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Abstract

Biochemical pathways such as metabolic, regulatory or signal tranduction pathways can be viewed

as interconnected processes forming an intricate network of functional and physical interactions between

molecular species in the cell. The amount of information available on such pathways for different or-

ganisms is increasing very rapidly. This is offering the possibility of performing various analyses on the

structure of the full network of pathways for one organism as well as across different organisms, and has

therefore generated interest in developing databases for storing and managing this information.

Analysing these networks remains however far from straight forward due to the nature of the

databases, which are often heterogeneous, incomplete, or inconsistent. Pathway analysis is hence a

challenging problem in systems biology and in bioinformatics.

Various forms of data models have been devised for the analysis of biochemical pathways. This paper

presents an overview of the types of models used for this purpose, concentrating on those concerned

with the structural aspects of biochemical networks. In particular, we classify the different types of data

models found in the literature using a unified framework. In addition we describe how these models

1



have been used in the analysis of biochemical networks. This enables us to underline the strengths and

weaknesses of the different approaches, as well as to highlight relevant future research directions.

Keywords biochemical networks, data analysis, graphs, modelling

1 Introduction

Modelling is an important research area in biology and in bioinformatics. Theorists are designing models

in order to investigate a particular hypothesis about biological function that could explain experimental

observations. On the other hand, experimentalists are building models in order to store experimental data

on biological molecules and processes in databases, and to be able to analyse these data.

An increasing body of data is rapidly becoming available on the network of interactions between genes

and proteins for whole organisms. This has prompted many groups to develop models for representing

and analysing these networks, giving rise to various forms of biochemical network models, with different

objectives.

Database models aim at representing experimental data in order to store them in databases, so as to take

advantage of the data storage, management and retrieval facilities offered by database systems. However,

database models are often unsuitable for analysing the structure of the stored networks, and thus specialised

data models, such as graph-based models, have to be designed to facilitate the analysis of biochemical

networks. These data models are usually implemented as in-memory data structures, containing information

extracted from a database. Such models generally contain few quantitative data and are primarily aimed

at qualitative analysis. Data models used for analysing networks are thus different and independent from

database models. Computational modelling [4] is a more theoretical and mathematical approach, where the

models aim at explaining biological systems and are generally geared towards the simulation of the dynamic

properties of the system. These models usually enable quantitative analyses, and contribute, for example,

to metabolic engineering, aimed at the development of methods for improving the metabolic capabilities of

industrially relevant micro organisms [64].

In this paper, we concentrate on data models for the analysis of networks. The analysis of biochemical

networks is part of systems biology, and seeks to define theories that explain the complex manner in which

the components of a biological system give rise to the behaviour of that system [27].

Biochemical pathways, also called biochemical networks, is a general term that can be applied to several

families of pathways. Metabolism can be viewed as a network of chemical reactions catalysed by enzymes,

and connected via their substrates and products; a metabolic pathway is then a coordinated series of re-

actions. Metabolic regulation refers to the regulatory actions that operate on the level of the genes and

enzymes involved in the pathway, thereby modulating the pathway output; a regulatory pathway is a coor-

dinated series of reactions and molecular interactions regulating the expression and/or activity of enzymes
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and transporters. Finally, signal transduction is a term describing the transfer of information (called sig-

nals) from one cellular location (often the extracellular medium) to another (often the cell nucleus); a signal

transduction pathway is coordinated series of reactions and interactions realizing a signal transduction. Note

that regulatory and signalling pathways are often closely interconnected. A separation between them can

therefore be very difficult. This will have consequences on the data models.

Pathway databases hold data on biochemical pathways and their components (e.g. enzymes, substrates,

products) and on the correponding interactions and chemical reactions. They are encyclopedic references

for pathway information; they can be queried for information retrieval, and can be analysed through com-

puter programs. Some existing databases focus on specific types of interactions : e.g. BRENDA (enzymatic

catalysis) [51], DIP (protein-protein interactions) [67], Transfac (protein-DNA interactions [65] , and Regu-

lonDB (protein-DNA interactions) [48]. There are several databases on metabolic pathways, such as KEGG

(genes, enzymes, metabolic reactions) [21], EMP (enzymes, pathways) and WIT (metabolic pathway re-

construction) [41], EcoCyc (metabolic pathways, E.coli) and MetaCyc (metabolic pathways of other organ-

isms) [25], aMAZE [60, 59], CSNDB [57], PathDB [49], UM-BBD [13], SHARKdb [44], etc. The BIND

database [1] contains information on interactions that take part in signal transduction pathways. An analysis

and comparison of these databases can be found in [66]. In most databases the information is represented in

a (simple) relational form. The quality of the underlying relational data model is important for the extraction

of suitable information for analysing the networks.

Why analyse pathways ? The quantity of available information on biochemical pathways for different

organisms is increasing very rapidly. It has now become possible to perform detailed analyses of metabolic

pathway structures for entire organisms. However, such analyses face various difficulties. The existing

databases are very heterogeneous; data can be incomplete, inconsistent or approximate; our knowledge of

the mechanism of gene regulation is today poorly structured and partial. The potential size of the pathways

for analysis can also be very large, leading to problems of spatial and temporal computational complexity.

This makes pathway analysis a challenging problem in systems biology and in bioinformatics.

Examples of questions that could be solved by pathway analysis are :

� What are the possible paths from compound A to compound B ? How many paths, and how many

steps within each path, lead from A to B ?

� What is the distribution of path lengths between 2 compounds ? What is the average path distance

between compounds ?

� Give all paths traversing a set of specified compounds or reactions (e.g. given a set of co-regulated

genes, find a path or pathway that could be formed with the catalysed reactions).

� Find all genes whose expression is directly or indirectly affected by a given compound.

� Show which pathways may be affected when one or more gene/proteins are turned off or missing.
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� Compare biochemical pathways from different organisms and tissues, or at different stages of anno-

tation; highlight common features and differences; predict missing elements.

The design of sophisticated tools for pathway analysis has great potential and practical value for re-

search in various fields such as the search for antimicrobial agents, drug design, human disease analysis,

bioremediation, metabolic engineering for bioprocesses and therapeutics, etc.

Objectives and results of our survey Various forms (types) of data models can be used for the analysis

of biochemical pathways. We review and classify the different types of data models found in the literature

using a unified framework, and describe how these models have been used in the analysis of biochemical

pathways. This enables us to underline the strengths and weaknesses of the different approaches, while at

the same time pointing to relevant future research directions.

In this overview the actual database models, algorithmic issues and visualization aspects are not cov-

ered. Although some simulation models will briefly be presented, computational modelling of biochemical

network [4] will not be considered.

Related work There are several works which are complementary to this overview; they cover other

classes of models (databases, computational) while we focus on data models for the analysis of networks.

For example, in [64], the authors survey the modelling approaches in metabolic engineering; a literature

review of modelling and simulation of genetic regulatory systems is described in [8]; an analysis and com-

parison of existing metabolic pathway databases is proposed in [66].

Structure of the paper Section 2 introduces the concepts of models and analysis. Sections 3 to 5 present

different data models based on graphs, and Section 6 describes object-oriented data models. These models

are analysed and compared; practical applications of each model are annotated by numerous literature ref-

erences. Data models for simulation are briefly presented in Section 7. Finally, conclusions ar givenn and

some research directions are presented in Section 8.

2 Models and analysis

When the objective is the creation of a data repository, the tool employed is a database. The underlying rep-

resentational model is a database model (e.g. a relational data model), and simple analysis can be performed

directly on the database through some query language, such as SQL. For more sophisticated analyses, spe-

cific algorithms are required. Most of the time such algorithms do not rely on a database model; they usually

have their own data model (implemented in some data structure), as depicted in Figure 1. Database models

are often unsuitable for algorithmic use. Hence, various data models have been designed and used for the

analysis of biochemical pathways. Note that there are no fixed boundaries between database queries and

specific algorithms, nor between database models and data models or data structures.
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There is obviously some relationship between the analysis to be performed and the chosen data model.

The choice of a data model drives the possible analyses, and vice versa (see Figure 2). Each model provides

its own view of reality, taking into account particular aspects while neglecting others. A given model can

thus be suitable for several analyses, and one analysis can be performed on different models.

It is thus impossible to determine which model is best; each of the models presented in the following

sections has its own advantages and enables specific types of analysis. Models differ either by the chosen

view, the coverage (different types of interactions that they can represent), their precision or the granularity

(resolution of the basic information: atomic, molecular, supramulecular).

Models will be described using a graph framework. A graph G(V;E) is a mathematical object where

V is the set of nodes (vertices), and E is the set of edges, connecting pairs of nodes. An edge is an ordered

pair of nodes (directed or oriented graph) or an unordered pair of nodes (undirected graph). Object-oriented

models can be seen as a natural extension of graphs, where the nodes are typed, and different relations are

defined between specific types of nodes. Objects also allow inheritance.

3 Compound graphs

The objective of employing a compound graph is to model a set of chemical reactions. Nodes are the

chemical compounds. Edges between compounds can be defined in two ways. In the approach, an undirected

edge connects two compounds if they occur in the same reaction (as substrates or products) [15]. The second

approach is more classical; a directed edge connects compound A to compound B if A occurs as a substrate

and B as a product in the same reaction.

As an example, let us consider the following simple reaction :

Reaction 1 : glutamate + ATP ! gamma-glutamyl phosphate + ADP

EC 2.7.2.11, catalysed by gamma-glutamyl kinase

The compound graph of reaction 1 is shown in Figure 3.

The use of graph theory, and in particular compound graphs, is a well established representation tech-

nique in biochemistry and in chemical engineering [47]. Compound graphs have recently been used in

[15, 62] for the analysis of topological properties (connectivity, length, statistical properties, ...). The au-

thors stress the small-world character of metabolic networks: their compound graphs are sparse, but much

more highly clustered than an equally sparse random graph. Compound graphs are also used in [33].

The equivalent of compound graphs can be defined for signal transduction networks as well as for tran-

scriptional regulation networks. In a transcriptional regulation graph, nodes represent genes, and a directed

arc between gene A and gene B means that gene A codes for a transcription factor which regulates gene B.
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Objectives Tools Models
Data repository Data Base DB Model
Simple data analysis DB query DB Model
Data analysis Algorithms Data model / data structure

Figure 1: models and analysis

data model 1 data model 1 data model 2

analysis 1 analysis 1analysis 2

can be applied on
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Figure 2: data model vs analysis
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Figure 3: Reaction 1 : glutamate + ATP ! gamma-glutamyl phosphate + ADP (EC 2.7.2.11, catalysed by
gamma-glutamyl kinase
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In their recent work [37, 54], Alon and co-authors analyse transcriptional regulation networks of Escherichia

coli in order to uncover its underlying structural design, by means of the discovery of network motifs. In this

work, a network motif is a pattern of interconnections occurring in networks with a significantly higher fre-

quency than what would be expected in random networks. This analysis relies on sophisticated algorithms

for the generation random networks that have been applied to other networks in neurobiology, ecology and

engineering.

In the signal transduction graph used in [35], nodes are signalling molecules, and an edge represents

a process relating two signalling molecules. Such a representation is used for path searching. A similar

representation is used in [23].

Although compound graphs or their equivalent can be used to represent and analyse metabolic, regula-

tory or signalling pathways, this data model cannot combine these different pathways. Such a combination

requires for instance a distinction to be made between nodes representing compounds and nodes represent-

ing genes, and to distinguish arcs representing a reaction from arcs representing the regulation of some

signalling process. Compound graphs also have obvious limitations in their coverage since they represent

only reactions within pathways and contain no information about the enzymes catalysing these reactions.

The coverage is even more limited for regulatory and signalling pathways because of the large number of

different types of interactions that occur in these pathways (assembly, transcriptional regulation, protein-

protein interaction, translocation). The descriptive power of compound graph is also very poor because the

structure of the reaction is lost in compound graphs. One can no longer distinguish if two substrates or two

products are involved in the same reaction. As a consequence, different sets of reactions can lead to the same

compound graph [17], thus introducing ambiguity (see Figure 4). The major characteristics of compound

graphs are summarized in Figure 5.

4 Reaction graphs

A reaction graph is a dual form of the compound graph. Here, the nodes are the reactions. There is an edge

between reactions R1 and R2 if a compound is both a product of R1 and a substrate of reaction R2. The

graph can be directed or undirected, depending on whether the reactions are considered as reversible or not.

It is also possible to extend the definition of an edge by considering edges between two reactions when they

share a compound [62]. The reaction graph of our example is reduced to a single node (Figure 3) as it only

involves one reaction. A more detailed example is given on the left-hand side of Figure 6.

In [62] reaction and compound graphs are used for the analysis of topological properties of metabolic

networks. Reaction graphs are also used in [40] for the detection of functionally related enzyme clusters.

Reaction graphs are compared with genome graphs, where the nodes are the genes and edges join adjacent

genes. The objective is to detect correlated clusters or local similarities, given a list of corresponding nodes
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Figure 5: Summary of main characteristics of data models
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from the two graphs. A reaction R corresponds to gene G if the enzyme encoded by G catalyses reaction

R. The result is a set of enzymes whose genes have closely related chromosomal positions, and catalysing

successive reactions in the metabolic pathway.

Reaction graphs are similar in their limitations to compound graphs. Their coverage and precision are

also very limited given that this time, compounds are not represented. It is therefore impossible to determine

if products generated by two reactions and consumed as substrate by another reaction are identical or not.

As a consequence, different sets of reactions can also lead to the same reaction graph [17], thus introducing

ambiguity (see Figure 6). Reaction graphs are mostly limited to a (partial) representation of metabolic

pathways. It is therefore inappropriate for modelling different types of networks. The major characteristics

of reaction graphs are summarized in Figure 5.

Nonetheless, although compound and reaction graphs only offer a partial and sometimes ambiguous

view of biochemical networks, such representations turn out to be sufficient and useful for some simple

analyses such as topological and statistical properties, or the discovery of basic patterns. Such representa-

tions can also be helpful in some specific applications, such as the detection of functionally related enzyme

clusters in [40].

The models described in the next sections extend the above basic graph approaches, and overcome some

of their limitations.

5 Bipartite graphs and hypergraphs

In a bipartite graph, there are two classes of nodes, and no edges can relate nodes from the same set. In the

context of biochemical networks, there are compound nodes and reaction nodes; an edge thus necessarily

relates a compound node and a reaction node. Edges can be undirected or directed. A directed edge from a

compound node to a reaction node denotes a substrate, while an edge from a reaction node to a compound

node denotes a product of the reaction. Bipartite graphs can represent reactions without any ambiguity, as

illustrated in Figures 4 and 6. The bipartite graph representation of our example is provided in Figure 3.

Instead of bipartite graphs, one can also use directed or undirected hypergraphs, a generalization of

compound graph, where a hyperedge relates now a set of substrates to a set of products. An hypergraph

can easily be transformed into a bipartite graph, and vice versa. They thus offer equivalent representations.

The equivalence between bipartite graphs and hypergraphs is clearly illustrated in Figure 3, where there is

a single hyperedge relating the two substrates and the two products of the reaction. Other illustration are

provided in Figures 4 and 6. Hypergraphs have been used to model metabolic pathways [32].

In [24] metabolic networks of 43 organisms are modelled as bipartite graphs, permitting a systematic

comparative analysis showing that these metabolic pathways have the same topological scaling properties.

Bipartite graphs have also been used in [58, 61] for the analysis of metabolic networks stored in KEGG. The
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authors analyse global structural properties, and different graph analysis operations, such as path finding are

proposed, using classical graph algorithms. A set of pool metabolites (H2O, O2, ...) were discarded from

the graph, and a specific treatment was applied to prevent traversing reversible reactions from substrate to

substrate or from product to product. Pathway reconstruction from a cluster of reactions is also considered.

An extension of the path finding operation has been developed in [7], where weighted graphs were used to

assign a specific score to each compound, according to its connectivity. This permits the reduction of the

probability of traversing pool metabolites, without discarding them from the graph.

Algorithms for pathway synthesis have been developed and applied in [53, 14]. The objective here is

to find pathways from initial compounds to final products. The approach, based on [17], uses axioms for

feasible reaction pathways, such as intermediate compounds are entirely produced by previous reactions

and completely consumed by subsequent reactions, and axioms for combinatorial feasible reactions, such as

a reaction is forward or backward, but not both. The algorithms involve graph manipulation, branch and

bound and integer programming. Note that stochoimetric information is handled here.

Although not explicitly described, the underlying data model in [16] is equivalent to bipartite graphs,

and is used for comparing metabolic pathways. A global distance between topologically identical pathways

is introduced; it is a combination of the individual distance between the substrates, and the distance be-

tween enzymes of the reactions (using alignment of the corresponding genes). Bipartite graphs have also

been chosen as data model for the hierarchical analysis of dependences in metabolic networks [19]. The

representation of compounds and reactions is also necessary for pathway prediction [41, 42, 44]. Given a

gene and a metabolic pathway, the objective is to provide some kind of measure of the number of enzymes

catalysing the reactions in the pathway which are encoded by the gene.

Another extension of bipartite graphs is proposed in [18] to model signal transduction pathways. In such

graphs, each node can itself contain another graph. Interaction edges model interaction between biochemical

entities, while decomposition edges reflect the hierarchical structure. Information is represented by Prolog

predicates, and path search algorithms are implemented with HiLog programs [6] (Prolog programs with

higher order facilities). This extension of graphs to handle hierarchical structures has also been used in [9]

to model cellular processes. In that case however, these graphs are bipartite, with state nodes and transition

nodes.

Bipartite graphs and hypergraphs offer an unambiguous representation of the reactions and compounds

in biochemical networks. The coverage is limited as possible controls of reactions (catalysis, inhibition,

...) cannot be explicitly represented. This simple data model is appropriate when the analysis is limited to

reactions and compounds. This however covers many applications such as topological properties, path find-

ing, synthesis and prediction. Without extensions, bipartite graphs cannot simultaneously model metabolic,

regulatory and signalling pathways. The major characteristics of reaction graphs are summarized in Figure

5.
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6 Object models

More sophisticated data model are required when different aspects of metabolic pathways, such as catalysis

and regulatory information, must be covered. Object-oriented models can be seen as a generalization of

bipartite graphs, where the nodes are typed, and permit a much more detailed description. Object models

also allow inheritance, providing a powerful tool to structure data. Usually the definition of an object-

oriented model of a biochemical pathway requires different tasks: the definition of the objects and their

attributes, the design of an hierarchy between the different objects, and the definition of all the relations

between the objects. When modelling biochemical systems, activities objects should be distinct from those

representing the biochemical entities. Attributes of an activity could be qualitative or quantitative.

In Figure 7 we present a simplified object model of metabolic regulation. It is described in UML,

a widely used modelling language [3]. Only the classes (without attributes) and relations are shown. Our

example is represented as an instance of this model in Figure 3. In this model, not only the biological entities

are classes (compound, enzyme), but also the activities (reaction, catalysis). This allows the definition of

attributes for activities, as well as more elaborate relationships such as enzymatic activation or inhibition.

The symbols (1 and �) on the relations describe the cardinality of the relations, where � stands for any. For

instance, a compound can be related through the substrate relation to 0, 1 or more reactions, and vice versa.

A reaction may have different catalysts, but a catalyst is always related to one reaction and one enzyme.

Object-oriented data models were already used in molecular biology a decade ago (e.g. [10]). Object

models are currently used for the design of biological databases such as UM-BDD [12], EcoCyc [26],

aMAZE [60, 59] and SHARKdb [44]. The BioMiner software system [55] is also based on an object data

model; among the available tools, PathFinder predicts biochemical pathways by comparing groups of related

organisms. The Intact project [45], aiming at representing and analysing protein-protein interactions, takes

an object-oriented approach.

Like bipartite graphs and hypergraphs, a (non trivial) object-oriented data model can represent reactions

unambiguously. However, the potential coverage of an object-oriented data model is larger. Such a model

allows the representation of various aspects of metabolic (e.g. enzymatic reaction), regulatory (e.g. gene

activation) or signalling (e.g. complex assembly, translocation) pathways. An interesting advantage of

object-oriented models is their ability to integrate metabolic, regulatory and signalling networks in a single

data model. This is especially important as a clear separation between regulatory and signalling pathways

is difficult, and combined analyses would be useful. Object models are not, however, a panacea. The design

of a suitable model is a difficult task and the resulting model can be complex and difficult to understand

and to exploit. Object-oriented data models are especially well suited when a more detailed and structured

representation than bipartite graph is required. The major characteristics of reaction graphs are summarized

in Figure 5.
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7 Simulation models

Data models for the analysis of networks are usually driven by the existing information, collected from

experiments and stored in databases. A complementary approach is the computational modelling of bio-

chemical networks [4]. Computational models are theories and mathematical models of processes, often

metabolic or regulatory, explaining the behaviour of biological systems. Such models can be used for sim-

ulation and for engineering. When applied to metabolic networks, they often aim at the development of

targeted methods for improving the metabolic capabilities of industrially relevant micro organisms [64].

The use of metabolic pathways and metabolic fluxes are at the core of metabolic engineering [56]. In this

section, we briefly overview some of the existing data models oriented towards simulation.

Several approaches exist for the mathematical modelling of metabolism [38, 11, 50]. A review of exist-

ing models can be found in [64], and a literature review of modelling and simulation of genetic regulatory

systems is proposed in [8]. Metabolic flux analysis considers models that relate to the quantification of

flux. It is based on the principle of mass conservation. It requires information on stoichiomtry; no data

on enzyme kinetic is required. This includes metabolic balancing and isotopic balancing. Examples of

metabolic balancing can be found in [28, 29], [52] and [36] (flux optimisation). Isotopic balancing can be

achieved by isotopic labelling of 13C; 13C and analysing the balancing of the labelled species. Metabolic

Flux Analysis, see [63] for review, is presently a important tool in metabolic engineering as it allows a

detailed quantification of all intra-cellular fluxes.

Kinetic models detail the interaction between substrates and enzymes; they involve the solution of dif-

ferential equations, for which several quantitative parameters have to be specified. Examples can be found

in [20], [43] and [4]. Finally, metabolic control analysis is concerned with quantifying the control of flux

among enzymes.

Petri nets have been widely used for the formalisation and the simulation of biochemical processes.

Petri nets, an active research domain in computer science and mathematics, are a graph-oriented formalism

allowing the modelling and analysis the concurrent behaviour of systems. Petri nets are special bipartite

graphs with an associated semantics. The two types of nodes are place nodes and transition nodes; places

may contain tokens. Depending on the tokens, transitions will be enabled, producing new configurations. A

complete description of Petri nets is beyond the scope of this paper (see for instance [39]). In the context of

biochemical models, Petri nets can be seen as an extension of the bipartite graph model. Place nodes are the

compounds, and the transition nodes are the reactions. Among other things, Petri nets have been used for the

representation and the simulation of metabolic knowledge [22, 31], for the simulation of dynamic behaviour

[5, 30, 34], as well as for the analysis of gene expression [68]. Object-oriented simulation models have also

been developed. Other approaches, originating from concurrency in computer science, have also been used

to model biochemical processes. For example, pi-Calculus [46], a process algebra, and concurrent logic

programming [2].
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8 Conclusion and research directions

In this paper we have reviewed and classified the different forms of data models found in the literature for the

analysis of biochemical pathways. We concentrated on models for analysing the structure of these networks,

focusing on the analysis of existing information collected from experiments and stored in databases. We used

a framework based on graph formalism when presenting the surveyed works.

Why have different data models been used for analysing biochemical networks? We observed that exist-

ing pathway analysis is mostly performed on simplified models, such as compound- reaction- or bipartite-

graphs. Such models permit the use of existing path searching algorithms, and can be applied to large net-

works. However such models only permit simple analysis. More elaborate data models, such as object

models, are now being used for pathway analysis. Object models are a powerful tool for modelling the

complex structure and the intricate interactions of biochemical pathways. The sophisticated analysis of such

pathways requires more elaborate search methods and algorithms. Object models can integrate metabolic,

regulatory and signalling network in a single data model, removing the (artificial) barrier between these

networks, and allowing analysis of the whole network. We believe that the following research directions

would be beneficial to the field. A first research direction could be the design of unified object-oriented data

models, combining metabolic, regulatory and signal transduction pathways, facilitating the development of

new integrated search and analysis tools. Another research direction could be the design of elaborate search

methods and analysis algorithms, that can operate on the combined networks.

Why use different data models for different applications (databases, analysis of networks, simulation,

etc.)? Graph-based models, such as compound- reaction- or bipartite- graphs are mostly used for analysing

networks, but are inappropriate for database modelling. Extension of graphs, such as Petri nets, are adapted

for simulation purposes. Object-oriented models are adequate for database modelling and for analysing net-

works. Because object-oriented data models are mostly designed to model experimental data, they usually

do not handle quantitative information. However, object models allow the description of dynamic properties

(e.g. attributes in class diagrams, sequence diagrams, state charts) and can therefore integrate simulation

information. Various mathematical models have however been developed to handle flux analysis or kinetics

aspects; these computational models can be used for simulation and for metabolic engineering. However,

computational models are usually not yet able to take into account the complex structure and the interactions

involved in biochemical pathways. Existing computational models are therefore not adapted for the analysis

of biochemical networks.

According to Bower and Bolouri, “recent advances in biology require a more direct connection between

modelling and experiment. Instead of being a means to demonstrate a particular preconceived functional

idea, modelling should be seen as a way to organize and formalize existing data on experimentally derived

relationships between the components of a particular biological system”[4]. This raises the question of

integrating data models. Is it conceivable to use one type of model for the modelling of databases, pathway
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analysis and other computational uses? Today, the answer is no. However, object-oriented models are good

candidates for such an integration. A possible research direction could be the extension of object-oriented

data models with quantitative information, together with models of flux and dynamics. Simulation could

then be performed by extracting suitable information from the model and using a specialized computational

tool.
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Figure 7: A simplified object model of metabolic regulation
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