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Abstract. This paper presents a novel approach for automated test data generation of imperative programs
containing integer, boolean and/or float variables. Our approach is based on consistency techniques integrating
integer and float variables. We handle statement, branch and path coverage criteria. Our purpose is thus to
automatically generate test data that will cause the program to execute a statement, to traverse a branch or to
traverse a specified path. For path coverage, the specified path is transformed into a path constraint which is
solved by an interval-based constraint solving algorithm handling integer, boolean and real variables. A valid
test input is then extracted from the interval solutions. For statement (and branch) coverage, a path reaching the
specified statement or branch is dynamically constructed. Our algorithm for path coverage is then applied. The
search for a suitable path and the solving of path constraints make an extensive use of consistency techniques.
We propose here a simple consistency notion, called e-Box consistency, generalizing box consistency to integer
and float variables. The eBox consistency is sufficient for our purpose. A prototype has been developed and
experimental results show the feasibility of our approach.
Keywords software testing, test data generation, constraint satisfaction, consistency.

1 Introduction

1.1 Test data generation

Software verification is an expensive and difficult task, accounting for up to 50% of the cost of software develop-
ment [KC00] and even more in critical systems. The objective of software testing is to detect faults in the program
[DO93] and therefore provide more assurance for the quality of the software. If software testing phase could be au-
tomated, the cost of software development would be significantly reduced. As it is generally impossible to test the
entire input domain of the program, structural test coverage criteria are used to identify a set of program elements
and a test input is generated for each element from this set.

One usually distinguishes control flow criteria from dataflow criteria. Dataflow criteria are dealing with the
dataflow dependencies in the program execution while control flow criteria are dealing with the control flow of the
program execution.

In this paper, we are concerned with structural test data generation with control flow criteria. The control flow
of a program is usually represented by a control flow graph, where the nodes are either a decision node or a block
of instructions without decision statements. The edges represent the possible control flow between the nodes.
Statement coverage requires exercising a given set of program statements (a set of nodes). The problem is thus
to find, for each program statement, a program input on which this statement is executed. Branch coverage is the
dual version where an input must be found, such that the execution traverses a specified edge of the control flow
graph associated to the program. Path coverage is a generalization of branch coverage where the input causes the
execution of a specified path (from the start to some statement). Structural testing thus includes :

– choice of a criteria (statement, branch or path),
– identification of a set of statements, branches or paths,
– generation of test data for each element of this set

The automation of the last phase is a vital challenge in software testing.
Among the difficulties in the generation of test data is the presence in the program of arrays, pointers, unstruc-

tured control statements (such as goto, break), and floating-point variables. In this paper, we specifically handle



test data generation of programs with both integer and float variables, for path, branch and statement coverage
criteria.

To generate test data, there exists three main approaches: random, path-oriented, and goal-oriented test data
generation. Random test data generation [BM83,DN84] consist in trying test data generated randomly until the
selected statement is reached. This approach is not appropriate for programs with float variables as the search
space is large.

Path-oriented approaches [OJP97,GMS98] attack the problem by first selecting a set of paths that covers all the
statements satisfying a given criterion and then generating a test input which executes each selected path. These ap-
proaches include, among others, symbolic evaluation and program execution based test data generation. Symbolic
evaluation [Kin76] consists in replacing input variables by symbolic values. It then derives path constraints over
these symbolic values, forming a constraint system describing conditions under which a path is traversed. The con-
straints are then symbolically solved. Although symbolic evaluation is promising, it still has several weaknesses
including the handling of arrays, indeterminate loops, dynamic data structures and the size of symbolic expres-
sions. In the program execution based approach [GMS98,GMS99], a first test data is initiated with a (randomly)
chosen input. This input is then iteratively refined, by execution of the program, to obtain a final input executing
the path. This approach exploits its dynamic nature to overcome some limitations of the approaches based on sym-
bolic evaluation. However the number of iterations required before the finding of a final input depends much on the
complexity of the constraints on a path. Moreover if the path is infeasible and the associated constraints nonlinear,
this approach becomes difficult to apply.

In goal-oriented approaches, the generation of test data to execute the selected statement is carried out irre-
spectively of the executed path. The chaining approach presented in [FK96], a program execution based approach,
starts by executing the program for an arbitrary test input. If an undesirable execution flow is observed at some
branch in the program, then function minimization search algorithms are used to find a new input that will change
the execution flow at this branch. Although the approach succeeds in handling arrays and dynamic data structures,
it may require a great number of executions of the program. Other approaches, such as [PHP99], use genetic algo-
rithms to guide the search process. In [Got00,GBR98,GBR00], a constraint-based approach is provided. It consists
in translating the test data generation problem for a given statement into a set of constraints and solving it by an
instance of the CLP scheme. This approach offers advantages such as the handling of arrays, loops and a restricted
class of pointers. It is however limited to integer variables.

1.2 Results and approach

We propose a new method for test data generation of imperative programs with integer, boolean and float variables.
Statement, branch and path coverage criteria are all handled. We however focus on imperative programs without
arrays and/or dynamic data structures.

Problem statement Given a statement s, a branch b or a path p of a program P (with integer, boolean and float
variables), generate a test input i such that P when executed on i will cause s, b or p to be traversed.

To solve this problem, we use a constraint solving approach based on a simple consistency notion, generaliz-
ing Box-consistency [HMD97] to integer, float and boolean variables. Path coverage criteria is the basic bloc of
our method. For branch and statement criteria, paths reaching the specified branch or statement are dynamically
constructed using consistency techniques, and the path coverage method is applied on these paths to find suitable
test input.

In our approach, the program under analysis is first translated into a static single assignment (SSA) form. The
search for a test input traversing a specified path of a program P can be summarized as follows :

– A path constraint on the input variables is derived from the specified path and the program in SSA form. Such
a constraint involves integer, boolean and float variables and can be non linear.

– The path constraint is solved by an interval-based constraint solving algorithm handling integer, boolean and
real variables.

– A test input is extracted from the interval solutions.
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It is important to precise the specificities of solving a path constraint compared to classical interval-based
constraint solving. First, a path constraint is under-constrained; there usually exists many test inputs traversing
the specified path while we are interested by finding one of them. Existing systems, such as Numerica [HMD97]
are not always appropriate for under-constrained systems as they try to generate all the solutions. Second, a path
constraint involves both integer, boolean and float variables. There exists systems combining solvers. For instance,
Prolog IV [BT95] and CLP(BNR) [BOV95] handle integer, boolean and real variables. Solving a path constraint
with such solvers will produce a (small) interval containing the mathematical solution of the path constraint. Such
a mathematical solution may involve real values which are not float numbers. Moreover, even if the mathematical
solution only involves float numbers, this mathematical solution as test input is not guaranteed to traverse the
specified path as the path constraint is executed using the programming language float operators, which are not
sound. In practice however, a valid test input can usually be extracted as the path constraint is under-constrained.
These differences make that existing constraint solving approaches cannot be used solely to generate test data for
programs with integer, boolean and real variables.

Contribution The main contribution of this paper is a novel approach, based on consistency techniques, for auto-
mated test data generation of imperative programs containing integer, boolean and/or float variables. This approach
handles branch, statement and path coverage criteria. We also propose a method, supported by a prototype, proving
that this approach is feasible. This method uses a simple consistency notion generalizing box consistency to integer
and float variables.

The other known method based on consistency [GBR00] is limited to integer variables (but handles arrays and
a restrictied class of pointers). Compared to other approaches handling integer and real variables in the literature
(e.g. [GMS99,PHP99]), our approach can be seen as an alternative or as a complement. Our consistency method
could be combined with random or dynamic approaches when searching a test data exercising a specified statement
of the program.

Organization The organization of this paper is as follows. The necessary background is presented in the next
section. Section 3 gives an informal explanation of static single assignment (SSA) form needed in our approach.
Generation of the path constraint for a given path is described in section 4. Section 5 proposes a simple constraint
solving algorithm for test data generation, for the path coverage criteria. Section 6 describe an algorithm for branch
and statement coverage criteria. A prototype implementation of the approach and experimental results are discussed
in section 7. Conclusions are finally presented in section 8.

2 Background

Control flow graph A control flow graph (CFG) of a program P [Got00] is a directed graph G = (N;E; START,
STOP) that represents the control structure of the program, where N is a set of nodes (each node is either a basic
block or a decision node), E is a set of edges (each edge represents a possible control flow from one node to
another), START is a unique entry node and STOP is a unique exit node of the program. Note that in this paper,
we will talk about programs in terms of their CFGs. A basic block is a maximum sequence of statements without
decision statements, i.e. it has only one entry point and one exit point. A decision is a point in the program where
control flow can diverge. Edges from decision nodes are labelled with a condition. A path is a sequence of nodes
from the entry node to another node of G. Examples of CFG are provided in the next sections.

Path constraint An (integer, boolean or float) input variable is either an input parameter or a variable (integer,
boolean or float) in an input statement of P . The domain of a boolean variable is the set {0,1}, the domain of an
integer variable is a set of consecutive integers, and the domain of a float variable is an interval of float numbers.
Let x1; : : : ; xn be n input variables of P , Dk is the domain of variable xk (1 � k � n) then a test input is a vector
of values (i1; : : : ; in), where ik 2 Dk (1 � k � n).

A basic constraint is a simple relational expression of the form E1 op E2 or NOT (E1 op E2), where E1

and E2 are arithmetic expressions and op is one of the following relational operators f<;�; >;�;=; 6=g. A
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constraint is a basic constraint or a logical expression on basic constraints using the following logical opera-
tors fAND;OR;NOTg. A conjunctive constraint is a list of basic constraints connected by the logical AND. A
predicate is a constraint associated with a decision node.

Note that a path can be represented by a list of constraints with one constraint for each predicate on the path.
This list of constraints is called a path constraint where the constraints of the list are connected by the logical
AND. The constraints on the path can always be expressed in terms of input variables because they are initially
the constraints on program variables and those variables depend on input variables with assignment statements
along the path.

CSP and ConsistencyMany important problems in areas like artificial intelligence and operations research can
be viewed as constraint satisfaction problems (CSP). A CSP P = (V;D; C) is defined by a finite set of variables V
taking values from finite or continuous domainsD and a set of constraints C between these variables. A solution to
a CSP is an assignment of values to variables satisfying all constraints and the problem amounts to finding one or
all solutions. Most problems in this class are NP-complete, which means that backtracking search is an important
technique in their solution.

Consistency techniques are constraint algorithms that reduce the search space by removing, from the domains
and constraints, values that cannot appear in a solution. Consistency algorithms play an important role in the
resolution of CSP [Tsa94].

Interval programming Interval methods aims at solving (continuous) constraints over the real numbers. The
basic idea is to associate with each variable an interval representing its domain. Consistency techniques has been
designed on continuous domains to reduce the size of the intervals without removing solutions of the constraints.
Such consistency techniques are usually coupled in methods for solving such constraints [HMD97].

This paper uses rather standard notations of interval programming. The set of floating-point numbers (or F -
numbers) is denoted F . The set of intervals is denoted by I . Capital letters denote intervals. Constraints involve
reals and integers. Interval extension of a constraint is an important notion in interval programming. An interval
extension of a constraint c(x) is an interval constraint (i.e. a constraint on interval) C(X) such that for all interval
X , (9x 2 X : c(x)) ) C(X). If a is a F -number, a+ denotes the smallest F -number stricly greater than a
and a� the largest F -number stricly smaller than a. The lower and upper bounds of an interval X are denoted
respectively by left(X) and right(X). The center of an interval X is a F -number denoted by center(X). Note
that if X = [l; r] then left(X) = l, right(X) = r and center(X) = ((l + r)=2)�. If x is a real number, bx c
denotes the largest integer that is not larger than x and dx e the smallest integer that is not smaller than x. Boldface
letters denote vector of objects.

A canonical interval is an interval of the form [a; a] or [a; a+], where a is a F -number. An interval X is
an � interval (� > 0) if X is canonical or right(X) � left(X) � �. A box (X1; : : : ; Xn) is an � box if Xi

(1 � i � n) is an � interval [HMD97].

Test casesThe execution of the program (on the specified path) uses operators defined on F -number, integers
and boolean. We assume here that the program under analysis is written is some fixed imperative language L. It is
therefore important to distinguish mathematical solutions of a path constraint from test case solutions of the path
constraints.

Definition 1. Let c be a path constraint, and v be F -numbers. The predicate eval(c;v) holds if execution of c with
v using the operators of the programming language L yields true.

Definition 2. A path constraint c is said to be adequate wrt its associated path p if for all test input v, eval(c;v)
holds iff the execution of the program traverses the path p.

Definition 3. Given a path p, a test case for p is a (vector of) F -number(s) v such that eval(c;v), where c is the
path constraint associated with p.

Definition 4. Given a statement s, a (vector of) F -number(s) v is a test case for s if there exists a path p such that
v is a test case for p.
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If path constraints are adequate wrt their associated paths, a test case is thus a test input traversing the specified
path or reaching the specified statement. When no test case exists, the path is said to be infeasible.

The predicate eval(c;v) can be realized in different ways. First, the program under analysis can be slightly
modified such that when executed, if the execution traverses the specified path, the result is true, otherwise it is
false. Second, a new program can be constructed in the language L. This program contains all the constraints in c,
each constraint being encapsulated in a assignment statement. The output is true if all the boolean expressions are
evaluated to true.

As introduced in the preceding section, a float solution v of a path constraint may not traverse the specified
path, i.e. c(v) 6) eval(c;v). Consider for instance the simple constraint, where x is real.

c(x) , x = x
3 + x

3 + x
3

It is clear that c(x) is mathematically true for all floating-point number in F . However eval(c; 1) may evaluate to
false in some programming languages.

It is interesting to notice the duality between test data generation and constraint solving. In constraint solv-
ing (on reals), one is interested by mathematical solutions; hence the approximations of the float operators must
be overcome and are handled through interval arithmetics. In test data generation, one is interested in the float
operators on the specified path. A test data must fit these float operations with their approximation; not their math-
ematical counterpart. However, constraint solving is a useful framework to solve test data generation as it allows, in
the solving step, to concentrate on the search of mathematical solutions, leaving the adequacy to the float operations
in another step.

3 Static Single Assignment Form

The initial step of our approach is the transformation of the program into a SSA form. SSA form [AWZ98] is an
equivalent intermediate representation of a program. It has been exploited effectively for optimization problems in
many fields of computer science. The main properties of SSA form are:

– There is only one assignment to each variable in the entire program.
– Each use of a variable refers to only one assignment.

Thanks to this form, we can reason very easily about variables because if two variables have the same name, then
they contain the same value wherever they occur in the program. An example of a simple sequence of assignments
and its corresponding SSA form is presented in Example 3.1.

x = 0; x1 = 0;
y = x + 1; y1 = x1 + 1;
x = x + y; x2 = x1 + y1;

y = x + y; y2 = x2 + y1;

Example 3.1:A simple program in normal form and its corresponding SSA form

Note that we use subscripted variables in order to make variable names unique and call these subscripted
variables values of the original variables. More complicated statements, such as IF and WHILE statements, contain
branches and join nodes. At a join node, several assignments to a variable along different branches can reach the
node. In such a case multiple values of a variable can reach the same node and these values have to be grouped
into one single value in order to reach further uses of this variable. This can be achieved by a special assignment
with �-function on the right-hand side. �-functions have as many arguments as the number of branches into the
join node and it returns the i-th argument if control reaches the join node by i-th branch. An example of IF and
WHILE statements is illustrated in Example 3.2. Note that for a WHILE statement, �-functions are introduced
before the condition of the WHILE statement to mean that they must be executed before this condition at every
iteration. In the rest of the paper, for the sake of simplicity, a list of �-assignments is sometimes written as a single
�-assignment:
v2 = �(v0, v1) () x2 = �(x0, x1),. . . , z2 = �(z0, z1)

More details on SSA form can be found in [BM94,AWZ98].
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x = 4; x1 = 4;
if x > 0 then if (x1 > 0) then
x = 5; x2 = 5;
y = 1; y1 = 1;

else else
y = 2; y2 = 2;

x3 = �(x2, x1);
y3 = �(y1, y2);

i=0; i1 = 0;
while i < 5 do while (i3 := �(i1, i2); i3 < 5) do

i = i + 1; i2 = i3 + 1;
x = i; x1 = i3;

Example 3.2:SSA form of IF,WHILE statements

4 Generation of Path Constraints

Given a path of the program, we have to construct an adequate path constraint. A path is a sequence of nodes of
the control flow graph.

Definition 5. If P is a program and p a path in the CFG associated to the SSA form of this program, T (P; p)
denotes the path constraint of path p in program P .

The construction of a path constraint T (P; p) is defined inductively on the structure of the instructions on the
path.

Variable declaration Integer variables are finite domain variables on some initial domain. Boolean variables are
finite domain variables with initial domain {0,1}. Float variables are real variables with some initial interval. The
initial domains and intervals may depend on the programming language L, but can also be fixed by the user.

Assignment Let p be a single assignment x = Expr. In this case, T (P; p) is x = Expr

Condition Let p be a path traversing a conditional instruction

IF bexp THEN Inst1 ELSE Inst2 ; v2 = �(v0;v1)

If p traverses Instr1, T (P; p) is bexp ^ T (Inst1; p) ^ v2 = v0

If p traverses Instr2, T (P; p) is :bexp ^ T (Inst2; p) ^ v2 = v1

Path without Loop Let p be a path p1; : : : ; pn not traversing a loop. In this case, T (P; p) is
V

1�i�n T (P; pi)

Path with Loops Let p be a path p1; : : : ; pn traversing a loop of the form

while (v2 := �(v0, v1); c) do Inst

where v0 is the vector of variables defined before the loop, v1 is the vector of variables defined inside the body of
the loop, v2 is the vector of variables referred to inside and outside of the loop.

The path p traverses m times the body of the loop (m � 0). Hence the path p has the form

p1; : : : ; pi1 ; : : : ; pi2 ; : : : ; pim ; : : : ; pim+1
; : : : ; pn

where Pik are the passages in the loop control node (ik < ik+1; 1 � k � m)
In this case, T (P; p) is

V
1�j<i1

T (P; pj) ^ v0 = w0V
1�k�m(c[v2=wk�1] ^ T (Inst[v2=wk�1;v1=wk]; pik+1 : : : pik+1�1)) ^ :c[v2=wm]

^v2 = wm

V
im+1<j�n

T (P; pj)

It is easy to adapt this transformation for path ending in the body of the loop.
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Example A simple program [GMS98] and its SSA form are given in Figure 4.1. Its associated CFG is depicted in
Figure 4.2, where the path 1-3-4-6-7-9-10, represented in dashed lines. The corresponding path constraint is non
linear and is the following

u1 = (x0-y0)*2 ^ : x0 > y0 ^ w2 = y0 ^ w3 = w2 ^ :(w3+z0 > 100 ^ x20 + y20 � 100 ^ y2 =

x0*z0+1 ^ x3 = x0 ^ y3 = y2 ^ u1 � 0 ^ y3-sin(z0) > 0

program SSA form

float x, z float x0 , z0
int y int y0

read(x, y, z) read(x0; y0; z0)
u = (x - y)*2 u1 = (x0 - y0)*2
if (x > y) if (x0 > y0)

w = u w1 = u1
else else

w = y w2 = y0
endif endif

w3 = �(w1, w2)
if (w + z > 100) if (w3 + z0 > 100)

x = x - 2 x1 = x0 - 2
y = y + w; y1 = y0 + w3

write(‘‘Linear’’) write(‘‘Linear’’)
elseif (x2 + y2 � 100) elseif (x20 + y20 � 100)

y = x*z + 1 y2 = x0 * z0 + 1
write(‘‘Nonlinear:Quadratic’’) write(‘‘Nonlinear:Quadratic’’)

endif endif
x3 = �(x1, x0, x0)
y3 = �(y1, y2, y0)

if (u > 0) if (u1 > 0)
write(u) write(u1)

elseif (y - sin(z) > 0) elseif (y3 - sin(z0) > 0)
write(‘‘Nonlinear:Sine’’) write(‘‘Nonlinear:Sine’’)

endif endif

Figure 4.1: Program 1 and its SSA form

Other examples of path constraints will be proposed in Section 7. From the above description, one can easily
show that the generated path constraints are adequate.

Theorem 1. Given a path p, the generated path constraint is adequate wrt p.

5 Test Data Generation: Path Coverage

In this section, we describe a constraint solving algorithm for test data generation, under the path coverage criteria.
We first define a local consistency, called eBox consistency that is simple enough to solve our test data generation
problem. Of course, more sophisticated consistencies such as used in Prolog IV, CLP(BNR) or Numerica can be
used.

Consistency The eBox consistency is an extension of the classical box consistency [HMD97] in order to handle
both real and integer variables. The objective is to reduce the domains of the variables (i.e. their interval) without
removing solutions.

Definition 6 (eBox consistency).Let P = (V;D; C) be a CSP where V = (x1; : : : ; xn), a set of (real and
integer) variables; D = (X1; : : : ; Xn) with Xi = [li; ri] the domain of xi (1 � i � n); C = (c1; : : : ; cm), a set of
constraints defined on x1; : : : ; xn and c 2 C be a k-ary constraint on the variables (x1; : : : ; xk).

The constraint c is eBox-consistent in D if for all xi (1 � i � k)
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(x1, x0, x0)x3 = φ

1

x0 > y0

2

x0 <= y0

w1 = u1 3 w2 = y0

4

6

7

5

w3 + z0 > 100

w3 + z0 <= 100
&

x0^2 + y0^2 < 100

(y1, y2, y0)y3 = φ

u1 > 0

8 9

10

y3 - sin(z0) <= 0
&

u1 <= 0
y3 - sin(z0) > 0

&
u1 <= 0

x0^2 + y0^2 >= 100
&

w3 + z0 <= 100

write("Quadratic")
y2 = x0 * z0 + 1

x1 = x0 - 2
y1 = y0 + w3
write("Linear")

write("u1") write("Sine")

read(x0, y0, z0)
u1 = (x0 - y0) * 2

w3 = φ (w1, w2)

Figure 4.2: CFG of Program 1

– if xi is a real variable then
C(X1; : : : ; Xi�1; [li; l

+
i ]; Xi+1; : : : ; Xk)

V
C(X1; : : : ; Xi�1; [r

�
i ; ri]; Xi+1; : : : ; Xk) when li 6= ri

or C(X1; : : : ; Xi�1; [li; ri]; Xi+1; : : : ; Xk) when li = ri
– if xi is a integer variable then
C(X1; : : : ; Xi�1; [li; li]; Xi+1; : : : ; Xk)

V
C(X1; : : : ; Xi�1; [ri; ri]; Xi+1; : : : ; Xk) when li 6= ri

or C(X1; : : : ; Xi�1; [li; ri]; Xi+1; : : : ; Xk) when li = ri

where C is an interval extension of constraint c.
The CSP P is eBox-consistent in D if for all c 2 C, c is eBox-consistent in D.

The purpose of filtering is to reduce as much as possible the domains of variables without removing any solution
from the initial domains.

Definition 7 (Filtering by eBox consistency).Filtering by eBox consistency of a CSP P = (V;D; C) is a CSP
P 0 = (V;D0; C) such that :

1. D0 � D
2. P and P 0 have the same solutions
3. P 0 is eBox-consistent in D

We denote �eBox(P ), the filtering by eBox consistency of P . Note that the filtering by eBox consistency of a CSP,
by its definition, always exists and is unique. An incremental filtering algorithm implementing eBox consistency
can easily be constructed. This is an extension of [HMD97,Del00] to handle integer and float variables. It consists
in applying a filtering operation on each pair <constraint, variable> incrementally until an eBox-consistent CSP
is obtained. The filtering operation on each pair <constraint, variable> in turn is carried out by 2 functions
LeftNarrow, RightNarrow for finding the leftmost and rightmost zero canonical intervals, that is intervals
L � X and R � X such that Cx(L)

V
Cx(R). A filtering algorithm is presented in Figure 5.1.
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Algorithm 5.1 Filtering by eBox consistency
function eBoxFiltering(V : V ariables, D : In, C : Constraints) : In;
% PRE
% V a set of variables
% D a box of their corresponding domains
% C : a set of constraints over V
% POST
% Return a box Dres such that (V ; Dres; C) = �eBox(V ; D; C)
begin

queue := C;
while queue 6= ; do
c := pop queue; {Suppose c is a constraint over x1; : : : ; xk}
updatedDomVars := ;; {Set of vars having domains updated after this iteration}
for xi 2 var(c) do
Cx:= C(X1; : : : ;Xi�1;X;Xi+1; : : : ;Xk);{univariate interval constraint on X of c}
right(X0

i) := right(RightNarrow(Cx; Xi));
left(X0

i) := left(LeftNarrow(Cx; Xi));
if Xi 6= X0

i then
Xi := X0

i

if X0

i = ; then return D
updatedDomVars := updatedDomVars

S
{xi}

queue := queue
S

{c’ 2 C j updatedDomVars
T

var(c’) 6= ;}
return D

end

Algorithm An algorithm for test data generation with the path coverage criteria is given in Algorithm 5.2. It is
based on a constraint solving algorithm for path constraint. This constraint algorithm extends existing algorithms
[HMD97,Got00] in two ways. First, it handles both integer and real variables. Second, it includes a search of a test
case in a resulting � box, as specified hereafter.

Specification 51 (FindSolution) Let C be a set of constraints, e be an � box and TS be a representative set of
floating-point vectors in e. The function FindSolution(C; e) returns, if it exists, some vector v 2 TS such that
8c 2 C; eval(c; v) holds. Otherwise it returns ;.

The SolvePathConstraints algorithm first applies a filtering operation with eBox consistency on the
initial box. If the resulting box (Dtemp) is empty, i.e. one of its components is empty, then there is no solution. If
Dtemp is an � box then the function FindSolution is called in order to find a test data in Dtemp. Otherwise,
three subproblems are derived and a solution to the initial problem is a solution to one of these subproblems.

As a path constraint is usually under-constrained, there will be several boxes containing the mathematical
solutions. The constraint solving algorithm will search these boxes until it finds one where FindSolution
returns a test case.

Although not strictly necessary, testing the middle point turns out to be practical for test data generation thanks
to the under-constrained nature of path constraints.

Our constraint solving algorithm for test data generation is sound but not complete. Although all the mathemat-
ical solutions will be found, there might exist test cases (i.e. float numbers) traversing the specified path, although
this float number is not within some � box containing a mathematical solution. It is known that a solver integrat-
ing integers and reals may loose its ability to prove the existence of solution in the produced boxes. This is not
a limitation in the context of test data generation as a solution box is not guaranteed to contain a test case. If our
constraint solving algorithm does not find test data, it is a clue that the path could be infeasible.

6 Test Data Generation: Branch and Statement Coverage

We now extend the results of the previous section to branch and statement coverage. As a branch is dual to a
statement in the control flow graph, it is sufficient to concentrate on statements. All the following algorithms
can easily be adapted for branch coverage. Given a statement, the different paths reaching that statement will be
dynamically generated, as well as the corresponding test data. The search will be guided by a Control Dependency
Graph, and the search will be pruned by our eBox consistency filter.
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Algorithm 5.2 Algorithm to generate test data: path coverage

function TestDataGenerationPC (P : Program, p : Path, D : Box) : Fn;
% PRE
% P The program under test
% p a path
% D The initial box
% POST
% Returns a test case on which the path p is executed
begin
PC:= T (P, p);
V := Set of input variables of P
return SolvePathConstraints(V , V , D, PC)

end

function SolvePathConstraints(V ; V 0 : V ariables, D : In, C : Constraints) : Fn;
% PRE
% V : input variables of a program P
% V ; V 0 : sets of variables with V 0 � V
% D : a box representing the domains of the variables in V
% C : a path constraint of a path p in the program P
% POST
% Return some vector v 2 D such that v is a test case for path p
% Otherwise it returns ;
begin

(V ; Dtemp; C) := �eBox(V ; D; C);
if Dtemp is ; then return ;;
else
if Dtemp is an � box then return FindSolution(C, Dtemp);
else

if V 0 is not empty then
Choose arbitrarily a variable x in V 0;
m := (left(Xtemp) + right(Xtemp))=2;
if x is an integer variable then
ms := SolvePathConstraints(V ; V 0 n fxg; Dtemp[Xtemp=[bmc; bmc]]; C);

else
ms := SolvePathConstraints(V ; V 0 n fxg; Dtemp[Xtemp=[m;m]]; C);

if ms 6= ; then return ms
if x is an integer variable then
ls := SolvePathConstraints(V ; V 0 n fxg; Dtemp[Xtemp=[left(Xtemp); bmc � 1]]; C);

else
ls := SolvePathConstraints(V ; V 0 n fxg; Dtemp[Xtemp=[left(Xtemp);m]]; C);

if ls 6= ; then return ls
if x is an integer variable then
rs := SolvePathConstraints(V ; V 0 n fxg; Dtemp[Xtemp=[bmc + 1; right(Xtemp)]]; C);

else
rs := SolvePathConstraints(V ; V 0 n fxg; Dtemp[Xtemp=[m; right(Xtemp)]]; C);

if rs 6= ; then return rs else return ;
else return SolvePathConstraints(V ; V ; Dtemp; C);

end

Control Dependence Graph Intuitively, a node a is linked to a node b in the control dependence graph if any
execution path reaching b contains also a. In other words, reaching statement a is a necessary condition to reach
statement b. Technically, control dependence is defined in terms of a CFG and the post-dominance relation among
the nodes in the CFG [FOW87].

Definition 8. A node V is post-dominated by a nodeW in G if every directed path from V to STOP (not including
V ) contains W .

Definition 9. A node Y is control dependent on node X iff

1. there exists a directed path P from X to Y with all Z in P (excluding X and Y ) post-dominated by Y , and
2. X is not post-dominated by Y .

Note that if Y is control dependent on X then node X must have at least 2 exits. Following one of the exits
from X results in Y being executed while taking others may result in Y not being executed.

Definition 10 (Control Dependence Graph).A control dependence graph (CDG) of a program P is an acyclic
directed graph where the nodes are the nodes of the CFG of P , augmented with a special node ENTRY representing
whatever conditions will cause the program to be executed. The edges represent the control dependencies between
nodes. Edges may be labelled with conditions. An edge (X , Y ) in a CDG means that Y is control dependent on X .
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Examples of CFG and CDG are given in Figure 6.2. They refer to the nThRootBisect program depicted in
Figure 6.1. For simplicity, the SSA form is not shown here. In the CFG and CDG, the labels T2, T4 and T6 are
respectively (h � l)2 � e, f(c)=0 and f(l)*f(c)<0. The labels F2, F4 and F6 are respectively :T2, :T4
and :T6.

float nThRootBisect(float a, int n, float e)) {
PRE

f(x) , xn - a
a > 1, n > 1, e > 0

POST
Let r > 0 such that rn = a
Return r� with (r� � r)2 < e

float l, h, c;
1. l = 1; h = a;
2. while ((h� l)2 � e) {
3. c = (l + h)/2;
4. if (f(c) = 0)
5. return c;
6. if (f(l)*f(c) < 0)
7. h = c;
8. else l = c;

}
9. return h;

}

Figure 6.1: Program nThRootBisect: computing the n-th root of a number by the bissection method
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6
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4

5

1

3

F2

T4

F4

T2

(CFG)

Figure 6.2: CFG and CDG of the nThRootBisect program

Definition 11 (Decision chain [Got00]).Given a CDG G and a node n, the decision chain of node n in G is
the sequence of nodes-labels (with label) from the entry to node n (the entry node and the node n are not in the
sequence).

For example, <2-T1, 3-F2> constitutes a decision chain for node 5 in the CDG of Figure 6.2. By definition of
a CDG, the decision chain of a node n is unique (assuming programs without goto and break statements).

Definition 12 (Reachability graph [GMS00]).The reachability graph for a node n in a CDG G is the smallest
subgraph of G containing all the paths from the start node to node n.

The construction of the reachability graph for a node n is straightforward.
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Algorithm The generation of test data for the statemet coverage criteria is described in Algorithm 6.1. A path
reaching the specified statement is constructed dynamically. When a path reaches this statement, the test data
generation for the path coverage criteria is used to find a tet case. As the potential number of pathes reaching the
specified statement can be large (or infinite), pruning and heuristics are used during the search. First, pruning is
realized by our ebox consistency operator. A path is abandonned as soon as we detect it is an infeasible path. The
search is also guided by the CDG, and more particularly by the decision chain. The algorithm always extend a path
by first chosing nodes in the decision chain, as such nodes is required in the path. As a second heuristics, the exit
of the loop conditions are also selected first to avoid infinite paths. This algorithm can be optimized in many ways
(incremental construction of the path constraints, . . . ). We however prefer to present a simple and comprehensive
version. Our algorithm is not complete. It may loop or fail to find test data. Computability theory (halting problem)
shows that a complete algorithm does not exists.

In the nThRootBisect program (Figures 6.1 and 6.2), let us choose node 8. The reachability graph for node 8 is
depicted with solid edges. The decision chain for this node is <2-T2, 4-F4, 6-F6>. First, the path 1-2-3-4-6-8 will
be constructed by the algorithm. Assuming the corresponding path constraint is inconsistent, the path 1-2-3-4-6-
7-2-3-4-6-8 is next constructed. For node 5, the decision chain is <2-T2, 4-T4>. The path 1-2-3-4-5 will be first
constructed, then path 1-2-3-4-6-7-2-3-4-5.

Algorithm 6.1 Algorithm to generate test data : statement coverage

function TestDataGenerationSC (P : Program, n : Node, D : Box) : Fn;
% PRE
% P The program under test
% n a node
% D The initial box
% POST
% Returns a test case on which the node n is executed
begin
G := CFG of P;
G1 := CDG of G;
G2 := reachability graph for node n in G1 ;
DC := decision chain of node n in G2;
V := Set of input variables of P
return TestGen(P, V , D, < >,G2, START, n, DC); {START is the start node in G0}

end

function TestGen(P : Program, V : V ariables, D : Box, path : Path,
G : ReachabilityGraph, start; end : Node, DC : DecisionChain ) : Fn;

% PRE
% C is ; or C is eBox-consistent
% path a path in P
% DC is the decision chain of node end in G2;
% POST
% Returns some test case satisfying the decision chain DC
begin

for each successor s of start in G do
{If start in DC, the successors in DC are assumed to be enumerated first,}
{if start is a loop condition, the exit of the loop is assumed to be selected first}

newPath = path . s
PC = T (P, newPath);
(V ; D0; PC) := �eBox(V ; D; PC)
if (D0 6= ;) then

if (s = end) then
{test data generation: path coverage}
result = SolvePathConstraint(V , V , D0, PC);
if result 6= ; then return result;

else return TestGen(P, V , D0, newPath, G, s, end, DC);
end

7 Implementation and Experimental Results

Prototype To validate our approach, we developed a prototype written in Java. It uses an interval arithmetic
library [Hic00] for the implementation of the constraint solving algorithm.. In its present form, this prototype
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concentrates on the constraint solving; the program under analysis is given in its control flow graph (CFG). In the
FindSolution function, we assume here that the underlying programming language L is (a purely imperative
part of) Java.

Experiment 1 Our first program is a program without loop, integrating integer and float variables. This has been
shown in Figure 4.1. It is taken from [GMS98], but we forced y to be an integer variable. Its SSA form were also
given as well as its CFG (Figure 4.2).

A test case is searched for the path 1-3-4-6-7-9-10, represented in dashed lines. Given the initial box (x0 2
[0; 100]; y0 2 [0; 100]; z0 2 [0; 100]) our algorithm produces the test case

(x0 = 50; y0 = 75; z0 = 12:500000001455192)

Experiment 2 Our second example is a program with a loop , integrating integer and float variables (Figure 7.1). It
calculates the n-th root of a number a using the Newton-Raphson method, and stops when the difference between
two consecutive approximations is less than e. Its SSA form is given in Figure 7.2. We search a test case for the
path 1-2-3-2-3-2-3-2-3-2-4. We thus want the body of the loop to be executed exactly four times. The correspond-
ing path constraint is

x00 = a ^ x10 = ((n�1)�a+( 1
a
)n�2)=n ^ (x00�x10)

2 � e ^ x01 = x10 ^ x11 = ((n�1)�x01+a�( 1

x01
)n�1)=n ^ (x01�

x11)
2 � e ^ x03 = x11 ^ x13 = ((n � 1) � x03 + a � ( 1

x03
)n�1)=n ^ x03 � x13)

2 � e ^ x04 = x13 ^ x14 =

((n�1)�x04+a�( 1

x04
)n�1)=n ^ x04�x14)

2 � e ^ x05 = x14 ^ x15 = ((n�1)�x05+a�( 1

x05
)n�1)=n ^ (x05�x15)

2 �

e ^ x02 = x05 ^ x12 = x15.

Given an initial box (a 2 [10; 20]; n 2 [2; 10]; e 2 [1e� 4; 1e� 2]) our algorithm produces the test case

a = 15:0; n = 2; e = 0:00505

float nThRoot(float a, int n, float e) {
x0 = a
x1 = ((n� 1) � a + ( 1

a
)n�2)=n

while ((x0 � x1)
2 � e)

x0 = x1
x1 = ((n� 1) � x0 + a � ( 1

x0
)n�1)=n

return x1
}

Figure 7.1: Program nThRoot : computing the n-th root of a number by the Newton-Raphson method

float nThRoot(float a, int n, float e) {
1a. x00 = a
1b. x10 = ((n� 1) � a + ( 1

a
)n�2)=n

2. while (x02 = �(x00; x01); x12 = �(x10; x11) ; (x02 � x12)
2 � e)

3a. x01 = x12
3b. x11 = ((n� 1) � x01 + a � ( 1

x01
)n�1)=n

4. return x12

}

Figure 7.2: SSA form of Program nThRoot

13



Experiment 3 Our next example, shown in Figure 7.3 is a classical program testing the type of a triangle [PHP99].
It only contains integer variables, but has nested conditional instructions and unfeasible paths.

The path constraint generated for the path 1-3-4-5-6-8-16-17 is the following:

i6=0 ^ j6=0 ^ k6=0 ^ trityp
2
=0 ^ i=j ^ trityp

3
=trityp

2
+1 ^ trityp

4
=trityp

3
^ i6=k ^ trityp

6
=trityp

4
^

j6=k ^ trityp
8
=trityp

6
^ trityp

8
=1 ^ i+j>k ^ trityp

13
=2 ^ trityp

17
=trityp

13
^ trityp

18
=trityp

17

Given the initial box (i 2 [0; 100]; j 2 [0; 100]; k 2 [0; 100]), a test case (i = 50, j = 50, k = 25) is generated.
The path 1-3-4-5-6-8-18-19 is unfeasible. Its path constraint is the following:

i6=0 ^ j6=0 ^ k6=0 ^ trityp
2
=0 ^ i=j ^ trityp

3
=trityp

2
+1 ^ trityp

4
=trityp

3
^ i6=k ^ trityp

6
=trityp

4
^

j6=k ^ trityp
8
=trityp

6
^ trityp

8
=2 ^ i+k>j ^ trityp

14
=2 ^ trityp

17
=trityp

14
^ trityp

18
=trityp

17

With the initial box (i 2 [0; 100]; j 2 [0; 100]; k 2 [0; 100]), no test case were found.

int trityp(int i, int j, int k) {
1. if ((i = 0) || (j = 0) || (k = 0))
2. trityp = 4;

else {
3. trityp = 0;
4. if (i = j)
5. trityp = trityp + 1;
6. if (i = k)
7. trityp = trityp + 2;
8. if (j = k)
9. trityp = trityp + 3;
10. if (trityp == 0) {
11. if ((i + j � k) || (j + k � i) || (i + k � j))
12. trityp == 4;

else
13. trityp == 1;

}
14. else if (trityp > 3)
15. trityp == 3;
16. else if ((trityp == 1) && (i + j > k))
17. trityp == 2;
18. else if ((trityp == 2) && (i + k > j))
19. trityp == 2;
20. else if ((trityp == 3) && (j + k > i))
21. trityp == 2;
22. else trityp == 4;

}
23. return trityp;

}

Figure 7.3: Program trityp

Experiment 4 The gcd program is shown Figure 7.4. It only has integer variables, and has a loop containing a
conditional statement.

Given a path 1-2-3-1-2-4-1-2-3-5, the test case (a = 15, b = 9) is generated, with the initial box (a 2 [1; 100]; b 2
[1; 100]).

The last two experiments show that our approach is also applicable for programs without float variables.

Experiment 5 Our last experiment illustrates the statement coverage criteria on the nThRootBisect program
depicted in Figures 6.1 and 6.2.

When the statement (or node) 8 is selected, the program generates the path 1-2-3-4-6-7-2-3-4-6-8 and output
the test case (a = 7.000000010011718, n = 2, e = 0.00505).

For statement 5, the generated path is 1-2-3-4-6-7-2-3-4-5, and the test case (a = 9.0, n = 2, e = 0.00505) is
output.
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int gcd(int a, int b) {
1. while (a 6= b) {
2. if (a > b)
3. a = a - b;
4. else b = b - a;

}
5. return a;

}

Figure 7.4: Program gcd: computing the greatest common divisor of 2 integers

8 Conclusion

In this paper, we presented a novel approach for automated test data generation of imperative programs. One
of the main originalities is its capacity to handle program containing integer, boolean and/or float variables. It
handles statement, branch and path coverage criteria. Our purpose was thus to generate test data that will cause
the program to traverse a specified statement, branch or path. This approach is based on consistency techniques
integrating integer and float variables.

In our approach, the program under analyis is first translated into a static single assignment (SSA) form. For
path coverage, a path constraint on the input variables is derived from the specified path and the program in SSA
form. We showed how such a constraint can be constructed. The path constraint is then solved by an interval-based
constraint solving algorithm handling integer, boolean and real variables. This algorithm used a consistency, called
eBox consistency generalizing box consistency to integer and float variables. This simple consistency is sufficient
for our purpose. A test input is finally extracted from the interval solutions.

For branch and statement coverage, we also proposed an algorithm for test data generation. This algorithm
generates paths reaching the branch or statement. Such a generation uses consistency techniques to prune the
search space, and the control dependence graph to guide the search. When such a path is generated, the algorithm
for path coverage is used. A prototype has also been constructed. Experimental results showed the feasibility of
our approach.

Our consistency-based approach to test data generation could be combined with existing approaches based on
random or dynamic methods (e.g. [GMS99,PHP99]), especially when searching a test data exercising a specified
statement of the program.

In future work, we will also consider consistency techniques allowing arrays in the program under analysis.
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