are re-
lated, little has been done to investigate the use of sym-
metry breaking for graph problems in constraint pro-
gramming.

This work aims at applying and extending symmetry
techniques for subgraph isomorphism. We show how to
detect and handle global variable and value symmetries
as well as local symmetries.

2 Background and Definitions

Basic definitions for subgraph isomorphism and symme-
tries are introduced.

Figure 1: Example solution for an isomorphism problem
instance.

A graph G = (N, E) consists of a node set N and an
edge set E C N x N, where an edge (u,v) is a pair of
nodes. The nodes u and v are the endpoints of the edge
(u,v). We consider directed and undirected graphs. A
subgraph of a graph G = (N, E) is a graph S = (N, E’)
where N’ is a subset of N and E’ is a subset of F such
that for all (u,v) € E', u,v € N'.

A subgraph isomorphism problem between a pattern
graph G, = (N,, E,) and a target graph G; = (N¢, Ey)
consists in deciding whether G, is isomorphic to some
subgraph of G;. More precisely, one should find an
injective function f : N, — N, such that V(u,v) €
Npx Np, (u,v) € E, = (f(u), f(v)) € E¢. This NP-Hard
problem is also called subgraph monomorphism problem
or subgraph matching in the literature. The function f
is called a subgraph matching function.

The CSP model of subgraph isomorphism should rep-
resent a total function f : N, — N;. This total func-
tion can be modeled with X = z4,...,2, with z; a
FD variable corresponding to the i node of G, and
D(x;) = N;. The injective condition is modeled with
the global constraint alldiff(xy,...,2,). The isomor-
phism condition is translated into a set of constraints
MCi(z;,z;) = (xi,x;) € Ey for all (4,5) € E,. This
set of constraints can be turned into a global constraint
MC(x1,...,x,) = /\(z‘,j)eEp MCi(x;,z;). Implementa-
tion, comparison with dedicated algorithms, and exten-
sion to subgraph isomorphism and to graph and function
computation domains can be found in [Zampelli et al.,
2005; Deville et al., 2005].

A CSP instance is a triple < X, D,C > where X is
the set of variables, D is the universal domain spec-

ifying the possible values for those variables, and C
is the set of constraints. In the sequel, n = |Np|,
d = |D|, and D(z;) is the domain of z;. A symme-
try over a CSP instance P is a bijection ¢ mapping
solutions to solutions, and hence non solutions to non
solutions [Puget, 2005b]. Since a symmetry is a bi-
jection where domain and target sets are the same, a
symmetry is a permutation. A wariable symmetry is a
bijective function ¢ : X — X permuting a (non) so-
lution s = ((z1,d1),...,(2n,dy)) to a (non) solution
os = ((o(z1),d1),...,(c(zn),dy)). A value symmetry
is a bijective function ¢ : D — D permuting a (non)
solution s = ((x1,d1),...,(zn,d,)) to a (non) solution
os = ((z1,0(d1)), ..., (xn,0(dy)). A value and variable
symmetry is a bijective function ¢ : X x D — X x D per-
muting a (non) solution s = ((x1,d1), ..., (xn,ds)) to a
(non) solution os = (o(x1,d1),...,0(xn,dn)). A global
symmetry of a CSP is a symmetry holding on the initial
problem. A local symmetry of a CSP P is a symmetry
holding only in a sub-problem P’ of P. The conditions of
the symmetry are the constraints necessary to generate
P’ from P [Gent et al., 2005] [Benhamou, 1994]. A group
is a finite or infinite set of elements together with a bi-
nary operation (called the group operation) that satisfies
the four fundamental properties of closure, associativity,
the identity property, and the inverse property. An auto-
morphism of a graph is a graph isomorphism with itself.
The set of automorphisms Aut(G) defines a finite group
of permutations.

3 Variable Symmetries

In this section, we show that the set of global variable
symmetries of a subgraph isomorphism CSP is the set
of automorphisms of the pattern graph. Moreover, we
show how existing techniques can be used to break all
global variable symmetries.

3.1 Detection

This subsection shows that, in subgraph isomorphism,
global variable symmetries are the automorphisms of the
pattern graph and do not depend on the target graph.
It has been shown that the set of variable symmetries of
the CSP is the automorphism group of a symbolic graph
[Puget, 2005b]. The pattern G, is transformed into a
symbolic graph S(G)) where Aut(S(Gp)) is the set of
variable symmetries of the CSP.

A CSP P modeling a subgraph isomorphism instance
(Gp, Gy) can be transformed into the following symbolic
graph S(P) :

1. Each variable z; is a distinct node labelled <.

2. If there exists a constraint MC(x;,2;), then there
exists an arc between 4 and j in the symbolic graph.

3. The constraint alldiff is transformed into a node
typed with label ’a’; an arc (a,z;) is added to the
symbolic graph for each x;.

Figure 2 shows a pattern transformed into its sym-
bolic graph. If we do not consider the extra node and

alldiffozZ” "

Figure 2: Example of symbolic graph for a square pat-
tern.

arcs introduced by the alldiff constraint, then the sym-
bolic graph S(P) and G, are isomorphic by construction.
Given the labelling of nodes representing constraints, an
automorphism in S(P) maps the alldiff node to itself and
the nodes corresponding to the variables to another node
corresponding to the variables. Each automorphism in
Aut(G,) will thus be a restriction of an automorphism
in Aut(S(P)), and an element in Aut(S(P)) will be an
extension of an element in Aut(G,). Hence the two fol-
lowing theorems.

Let (Gp, G:) be a subgraph isomorphism instance, P
its associated CSP. We have :

e Vo e Aut(G,) 30 € Aut(S(P)): ¥Yn e N, :
o(n) =o' (n)
eV o € Aut(S(P)) 3o € Aut(G,) : ¥ n e N, :

o(n) =o (n)

Let (Gp, G;) be a subgraph isomorphism instance, P
its associated CSP. The set of variable symmetries of P
is the set of bijective functions Aut(S(P)) restricted to
N,, which is equal to Aut(G,).

The above theorem states that only Aut(G,) has to
be computed in order to get all variable symmetries.

3.2 Breaking

Two existing techniques are relevant to our particular
problem. The first technique is an approximation and
consists in breaking only the generators of the symme-
try group [Crawford et al., 1996]. Those generators are
obtained by an automorphism detection software such
as NAUTY[McKay, 1981] . For each generator o, an
ordering constraint s < s is posted.

The second technique breaks all variable symmetries of
an injective problem by using a Schreier-Sims algorithm,
provided that the generators of the variable symmetry
group are known [Puget, 2005a). Puget showed that the
number of constraints to be posted is linear with the
number of variables. The Schreier-Sims algorithm com-
putes a base and a strong generating set of a permutation
group. Let G' be the group, S, the symmetry group of g
elements containing G, and ¢ the number of generators,
then its complexity is in O(g?log®|G| + t.g.log|G]).

4 Value Symmetries

In this section we show how all global value symmetries
can be detected and how existing techniques can be ex-
tended to break them.

4.1 Detection

In subgraph isomorphism, global value symmetries are
automorphisms of the target graph and do not depend
on the pattern graph.

Let (Gp, Gy) be a subgraph isomorphism instance and
P be its associated CSP. Then each o € Aut(G,) is a
value symmetry of P.

Proof Suppose that f is a subgraph isomorphism be-
tween G, and Gy, and f(i) = v; for ¢ € N,,. Consider the
subgraph G = (N, E) of G, where N = {vy,...,v,} and
E = {(i,j) € B | (J71(), /~}(j)) € Ey}. This means
that there exists a isomorphic function f/ matching G,
to oG. Hence ((x1,0(v1)),..., (zn,o(vy))) is a solution.

4.2 Breaking

Breaking global value symmetries can be performed
by using the GE-Tree technique [Ronay-Dougal et al.,
2004]. The idea is to modify the distribution by avoid-
ing symmetrical value assignments. Suppose a state S is
reached, where z1,...,x; are assigned to vi,...,v; re-
spectively, and zgy1,...,2, are not assigned yet. The
variable x4 should not be assigned to two symmetrical
values, since two symmetric subtrees would be searched.
For each value v; € D(xk41) that is symmetric to a value
v; € D(xp41), only one state S; should be generated
with the new constraint 41 = v;.

A convenient way to compute those symmetrical
values uses the Schreier-Sims algorithm. Algorithm
Schreier-Sims outputs the sets U; = {k | 3 0 € Aut(Gy)
co(i)=kAo(j) =7V j<i}. AsetU,; gives the images
of i by the automorphisms of G mapping 0,...,7 — 1 to
themselves. If values are assigned in an increasing order,
assigning symmetrical values can be avoided by using
those sets U;. Using symmetry breaking constraints to-
gether with GE-Tree is complete and correct as shown
in [Puget, 2005a).

5 Local Symmetries

Global symmetries may hide symmetries arising during
search. During search, variables are assigned and new
variable symmetries arise. As values are removed from
domains, new value symmetries are created and can be
exploited. In this section, we focus on detecting those
symmetries for the subgraph isomorphism problem.

Local symmetries for subgraph isomorphism can be
found through local graphs of the initial problem. Dur-
ing the search, subgraphs of the pattern and target graph
define variable and value local symmetries. We first show
how to define those subgraphs, and then we explain local
variable symmetry detection and local value symmetry
detection.

5.1 Partial dynamic graphs

We first introduce partial dynamic graphs. Those graphs
are associated to a state in the search and correspond to
the unsolved part of the problem. This can be viewed as
a new local problem to the current state.

Pattern

Figure 3: Example of local subgraphs.

Let S be a state in the search.
The partial dynamic pattern graph G, = (N, , E,)
induced by S is a subgraph of G/, such that :
o Ny ={ieNy|3j:(i,j) € EpATa€ D(x;)AIb e
Dla;) A (a,b) ¢ Er}
o B ={(i,j) € E, |i€e Ny ANjEN,}

The partial dynamic target graph G; = (N, , E;)
is a subgraph of G; such that :

° N; = UieN;D(xi)

o B, ={(a,b) € By |ae N, ANbe N; }

Those partial dynamic graphs define the local CSP
corresponding to the local state.

Figure 3 shows an example where circled nodes are
assigned to each other. In the pattern graph, plain
nodes and edges represent G, . Regarding morphism
constraints, dashed edges are entailed M C; constraints
and plain edges are non entailed MC; constraints. In
the target graph, plain nodes and edges represent G,
assuming a forward checking propagation for the MC
constraints.

One general way to compute local symmetries is to use
the microstructure of the CSP [Cohen et al., 2006]. The
set of nodes of the microstructure graph is the product
set of the variables and the domain. In our particular
problem of subgraph isomorphism, the variables are the
nodes of G, and the domain is the set of nodes of Gy .

Hence the size of the microstructure is |G, x G; | and
can be very large. But in subgraph isomorphism, local
symmetries can be computed directly in the graphs G,

and G, , without using the microstructure.

5.2 Local variable symmetries

Local variable symmetries must map variables having
the same domain. This fact follows directly from the
definition of a variable symmetry. This problem was
not present for global variable symmetries as the initial
domains are N;. The set of automorphisms of the partial
dynamic pattern graph has to be redefined.

Given a partial dynamic pattern graph G, Aut'(G)
is the set of automorphisms mapping a node i to a node
j if and only if D(x;) = D(x;). The following theorem
states that local variable symmetries can be obtained by
computing Aut' (G,).

Let (Gp,Gy) be a subgraph isomorphism instance, L
be a state in the search space, G, the partial dynamic

pattern graph associated with L, and P’ be the CSP as-
sociated with L.Then each o € Aut'(G,) is a variable

symmetry of P
Proof Let o € Aut’(G,). Consider the symbolic graph
Aut(S(P")) of P'. Recall that the alldiff constraint has
no influence on Aut(S(P’)). All automorphisms (3 of
Aut(S(P’)) are not variable symmetry of P’ since do-
mains of variables may be different in the local subprob-
lem P’. Since o € Aut(S(P’)) and is restricted to map
only variables with the same domains, o is a variable
symmetry of P’. B

Computing Aut'(G,) can be done as usual by using
automorphism detection software. The initial partition
is refined into ordered sets containing variables having
the same domain.

Breaking

Local variable symmetries can be broken by using the
same technique for global variable symmetries (Section
3.2). This ensures that all detected local variable sym-
metries are broken. However, adding breaking constraint
of the form z; < z; modify the local symbolic graph
S(P). This may introduce or remove new local variable
symmetries. The detection presented in the previous sec-
tion is however valid. Indeed, the additional constraints
x; < x; ensure that D(x;) # D(z;). Any automorphism
between z; and z; is excluded from Aut'(G})).

5.3 Local value symmetries

The following theorem states that value symmetries of
the local CSP P’ can be obtained by computing Aut(G;)
and that these symmetries can be exploited without los-
ing or adding solutions to the initial problem.

Let (Gp, G¢) be a subgraph isomorphism instance, P’
be the local CSP associated with a state during the
search. Then each o € Aut(G;) is a value symmetry

of P'. Proof This follows directly from Theorem 4.1
and the fact that (G, ,G}’) is a subgraph isomorphism
instance. B

The dynamic target graph G can be computed dy-
namically. In [Deville et al., 2005], we showed how sub-
graph isomorphism can be modeled and implemented in
CP(Graph), an extension of CP with graph domain vari-
ables [Dooms et al., 2005]. The domain of a graph vari-
able is modeled by a lower bound and an upper bound
graph, and represents all the graphs between the lower
and upper bound. In this setting, a graph domain vari-
able T represents the matched target subgraph. The
initial lower bound of T is the empty graph, and the
initial upper bound if G;. When a solution is found, T
is instantiated to the matched subgraph of G;. Hence,
during the search, the dynamic target graph G, will be
the upper bound of variable T" and can be obtained in
O(1).
Speeding up detection
Computing directly Aut(G;) is correct but this compu-

tation can be fasten. Actually, all value symmetries are
not possible in a local instance (G, ,G;). Only nodes

that are all present in at least one domain can be mapped
to each other in a value symmetry of P’. The search tree
of the automorphism algorithm can be pruned when such
nodes are mapped together.

Breaking

In this subsection, we show how to modify the GE-Tree
method to handle local value symmetries. Before distri-
bution, the following actions are triggered :

1. Compute the partial dynamic target graph G; .

2. The NAUTY and Schreier-Sims algorithms are
called to produce the new U, sets.

3. Given a state S, a new variable and value selection
can be used such that local value symmetries are
broken :

(a) a new state S; with a constraint xp = vy,
(b) a new state Sp with constraints : zj # v and
Ty # Vj VieUr_1U Uk—l'

The only difference with the original GE-Tree method
is the addition of the U,’c_1 during the creation of the
second branch corresponding to the state Ss.

An issue is how to handle the global and
local structures U. In the Gecode system
(http://www.gecode.org), in which the actual im-
plementation is made, the states are copied and trailing
is not needed. Thus the global structure U must not be
updated because of backtracking. A single global copy
is kept during the whole search process. In a state S
where local values symmetries are discovered, structure
U is copied into a new structure U” and merged with
U'. This structure U~ shall be used for all states S’
having S in its predecessors.

6 Experimental results

The objectives in this section are to assess performances
of global symmetries, and performance of local symme-
tries against global symmetries. For local symmetries,
we study the overhead of computing local symmetry in-
formation and their ability to solve more difficult in-
stances. Moreover, we would like to know whether local
symmetries can be applied on the whole search space.

The CSP model for subgraph isomorphism has been
implemented in Gecode, using CP(Graph) and CP(Map)
[Dooms et al., 2005] [Deville et al., 2005] . The
CP(Graph) framework provides graph domain variables
and CP(Map) provides function domain variables. All
the software is implemented in C++. The standard
implementation of NAUTY [McKay, 1981] algorithm is
used. We also implemented Schreier-Sims algorithm.
The computation of the constraints for breaking injective
problems is implemented, and GE-Tree method is also
incorporated. All local symmetry techniques presented
are also implemented.

Instances - The data graphs used to generate in-
stances are from the GraphBase database containing dif-
ferent topologies and has been used in [Larrosa and Va-
liente, 2002]. Experiments are performed on the first

50 undirected graphs from GraphBase. The undirected
set was selected because it holds potentially more sym-
metries than the directed graphs. This undirected set
contains graphs ranging from 10 nodes to 138 nodes.
All those graphs are tested for isomorphism with one
another. Only subgraph isomorphism instances with a
pattern graph smaller than the target graph are kept.
There are 1225 instances.

Setup - All runs were performed on a dual Intel(R)
Xeon(TM) CPU 2.66GHz with 2 Go of RAM. In our
tests, we look for all solutions. This ensures that we mea-
sure the whole tree search reduction, and we avoid strong
influence of the heuristic. As shown later in this sec-
tion, the number of solved instances stabilizes for all in-
stances after a couple of minutes. Hence a run time limit
is set. A run is solved if it finishes in less than 5 min-
utes, unsolved otherwise. Detecting the local symmetries
on the whole search space tends to be time-consuming.
Hence local symmetry detection is seen as an extension
of global symmetries. No detection is made when 3 vari-
ables are instantiated. Breaking is performed over the
whole search space.

Automorphism detection time - A main concern
is how much time it takes to compute the symmetries
of the graphs. Regarding global symmetries, NAUTY
processed each undirected graph in less than 0.02 second.
All undirected graphs were processed by Schreier-Sims in
less than one second, except two of them, with 4 seconds
and 8 seconds. This shows a negligible time regarding
symmetry detection on this set of instances.

Models - Depending on the symmetry breaking tech-
niques, various models are selected for these experiments

e vflib : state of the art dedicated C++ algorithm
[Cordella et al., 2001]

e light : simple CP model

— Forward checking constraints
— No redundant constraint

e heavy : advanced CP model

— Arc consistency

— Redundant constraint [Larrosa and Valiente,
2002

e global var : heavy + global variable symmetry
e global value : heavy + global value symmetry

e global varvalue : heavy + global variable and value
symmetry

e local var : heavy + local variable symmetry
e local value : heavy + local value symmetry

e glocal var : heavy + global and local variable sym-

metry

e glocal value :
metry

heavy + global and local value sym-

VAlib and the light model are considered as basic mod-
els since they perform only forward checking. We call

easy instances those instances that are quickly solved by
vilib and the light model. Those instances do not require
any arc consistent or redundant constraint.

Detailed results - We study first experimental re-
sults for global symmetries. Figure 4 shows the number
of solved instances against time. This Figure justifies
the choice of a time limit of 5 minutes, as most of the
solved instances are solved during the first 100 seconds.
Hence only the percentage of solved instances is rele-
vant. Figure 5 shows the detailed results. The total time
is the time to solve all instances, the mean time is the
mean time over all solved instances, the common mean
time(memory) is the mean time(memory) over instances
solved by vflib. Global symmetries clearly outperforms
light, heavy and vflib and improve time on easy instances
and all instances. Thanks to global variable and value
symmetries, 18% more instances are solved compared to
vilib and all instances are solved much more efficiently.

We now study the experimental results for local sym-
metries. Figure 6 shows the detailed results. The com-
mon time is still reduced, but local symmetries achieve
the same performance as the heavy model without any
symmetry technique, with the exception of local and
global variable symmetries. Those results for local sym-
metries are due to the time needed to compute local
symmetries. Actually, some easy instances are not solved
with local symmetries.

In order to assess efficiency of local symmetries for
difficult problems, we performed the following experi-
ment. The light model is ran for 30 seconds, and if the
instance is not solved, local symmetry models are used
for 270 seconds. This coroutining setup ensures that
easy instances are solved. Results for this new setup
are shown in Figure 7. We compare the results of local
symmetries against global symmetries. Local symme-
tries slightly outperform global symmetries. Inside local
symmetry models, the models combining global symme-
tries outperform pure local symmetry models. This is
mainly because some instances contains a lot of sym-
metries that disappear during search. Local symmetry
has a high cost but reduces time for difficult instances.
Not surprisingly, local symmetries performance are poor
on easy instances, but outperform global symmetry on
difficult instances.

To the best of our knowledge, subgraph isomorphism
with symmetry breaking achieves the best percentage
of solved instances over the GraphBase benchmark pro-
posed by [Larrosa and Valiente, 2002].

7 Conclusion

In subgraph isomorphism, both global variable and value
symmetries can be computed on the initial instance. In-
deed, this computation can be made directly on the pat-
tern graph and the target graph. Moreover, all variable
and value symmetries can be broken by computing a base
and a strong generating set of the permutation groups
thanks to the Schreier-Sims algorithm. Local variable
and value symmetries can be found in a similar way. A

900

850 -

nbr of solved instances

400

150

200

time in sec

250

300

Figure 4: Results for global symmetries

solved | total time | mean time | mean mem | c. mean time | c. mean mem.
vilib 47.1% | 3329 min. 9.35 sec. 115 kb 9.35 sec. 92 kb
light 51.4% | 3162 min. | 17.91 sec. 2028 kb 14.89 sec. 1391 kb
heavy 58.94% | 2584 min. 6.57 sec. 7892 kb 5.81 sec. 3103 kb
global var 64% | 2318 min. | 8.72 sec. 7744 kb 2.75 sec. 2933 kb
global value 61.2% | 2479 min. 8.45 sec. 7820 kb 3.06 sec. 3014 kb
global varvalue | 65.7% | 2197 min. 7.35 sec. 7545 kb 2.50 sec. 2983 kb

Figure 5: Detailed results for global symmetries.

solved | total time | mean time | mean mem
global var | 64,73% | 2203 min. | 4.27 sec. 11371 kb
glocal var | 65,96% | 2150 min. | 3.26 sec. 11503 kb
local var 63,10% | 2300 min. | 3.15 sec. 4105 kb
global value | 63,92% | 2256 min. | 2.94 sec. 11475 kb
glocal value | 64,49% | 2234 min. | 3.78 sec. 28610 kb
local value | 63,18% | 2301 min. 3.77 sec. 4330 kb

Figure 7: Detailed results for local symmetries with coroutining.

solved | total time | mean time | mean mem | c¢. mean time | c. mean mem.
heavy 58.94% | 2584 min. 6.57 sec. 7892 kb 5.81 sec. 3103 kb
glocal var | 60.82% | 2473 min. | 5.93 sec. 19201 kb 4.40 sec. 3182 kb
local var 58.45% | 2615 min. 5.88 sec. 18666 kb 3.30 sec. 3096 kb
glocal value | 58.78% | 2601 min. 6.37 sec. 17839 kb 3.88 sec. 3684 kb
local value | 57.14% | 2682 min. | 4.96 sec. 7812 kb 3.29 sec. 3243 kb
Figure 6: Detailed results for local symmetries over all instances.

suitable definition of the local pattern and target graphs
makes the computation of local symmetries as direct as
for global symmetries.

Experimental results suggest that breaking all variable
and value symmetries is an efficient way to solve difficult
instances. Global symmetries together with arc consis-
tency and redundant constraints were able to solve 65%
of the instances, which makes constraint programming
the most efficient technique for this data set. Local sym-
metries achieve also good results on difficult instances.
However, computing local symmetries may not be the
good tradeoff between search and symmetries, especially
for easy instances. Computing local symmetries during
the whole search is inefficient.

Interesting directions include experiments on faster
but weaker detection methods. One could search for and
break generators, as the Schreier-Sims tends to be time
consuming. Other weaker forms of detection could also
be used. Finally, experiments should be conducted on
real-world class of graphs such as scale-free networks.

Acknowledgments

The authors want to thank the anonymous reviewers for
the helpful comments. This research is supported by
the Walloon Region, project Transmaze (WIST516207)
and by the Interuniversity Attraction Poles Programme
(Belgian State, Belgian Science Policy).

References

[Beldiceanu et al., 2005] Nicolas Beldiceanu, Pierre
Flener, and Xavier Lorca. The tree constraint. In
Roman Bartak, editor, Integration of AI and OR
Techniques in Constraint Programming for Combina-
torial Optimization Problems, Second International
Conference, CPAIOR 2005, Prague, Czech Repub-
lic, Proceedings, volume 3524 of Lecture Notes in
Computer Science, pages 64—78. Springer, June 2005.

[Benhamou, 1994] Belaid Benhamou. Study of sym-
metry in constraint satisfaction problems. In Alan
Borning, editor, Second International Workshop on
Principles and Practice of Constraint Programming,
PPCP’94, Proceedings, volume 874 of Lecture Notes
in Computer Science, pages 246-254, Orcas Island,
Seattle, USA, may 1994. Springer.

[Cambazard and Bourreau, 2004] Hadrien Cambazard
and FEric Bourreau. Conception d’une contrainte
globale de chemin. In 10e Journées nationales
sur la résolution pratique de problémes NP-complets
(JNPC’04), pages 107-121, Angers, France, June
2004.

[Cohen et al., 2006] David Cohen, Peter Jeavons,
Christopher Jefferson, Karen E. Petrie, and Bar-
bara M. Smith. Symmetry definitions for constraint
satisfaction problems. Constraints, 11(2-3):115-137,
2006.

[Cordella et al., 2001] Luigi Pietro Cordella, Pasquale
Foggia, Carlo Sansone, and Mario Vento. An improved

algorithm for matching large graphs. In 3rd IAPR-
TC15 Workshop on Graph-based Representations in
Pattern Recognition, pages 149-159. Cuen, 2001.

[Crawford et al., 1996] James Crawford, Matthew L.
Ginsberg, FEugene Luck, and Amitabha Roy.
Symmetry-breaking predicates for search problems. In
Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro,
editors, KR’96: Principles of Knowledge Represen-
tation and Reasoning, pages 148—159. Morgan Kauf-
mann, San Francisco, California, November 1996.

[Deville et al., 2005] Yves Deville, Grégoire
Dooms, Stéphane Zampelli, and Pierre Dupont.
Cp(graph+map) for approximate graph matching.
In Francisco Azevedo, Carmen Gervet, and Enrico
Pontelli, editors, Ist International Workshop on
Constraint Programming Beyond Finite Integer Do-
mains (in conjunction with the Eleventh International
Conference on Principles and Practice of Constraint
Programming), CP2005, Sitges, Spain, pages 33—47,
October 2005.

[Dooms et al., 2005] Grégoire Dooms, Yves Deville, and
Pierre Dupont. Cp(graph): Introducing a graph com-
putation domain in constraint programming. In van

Beek [2005], pages 211-215.

[Gent et al., 2005] Ian .P. Gent, Tom Kelsey, Steve A.
Linton, Tain McDonald, Tan Miguel, and Barbara M.
Smith. Conditional symmetry breaking. In van Beek
[2005], pages 256-270.

[Larrosa and Valiente, 2002] Javier Larrosa and Gabriel
Valiente. Constraint satisfaction algorithms for graph
pattern matching. Mathematical. Structures in Comp.
Sci., 12(4):403-422; 2002.

[McKay, 1981] B. D. McKay. Pratical graph isomor-
phism. Congressum Numerantium, 30:35-87, 1981.

[Puget, 2005a] Jean-Francois Puget. Breaking symme-
tries in all different problems. In Leslie Pack Kael-
bling and Alessandro Saffiotti, editors, IJCAI pages
272-277. Professional Book Center, 2005.

[Puget, 2005b] Jean-Francois Puget. Automatic detec-
tion of variable and value symmetries. In van Beek

[2005], pages 477-489.

[Ronay-Dougal et al., 2004] C.M. Ronay-Dougal, I.P.
Gent, T. Kelsey, and S. Linton. Tractable symme-
try breaking in using restricted search trees. In Ra-
mon Loépes de Mantaras and Lorenza Saitta, editors,
16th Europen Conference on Artificial Intelligence,
Proceedings, Valencia, Spain, volume 110, pages 211—
215. IOS Press, 2004.

[Sellman, 2003] M. Sellman. Cost-based filtering for
shorter path constraints. In Fransceca Rossi, edi-
tor, Nineth International Conference on Principles
and Pratice of Constraint Programming, CP 2003,
Kinsale, Ireland, Proceedings, volume 2833 of Lecture
Notes in Computer Science, pages 694-708. Springer-
Verlag, october 2003.

[van Beek, 2005] Peter van Beek, editor. Proceedings of
the 11th International Conference on Principles and
Practice of Constraint Programming (CP-2005), Lec-
ture Notes in Computer Science, Barcelona, Spain,
October 2005. Springer.

[Zampelli et al., 2005] Stéphane Zampelli, Yves Deville,
and Pierre Dupont. Approximate constrained sub-
graph matching. In van Beek [2005], pages 832-836.

