A Distributed Arc-Consistency Algorithm

T. Nguyen, Y. Deville

Département d’Ingénierie Informatique, Université Catholique de Louvain,
B-1348 Louvain-la-Neuve, Belgium

Abstract

Consistency techniques are an efficient way of tackling constraint satisfaction
problems (CSP). In particular, various arc-consistency algorithms have been de-
signed such as the time optimal AC-4 sequential algorithm of Mohr and Henderson
[8]. In this paper, we present a new distributed arc-consistency algorithm, called
DisAC-4. DisAC-4 is based on AC-4, and is a coarse-grained parallel algorithm de-
signed for distributed memory computers using message passing communication.
Termination and correctness of the algorithm are proven. Theoretical complexities
and experimental results are given. Both show linear speedup with respect to the
number of processors. The strong point of DisAC-4 is its suitability to be imple-
mented on very common hardware infrastructures like networks of workstations
and/or PCs as well as on intensive computing parallel mainframes.

1 Introduction

Constraint satisfaction problem appears in many areas like artificial intelli-
gence, operational research and hardware design. Informally, a CSP is com-
posed of a finite set of variables, each of which is taking values in an associated
finite domain, and a set of constraints between these variables. The constraints
restrict the values the variables can simultaneously take. Resolving a CSP
consists in finding one or all complete assignments of values to variables sat-
isfying all the constraints. Numerous methods have been proposed to solve
CSPs namely search procedures.

CSPs as formulated above are usually NP-complete. Search algorithms solving
CSPs generate exponential sized search spaces. For this reason, it has been
suggested to apply preprocessing techniques which would reduce the size of
these search spaces.

Node, arc and path-consistency are preprocessing techniques which run in
polynomial times. These algorithms have found wide application in artifi-

Preprint submitted to Elsevier Science 10 May 1996

cial intelligence, image processing, pattern recognition and programming lan-
guages.

We restricted ourselves to arc-consistency. Many sequential algorithms have
been designed to solve arc-consistency: Waltz [16] filtering algorithm; Mack-
worth’s [6,7] AC-1, AC-2 and AC-3 algorithms; Mohr and Henderson’s [§]
AC-4 algorithm which is optimal in time complexity (AC-4 runs in O(n?d?)
where n is the number of variables, and d is the size of the largest domain);
AC-5, a generic algorithm, proposed by Van Hentenryck, Deville and Teng
[15], which can exploit properties of particular classes of constraints, yielding
an O(n?d) time complexity.

When an arc-consistency algorithm has to distribute computing to a set of
parallel processes, they have to access data structures and exchange results
of their local computation. A first natural way is to use a shared memory.
Several authors followed this shared memory approach. Henderson and Samal
[12] proposed parallel versions of AC-1, AC-3 and AC-4 algorithms for shared
memory parallel computers. A theoretical study shows that the parallel version
of AC-4 with nd processors runs in O(nd). They implement the algorithms on
a BBN Butterfly multiprocessor. Since using nd processors is unrealistic, they
used p processors, and experimented a linear speedup (that is O(n?d*/p)) on
their example. Cooper and Swain [3] implemented and experimented a similar
parallel AC-4 algorithm on the Connection Machine CM-2. The complexity is
O(ndlog(nd)) due to communication overheads. They also gave a massively
parallel algorithm expressed as a digital circuit. Kasif [5] proved the inherent
sequentiality of arc-consistency algorithms. It means that with a polynomial
number of processors, one cannot expect less than a O(nd) time complexity.
Zhang and Mackworth formulate a CSP as a dual network within arcs cor-
respond to variables and nodes to constraints. They explored algorithms to
compute consistency of such a network. They parallelized these algorithms
and implemented them on a network of transputers [19,20].

Numerous authors studied distributed backtracking algorithms for solving
CSP. Yokoo and his colleagues [18,17] formalize cooperative distributed problem
solving (CDPS) as distributed constraint satisfaction problems (DCSP); they
proposed distributed backtracking algorithms to solve DCSP. In [4], Collin and
his colleagues examines the possibility of using uniform model of computation
to design self-stabilizing distributed backtracking algorithms. In an uniform
model of computation, all the processing agents are indistinguishable.

Share memory hardwares are not very common on existing computing infras-
tructures. Most of them are distributed memory environments, like processors
connected by a local area network. Often in such environments shared memory
is unavailable or has to be simulated, which can be costly.

In this paper, we give DisAC-4, a coarse-grained parallel algorithm designed
on the basis of AC-4 for a distributed memory computer using message pass-
ing communication. We propose a method to efficiently exchange information
between the cooperating processes. We prove termination and correctness of
DisAC-4 and state its theoretical time complexity (O(n?d?/p)). The strong
point of DisAC-4 is its suitability to be implemented on very common hard-
ware infrastructures like workstations connected by an Ethernet network. Ex-
perimental results show a linear speedup.

This paper is organized as follows. Definitions and notations are presented in
Section 2. To be self-contained, Section 3 introduces AC-4 algorithm. Section
4 describes a distributed memory parallel computer model and asynchronous
message passing operations. The DisAC-4 algorithm, its correctness proof and
its theoretical complexity are given in Section 5. Section 6 shows some exper-
imental results. Finally, we state conclusions in Section 7.

2 Preliminaries

Most of our notations are taken from [13].
Definition 1 A CSP is defined by a triplet (Z,D,C) where:

~ Z is a finite set of variables {1, 29,...,2,};

— D is a function which associate to each variable x; a finite set of objects. The
set of objects corresponding to a variable x; is noted D; and called domain
of x;. Elements of D; are possible values of x;;

— C is a set of constraints restricting values that variables can simultaneously

take. Each constraint C7, . defined on variables x;,,x;,, ..., x;, is associ-
ated to a predicate Cyyyy. 4. The atom Ciiy i (Vi Viyy .., 0;,) i true when
assigning stmultaneously values vi vy, ... v, lo xy, 24, ...,z variables

do not transgress the constraint.

In this paper, we restricts ourselves to binary CSPs. It is proven that every
CSP can be transformed to an equivalent binary CSP [10]. A CSP (Z,D,C)
is binary when constraints of C are binary. Such a CSP may be associated to
a directed graph.

Definition 2 A binary CSP (Z,D,C) is associated to a directed graph as
follows: (i) each variable x; of Z is associated to a node i; (ii) each constraint
Cz corresponds to a directed arc (i,7). For simplicity, we make hypothesis
that if a constraint C%; is associated to arc (1,7), there is a constraint C7;
associated to arc (j,i) such that C7; and C%; are the same except the fact that

their arquments are interchanged.

Definition 3 A label (i,v) denotes the assignment of value v € D; to variable
;.

In the following definitions, arc(() denotes the set of arcs of a graph G, and
node(() the set of its nodes.

Definition 4 Let (Z,D,C) be a binary CSP and G its associated graph. A

value v € D; is arc-consistent or a label (1,v) is arc-consistent iff
V(2,7) € are(G),Fw € D; : C(v,w)

Definition 5 Let (Z,D,C) be a binary CSP and G its associated graph. An

are (1,7) € arce(() is arc-consistent iff
Yv € DZ»,EIw - D]‘ : Cij(v,w)

Definition 6 A binary CSP is arc-consistent iff all the arcs of its associated
graph are arc-consistent.

Definition 7 Let GG be the graph associated to a binary CSP (Z,D,C) and
D' such that

Vi € node(G) : D, C D;

D' is an arc-consistent domain of G iff the binary CSP (Z,D',C) which is
also associated to graph G is arc-consistent. Furthermore, D' is the largest
arc-consistent domain iff there no different arc-consistent domain D" such
that

Vi € node(G) : D; C D! C D;

3 The arc-consistency algorithm AC-4

Arc consistency can be achieved by using the following domain restriction
operation:

\V/(l,j) € CLTC(G) D, — {v | veDANTue D]‘ : Cij(v,w)}

One simply needs to go through each arc (¢,), and for each value v of head
node ¢ check whether one can find a value w in tail node j compatible with v
(that is Cjj(v,w) is satisfied). All the values of node ¢ which fail to conform
to this condition are removed. Several passes over the arcs of arc(() are often
necessary and arc-consistency is fulfilled only whenever no value has been

deleted during the last pass. In the last two decades, numerous algorithms
have been constructed to compute arc-consistency. Combining previous works,
Mackworth [6] formulated the first arc-consistency algorithm AC-1 and two
of its variants AC-2 and AC-3. Mohr and Henderson [8] proposed AC-4, an

improvement of precedent algorithms.

AC-4 is based on the following observation: a value v of some node ¢ is arc-
consistent if it has a support in its neighboring nodes. More precisely, let (i, v)
be a label. The set of supports of (¢,v) is the following set of labels:

SupportOf;) = {{J,w) | (,)) € are(G) Aw € Dj A Cij(v, w)}

A label (¢, v) becomes inconsistent when at some neighboring node j, there is
no label (j,w) in SupportOf; 5. AC-4 uses a data structure counter[(z,v)][j]
containing the number of labels at node j supporting (7, v):

counter((i,0)][j] = #{(7,w) [(j,w) € SupportOf; .}

When this counter is zero, the label (i,v) is detected as inconsistent. AC-4
uses another data structure, Support; ., containing all the labels supported

by (j,w):

Support; ., = {{1,v) | (7, w) € SupportOfy; ,}

This data structure is used when the label (j,w) is detected as inconsistent.

As depicted by Fig. 1, the algorithm consists of two stages: building the ap-
propriate data structures (Support and counter), and pruning the inconsistent
labels. All inconsistent labels are put in a set called List. These are processed
in the second stage of the algorithm. For each inconsistent label (j,w) of
List, the set containing label (¢, v) which are supported by (j, w) is examined.
Since (j,w) is inconsistent and has to be deleted, variable counter|[(z,v)][;] is
decremented and checked. If it falls down to zero, label (i,v) is detected as
inconsistent and so appended to List for later processing.

AC-4 possesses the following properties: (i) it computes the largest arc-con-
sistent solution; (ii) its time and space complexities (for complete graphs) are
O(n*d*) where n is the number of nodes and d the size of the largest domain;
(iii) its time complexity is optimal. An explanation of those features and a
proof of correctness of the algorithm can be found in [8].

program AC-4;
01 begin
02 List := {}; Support;_ y:={};
03 (* Step 1: Build supports *)
04 for each (i,7) € are(G) do

05 for each v € D, do

06 begin

07 counter[{(t,v)][j] := 0;

08 for each w € D; do

09 if C;;(v, w) then

10 begin

11 counter[{(t,v)][j] := counter[(i,v)][j] +

12 Support; .,y = Support; ., U { z,v>}

13 end;

14 if counter[(i, v)][j] = 0 then

15 begin List := List U{(i,v)}; D; :== D; — {v} end
16 end;

17 (* Step 2: Remove unsupported values *)

18 for each (j,w) € List do

19 begin

20 List := List — {{j,w)};

21 for each (i, v) € Support; , such that v € D; do
22 begin

23 counter[(t,v)][j] := counter[(i,v)][j] — 1;

24 if counter[(i, v)][j] = 0 then

25 begin List := List U{(i,v)}; D; :== D; — {v} end
26 end

27 end

28 end.

Fig. 1. The AC-4 algorithm.

4 Asynchronous message passing model

Distributed memory parallel computers have become increasingly common.
They are built with processors sharing only a communication network. Run-
ning processes can exchange information by using channels. A channel is an
abstraction of a physical communication network; it provides a communication
path between processes.

With asynchronous message passing, communication channels are unbounded
queues of messages. A process appends a message to the end of a channel
queue by executing a send operation. Since the queue is unbounded, execu-
tion of send operation does not block the sender. A process receives a message
from a channel by executing receive statement. Execution of receive delays
the receiver until the channel is non-empty; then the message at the front of

the channel is removed and stored in variables local to the receiver. Because
channels are modelized as FIFO queues, one usually makes the following hy-
pothesis: (i) there is no loss of message; (ii) messages are received in the order
they have been sent. These assumptions are rather strong but often met by
the currently existing distributed programming platforms such as PVM [11].

Many different notations have been proposed for asynchronous message pass-
ing. We use notations proposed in [1]. A parallel program is composed of
processes which run concurrently and share global variables.

program Fzrample;

global variables declaration
process P :: Body of P, process
process P, :: Body of P, process

In a distributed memory computer using asynchronous message passing com-
munication, the only available global variables are channels. A channel is a
queue of messages that have been sent but not yet received. A channel decla-
ration has the form:

chan ch(idy : Type,idy : Types, ... id, : Type,)

id and Typeg, k € [1..k], are names and types of data fields in messages
transmitted via the channel. Field names are optional. Since channels are an
abstraction of an underlying network, access rules have to be defined following
the topology of the network. It is the task of the programmer to determine
within a program which processes can access a channel to write or to read a
message.

Channels are accessed by means of two basic primitives: send and receive.
A process sends a message to channel ch by executing

send ch(expry, expry, ... expr,)
An other process can receive this message by executing
receive ch(argy,args,...,arg,)

To determine whether a channel is currently empty, a process calls the boolean-
valued function

empty(ch)

In most local area networks such as Ethernet or Token Ring, each processor
is directly connected to every other one. Such communication networks often
support a broadcast operation, which transmits a message from one processor

to all processors. Let ch[l..n] be an array of channels, and let each channel
ch[t] be associated to a process P;. Each process broadcasts a message by
executing

broadcast ch(expr)

The effects is thus the same as executing n send operations in parallel, with
each sending a message to a different channel. Usually, on Ethernet or Token
Ring local area networks, the cost of a broadcast is similar to the cost of a
send.

Data with different types can be exchanged within a same channel by using
an union type constructor as shown in the following example:

type DataTypeFlag = enum(tag,,tag,,...,tag,)
type DataType = union(idy : Typey,idy : Types, ... id, : Type,)
chan ch(kind : DataTypeFlag, data : DataType)

It a process sends a message by using operation

send ch(tag,, expr)

the receiver process may get the message and decode it by executing state-
ments

receive ch(kind, arg);

case kind of

begin
tag, : Process arg as a T'ype; data;
tag, : Process arg as a T'ype, data;

tag, : Process arg as a T'ype,, data
end

The channel ch accepts data of types Typer, T'ypes, ..., Type,; the receiver
process checks the value of kind to determine the type of the content of arg.

5 The distributed algorithm DisAC-4
5.1 The algorithm

In DisAC-4 algorithm, we distribute the computation among p processes that
we designate by Worker[l], Worker[2], ..., Worker[p]. They run the same code

program DisA(C-4;
process Worker[k : 1..p]
01 begin
02 List := {}; Support;_ y:={};
03 | InitComWorker();
04 | ToSendList := {};
05 (* Step 1: Build supports *)
06 | for each (7,j) € arc(G) such that i € MyNodes(k) do
07 for each v € D, do

08 begin

09 counter[{(t,v)][j] := 0;

10 for each w € D; do

11 if C;;(v, w) then

12 begin

13 counter[{(t,v)][j] := counter[(i,v)][j] +
14 Support;,y := Support; U{ z,v>}
15 end;

16 if counter[(i, v)][j] = 0 then

17 begin

18 List := List U {(¢,v)}; D; := D; — {v};
19 | ToSendList :== ToSendList U {{i,v)}
20 end

21 end;

22 (* Step 2: Remove unsupported values *)

23 | for ever do

24 | begin

25 for each (j,w) € List do

26 begin

27 List := List — {{j,w)};

28 for each (i,v) € Support; ., such that v € D; do
29 begin

30 counter[(t,v)][j] := counter[{i,v)][j] — 1;
31 if counter[(i,v)][j] = 0 then

32 begin

33 List := List U {(¢,v)}; D; := D; — {v};
34 | ToSendList := ToSendList U {(i,v)}
35 end

36 end

37 end;

38 | SendMessage(ToSendList);

39 | Receive Message(List)

40 | end

41 end.

Fig. 2. The DisAC-4 algorithm: The Worker processes.

but on different data. In this paper, we will assume 1 < p < n, n is the number

of domains of the CSP.

Fig. 2 describes the algorithm of the workers. The bold line numbers give the
modifications with respect to AC-4. Let Worker(k], k € [1..p], be a worker
process. Worker[k] handles a set of nodes and associated domains which are
given by the MyNodes(k) function call. Like AC-4, computations of Worker|k]
consists in two parts. In the first stage, it independently builds the local
data structures counter and Support, and detects local inconsistent labels.
In the second stage, the inconsistent labels are treated. They may either be
locally generated inside the process or produced by the other workers. Hence,
Worker[k] has to transmit its locally detected inconsistent labels to the other
workers and collect inconsistent labels sent by them.

The space complexity of DisAC-4 is also O(n?*d*). The List variable of AC-4
can be seen as a share memory data structure, simulated by message passing.
The other data structures of AC-4 are partitioned among the p workers. More
precisely, the data structures of process Worker|k] are the following:

— counter[(i, -)][] with ¢ € MyNodes(k).

— Support,; ,,y that only contains labels of the form (¢, -) with 7 € MyNodes(k).
Hence, the number of elements of Support; , is at most nd/p where p is
the number of workers.

— D; with ¢ € MyNodes(k).

In fact, in the first stage of computation, Worker[k] needs all the domains.
But only domains D; with ¢ € MyNodes(k) will have to be updated. The other
domains will not be used in the second stage. Since p, the number of Worker
processes, is assumed to be 1 < p < n, the space complexity of the domains
is O(n*d). This does not influence the global O(n?d?) space complexity. Note
that the partition and construction of the Support data structure ensures that

i € MyNodes(k) in line 28 of the algorithm.

We adopted the hypothesis of fully connected processors architecture in which
broadcast operation is available. Let ch[0..p] be an array of channels and let
ch[k] be the channel associated to Worker[k]. The purpose of ch[0] will be
explained further. Each process can send a message in any channel but a
process can only receive a message via its dedicated channel.

As we mentioned above, Worker[k] has to: (i) broadcast its locally detected
inconsistent labels (contained in ToSendList) to the other workers; (ii) up-
date its List structure with inconsistent labels sent by them. Broadcasting
the ToSendList is done at lines 38 by executing the SendMessage procedure;
updating List is performed at line 39 by calling the ReceiveMessage procedure.
These two routines (Fig. 3 and 4) can be seen as simulating a shared memory
data structure for the List variable of AC-4.

10

procedure SendMessage(ToSendList);
01 begin
02 (* Broadcast T'oSendList *)
03 if ToSendList # {} then

04 begin

05 broadcast ch(list, k, ToSendList);
06 ToSendList :== {}

07 end

08 end.

Fig. 3. The DisAC-4 algorithm: The SendMessage procedure.

procedure Receive Message(List);

01 begin

02 (* Block until a message arrives *)

03 await not empty(ch[k]);

04 (* Process incoming messages *)

05 while not empty(ch[k]) do

06 begin

07 receive ch[k](kind,argy, args);

08 case kind of

09 begin

10 stop : exit process Worker[k];
11 list :if arg; # k then List := List U arg,
12 end

13 end

14 end.

Fig. 4. The DisAC-4 algorithm: The ReceiveMessage procedure.

program DisA(C-4;
process Controller ::
01 begin
02 Detect Termination();
03 broadcast ch(stop,_,.)
04 end.

Fig. 5. The DisAC-4 algorithm: The Controller process.

The task of the Controller process (Fig. 5) consists in: (i) detecting the ter-
mination of the computation calling the DetectTermination procedure; (ii)
signaling the termination to the workers by mean of a stop message. Infor-
mally, the computation ends whenever each worker has treated all the labels
detected as inconsistent and no more inconsistent labels are generated.

11

5.2 Properties of the algorithm

We first state a sufficient condition for the Detect Termination procedure en-
suring the partial correctness of DisAC-4. We postpone the implementation
of this DetectTermination routine.

Lemma 1 Assume no stop message broadcasted by the Controller process.
Suppose all Worker processes are erecuting ReceiveMessage procedure and
waiting for a message at line 3, and all the channels ch are empty. Then,
DisAC-/ has built the largest arc-consistent solution.

Proof. Since the algorithm of the workers is based on AC-4, it is sufficient
to show that each label (i,v) detected as inconsistent by some worker has
been treated by all the other workers. Suppose that some process Worker[k],
k € [1..p], has not treated a label (i,v) detected as inconsistent. Because all
workers are waiting for a message at line 3 of the ReceiveMessage procedure,
this label (¢,v) has been broadcasted because a SendMessage call precedes
any ReceiveMessage call (lines 38-39). Since the local List set of Worker[k]
is empty, (7,v) must be contained in a message that Worker[k] did not yet
receive. Therefore, we conclude that the channel ch[k] is not empty what is
contradictory with the hypothesis. O

Theorem 1 (Partial correctness) Assuming the DetectTermination routine
only returns whenever conditions mentioned in Lemma 1 are satisfied, then
algorithm DisAC-4 is partially correct.

Proof. Consequence of Lemma 1 as algorithm DisAC-4 only terminates after
the Detect Termination procedure returns. O

To guarantee the end of the computation and thus the total correctness of
DisAC-4, a correct implementation of the Detect Termination procedure has
to be provided, that will be done in the next section.

Theorem 2 (Time complexity) Assume the Detect Termination procedure in-
stantaneously returns whenever the conditions described in Lemma 1 are ful-

filled. The time complexity of DisAC-/ is O(n*d*/p).

Proof.

— Step 1 In the first step of their algorithm, the workers run in parallel and
independently. Hence, for this first step, the time complexity of the global

12

Worker[k] Worker[k'] Worker[k"]

Step 1 O(n?d?/p)

Step 2 0

[] Does not detect any inconsistent label
[] Detect a unique inconsistent label
—— Communications (lines 38-39)

Fig. 6. DisAC-4: Worst case execution.

computation is the complexity of a worker. The for loop at line 6 examines

at most n?/p arcs. The for loops of lines 7 and 10 each iterate on d values.

Hence, the time complexity of Step 1 is O(n?d?/p).

— Step 2 The worst case is the following (Fig. 6):
- At the end of Step 1, only one label is detected as inconsistent by some
Worker[k], k € [1..p].

- Step 2 of the other workers is void and they are all waiting for a message
at line 39.

- Step 2 of Worker[k] treats the unique inconsistent label of List. Since
List contains only one element and Support; ,, at most nd/p labels, the
nested for loops of lines 25 and 28 run in O(nd/p) time. In the worst
case, we assume that no more inconsistent labels are detected at this
stage. Worker[k] sends the inconsistent label (line 38) and waits at line
39.

- The other workers receive the singleton of Worker[k] and put it in their
List variables (line 39). They reexecute Step 2 in parallel in O(nd/p) time.
As result of these computations, we assume another single inconsistent
label detected by some Worker[k'], k' € [1..p]. Worker[k'] locally treats
this label and updates its counter variables; it takes again an O(nd/p)
time. It broadcasts its ToSendList singleton at line 38.

- The same scenario happens and so on, until all labels are detected as
inconsistent.

Since there are at most nd labels, we conclude that the time complexity of

Step 2, excluding communications, is O(n*d*/p).

13

— Communications Step 2 includes the time spent by the workers in the

SendMessage and ReceiveMessage procedures.

- Assuming a (very bad) implementation of broadcast, the complexity of
such a broadcast is bounded by p successive send calls. Time spent by
a worker for such a sending is proportional to the size of its ToSendList.
The sum of successive sizes of ToSendList is bounded by nd. Hence a
complexity of O(pnd) for all the executions of SendMessage by this worker.

- The complexity of ReceiveMessage, excluding waiting time, is proportional
to the size of argy (lines 7 and 11). The sum of the successive sizes of arg;
is bounded by nd. Hence a complexity of O(nd) for all the executions of
ReceiveMessage by a worker.

The complexity of DisAC-4 is then O(n*d*/p + pnd), yielding O(n*d*/p)

assuming p < vnd. O

Theorem 2 shows a linear speedup of DisAC-4 with respect to the number of
workers. The DisAC-4 algorithm is not intended to be massively parallel. The
constraint p < v/nd is obviously met when n < d (since p < n).

5.3 The Controller process

We may use a distributed snapshot algorithm to detect the end of the compu-
tations. By such an algorithm, a process in a distributed system determines
a global state of the system during a computation. In our case, this process
is called Controller and the state of interest corresponds to the conditions
described in Lemma 1. But such a general algorithm is very heavy and com-
plex to carry out; moreover, it could degrade the linear speedup of DisAC-4.
Therefore, we rather choose to design a specialized and optimized termination
detection algorithm exploiting the particular features of our fully connected
communication topology and the arc-consistency computation of AC-4.

The task of the Controller process consists in counting the number of 1ist
typed messages that have been exchanged by the workers and checking whe-
ther each of them has treated a same number of 1ist messages. In this case,
it broadcasts a termination order to the workers as all inconsistent labels have
been detected and treated. The correctness of this termination detection will
be proven later.

The controller fulfills its task by means of the DetectTermination routine
(Fig. 7). It is built over two other routines: the CollectList procedure and
the Polling boolean function (Fig. 8 and 9). In the CollectList procedure,
the controller attempts to get (without blocking) messages from its dedicated
channel ch[0]: it checks the state of the channel before executing a receive
statement. If the operation is successful and the received message contains

14

procedure Detect Termination();

01 begin

02 InitComController();

03 terminated := false;

04 while not terminated do
05 begin

06 CollectList();

07 terminated := Polling()
08 end

09 end.

Fig. 7. The DisAC-4 algorithm: The DetectTermination procedure.

inconsistent labels, the variable mastercounter is incremented. If no message
arrives after max successive attempts, the procedure returns. By calling the
Polling function, the controller broadcasts a timestamped polling request to
the workers, and waits for their replies. If k& correctly timestamped replies are
collected, the polling operation is successful and Polling returns true. Else the
controller receives a message containing inconsistent labels, the mastercounter
variable is incremented and Polling immediately returns with value false.
Inside the DetectTermination procedure, the controller successively calls the
CollectList and Polling routines until the Polling function returns value true.
The procedure InitComController (Fig. 10) initializes the mastercounter and
timestamp variables of the controller.

5.4 The Worker processes revisited

We modify the SendMessage and ReceiveMessage procedures allowing the
workers to cooperate with the controller in detecting the termination of the
computation. These procedures are shown in Fig. 11 and 12. The differences
with their simplified versions presented in the precedent section are highlighted
by bold line numbers.

Answering a polling request with a message containing a pollreply tag is
only performed at certain conditions as shown by line 10 of the SendMessage
routine. First, a polling request must have been sent by the controller. Then
ToSendList must be empty otherwise some inconsistent labels have not yet
been treated by the other workers. Next, List must be empty as the worker
must have finished processing all the inconsistent labels at its disposal before
answering a polling request. Finally, localcounter of the worker (the number
of 1ist messages it has received so far) must be equal to mastercounter (the
number of 1list messages controller has received). Otherwise, either some
list messages already received by the controller have still to be received and
treated by the worker, or some 1ist messages already received and treated

15

procedure CollectList();
01 begin
02 (* Collect inconsistent labels lists *)
03 SuccessiveFailedAttempts := 0;
04 while Successive FailedAttempts < max do

05 begin

06 if empty(ch[0]) then

07 begin

08 SuccessivelFailedAttempts 1= Successive FailedAttempts + 1;
09 sleep(afewtime)

10 end

11 else

12 begin

11 receive ch[0](kind, argq, args);

12 if kind = 1ist then

13 begin

14 Successive Failed Attempts := 0;

15 mastercounter := mastercounter + 1
16 end

17 end

18 end

19 end.

Fig. 8. The DisAC-4 algorithm: The CollectList procedure.

by the worker have still to be received by the controller.

The routine InitComWorker initializes the localcounter and pollrequest vari-

ables (Fig. 13).

5.5 Properties of the algorithm (cont’d)

Lemma 2 Suppose that the Controller process collects p correctly timestam-
ped replies after having broadcasted a polling request. Let ListMessages be
the set of all 1ist messages sent by the Worker processes before replying
to the polling request, and let C be the value of mastercounter as sent by the
Controller process in the considered polling request. The following assertions
are true:

— Assertion 1 The Controller process has received all the messages of
ListMessages.

~ Assertion 2 #ListMessages = C

— Assertion 3 For all k € [1..p], the value of Worker[k|.localcounter at the
polling reply equals C.

— Assertion 4 Let be a Worker[k], k € [1..p]. Let m be a 1ist message sent

16

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

01
02
03

function Polling() : Boolean;
begin
(* Process a polling *)
timestamp = timestamp + 1;
broadcast ch(pollrequest, timestamp, mastercounter);
nbpollreply := 0;
while nbpollreply < p do
begin
receive ch[0](kind, argy,args);
case kind of
begin
pollreply : if arg; = timestamp
then nbpollreply := nbpollreply + 1;
list : begin
mastercounter := mastercounter + 1;
return false
end
end
end;
return true
end.

Fig. 9. The DisAC-4 algorithm: The Polling function.

procedure [nitComController();
begin

mastercounter := 0; timestamp := 0
end.

Fig. 10. The DisAC-4 algorithm: The InitComController procedure.

by Worker[k]. If m & ListMessages, then there exvists another 1ist message
that is not contained in ListMessages.

Assertion 5 Let m be a list message. If m & ListMessages, then m is
not sent by any worker.

Assertion 6 The channels contain no 1list message.

Proof.

Assertions 1 and 2 Because channels guarantee messages reception in
the order they have been sent, the controller has received all the messages
sent by the workers before they reply to its polling request. Hence the size of
ListMessages is the value (' of mastercounter as sent in the polling request.
Assertion 3 Because Worker|k] replied to the polling with a pollreply
(line 10 in SendMessage procedure), its localcounter equals mastercounter
of the controller, as sent in the polling request (that is C).

17

procedure SendMessage(ToSendList);
01 begin
02 (* Broadcast ToSendList and/or reply to polling request *)
03 if ToSendList # {} then

04 begin

05 broadcast ch(list, k, ToSendList);

06 ToSendList := {};

07 | pollrequest := false

08 end

09| else

10 | if pollrequest and List = {} and localcounter = mastercounter then
11 | begin

12 | send ch[0](pollreply, timestamp, _);
13 | pollrequest := false

14 | end

15 end.

Fig. 11. The DisAC-4 algorithm: The SendMessage procedure revisited.

procedure Receive Message(List);

01 begin

02 (* Block until a message arrives *)

03 await not empty(ch[k]);

04 (* Process incoming messages *)

05 while not empty(ch[k]) do

06 begin

07 receive ch[k](kind,argy, args);

08 case kind of

09 begin

10 stop : exit process WORKER[k];

11 list : begin

12 if argy # k then List := List U argy;
13 | localcounter := localcounter + 1
14 end;

15 | pollrequest : begin

16 | pollrequest := true;
17 | timestamp := argq;
18 | mastercounter := args
19 | end

20 end

21 end

22 end.

Fig. 12. The DisAC-4 algorithm: The Receive Message procedure revisited.

18

procedure [nitComWorker();

01 begin
02 localcounter := 0; pollrequest := false
03 end.

Fig. 13. The DisAC-4 algorithm: The InitCom Worker procedure.

— Assertion 4 Since m ¢ ListMessages, it is sent by Worker|[k] after having
replied to the polling request and calling SendMessage at line 38. Hence,
message m contains inconsistent labels that Worker[k] has detected af-
ter having processed inconsistent labels contained in another list mes-
sage m'. This latter message m’ is not counted in the value of localcounter
of Worker[k] whenever its was replying to the polling request. If m’ &
ListMessages, the assertion is proven. Else, there must exists another 1ist
message m” & ListMessages, otherwise Assertions 2 or 3 would be false.

~ Assertion 5 Suppose m ¢ ListMessages and sent by some Worker[k],
k € [1..p]. Applying Assertion 4 successively, we have an infinite sequence
of different 1ist messages m’,m”,... not belonging to ListMessages. This
is impossible the number of 1ist messages is infinite since the set of labels
is finite.

— Assertion 6 Consequence of Assertions 3 and 5. O

Lemma 3 The Controller and the Worker processes terminate.

Proof. Let be a Worker[k], k € [1..p]. It does not reply to the latest polling
request from the controller whenever it calls SendMessage if: () its List is not
empty; (ii) its localcounter does not equal C, the value of mastercounter of the
controller when this latter was sending its request. Worker[k] is constructed

such that (i) cannot remain infinitely true. Two alternatives are possible when
(ii) is verified:

— Worker[k].localcounter < C': There are 1ist messages already received by
the controller and not yet treated by Worker[k]; this latter will wait for
these messages and process them before replying to the controller.

— Worker[k].localcounter > C: Worker[k] has treated 1ist messages which
the controller has not received whenever it was broadcasting its polling re-
quest. The controller will receive them waiting for replies. Its polling process
will fail. Therefore, Worker[k] do not have to reply to the polling request
of the controller.

Hence in the Polling function, the while loop of line 6 always terminates.
Since there is at most nd labels, the controller receives at most nd 1ist mes-
sages. Polling can be called at most nd times and therefore while loop in
DetectT ermination (line 4) always ends. The fact that the workers terminate
whenever the controller ends is trivial. O

19

Theorem 3 (Total correctness) DisAC-/ is totally correct.

Proof. Theorem 1 ensures the partial correction of the algorithm. Lemma
2 proves the DetectTermination procedure is built to detect the correct ter-
mination conditions. In an other hand, this procedure does not influence the
underlying arc-consistency computations. Lemma 3 guarantees the termina-
tion of all processes. O

Let us now analyze the theoretical time complexity of our full DisAC-4 al-

gorithm, including the detection of termination. Without such a detection,
Theorem 3 showed a complexity of O(n?d*/p) for DisAC-4.

Theorem 4 (Time complexity) If the number of polling requests that the
Controller process has sent is O(n*d*/p*), then the complexity of DisAC-
is O(n*d*/p).

Proof. Let R the number of polling requests sent by the controller. Each
worker has to treat R pollrequest messages. The complexity of a worker
becomes O(n?d? /p+ R). With the hypothesis on R, we still have a complexity
of O(n*d*/p) for the workers.

The complexity of the controller depends on the number of messages. This
number is bounded by (nd + R+ p x R); these three terms correspond respec-
tively to the number of inconsistent labels, the number of polling requests and
the number of polling replies. With the hypothesis on R, the time complexity
of the controller becomes O(n?d?/p).

Hence time complexity is O(n?d?/p) for DisAC-4. O

In a real implementation of DisAC-4, the number of polling requests will de-
pends on the constants max and afewtime. Choosing high values for these
constants ensures the fulfillment of the hypothesis of Theorem 4, hence yields
a theoretical complexity of O(n*d*/p); neverthless, this can induce high exe-
cution times. As we will see in the next section, it is easy to find empirically
values for max and afewtime ensuring both the application of Theorem 4 and
good performances.

5.6 Granularity

In DisAC-4, we choose a coarse-grained approach for parallelism (p < n).
Hence the domain D; of a node 7 is handled by a single process. This reduces

20

communication overheads compared with approaches such as [12,3] where data
are split among processes.

In the proposed DisAC-4 algorithm, communication between the Worker pro-
cesses is reduced to its simplest form. Each of them sends its detected incon-
sistent labels and receives inconsistent labels detected by the other only if its
has nothing else to do (lines 38-39). This choice has been motivated by our
objective of a coarse-grained parallelism.

From a theoretical point of view, calls to SendMessage and ReceiveMessage
could also be added anywhere in the algorithm of the workers without altering
its correctness nor its time complexity. Experimental results showed that such
an increase of the number of messages does not influence the performance. The
potential advantage of more parallelism is reduced by the overhead induced
by such new messages.

6 Experimental results

We have implemented DisAC-4 on Sun workstations connected to an Ethernet
local network. PVM [11] provides us a distributed message passing program-
ming environment which is widely used in intensive parallel computing. PVM
proposes tools which allow asynchronous message passing operations as de-
scribed in Section 3. All our program code is written in C.

Since PVM supports heavyweight processes, each processor deals with only
one process. We implemented MyNodes function in such a way that either
|n/k| or [n/k] successive domains are distributed to each Worker process. To
compare parallel algorithm performance, a quotient called speedup is defined
by setting

Execution time of sequential AC-4

speedup =
P P~ Execution time of DisAC-4 with k processors

We ran DisAC-4 algorithm with three kinds of CSPs: N-queens problem, re-
verse N-queens problem, and the benchmark CSP used in [3]. N-queens prob-
lem consists in seeking ways to place N queens on a N X N chessboard, one
queen per row, so that each pair of queens does not attack each other. The
problem is formalized as CSP with variables zq,xs,...,2xy where z; is the
position of the queen in row . Initial domains and constraints associated to
the problem are:

Vi € node(G) : D; € {1,2,...,n}

21

Vi,7 € node(G):1# j = (1,7) € are(G)
Y(2,7) € arc(G),Yv € D;,NVw € D; :
Cij(v,w) = (v # w) A(li = j| # [— wl)

The constraints impose that two queens cannot be one a same column nor on
a same diagonal.

In opposite, in reverse N-queens problem, each pair of queens does attack each
other; the constraints are:

Y(2,7) € arc(G),Yv € D;,NVw € D; :
Cij(v,w) = (v =w) V(i —j| = v — w])

Reverse N-queens provides a better test-bed for consistency algorithms than
N-queens [9].

We call N-CS the benchmark used by Cooper and Swain in [3]. This CSP is

defined by the following domains and constraints:

Vi € node(G) : D; € {1,2,...,n}
Vi,j € node(G): i # j = (1,7) € arce(G)
V(i j) € arc(G),Yv € D;,Vw € D; : Cij(v,w) ==(l7j —i]| =1 Av > w)

~~

Enforcing arc-consistency for N-CS, AC-4 and DisAC-4 build Support data
structures whose sizes are close to maximal i.e. respectively nd and nd/k
elements. Another feature of N-CS benchmark is that most of inconsistent
labels are detected in the Step 2 of the algorithms.

Note that in our three benchmark problems, the initial domains are not fully
specified. This is necessary as our objective is not to find a solution to these
problems (what would require an explicit enumeration or labeling), but only
to apply (once) an arc-consistency algorithm. In order to ensure the detection
of inconsistent labels and constraint propagation, we have initially restricted
some of the domains before applying the arc-consistency algorithm. Such a
situation is representative of the use of arc-consistency within a search proce-
dure.

Fig. 14, 15 and 16 represent the speedups obtained with these CSPs. The
right side graphs depict speedups of the algorithm taken globally for different
problem sizes; the left side graph describe speedups obtained with its different
parts. The ideal case is to obtain a linear speedup with a slope equal to one.

22

speedup speedup

gL Step 1 gl T 35-queens
o Step 2 e 40-queens
7T e Global 7T ewwe 45-queens
6+ 40-queens 61
51 5+
4+ 4+
37 oo o - . 31
2+ 2T
1+ § 1+
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
number of processors number of processors
Fig. 14. N-queens benchmark - Speedup vs. number of processors.
speedup speedup
st Step 1 | gL 60-rqueens
o Step 2 o 70-rqueens
71 ee Global 77 ewe 80-rqueens
61 70-rqueens 61
5t .. 51 o ,4
Al) .l .
3+ 3+
2+ 2T
1+ 1+
PR S SEL Ehls bl S, . Sy e e
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
number of processors number of processors

Fig. 15. Reverse N-queens benchmark - Speedup vs. number of processors.

The Step 1 of the algorithm gives speedups close to ideal. The fact that the
Worker processes run in parallel and independently explains this feature.

In Step 2, the workers have to cooperate and exchange their inconsistent la-
bels. Communications throughout the network are slow with respect to the
computing speed of the processors. On the other hand, Step 2 is inherently
sequential. Hence, speedups are worse than in Step 1. Note that in the case of
reverse N-queens problem, we do not have any speedup but a slowdown. The
number of labels which are examined in Step 2 is very low, about 0.01% of

23

speedup speedup

gl Step 1 ol CS-35
o o Step 2 o----o CS—40
77 e-e Global 7T
67 a0-cs 67
5+ 5+
4+ e 4+ e
31 e 3+
2 | / 2 ¢
1t 1+
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
number of processors number of processors

Fig. 16. N-CS benchmark - Speedup vs. number of processors.

the n%d?* labels that Support sets can theoretically contain. Also the amount
of computations is small. Hence, in AC-4, Step 2 is very fast. It is slower in
DisAC-4 due to communication overheads. But this slowdown does not com-
pletely degrade the global performance of DisAC-4 because time spent in Step
2 is negligible with respect to time spent in Step 1.

With N-queens problem and N-CS benchmark, Step 2 has to examine a large
amount of labels contained in Support sets. They are treated sequentially in
AC-4 and in parallel in DisAC-4. This generates speedup despite communi-
cation latencies. Global computation speedups are better whenever the size
of the CSPs grows up. With very large sized CSPs, we observed unexpected
superlinear effects i.e. speedup greater than the number of processors. This
astonishing fact can be explained easily on basis on the following conjecture:
whenever the number of processors is small, the amount of necessary memory
within each processor is very large and important processing time is spent
in swapping. The superlinearity is not inherent to the algorithm. It is due to
limitations (memory size of computers) of the computing environment where
our experiences were carried out.

In the implementation of DisAC-4, values have to be provided to the con-
stants max and afewtime within the CollectList procedure. In our experiments,
the parameter max has been set to its minimal value 1. Experimental results
showed that other choices do not change the performance. With high values
of max, the Controller process does busy waiting (line 4 while loop of the
CollectList procedure) instead of being waiting for messages at line 8 of the
Polling function.

24

The parameter afewtime has been set to 1 second. Experimental results
showed that variations of this value (1 second + ¢, where ¢ equals 1 or 2
seconds for instance) only extend the total computation time by about 6. The
only impact of ¢ is thus the time between the two last pollings.

Various experiments have been made for different values of max and afewtime.
The resulting number of polling requests generated by the controller was al-
ways low (less than 10), even with afewtime set to zero. Hence, the hypothesis
of Theorem 4 are fulfilled. We also observed that the number of pollings did
not affect the global performance of the algorithm.

7 Conclusion

We have presented a coarse-grained parallelization of AC-4 algorithm for a dis-
tributed memory computer whose processors communicate by asynchronous
message passing. The DisAC-4 algorithm has been designed under the hypoth-
esis of a full connection between the processors, i.e. each processor may directly
communicate with another. We prove the termination and the correctness of
the algorithm, and stated its complexity. The DisAC-4 algorithm has also been
implemented with PVM tools, and experimented on workstations connected
by an Ethernet network. The theoretical complexity of DisAC-4 is O(n?d?/k)
and the experimental results corroborate the expected linear speedup with
respect to the number of processors.

We are currently investigating improvements of our DisAC-4 algorithm. We
are examining the possibility of sharing domain D; data structures. The non
sharing of these data structures could generate more computations in DisAC-4
with respect to AC-4. It is due to the fact that in Step 1 of DisAC-4, whenever
some worker updates its associated domains D;, it does not directly propagate
these modifications to the other workers. Hence, they do not take them into
account building their Support sets. Nevertheless, we are aware that mecha-
nisms allowing sharing domain data structures could generate overheads which
would ruin the potential speedup. We are also considering other topologies
than full connection topology for processor connection.

We are studying DisAC-4 implementation on parallel mainframes built for in-
tensive computing (HP PA-RISC 9000 nodes connected by an FDDI network,

Convex Exemplar supercomputer).

In an other hand, we are also working on DisAC-3 and DisAC-6 algorithms.
They are respectively the distributed versions of AC-3 and Bessiere’s [2] AC-6
algorithms. With respect to DisAC-4, they are less memory demanding. Com-
parisons between DisAC-3, DisAC-4 and DisAC-6 are currently in progress.

25

We believe DisAC algorithms are a suitable and efficient parallel way to achieve
arc-consistency on distributed memory computers, as found on very common
hardwares such as networks of workstations and/or PCs. As arc-consistency
has important applications in constraint logic programming over finite domain
[14,15], we intend to investigate how a parallel arc-consistency algorithm could
be part of a parallel constraint logic programming language for finite domains.

Acknowledgments

The authors thank the anonymous reviewers for their helpful comments and
suggestions on earlier versions of this text.

References

[1] G. R. Andrews, Concurrent Programming: Principles and Practice (The
Benjamin/Cummings Publishing Company, Redwood City, CA, 1991).

[2] C. Bessiere, Arc-consistency and arc-consistency again, Artif. Intell. 65 (1994)
179-190.

[3] P. R. Cooper and M. J. Swain, Arc consistency: parallelism and domain
dependence, Artif. Intell. 58 (1992) 207-235.

[4] Z. Collin, R. Dechter and S. Katz, On the Feasibility of Distributed Constraint
Satisfaction, in: Proceedings IJCAI-91 (1991) 318-324.

[5] S. Kasif, On the parallel complexity of discrete relaxation in constraint
satisfaction networks, Artif. Intell. 45 (1990) 275-286.

[6] A. K. Mackworth, Consistency in networks of relations, Artif. Intell. 8 (1977)
99-118.

[7] A. K. Mackworth and E. C. Freuder, The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems, Artif.
Intell. 25 (1985) 65-74.

[8] R. Mohr and T. C. Henderson, Arc and path consistency revisited, Artif. Intell.
28 (1986) 225-233.

[9] B. A. Nadel, Constraint satisfaction algorithms, Comp. Intell. 5 (1989) 188-224.

[10] F. Rossi, C. Petrie and V. Dhar, On the Equivalence of Constraint Satisfaction
Problems, in: Proceedings EFCAI-90 (1990) 550-556.

[11] Oak Ridge National Laboratory, PVM 3 User’s guide and reference manual
(Oak Ridge, TN, 1993).

26

[12] A. Samal and T. C. Henderson, Parallel Consistent Labeling Algorithms, Int.
Journal of Paral. Prog. 16 (1987) 341-364.

[13] E. Tsang, Foundations of Constraint Satisfaction (Academic Press, London,
UK, 1993).

[14] P. Van Hentenryck, Constraint Satisfaction in Logic Programming (The MIT
Press, Cambridge, MA, 1989).

[15] P. Van Hentenryck, Y. Deville and C.-M. Teng, A generic arc-consistency
algorithm and its specializations, Artif. Intell. 57 (1992) 291-321.

[16] D. Waltz, Understanding line drawings of scenes with shadows, in: P. H.
Winston, ed., The Psychology of Computer Vision (MacGraw-Hill, New York,
NY, 1975) 19-91.

[17] M. Yokoo, Constraint relaxation in distributed constraint satisfaction problems,
in: Proceedings of Int. Conf. on Tools with AI - 93 (1993) 56-63.

[18] M. Yokoo, E. H. Durfee, T. Ishida and K. Kuwabara, Distributed constraint
satisfaction for formalization distributed problem solving, in: Proceedings of
Int. Conf. Dist. Syst. - 92 (1992) 614-621.

[19] Y. Zhang and A. K. Mackworth, Parallel and distributed algorithms for finite
constraint satisfaction problems, in: Proceedings of IEEE Symp. Paral. and Dist.
Proc. - 91 (1991) 394-397.

[20] Y. Zhang and A. K. Mackworth, Parallel and Distributed Finite Constraint
Satisfaction, Technical Report 92-30 (Department of Computer Science,
University of British Columbia, Vancouver, B. C. Canada, 1992).

27

