
A Generic Arc-Consistency Algorithm
and its Specializations1

Pascal Van Hentenryck
Brown University
Box 1910
Providence, RI 02912 (USA)

Yves Deville
Universit�e Catholique de Louvain,
Pl. Ste Barbe 2,
B-1348 Louvain-La-Neuve (Belgium)

Choh-Man Teng
Brown University
Box 1910
Providence, RI 02912 (USA)

Abstract

Consistency techniques have been studied extensively in the past as a way of tackling con-
straint satisfaction problems (CSP). In particular, various arc-consistency algorithms have
been proposed, originating from Waltz's �ltering algorithm [27] and culminating in the op-
timal algorithm AC-4 of Mohr and Henderson [16]. AC-4 runs in O(ed2) in the worst case,
where e is the number of arcs (or constraints) and d is the size of the largest domain. Being
applicable to the whole class of (binary) CSP, these algorithms do not take into account the
semantics of constraints.

In this paper, we present a new generic arc-consistency algorithm AC-5. This algorithm
is parametrized on two speci�ed procedures and can be instantiated to reduce to AC-3 and
AC-4. More important, AC-5 can be instantiated to produce an O(ed) algorithm for a
number of important classes of constraints: functional, anti-functional, monotonic and their
generalization to (functional, anti-functional, and monotonic) piecewise constraints.

We also show that AC-5 has an important application in constraint logic programming
over �nite domains [24]. The kernel of the constraint solver for such a programming language
is an arc-consistency algorithm for a set of basic constraints. We prove that AC-5, in con-
junction with node consistency, provides a decision procedure for these constraints running
in time O(ed).

1This paper is an extended version of [3].

1

1 Introduction

Many important problems in areas like arti�cial intelligence, operations research and hard-
ware design can be viewed as constraint satisfaction problems (CSP). A CSP is de�ned by
a �nite set of variables taking values from �nite domains and a set of constraints between
these variables. A solution to a CSP is an assignment of values to variables satisfying all
constraints and the problem amounts to �nding one or all solutions. Most problems in this
class are NP-complete, which means that backtracking search is an important technique in
their solution.

Many search algorithms (e.g. [2, 6, 7, 8, 11, 19]), preprocessing techniques and constraint
algorithms (e.g. [27, 18, 12, 14, 16]) have been designed and analyzed for this class of prob-
lems; see the reviews [13, 20] for a comprehensive overview of this area. In this paper, we are
mainly concerned with (network) consistency techniques, and arc consistency in particular.
Consistency techniques are constraint algorithms that reduce the search space by removing,
from the domains and constraints, values that cannot appear in a solution. Arc-consistency
algorithms work on binary CSP and make sure that the constraints are individually consis-
tent. Arc-consistency algorithms have a long history of their own; they originate from the
Waltz �ltering algorithm [27] and were re�ned several times [12] to culminate in the optimal
algorithm AC-4 of Mohr and Henderson [16]. AC-4 runs in O(ed2), where e is the number
of arcs in the network and d is the size of the largest domain.

Consistency techniques have recently2 been applied in the design of constraint logic pro-
gramming (CLP) languages, more precisely in the design and implementation of CHIP [24, 5].
CHIP allows the solving of a variety of constraints over �nite domains, including numerical,
symbolic, and user-de�ned constraints. It has been applied to a variety of industrial prob-
lems and preserves the e�ciency of imperative languages while shortening the development
time signi�cantly. Examples of applications include graph-coloring, warehouse locations,
car-sequencing and cutting stock (see for instance [4, 24]). The kernel of CHIP for �nite
domains is an arc-consistency algorithm based on AC-3 for a set of basic binary constraints.
Other (non-basic) constraints are approximated in terms of the basic constraints.

The research presented here originated as an attempt to improve further the e�ciency of
the kernel algorithm. This paper makes two contributions. First, we present a new generic
arc consistency algorithm AC-5. The algorithm is generic in the sense that it is parametrized
on two procedures that are speci�ed but whose implementation is left open. It can be reduced
to AC-3 and AC-4 by proper implementations of the two procedures. Moreover, we show
that AC-5 can be specialized to produce an O(ed) arc consistency algorithm for important
classes of constraints: functional, anti-functional and monotonic constraints, as well as their
piecewise forms. Second, we show that the kernel of CHIP consists precisely of functional
and monotonic constraints and that AC-5, in conjunction with node consistency, provides a
decision procedure for the basic constraints running in time O(ed).

This paper is organized as follows. Section 2 describes the notation used in this paper and

2Note that, Mackworth [12] mentioned as early as 1977 the potential value of consistency techniques for
programming languages.

2

contains the basic de�nitions. Section 3 describes the generic arc consistency algorithm AC-5
and speci�es two abstract procedures ArcCons and LocalArcCons. Section 4 presents
various representations for the domains. Sections 5, 6, and 7 show how an O(ed) algorithm
can be achieved for various classes of constraints by giving particular implementations of the
two procedures. Section 8 introduces the concept of piecewise constraints, and Sections 9, 10
and 11 extend the results for piecewise functional, anti-functional and monotonic constraints.
Section 12 shows that AC-5, in conjunction with node consistency, provides an O(ed) decision
procedure for the basic constraints of CLP over �nite domains. Sections 13 and 14 discuss
related work and states the conclusions of this research.

2 Preliminaries

We take the following conventions. Variables are represented by the natural numbers 1; : : : ; n.
Each variable i has an associated �nite domain Di. All constraints are binary and relate two
distinct variables. If i and j are variables (i < j), we assume, for simplicity, that there is
at most one constraint relating them, denoted Cij. As usual, Cij(v;w) denotes the boolean
value obtained when variables i and j are replaced by values v and w respectively. We also
denote by D the union of all domains and by d the size of the largest domain.

Arc-consistency algorithms generally work on the graph representation of the CSP. We
associate a graph G to a CSP in the following way. G has a node i for each variable i. For
each constraint Cij relating variables i and j (i < j), G has two directed arcs, (i; j) and
(j; i). The constraint associated to arc (i; j) is Cij and the constraint associated to (j; i) is
Cji, which is similar to Cij except that its arguments are interchanged. We denote by e the
number of arcs in G. We also use arc(G) and node(G) to denote the set of arcs and the set
of nodes of graph G.

We now reproduce the standard de�nitions of arc consistency for an arc and a graph.

De�nition 1 Let (i; j) 2 arc(G). Arc (i; j) is arc-consistent wrt Di and Dj i� 8v 2
Di; 9w 2 Dj : Cij(v;w):

De�nition 2 Let P = D1� : : :�Dn. A graph G is arc-consistent wrt P i� 8 (i; j) 2 arc(G)
: (i; j) is arc-consistent with respect to Di and Dj .

The next de�nition is useful in specifying the outcome of an arc-consistent algorithm.

Convention 3 Let P = D1 � : : : � Dn and P 0 = D0
1
� : : : � D0

n. P t P 0 is de�ned as
(D1 [D0

1
)� : : :� (Dn [D0

n), and P v P 0 is de�ned as (D1 � D0
1
) & : : :& (Dn � D0

n).

De�nition 4 Let P = D1 � : : :� Dn, P 0 = D0
1
� : : : � D0

n and P 0 v P. P 0 is the largest
arc-consistent domain for G in P i� G is arc-consistent wrt P 0 and there is no other P 00 with
P 0
< P 00 v P such that G is arc-consistent wrt P 00.

We now show that the largest arc-consistent domain always exists and is unique.

3

procedure InitQueue(out Q)
Post: Q = fg.
function EmptyQueue(in Q): Boolean
Post: EmptyQueue , (Q = fg).
procedure Dequeue(inout Q, out i, j, w)
Post: < (i; j); w >2 Q0 and Q = Q0n < (i; j); w >.
procedure Enqueue(in i, �, inout Q)
Pre: � � Di and i 2 node(G).
Post: Q = Q0 [f< (k; i); v >j (k; i) 2 arc(G) and v 2 �g.

Figure 1: The Queue Module

Theorem 5 [Existence and Uniqueness] Let P = D1� : : :�Dn. The largest arc-consistent
domain for G in P exists and is unique.

Proof To prove uniqueness, note that if G is arc-consistent wrt P 0 and wrt P 00, then G is
also arc-consistent wrt P 0 tP 00. Hence the union of all the arc-consistent domains (included
by v in P) for G is also arc-consistent and is the largest arc-consistent domain for G in P
by construction. Existence is straightforward since ; � : : :� ; is arc-consistent. 2

The purpose of an arc-consistency algorithm is, given a graph G and a set P, to compute
P 0, the largest arc-consistent domain for G in P.

3 The New Arc-Consistency Algorithm

All algorithms for arc consistency work with a queue containing elements to reconsider. In
AC-3, the queue contains arcs (i; j), while AC-4 contains pairs (i; v), where i is a node and
v is a value. The novelty of AC-5 is that its queue contains elements < (i; j); w >, where
(i; j) is an arc and w is a value that has been removed from Dj and justi�es the need to
reconsider arc (i; j).

To present AC-5, we proceed in several steps. We �rst present the necessary operations
on queues. Then we give the speci�cation of the two abstract procedures ArcCons and
LocalArcCons. Finally we present the algorithm itself and prove a number of results.

3.1 Operations on Queues

The operations we need are described in Figure 1. Procedure InitQueue simply ini-
tializes the queue to an empty set. Function EmptyQueue tests if the queue is empty.
Procedure Enqueue(i;�; Q) is used whenever the set of values � is removed from Di. It
introduces elements of the form < (k; i); v > in the queue Q where (k; i) is an arc of the con-
straint graph and v 2 �. Procedure Dequeue dequeues one element from the queue. In all
speci�cations, we take the convention that a parameter p subscripted with 0 (p0) represents
the value of p at call time.

4

procedure ArcCons(in i, j, out �)
Pre: (i; j) 2 arc(G), Di 6= ; and Dj 6= ;.
Post: � = fv 2 Di j 8w 2 Dj : :Cij(v; w)g.

procedure LocalArcCons(in i, j, w, out �)
Pre: (i; j) 2 arc(G), w 62 Dj Di 6= ; and Dj 6= ;.
Post: �1 � � � �2,
with �1 = fv 2 Di j Cij(v; w) and 8w0 2 Dj : :Cij(v; w0)g,

�2 = fv 2 Di j 8w0 2 Dj : :Cij(v; w0)g.

Figure 2: Speci�cation of the Procedures

All these operations on queues except Procedure Enqueue can be achieved in constant
time. Procedure Enqueue can be implemented to run in O(s) where s is the number of
new elements to insert in the queue The only di�culty in fact is Procedure Enqueue. It
requires a direct access from a variable to its arcs (which is always assumed in arc-consistency
algorithms) and a lazy distribution of v on the arcs. To achieve this result, the queue can be
organized to contain elements of the form < fA1; : : : ; Amg; v > where Ak is an arc and v is
a value. Procedure Enqueue(i;�;Q) adds an element < fA1; : : : ; Amg; v > to the queue,
where the Ak are arcs of the form (j; i), for each v 2 �. Procedure Dequeue picks up an
element < fA1; : : : ; Amg; w > with m > 0, removes an Ak = (i; j) from the set, and returns
i, j, and w.

3.2 Speci�cation of the Parametric Procedures

Figure 2 gives the speci�cation of the two subproblems. Their implementations for various
kinds of constraints are given in the next sections. They can also be specialized to produce
AC-3 and AC-4 from AC-5.

Procedure ArcCons(i; j;�) computes the set of values � for variable i that are not
supported by Dj. Procedure LocalArcCons(i; j; w;�) is used to compute the set of
values in Di no longer supported because of the removal of value w from Dj .

Note that the speci�cation of LocalArcCons gives us much freedom in the result � to
be returned. It is su�cient to compute�1 to guarantee the correctness of AC-5. However, the
procedure gives us the opportunity to achieve more pruning (up to �2) while still preserving
the soundness of the algorithm. In the extreme case where �2 is computed, the element w
is thus not taken into account and LocalArcCons has the same result as ArcCons.

3.3 Algorithm AC-5

We are now in a position to present Algorithm AC-5. The algorithm is depicted in Figure
3 and has two main steps. In the �rst step, all arcs are considered once and arc consistency
is enforced on each of them. Procedure Remove(�;D) removes the set of values � from
D. The second step applies LocalArcCons on each of the element of the queue, possibly

5

Algorithm AC-5

Post: let P0 = D10 � : : :�Dn0 ,
P = D1 � : : :�Dn

G is maximally arc-consistent wrt P in P0.
begin AC-5

1 InitQueue(Q)
2 for each (i; j) 2 arc(G) do
3 begin

4 ArcCons(i,j,�);
5 Enqueue(i,�,Q);
6 Remove(�,Di)
7 end;
8 while not EmptyQueue(Q) do
9 begin

10 Dequeue(Q,i,j,w);
11 LocalArcCons(i,j,w,�);
12 Enqueue(i,�,Q);
13 Remove(�,Di)
14 end

end AC-5

Figure 3: The Arc-consistency Algorithm AC-5

procedure InitQueue(out Q)
Post: 8 (k; i) 2 arc(G) : Status[(k; i); v] = present if v 2 Di

= rejected if v =2 Di

function EmptyQueue(in Q)
Post: 8 (k; i) 2 arc(G) 8v : Status[(k; i); v] 6= suspended.

procedure Dequeue(inout Q, out i, j, w)
Post: Status[(i; j); w] = rejected.

procedure Enqueue(in i, �, inout Q)
Pre: 8 (k; i) 2 arc(G) 8v 2 � : Status[(k; i); v] = present.
Post: 8 (k; i) 2 arc(G) 8v 2 � : Status[(k; i); v] = suspended.

Figure 4: The Queue Module on Structure Status

6

generating new elements in the queue.

3.4 Properties of AC-5

We �rst prove the partial correctness of AC-5. Termination, which is straightforward, is
proven in the complexity results.

Lemma 6 Let P� = D�
1
� : : :�D�

n be the largest arc consistent domain for G in P0. The
invariant P� v P is preserved in AC-5 at lines 2 and 8.

Proof The invariant holds for the �rst execution of line 2, since Di = Di0 and D�
i � Di0.

Execution of line 4 preserves the invariant because v 2 �) v 62 D�
i , since P

� v P and P�

is arc-consistent. It follows that D�
i � Di n� and lines 5 and 6 also preserve the invariant.

The proof for the invariant in line 8 is similar. 2

Theorem 7 [Partial Correctness] Algorithm AC-5 is partially correct.

Proof We �rst show that G is arc-consistent wrt P when AC-5 terminates. If we assume
the contrary, there must exist (i; j) 2 arc(G) and v 2 Di such that 8w 2 Dj : :Cij(v;w).
The value v must then be supported by some elements of Dj0 , otherwise it would have
been removed from Di at line 6. Let w1; : : : ; wm (m > 0) be all the elements of Dj0 sup-
porting v. The values wk (1 � k � m) are thus removed from Dj0 during the execution
and elements of the form < (j; i); wk > are inserted in the queue. Since AC-5 terminates,
LocalArcCons(j; i; wl;�) in line 11 is executed for some l (1 � l � m), with wk 62 Dj for
all k (1 � k � m). By de�nition of LocalArcCons, v 2 � holds and line 13 removes v
from Di, resulting in a contradiction.

Now, since P� v P by Lemma 6, where P� is the largest arc-consistent domain for G in
P0, it follows that P = P�. This proves the partial correctness of AC-5. 2

We now turn to the complexity results. To simplify the presentation, we introduce a new
data structure Status which is a two-dimensional array, the �rst dimension being on arcs
and the second on values. We also give the e�ect of the procedures manipulating the queue
on Status in Figure 4. Note that the actual implementation does not need to perform these
operations; they are just presented here merely to ease the presentation and simplify the
theorem.

Algorithm AC-5 preserves the following invariant on lines 2 and 8 for Status:

Status[(k; i); v] = present i� v 2 Di,
= suspended i� v 62 Di & h(k; i); vi 2 Q,
= rejected i� v 62 Di & h(k; i); vi =2 Q:

We are now in a position to prove the following theorem.

7

Theorem 8 Algorithm AC-5 has the following properties: (1) The invariant on data-
structure Status holds on lines 2 and 8. (2) AC-5 enqueues and dequeues at most O(ed)
elements, and hence the size of the queue is at most O(ed). (3) AC-5 always terminates. (4)
If s1; : : : ; sp are the number of new elements in the queue on each iteration at lines 5 and 12,
then s1 + : : :+ sp � O(ed).

Proof
Property 1 holds initially. Assuming that it holds in line 2, it also holds after an iteration

of lines 4 to 6. Line 5 makes sure that < (j; i); v > is suspended for all v 2 � and puts them
on the queue, while line 6 removes � from Di. So the invariant holds at the �rst execution
of line 8. Execution of lines 10 to 13 preserves the invariant, lines 10 and 11 maintain it on
their own, and lines 12 and 13 respectively make sure that < (j; i); v > is suspended for all
v 2 � and remove � from Di.

Property 2 holds because each element of Status is allowed to make only two transitions:
one from present to suspended through Procedure Enqueue and one from suspended

to rejected through Procedure Dequeue. Hence there can only be O(ed) dequeues and
enqueues.

Properties 3 and 4 are direct consequences of Property 2 and the preconditions of En-
queue on the data structure Status. 2

The space complexity of AC-5 depends on the maximal size of Q and of the size of the
domains of the variables. The above theorem can be used to deduce the overall complexity
of AC-5 from the complexity of Procedures ArcCons and LocalArcCons.

Theorem 9 (1) If the time complexity of ArcCons is O(d2) and the time complexity of
LocalArcCons is O(d), then the time complexity of AC-5 is O(ed2). (2) If the time
complexity of ArcCons is O(d) and the time complexity of LocalArcCons(i,j,w,�) is
O(�)3, then the time complexity of AC-5 is O(ed).

AC-3 is a particular case of AC-5 where the value w is never used in the implementation of
Procedure LocalArcCons4 (i.e. LocalArcCons is implemented by ArcCons). In this
case, LocalArcCons and ArcCons are O(d2) and AC-5 is O(ed3). The space complexity
is O(e+ nd), since the size of the queue can be reduced to O(e).

AC-4 is also a particular case of AC-5 where the implementation of Procedure Lo-
calArcCons does not use node i, but maintains a data structure of size O(ed2). In this
case, ArcCons initialises the data structure and is O(d2), and LocalArcCons is O(d).
The resulting algorithm is O(ed2).

Since O(ed2) is the optimal time complexity, there is no way to reduce the complexity
other than considering particular classes of constraints, allowing to implement, in particu-
lar, Procedure ArcCons in O(d). Note also that an arc-consistency algorithm in O(ed) is

3O(�) really means O(max(1; j� j)), since it should be O(1) when � is empty.
4Strictly speaking, in AC-3, arc (i; j) is not enqueued when arc (j; i) is made consistent. This optimization

could be added in AC-5 by adding j as an argument to Enqueue and adding the constraint k 6= j to its
de�nition.

8

function Size(in D): Integer
Post: Size =j D j.
procedure RemoveElem(in v, inout D)
Post: D = D0 n fvg.
functionMember(in v, D): Boolean
Post: Member , (v 2 D).
functionMin(in D): Value
Post: Min = minfv 2 Dg:
functionMax(in D): Value
Post: Max = maxfv 2 Dg.
function Succ(in v, D): Value
Post: Succ = minfv0 2 D j v0 > vg if 9v0 2 D : v0 > v

= +1 otherwise
function Pred(in v, D): Value
Post: Pred = maxfv0 2 D j v0 < vg if 9v0 2 D : v0 < v

= �1 otherwise

Figure 5: The Domain Module

optimal for a subclass of constraints, since it is reasonable to assume that we need to check
each value in each domain at least once. In the following sections, we characterize classes of
constraints that guarantee that Procedure ArcCons is O(d) and Procedure LocalArc-
Cons is linearly related to the size of its output set �, hence resulting in an AC-5 algorithm
for these classes running in time O(ed) and space O(ed + nd).

4 Representation of Domains

Particular implementations of ArcCons and LocalArcCons perform operations on
the domains depicted in Figure 5. As the reader will notice, the operations we de�ne on the
domains are more sophisticated than those usually required by arc-consistency algorithms. In
particular, they assume a total ordering on the domain D for reasons that will become clear
later.5 The additional sophistication is necessary to achieve the bound O(ed) for monotonic
constraints.

The primitive operations on domains are assumed to take constant time. We present
here two data-structures that enable to achieve this result.

The �rst data structure assumes a domain of consecutive integer values and is depicted in
Figure 6. The �eld size gives the size of the domain, the �elds min and max are used to pick
up the minimum and maximum values, the �eld element to test if a value is in the domain,
and the two �elds pred and succ to access in constant time the successor or predecessor of
a value in the domain. The operation RemoveElement must update all �elds to preserve
the semantics. This can be done in constant time.

5Note that if D is made up of several unconnected domains with distinct orderings, it is always possible
to transform the underlying partial ordering into a total ordering.

9

Let S = fb; : : : ; Bg
Di = fv1; : : : ; vmg � S with vk < vk+1 and m > 0.

Syntax

Di:size : integer
Di:min : integer 2 S
Di:max : integer 2 S
Di:element : array [b...B] of booleans
Di:succ : array [b...B] of integers 2 S
Di:pred : array [b...B] of integers 2 S

Semantics

Di:size = m
Di:min = v1
Di:max = vm
Di:element[v] i� v 2 Di

Di:succ[vk] = vk+1 (1 � k < m)
Di:succ[vm] = +1
Di:pred[vk+1] = vk (1 � k < m)
Di:pred[v1] = �1

Figure 6: Domain Data Structure: Consecutive Values

Let S = fe1; : : : ; eag with ek < ek+1
Di = fev1 ; : : : ; evmg � S with vk < vk+1 and m > 0

Syntax

Di:size : integer
Di:min : integer 2 f1; : : : ; ag
Di:max : integer 2 f1; : : : ; ag
Di:element : set of couples (e; v) with e 2 S and v 2 f0; : : : ; ag,

organized as a hash table on key e.
Di:value : array [1...a] of elements 2 S
Di:succ : array [1...a] of integers 2 f1; : : : ; ag
Di:pred : array [1...a] of integers 2 f1; : : : ; ag

Semantics

Di:size = m
Di:min = v1
Di:max = vm
Di:element(e) = v (with e = ev) if e 2 Di

= 0 otherwise
Di:value[v] = ev
Di:succ[vk] = vk+1 (1 � k < m)
Di:succ[vm] = +1
Di:pred[vk+1] = vk (1 � k < m)
Di:pred[v1] = �1

Figure 7: Domain Data Structure: Sparse Values

10

procedure ArcCons(in i, j, out �)
begin

1 � := ;;
2 for each v 2 Di do

3 if fij(v) =2 Dj then

4 � := � [fvg
end

Figure 8: ArcCons for Functional Constraints

When the domain is sparse, the data structure depicted in Figure 7 can be used. It
reasons about indices instead of values and use a hash table to test membership in the
domain. Although the time complexity of membership is theoretically not O(1), under
reasonable assumptions, the expected time to search for an element is O(1) [1].

For ease of presentation, we assume in the rest of the paper that AC-5 stops as soon as
a domain becomes empty.

5 Functional Constraints

De�nition 10 A constraint C is functional wrt a domain D i� for all v (resp. w) 2 D

there exists at most one w (resp. v) 2 D such that C(v;w)

Note that the above de�nition is parametrized on a domain D. Some constraints might
not be functional in general but become functional when restricted to a domain of values.
An example of a functional constraint is x = y + 5.

Convention 11 If Cij is a functional constraint, we denote by fij(v) (resp. fji(w)) the
value w (resp. v) such that Cij(v;w). If such a value does not exist, the function denotes a
value outside the domain for which the constraint holds.

The results presented in the paper assume that it takes constant time to compute the
functions fij and fji in the same way as arc-consistency algorithms assume that C(v;w) can
be computed in constant time.

We can now present Procedures ArcCons and LocalArcCons for functional con-
straints, as depicted in Figures 8 and 9. It is clear that the procedures ful�ll their spec-
i�cations. Only one value per arc needs to be checked in Procedure ArcCons since the
constraint is functional. Procedure LocalArcCons computes the set �1 in this case and
only one value needs to be checked. Procedures ArcCons and LocalArcCons are re-
spectively O(d) and O(1) for functional constraints. Hence we have an optimal algorithm.

Theorem 12 Algorithm AC-5 is O(ed) for functional constraints wrt D.

Note that functional constraints add no requirement for the basic operations on the
domains compared to traditional algorithms.

11

procedure LocalArcCons(in i, j, w, out �)
begin

1 if fji(w) 2 Di then

2 � := ffji(w)g
3 else

4 � := ;
end

Figure 9: LocalArcCons for Functional Constraints

procedure ArcCons(in i, j, out �)
begin

1 s := Size(Dj);
2 w1 := Min(Dj);
3 if s=1 then
4 �:=ffji(w1)g \Di

5 else

6 � := ;
7 end

end

Figure 10: Procedure ArcCons for Anti-Functional Constraints

6 Anti-Functional Constraints

When the negation of a constraint is functional (for instance, the inequality relation x 6= y),
an optimal algorithm can also be achieved.

De�nition 13 A constraint Cij is anti-functional wrt a domain D i� :Cij is functional wrt
D.

With an anti-functional constraint, for each value in the domain there is thus at most one
value for which the constraint does not hold. Procedures ArcCons and LocalArcCons
are shown in Figures 10 and 11. We use the same convention as for functional constraints.

procedure LocalArcCons(in i,j,w, out �)
begin

1 ArcCons(i,j,�)
end

Figure 11: Procedure LocalArcCons for Anti-Functional Constraints

12

Instead of considering each element of Di, which would yield a complexity O(d), the
result of ArcCons is here achieved by considering the size of Dj. It is clear that ArcCons
ful�lls its speci�cation: for Dj = fwg, the resulting set should contain fij(w) only if it is
an element of Di. The complexity of ArcCons is O(1). This allows the implementation of
LocalArcCons through ArcCons, leading to the same O(1). In this case, the value w is
not considered and LocalArcCons computes the set �2 of its speci�cation.6

Theorem 14 Algorithm AC-5 is O(ed) for anti-functional constraints wrt D.

7 Monotonic Constraints

We now consider another class of constraints: monotonic constraints, for example x � y�3.
This class of constraints requires a total ordering< onD, as mentioned previously. Moreover,
we assume that, for any constraint C and element v 2 D, there exist elements w1; w2 (not
necessarily in D) such that C(v;w1) and C(w2; v) hold. This last requirement is used to
simplify the algorithms but it is not restrictive in nature.

De�nition 15 A constraint C is monotonic wrt a domain D i� there exists a total ordering
on D such that, for any value v;w in D, C(v;w) holds implies C(v0; w0) holds for all values
v0; w0 in D such that v0 � v and w0 � w.

Convention 16 Since AC-5 is working with arcs, we associate with each arc (i; j) three
functions fij, lastij, and nextij and a relation �ij. Given a monotonic constraint Cij, the
functions and relation for arc (i; j) are fij(w) = maxfv j Cij(v;w)g, lastij = Max,
nextij = Pred, �ij = > while those for arc (j; i) are fji(v) = minfw j Cij(v;w)g,
lastji = Min, nextji = Succ, �ji = < : Moreover, since Procedures ArcCons and
LocalArcCons only use fij , lastij, nextij, and �ij for arc (i; j), we omit the subscripts
in the presentation of the algorithms. These functions are assumed to take constant time to
evaluate.

We are now in a position to describe the implementation of Procedures ArcCons and
LocalArcCons for monotonic constraints. They are depicted in Figures 12 and 13.

Lemma 17 Procedures ArcCons and LocalArcCons ful�ll their speci�cations.

Proof Procedure ArcCons and LocalArcCons compute the set � = fv 2 Di j v �
f(last(Dj))g. By monotonicity of the constraint, � � �2 with �2 = fv 2 Di j 8w0 2
Dj : :Cij(v;w0)g, and �2 \ fv 2 Di j v � f(last(Dj))g = ;. Hence � = �2 and both
postconditions are satis�ed. 2

Procedures ArcCons and LocalArcCons have as many iterations in lines 5 and 6 as
there are elements in the resulting set �. Hence it follows that we have an optimal algorithm.

6The set �1 can also be computed in O(1) since one can show that �1 = �2 n ffji(w)g.

13

procedure ArcCons(in i, j, out �)
begin

1 � := ;;
2 v := last(Di);
3 while v � f(last(Dj)) do
4 begin

5 � := � [fvg;
6 v := next(v;Di)
7 end

end

Figure 12: ArcCons for Monotonic Constraints

procedure LocalArcCons(in i, j, in w, out �)
begin

1 ArcCons(i,j,�)
end

Figure 13: LocalArcCons for Monotonic Constraints

Theorem 18 Procedure AC-5 is O(ed) for monotonic constraints wrt D.

It is also clear that AC-5 can be applied at the same time to (anti-)functional and
monotonic constraints with the same complexity.

Monotonic Constraints Revisited

Let us reconsider the ArcCons procedure for monotonic constraints. We �rst show that
the Succ and Pred functions can always be applied on the initial domains (denoted Dinit

i),
thus eliminating the need to update part of the data structure. The revised procedure

procedure ArcCons(in i, j, out �)
begin

1 � := ;;
2 v := last(Di);
3 while v � f(last(Dj)) do
4 begin

5 if v 2 Di then � := � [fvg;
6 v := next(v;Dinit

i)
7 end

end

Figure 14: Revised Procedure ArcCons for Monotonic Constraints

14

procedure LocalArcCons(in i, j, in w, out �)
begin

1 � := ;;
2 if w � last(Dj) then
3 begin

4 v := last(Di);
5 while v � f(last(Dj)) do
6 begin

7 if v 2 Di then � := � [fvg;
8 v := next(v;Dinit

i)
9 end

10 end

end

Figure 15: Revised Procedure LocalArcCons for Monotonic Constraints

ArcCons is depicted in Figure 14. The only di�erence lies in lines 5 and 6, and thus
obviously has no in
uence on the correctness of ArcCons.

Procedure LocalArcCons could use ArcCons, but a revised version is presented in
Figure 15. The correctness of LocalArcCons is a consequence of the preceding version,
computing the set �2 of its speci�cation, and the fact that when w � last(Dj), then �1 is
empty by the monotonicity of Cij. It is possible to compute �1,7 but this would prevent the
reduction of domains as early as possible.

Theorem 19 With the revised implementation depicted in Figures 14 and 15, Procedure
AC-5 is O(ed) for monotonic constraints wrt D.

Proof This proof requires the use of amortized complexity [22] to show that LocalAr-
cCons is O(d) amortized. The number of iterations for a call to the revised version of
LocalArcCons is not O(d) in the worst case, since some elements may have been removed
from the domain. However, we can associate, to each arc (i; j), d credits that are used each
time a test in line 5 (ArcCons) or in line 7 (LocalArcCons) is executed for arc (i; j) and
no element is inserted. The total number of credits is thus O(ed). To prove the amortized
O(d) complexity, we show that a test in line 5 (ArcCons) or in line 7 (LocalArcCons)
is done at most once per value in the domain. Suppose that such a test is done on some v0.
Then, after the execution of the following Remove, we have v0 � last(Di), and this value is
thus never considered any more, since in each execution of ArcCons and LocalArcCons,
the �rst execution of the test always succeeds. Hence, it follows from the number of credits
and the complexity of the �rst algorithm that we still have an optimal AC-5 algorithm. 2

7In line 4 in Figure 15, replace f(last(Dj)) by f(w)

15

function NbGroup(in i, j): Integer
Post: NbGroup =j Sij j �1.
function SizeOfGroup(in i, j, k): Integer
Pre: 0 � k � NbGroup(i; j)

Post: SizeOfGroup = j Sijk \Di j
function EmptyGroup(in i, j, k): Boolean
Pre: 0 � k � NbGroup(i; j)

Post: EmptyGroup , Sijk \Di = ;
procedure Extend(in i, j, k, inout �)
Pre: 0 � k � NbGroup(i; j)

Post: � = �0 [(Sijk \Di)
Status-pd[(i; j); k] = true

function GroupOf(in i, j, v): Integer
Pre: v 2 Dinit

i

Post: GroupOf = k such that v 2 Sij
k

function FirstGroup(in i, j): Integer

Post: FirstGroup = minfk j Sij
k
\Di 6= ;g

function LastGroup(in i, j): Integer

Post: LastGroup = maxfk j Sij
k \Di 6= ;g

function Size(in i, j): Integer

Post: Size = j fk j Sijk \Di 6= ;g j

Figure 16: The Piecewise Decomposition Module

8 Piecewise Constraints

The preceding sections are generalized to the case when the domain can be partitioned into
groups such that elements of a group behave similarly with respect to a given constraint.

Convention 20 Let S, P be sets, and C be a constraint. C(S; P) denotes 8v 2 S;8w 2 P :
C(v;w). :C(S; P) denotes 8v 2 S;8w 2 P : :C(v;w). We also use C(S;w) for C(S; fwg).

De�nition 21 The partitions S = fS0; : : : ; Sng of Di and P = fP0; : : : ; Pmg of Dj are a
piecewise decomposition of Di and Dj wrt C i� for all Sk 2 S; Pk0 2 P : C(Sk; Pk0) or
:C(Sk; Pk0) holds.

Representation of Piecewise Constraints

Before presenting the implementation of ArcCons and LocalArcCons for constraints
having some particular piecewise decomposition, we show in Figure 16 operations on piece-
wise decompositions are depicted. For ease of implementation, we assume that elements in
groups of a piecewise decomposition are never removed during the execution. The piece-
wise decomposition of Di and Dj with respect to Cij is denoted Sij = fSij

0 ; : : : ; S
ij
n g and

Sji = fSji
0
; : : : ; Sji

mg. We also introduce a new data structure Status-pd which is a two-
dimensional array, the �rst dimension being on arcs (associated with a piecewise decompo-
sition) and the second on group numbers. Its semantics is the following:

16

Let Sij = fSij0 ; : : : ; S
ij
n g with n � 0

Syntax

Sij:group : array [1...n] of sets
Sij:nbgroup : integer
Sij:size : integer
Sij:sizegroup : array [1...n] of integers
Sij:first : integer
Sij:last : integer

Semantics

Sij:group[k] = Sijk
Sij:nbgroup = n

Sij:size = j fk j Sijk \Di 6= ;g j

Sij:sizegroup[k] = j Sijk \Di j

Sij:first = minfk j Sijk \Di 6= ;g

Sij:last = maxfk j Sijk \Di 6= ;g

Figure 17: Piecewise Decomposition Data Structure

Sij
k \Di 6= ;) Status-pd[(i; j); k] = false

Thus, Status-pd must be false when the corresponding group is not empty. Once again,
this data structure is merely introduced to simplify the presentation and is not required by
the algorithms.

The primitive operations on a piecewise decomposition are assumed to take constant
time, except that the complexity of Extend is assumed to be O(s), where s is the size of
S
ij

k .
A simple data structure that enables us to achieve these results is given in Figure 17.

Its space complexity is O(d) per piecewise decomposition. This data structure cannot be
updated by the RemoveElem primitive in constant time since an element in a domain can
belong to di�erent groups in di�erent piecewise decompositions. The update can easily be
performed by the Enqueue primitive, however, without a�ecting its complexity.

It is not di�cult to initialize the data structure in O(d) under the realistic assumption
that it takes O(s) to �nd the s elements in Dj (resp. Di) supporting a value v (resp. w) in
Di (resp. Dj). In addition, the construction of the data structure assigns a group number to
each value, so that the GroupOf operation trivially takes constant time. In the following,
we assume that the data structure has already been built.

9 Piecewise Functional Constraints

Intuitively, a piecewise functional constraint Cij is a constraint whose domains can be de-
composed into groups such that each group of Di (resp. Dj) is supported by at most one
group of Dj (resp. Di).

17

De�nition 22 A constraint Cij is piecewise functional wrt domains Di, Dj i� there exists a
piecewise decomposition S = fS0; : : : ; Sng and P = fP0; : : : ; Pmg of Di and Dj wrt Cij such
that for all Sk 2 S (resp. Pk0 2 P), there exists at most one Pk0 2 P (resp. Sk 2 S), such
that Cij(Sk; Pk0).

Examples of functional piecewise constraints are the modulo (x = y mod z) and integer
division (x = y div z) constraints. The element constraint of the CHIP programming
language [24] is a piecewise constraint as well. Finally. note that functional constraints are
a subclass of piecewise constraints, in which the size of each group in the partition is exactly
one.

Obviously, in a piecewise functional constraint Cij, if all the unsupported elements of
Di (resp. Dj) are in the same group (e.g. S0 and P0), then the piecewise decompositions
S = fS0; : : : ; Sng and P = fP0; : : : ; Png have the same number of groups and the groups can
be renumbered such that the following hold:

PF1 :Cij(S0;Dj) and :Cij(Di; P0)

PF2 Cij(Sk; Pk) (1 � k � n)

PF3 :Cij(Sk; Pk0) (1 � k; k0 � n and k 6= k0)

The implementation of ArcCons and LocalArcCons for piecewise functional con-
straints assumes a piecewise decomposition that satis�es PF1{3. The following property
states necessary and su�cient conditions for a piecewise functional constraint.

Property 23 A constraint Cij is piecewise functional wrt Di and Dj i� there exists a par-
tition S = fS0; : : : ; Sng of Di such that

(1) Cij(Sk; w) or :Cij(Sk; w) (for all w 2 Dj and 0 � k � n)
(2) Cij(Sk; w)) :Cij(Sk0 ; w) (for all w 2 Dj and 0 � k; k0 � n and k 6= k0)

Proof The \only if" part is straightforward. For the \if" part, let us assume that there is
some unsupported element in Di and in Dj and that all the unsupported element in Di are
in S0 (otherwise groups can be merged and renumbered without a�ecting conditions (1) and
(2). We construct P = fP0; : : : ; Png in the following way:

Pk = fw 2 Djj9v 2 Sk Cij(v;w)g (1 � k � n)

P0 = Djn
[

1�l�n

Pl

It is su�cient to prove that P is a partition and that S and P satisfy PF1{3.
(P is a partition). (A) Pk \ Pk0 = ; (k 6= k0). This holds for k = 0 or k0 = 0. For

k 6= 0 6= k0, let w 2 Pk. By de�nition of Pk, we have 9v 2 Sk : Cij(v;w). Hence by (1),
Cij(Sk; w). By (2) we have :Cij(Sk0; w), that is 8v0 2 Sk0 : :Cij(v0; w). Hence w 62 Pk0 . (B)

18

function Unsupported(in i, j, k): Boolean
Pre: 0 � k � NbGroup(i; j)
Post: Unsupported , EmptyGroup(j; i; k) ^ : Status-pd[(i; j); k]

Figure 18: The Unsupported Function

procedure ArcCons(in i, j, out �)
begin

1 � := ;;
2 Extend(i; j; 0;�);
3 for k:=1 to NbGroup(i; j) do
4 if Unsupported(i; j; k) then
5 Extend(i; j; k;�)

end

Figure 19: ArcCons for Piecewise Functional Constraints

Suppose that Pk = ; (k > 0). Then Sk = ; (impossible since S is a partition), or Sk contains
unsupported elements (impossible by hypothesis). Hence Pk 6= ;.

(PF1). Hold by de�nition of S0 and P0.
(PF2). Let w 2 Pk. By de�nition of Pk, 9v0 2 Sk such that Cij(v0; w). By (1), Cij(Sk; w),

that is 8v 2 Sk : Cij(v;w). Hence Cij(Sk; Pk).
(PF3). Let w 2 Pk. Since Pk \ Pk0 = ; (k 6= k0), w 62 Pk0 . By de�nition of Pk0 , we have

8v0 2 Sk0 : :Cij(v;w). Hence :Cij(Sk; Pk0). 2

The procedures ArcCons and LocalArcCons for piecewise functional constraint are
given in Figures 19 and 20. Line 2 handles the group S

ij
0 containing all the unsupported

elements of the initial domain Di. The procedures use the boolean function Unsupported
speci�ed in Figure 18. The correctness of these procedures is a immediate consequence of
the correctness of procedures for functional constraints. One can also easily see that the
semantics of Status-pd is an invariant at lines 2 and 8 in AC-5, assuming it holds initially.

procedure LocalArcCons(in i, j, w, out �)
begin

1 � := ;;
2 k := GroupOf(j; i; w);
4 if Unsupported(i; j; k) then
5 Extend(i; j; k;�)

end

Figure 20: LocalArcCons for Piecewise Functional Constraints

19

procedure ArcCons(in i, j, out �)
begin

1 � := ;;
2 s := Size(j; i);
3 k := FirstGroup(j; i) ;
4 if s=1 and k 6= 0 and not EmptyGroup(i; j; k) then
5 Extend(i; j; k;�)

end

Figure 21: Procedure ArcCons for Piecewise Anti-Functional Constraints

procedure LocalArcCons(in i,j,w, out �)
begin

1 ArcCons(i,j,�)
end

Figure 22: Procedure LocalArcCons for Piecewise Anti-Functional Constraints

The time complexity is analyzed globally within AC-5. If the complexity of all the
execution of ArcCons and LocalArcCons for a given arc (i; j) is bounded by O(d), then
AC-5 is O(ed). The complexity of execution of ArcCons and LocalArcCons depend
mainly on the number of executions of the Extend procedure. For an arc (i; j), by the
speci�cation of Unsupported and Extend (on status-pd), at most one Extend operation
is made per group, and hence the complexity is bounded by O(d). If we use amortized
complexity as in the case of monotonic constraints, it follows that we have an optimal
algorithm.

Theorem 24 Procedure AC-5 is O(ed) for piecewise functional constraints.

10 Piecewise Anti-Functional Constraints

We now turn to piecewise anti-functional constraints such as x 6= y mod 3. A piecewise
anti-functional constraint is a constraint whose domain Di and Dj can be decomposed in
groups such that each group of Di (resp. Dj) is not supported by at most one group of Dj

(resp. Di).

De�nition 25 A constraint Cij is anti-functional wrt Di. Dj i� :Cij is piecewise functional
wrt Di, Dj .

With the same notations as in the preceding section, procedures ArcCons and Lo-

calArcCons for anti-functional constraint can easily be extended in the piecewise frame-
work (see Figures 21 and 22). Note the test for k 6= 0, since group 0 supports all groups. By

20

procedure ArcCons(in i, j, out �)
begin

1 � := ;;
2 k := last(i; j);
3 while k � f(last(j; i)) do
4 begin

5 if not EmptyGroup(i; j; k) then Extend(i; j; k;�);
6 k := next(k)
7 end

end

Figure 23: Procedure ArcCons for Piecewise Monotonic Constraints

a complexity analysis similar to that of the preceding section, one can show that in AC-5
there will be at most one execution of Extend per group. Hence the following result.

Theorem 26 Algorithm AC-5 is O(ed) for piecewise anti-functional constraints.

11 Piecewise Monotonic Constraints

Monotonic constraints are �nally generalized to piecewise monotonic constraints, for example
x � y div 5.

De�nition 27 A constraint Cij is piecewise monotonic wrtDi, Dj i� there exists a piecewise
decomposition S = fS0; : : : ; Sng and P = fP0; : : : ; Pmg of Di and Dj wrt Cij such that
Cij(Sk; Pl)) Cij(Sk0 ; Pl0) for 0 � k0 � k � n and 0 � l � l0 � m.

Convention 28 As for monotonic constraints, we associate to each arc (i; j) three func-
tions fij, lastij, and nextij and a relation �ij. Given a piecewise monotonic constraint Cij,
the functions and relation for arc (i; j) are: fij(k) = maxff�1g [fk0 j Cij(S

ij
k ; S

ji
k0)gg,

lastij(a; b) = LastGroup(a; b), nextij(k) = k � 1, �ij = >, while those for arc (j; i) are
fji(k) = minffNbGroup(j; i)+1g[fk0 j Cij(S

ij

k0 ; S
ji
k)gg, lastji(a; b) = FirstGroup(a; b),

nextji(k) = k + 1, �ji = <.

The de�nition of fij requires some sophistication to handle the case when S
ij
k (or Sji

k)
is unsupported. The above functions are assumed to take constant time to evaluate. As
for monotonic constraints, subscripts are omitted in the algorithms presented in Figures 23
and 24. Their correctness is an immediate consequence of the correctness of ArcCons and
LocalArcCons for monotonic constraints. The complexity analysis is also similar to that
for monotonic constraints. In all the execution of ArcCons and LocalArcCons for a
given arc (i; j), a test in line 5 (ArcCons) or line 8 (LocalArcCons) is made at most
once per group. Hence we have an optimal algorithm.

Theorem 29 Algorithm AC-5 is O(ed) for piecewise monotonic constraints.

21

procedure LocalArcCons(in i, j, in w, out �)
begin

1 � := ;;
2 kw := GroupOf(i; j; w);
3 if kw � last(j; i) then
4 begin

5 k := last(i; j);
6 while k � f(last(j; i)) do
7 begin

8 if not EmptyGroup(i; j; k) then Extend(i; j; k;�);
9 v := next(k)
10 end

11 end

end

Figure 24: Procedure LocalArcCons for Piecewise Monotonic Constraints

12 Application

We describe the application of AC-5 to constraint logic programming over �nite domains.
Constraint logic programming [9] is a class of languages whose main operation is constraint-
solving over a computation domain. A computation step amounts to checking the satis�a-
bility of a conjunction of constraints.

Constraint logic programming over �nite domains has been investigated in [25, 23, 24].
This is a computation domain in which constraints are equations, inequalities and disequa-
tions over natural number terms or equations and disequations over constants. Natural
number terms are constructed from natural numbers, variables ranging over a �nite domain
of natural numbers, and the standard arithmetic operators (+, �, : : :). Some symbolic con-
straints are also provided to increase expressiveness and, in addition, users can de�ne their
own constraints. This computation domain is available in CHIP [5] and its constraint-solver
is based on consistency techniques, arithmetic reasoning, and branch and bound. It has
been applied to numerous problems in combinatorial optimization such as graph coloring,
warehouse location, scheduling and sequencing, cutting stock, assignment problems, and
microcode labeling to name a few (see for instance [4, 24]).

Space does not allow us to present the operational semantics of the language. Let us
just mention that the kernel of the constraint solver is an arc-consistency algorithm for a set
of basic constraints. Other (non-basic) constraints are approximated in terms of the basic
constraints and generate new basic constraints. The basic constraints are either domain
constraints or arithmetic constraints, and are as follows (variables are represented by upper-
case letters and constants by lower-case letters):

� domain constraint: X 2 fa1; : : : ; ang;

� arithmetic constraints: aX 6= b; aX = bY + c; aX � bY + c; aX � bY + c with

22

a; ai; b; c � 0 and a 6= o.

These constraints have been chosen carefully in order to avoid having to solve an NP-
complete constraint satisfaction problem. For instance, allowing two variables in disequations
or three variables in inequalities or equations leads to NP-complete problems.

We now show that AC-5 can be the basis of an e�cient decision procedure for basic
constraints.

De�nition 30 A system of constraints S is a pair hAC;DCi where AC is a set of arithmetic
constraints and DC is a set of domain constraints such that any variable occurring in an
arithmetic constraint also occurs in some domain constraint of S.

De�nition 31 Let S = hAC;DCi be a system of constraints. The set Dx is the domain of
x in S (or in DC) i� the domain constraints of x in DC are x 2 D1; : : : ; x 2 Dk and Dx is
the intersection of the Di's.

Let us de�ne a solved form for the constraints.

De�nition 32 Let S be a system of constraints. S is in solved form i� any unary constraint
C(X) in S is node-consistent8 with respect to the domain ofX in S, and any binary constraint
C(X;Y) in S is arc-consistent with respect to the domains of X;Y in S.

We now study a number of properties of systems of constraints in solved form.

Property 33 Let C(X;Y) be the binary constraint aX � bY + c or aX � bY + c, arc-
consistent wrt DX = fv1; : : : ; vng;DY = fw1; : : : ; wmg. Assume also that v1 < : : : < vn and
w1 < : : : < wm. Then we have that C is monotonic and C(v1; w1) and C(vn; wm) hold.

Property 34 Let C(X;Y) be the binary constraint aX = bY +c with a; b 6= 0, arc-consistent
with respect to DX = fv1; : : : ; vng;DY = fw1; : : : ; wmg. Assume also that v1 < : : : < vn and
w1 < : : : < wm. Then we have that C is functional, n = m, and C(vi; wi) holds.

The satis�ability of a system of constraints in solved form can be tested in a straightfor-
ward way.

Theorem 35 Let S = hAC;DCi be a system of constraints in solved form. S is satis�able
i� h;;DCi is satis�able.

Proof It is clear that h;;DCi is not satis�able i� the domain of some variable is empty in
DC. If the domain of some variable is empty in DC, then S is not satis�able. Otherwise,
it is possible to construct a solution to S. By properties 33 and 34, all binary constraints of
S hold if we assign to each variable the smallest value in its domain. Moreover, because of
node consistency, the unary constraints also hold for such an assignment. 2

It remains to show how to transform a system of constraints into an equivalent one in
solved form. This is precisely the purpose of the node- and arc-consistency algorithms.

8As usual, a unary constraint C is node-consistent wrt D i� 8v 2 D : C(v).

23

Algorithm 36 To transform the system of constraints S into a system in solved form S0:

1. apply a node-consistency algorithm to the unary constraints of S = hAC;DCi to obtain
hAC;DC 0i;

2. apply an arc-consistency algorithm to the binary constraints of hAC;DC 0i to obtain
S0 = hAC;DC 00i.

Theorem 37 Let S be a system of constraints. Algorithm 36 produces a system of con-
straints in solved form equivalent to S.

We now give a complete constraint solver for the basic constraints. Given a system of
constraints S, Algorithm 38 returns true if S is satis�able and false otherwise.

Algorithm 38 To check the satis�ability of a system of constraints S: (1) apply Algorithm
36 to S to obtain S0 = hAC;DCi and (2) if the domain of some variable is empty in DC 0,
return false; otherwise return true.

In summary, we have shown that node- and arc-consistency algorithms provide us with
a decision procedure for basic constraints. The complexity of the decision procedure is
the complexity of the arc-consistency algorithm. Using the specialization of AC-5 for basic
constraints, we obtain an O(ed) decision procedure.

13 Discussion and Related Work

In this section, we discuss the practicability of our algorithms and their relationships with
other work.

Our results indicate that many classes of constraints lead to an O(ed) arc-consistency
algorithm improving on the O(ed2) bound of [16]. Although a better asymptotic complexity
does not guarantee a faster algorithm, empirical and theoretical results suggest the practi-
cability of our results. On the theoretical side, it is easy to see that the constant factors
are in fact small in our algorithms (in general 1 or 2). On the empirical side, most of these
classes have been integrated in the cc(FD) programming language [26] improving the com-
putational results of many algorithms compared to the previous versions based on AC-3 and
AC-4. This will be discussed in a forthcoming paper. It is however important to note that
AC-4 and some classes studied here increase the memory requirement. Hence, for memory
management reasons, AC-3 may sometimes be preferable.

As far as related work are concerned, three closely related papers deserve to be men-
tioned. Mohr and Mansini [17] also discovered independently the subset of arithmetic con-
straints that can be solved in O(ed). The constraints considered were binary equations,
inequalities, and disequations, which are respectively subcases of functional, monotonic, and
anti-functional constraints. They indicate informally how to modify AC-4 to include these
constraints, but do not present a uniform and generic algorithm like AC-5.

24

Perlin's algorithm [21] is an arc-consistency algorithm working on a graph representation
of the CSP where the values (not the variables) are nodes and the constraints are represented
by links between nodes. The algorithm is then bounded by the size of the graph. Perlin
investigates the idea of factoring constraints in this graph representation. More precisely,
he studies the idea of splitting a constraint C(x; y) into a conjunction of three constraints
C1(x; t1) & C2(t1; t2) & C3(t2; y) (with t1; t2 being two new variables) such that

1. arc consistency produces the same pruning on the problem variables;

2. the graph associated to the new problem is smaller than the initial graph.

It turns out that arc consistency runs in O(ed) when the constraints all express equalities
between some of the constraint variables. Note that, in this case, C2(t1; t2) reduces to
an equation (a subcase of functional constraints). The contributions of Perlin can thus
be summarized as (1) the identi�cation of a general preprocessing technique, factorization,
to reduce the size of the graph and (2) the identi�cation of a special kind of functional
constraints. It should be easy to generalize those results to the case of functional constraints
between some of the constraint variables. Similarly, we believe (but have not yet proven) that
the bound for piecewise monotonic constraints can be obtained from factorization, piecewise
functional constraints, and monotonic constraints. Note however, that an inconvenience of
the graph representation is its memory requirement: a functional constraint requires O(d)
space with the graph representation and requires constant space in AC-5.

Arc consistency of functional constraints can be solved through a reduction to 2-sat [10],
keeping the O(ed) result. However, this algorithm also uses O(d) space per constraint.

Finally, it is also interesting to study the evolution of arc-consistency algorithms. The
main contribution of AC-4 was the idea of working with domain values instead of domain
variables. This idea is systematically exploited by Perlin to obtain a better bound for some
classes of constraints through factorization. Exploiting the structure of the domains is the
new idea behind Mohr and Mansini's work and the monotonic constraints of this paper.
Finally, exploiting the structure of the constraints is the key idea behind piecewise constraints
of this paper. AC-5 accommodates these results in a uni�ed and generic algorithm.

14 Conclusion

A new generic arc-consistency algorithm AC-5 is presented whose specializations include, not
only AC-3 and AC-4, but also an O(ed) algorithm for important subclasses of constraints
including functional, monotonic, and anti-functional constraints as well as their piecewise
counterparts. An application of AC-5 to constraint logic programming over �nite domains
is described. Together with node consistency, it provides the main algorithms for an O(ed)
decision procedure for basic constraints. From a software engineering perspective, AC-5 has
the advantage of uniformity. Each constraint may have a particular implementation, based
on AC-3, AC-4, or some speci�c techniques, without in
uencing the main algorithm. As

25

a consequence, many di�erent implementation techniques can be interleaved together in a
natural setting.

Current research is devoted to applying these ideas to path consistency and non-binary
constraints. It turns out that similar improvements can be obtained for path-consistency
algorithms although the algorithms are somewhat more complicated. Non-binary constraints
are also being investigated to obtain the equivalent of GAC-4 [15] for AC-5. Preliminary
results indicate that the results carry over for some classes of constraints, although once
again the algorithms are more involved.

Acknowledgments

We thank an anonymous IJCAI reviewer for mentioning the reduction to 2-sat, Eugene
Freuder for pointing out the work of Perlin, and the anonymous AI Journal reviewers for
their careful comments and suggestions. The help of Trina Avery for correcting our English
is also appreciated. This research was supported in part by the National Science Foundation
under grant number CCR-9108032 and by the O�ce of Naval Research under grant N00014-
91-J-4052, ARPA order 8225.

References

[1] T.H. Cormen, C.E. Leiserson, and R.L Rivest. Introduction to Algorithms. MIT Press,
Cambridge, 1990.

[2] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems.
Arti�cial Intelligence, 34:1{38, 1988.

[3] Y. Deville and P. Van Hentenryck. An E�cient Arc Consistency Algorithm for a Class
of CSP Problems. In International Joint Conference on Arti�cial Intelligence, Sidney,
Australia, August 1991.

[4] M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving Large Combinatorial Problems
in Logic Programming. Journal of Logic Programming, 8(1-2):75{93, 1990.

[5] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The
Constraint Logic Programming Language CHIP. In Proceedings of the International
Conference on Fifth Generation Computer Systems, Tokyo, Japan, December 1988.

[6] E.C. Freuder. Synthesizing Constraint Expressions. Communications of the ACM,
21:958{966, November 1978.

[7] J. Gaschnig. A Constraint Satisfaction Method for Inference Making. In Proc. 12th
Annual Allerton Conf. on Circuit System Theory, pages 866{874, U. Illinois, 1974.

26

[8] R.M. Haralick and G.L. Elliot. Increasing Tree Search E�ciency for Constraint Satis-
faction Problems. Arti�cial Intelligence, 14:263{313, 1980.

[9] J. Ja�ar and S. Michaylov. Methodology and Implementation of a CLP System. In
Fourth International Conference on Logic Programming, Melbourne, Australia, May
1987.

[10] S. Kasif. On the Parallel Complexity of Discrete Relaxation in Constraint Satisfaction
Networks. Arti�cial Intelligence, 45:275{286, 1990.

[11] J-L. Lauriere. A Language and a Program for Stating and Solving Combinatorial Prob-
lems. Arti�cial Intelligence, 10(1):29{127, 1978.

[12] A.K. Mackworth. Consistency in Networks of Relations. AI Journal, 8(1):99{118, 1977.

[13] A.K. Mackworth. Constraint Satisfaction, volume Encyclopedia of Arti�cial Intelli-
gence. Wiley, 1987.

[14] A.K. Mackworth and E.C. Freuder. The Complexity of some Polynomial Network Con-
sistency Algorithms for Constraint Satisfaction Problems. Arti�cial Intelligence, 25:65{
74, 1985.

[15] R. Mohr. Good Old Discrete Relaxation. In European Conference on Arti�cial Intelli-
gence (ECAI-88), Munich, W. Germany, August 1988.

[16] R. Mohr and T.C. Henderson. Arc and Path Consistency Revisited. Arti�cial Intelli-
gence, 28:225{233, 1986.

[17] R. Mohr and G. Masini. Running E�ciently Arc Consistency, pages 217{231. Springer-
Verlag, 1988.

[18] U. Montanari. Networks of Constraints : Fundamental Properties and Applications to
Picture Processing. Information Science, 7(2):95{132, 1974.

[19] Montanari, U and Rossi, F. An e�cient algorithm for the solution of hierarchical
networks of constraints. In Worshop on Graph Grammars and their Applications in
Computer Science, Warrenton, December 1986.

[20] B. Nadel. Constraint Satisfaction Algorithms. Computational Intelligence, 5(4):288{
224, 1989.

[21] Mark Perlin. Arc Consistency for Factorable Relations. In IEEE Computer Society,
editor, Third International Conference on Tools for Arti�cial Intelligence, pages 340{
345, San Jose, CA, November 1991.

[22] R.E. Tarjan. Amortized Computational Complexity. SIAM Journal of Algebraic Dis-
crete Methods, 6:306{318, 1985.

27

[23] P. Van Hentenryck. A Framework for Consistency Techniques in Logic Programming.
In IJCAI-87, Milan, Italy, August 1987.

[24] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Programming
Series, The MIT Press, Cambridge, MA, 1989.

[25] P. Van Hentenryck and M. Dincbas. Domains in Logic Programming. In AAAI-86,
Philadelphia, PA, August 1986.

[26] P Van Hentenryck, V. Saraswat, and Y. Deville. Constraint Processing in cc(FD).
Technical Report (Forthcoming), Brown University, March 1992.

[27] D. Waltz. Generating Semantic Descriptions from Drawings of Scenes with Shadows.
Technical Report AI271, MIT, MA, November 1972.

28

