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Sébastien Vast, Pierre Dupont, Yves Deville

Department of Computing Science and Engineering
Universit́e catholique de Louvain

Place Sainte Barbe, 2
B-1348 Louvain-la-Neuve - Belgium

{svast, pdupont, deville }@info.ucl.ac.be
http://www.info.ucl.ac.be/ ∼ {svast,pdupont,yde }

Abstract : In this paper we describe a novel method for extracting a set of nodes
that best capture the connections betweenk given nodes of interest in a biochem-
ical network. This method relies on the projection of the nodes of the network,
seen as an undirected graph, into an euclidean space. Euclidean distances be-
tween nodes in the projected space correspond to their commute time distances in
the original graph, a measure based on a random walk model on the graph. Com-
mute time reflects the distance between two nodes while considering all paths
connecting them. Results on artificial data illustrate the interest of this approach.
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1 Introduction

Biochemical networks model interactions between biochemical entities within cells.
Metabolism can be viewed as a network of chemical reactions catalyzed by enzymes,
and connected via their substrates and products; a metabolic pathway is then a coor-
dinated series of reactions. Other types of biochemical networks include regulatory
or signal transduction networks. Several models exist to represent biochemical net-
works (Devilleet al., 2003). In most cases, these networks can be viewed as directed
or undirected graphs. The present work is part of the BioMaze project which aims
to produce computer tools for analyzing biochemical networks. BioMaze extends the
Amaze project which aims to build a biochemical database integrating the three types
of networks mentioned above and to provide dedicated query tools (van Heldenet al.,
2000).
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The specific problem we address here is the extraction of a relevant subgraph of an
undirected1 graph, which best explains the relations betweenk given nodes of interest
in this graph. Assume, for instance, we are analyzing the synthesis ofpyruvate from
glucose and would like to study the possible influence of the expression of a given
gene on a protein, sayphospho-fructokinase-2, in the context of the regulation of this
metabolic pathway. In this case, we have 4 nodes of interest in a possibly very large
graph of interactions and we would like to extract a relevant subgraph explaining the
relations between these 4 nodes. The methods described in this paper are also applicable
to other practical domains.

This paper presents a novel approach to this problem. It relies on the projection of
the nodes of the graph into an euclidean space. Euclidean distances between nodes in
the projected space correspond to theircommute time distancesin the original graph, a
measure based on a random walk model on the graph (Saerenset al., 2004). Commute
time reflects the distance between two nodes while considering all paths connecting
them. This contrasts with simpler approaches which would extract only specific paths
between each pair of nodes of interest, such as shortest distance or maximal flow paths.
Here the goal is the extraction of a relevant subgraph as this is considered to be more in-
formative. An inspiring approach to this problem was presented recently in (C. Falout-
sos & Tomkins, 2004) but the problem was restricted to 2 nodes of interest. We adopt
here a different point of view allowing for a direct solution to the general problem with
any number of nodes of interest. We propose to solve the problem in two steps: the
extraction of a subset of relevant nodes in the graph followed by the construction of a
subgraph connecting them. The present contribution focuses on the first step.

Section 2 proposes a formal statement of the problem we address. Some possible
methods to solve it are discussed and contrasted with our approach. The theory behind
the notion of commute time distance is summarized in section 3. Section 4 details how
to use commute time distances in order to extract a subset of relevant nodes in a graph.
Practical experiments are presented in section 5.

2 The problem of extracting a subset of relevant nodes

Problem statement:Given a connected undirected graphG = (V,E), whereV denotes
a set of nodes (or vertices) andE denotes a set of weighted edges, a non-empty set
K ⊆ V of nodes of interest ands a strictly positive integer,find a setS ⊆ V \ K of
nodes, with|S| = s, optimizing a goodness functiong(S, K). The goodness function
g(S, K) measures how well thes extracted nodes explain the relations between the
k = |K| ≥ 2 nodes of interest in the graph.

The goodness function should measure how well the nodes of interest are connected
through paths to which the extracted nodes belong. A naive approach to this problem
consists in extracting nodes belonging to shortest paths between pairs of nodes of in-
terest. Consider, for instance, the graph depicted in Figure 1 and assume this graph
represents a road map between cities A and B (i.e. k = 2, in the present case). The

1Even though there is a direction of flow in a metabolic pathway, the type of graph analysis considered
here does not require directed edges.



shortest distance2 approach would typically select nodes C and D belonging to the high-
way connecting A and B. However, as soon as one edge is removed along this path (e.g.
in case of a traffic jam) no alternative route from A to B goes through C or D. Nodes
included in the dashed circle are more relevant here as they belong to many alternative
routes connecting A and B, even though none of these routes might be shorter than the
highway. Thus the goodness function should take into account many alternatives routes,
possibly all of them.

C D

A B

Figure 1: Nodes that best capture the connections between A and B are in the dashed
circle as they belong to many alternative routes from A to B, or conversely.

Faloutsos et al. proposed an interesting approach to the more general problem of
extracting a relevant subgraph (C. Faloutsos & Tomkins, 2004). This approach can di-
rectly be applied to our problem of extracting a subset of the graph nodes. They restrict
their attention to the case for whichk = 2. The goodness functiong(S, K) is based
on an electrical analogy. The 2 nodes of interest are respectively considered to be the
source and the sink of an electrical current. The algorithm searches the paths followed
by the current flow and maximizes the sum of current flow in the extracted subgraph.
In addition, each node includes some current loss in order to penalize long paths and
very highly connected nodes (hubs)3. This approach takes into account several paths
between the nodes of interest. The fraction of current captured by the subgraph depends
on the number and weight of such paths. One drawback of this method is that, due to
the current loss, the solution depends on which of the 2 nodes of interest is chosen to be
the current source. We propose in the present work an alternative method which deals
with any number of nodes of interest with no preference a priori defined between them.

2This distance may correspond to the travel time in this particular case.
3While it is interesting to extract nodes offering alternative routes to the nodes of interest, hubs do not

explain well the specific relations between the nodes of interest as they are well connected to most nodes.
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3 Euclidean commute time distance

As motivated by the discussion in section 2, we are looking for a measure describing
how well several nodes are connected in a graph by considering all possible paths con-
necting them. This measure will then be applied to the extraction of a subset of relevant
nodes in a graph as detailed in section 4.

The proposed measure relies on a random walk model on the graph. This model
assigns transition probabilities to the edges, so that a random walker will jump from
one node to another with a probability proportional to the weight of the edge connect-
ing them. Theaverage commute time4 between nodesi andj computes the average
time taken by a random walker for reaching nodej from nodei, and coming back to
i. The square root of this quantity is a distance measure between any two nodes called
theeuclidean commute time distance(ECTD). Most of the theory, summarized in the
present section, was introduced in (Saerenset al., 2004). The application of this dis-
tance measure to the extraction of a subset of relevant nodes in a graph is detailed in
section 4.

Section 3.1 introduces some notations and, in particular, the Laplacian matrixL of a
graph. Section 3.2 details how to compute the ECTD fromL.

3.1 The Laplacian matrix of a weighted graph

We consider a weighted undirected graphG = (V,E) with strictly positive weights
between each pair of connected nodes. The graph order|V | is also denotedn in the
sequel. The larger the weightwij of the edge connecting nodei to nodej, the easier the
communication betweeni andj is assumed to be. Moreover, the weights are required
to be symmetric (wij = wji). Theadjacency matrixA is defined in the usual way:

aij =
{

wij , if nodei is connected to nodej
0 , otherwise.

The diagonaldegree matrixD is defined as follows.dii =
∑n

l=1 ail anddij = 0,
if i 6= j. A related quantity is thegraph volume, that is the sum of node degrees:
DG =

∑n
i=1 dii.

TheLaplacian matrixL of the graph is defined asL = D−A. WhenG has a single
connected component, the rank ofL is n− 1. Moreover, one can easily show thatL is
symmetric and positive semidefinite (Chung, 1997).

3.2 Computation of the commute time distances

Klein and Randic proposed in (Klein & Randic, 1981) a distance measure between
graph nodes, calledresistance distancewhich has the property of decreasing when the
number of paths between two nodes increase. As shown by Chandra (Chandraet al.,

4This notion of commutetime is equivalent to the averagenumber of stepsa random walker would make
on average to commute between both nodes, since the random walker is assumed to make one step at each
time clock.



1989), this measure can be expressed in terms of the random walk model described
below.

A random walk on a graph is a Markov chain describing the sequence of nodes visited
by a random walker. A state of the Markov chain is associated with every node of the
graph. A random variableX(t) represents the current state of the Markov chain at time
t. The probability of transiting to statej at timet+1, given the current state isi at time
t, is given by:

P (X(t + 1) = j|X(t) = i) = pij = aij/dii.

Thus, from any statei, the probability to jump to a statej is proportional to the weight
aij of the edge betweeni andj. The transition matrixP = [pij ] of the Markov chain is
related to the degree and adjacency matrices asP = D−1A.

The average first-passage timem(j|i) is defined as the average number of steps a
random walker, starting in statei, will take to reach statej for the first time. These
measure can be computed by the following recurrence (Norris, 1997):{

m(j|i) = 1 +
∑n

l=1,l 6=j pil m(j|l) for i 6= j

m(j|j) = 0
(1)

A closely related measure is theaverage commute time, q(i, j), defined as the average
number of steps a random walker, starting in statei, will take to enter statej for the first
time, and go back to statei for the first time:q(i, j) = m(j|i) + m(i|j). Note that, in
general,m(i|j) 6= m(j|i), while the average commute time is symmetric by definition.
As shown by several authors, the average commute time is a distance (Klein & Randic,
1981; Gobel & Jagers, 1974). Moreover the square root of the average commute time
defines an euclidean distance (Saerenset al., 2004).

A first method for computing euclidean commute time distances is based on the iter-
ative solving of the recurrences (1). An alternative approach derives from the Moore-
Penrose pseudoinverse of the LaplacianL, denoted byL+, as proposed in (Saerens
et al., 2004):

q(i, j) = DG(l+ii + l+jj − 2l+ij) (2)

If we further defineei as theith column of then×n identity matrix, equation (2) can
be rewritten as

q(i, j) = DG(ei − ej)T L+(ei − ej), (3)

where each nodei is represented by a unit base vectorei. These nodes can be mapped
into an euclidean space that preserves the commute time distances asL+ is positive
semidefinite. Indeed, every positive semidefinite matrix can be transformed to a diago-
nal matrix (see, e.g., (Meyer, 2000)),Λ = UTL+U, whereU is an orthonormal matrix
made of the eigenvectors ofL+. Hence, the commute time distances can be rewritten
as:

q(i, j) = DG (x′i − x′j)
T(x′i − x′j) (4)

where the following transformations have been applied:xi = UTei, andx′i = Λ1/2xi.
So, in thisn-dimensional Euclidean space, the transformed node vectors,x′i, are

exactly separated by euclidean commute time distances (up to the scaling factorDG).
Close points in thisECTD spacerepresent nodes well connected in the original graph
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G according to any possible paths between them, and the euclidean distance between
them measures this connectivity in the original graph.

The ECTD space has dimensionalityn, the graph order, but projection to a subspace
preserving as much information as possible can reduce computation time. The so-called
spectral (or eigenvector) decomposition ofL+ is given by:

L+ = UΛUT =
n−1∑
l=1

λl uluT
l (5)

whereλ1 > λ2 > . . . > λn−1 > λn = 0 are the eigenvalues ofL+, andul the
associated eigenvectors. The eigenvector expansion ofL+ can be computed up tom <
n − 1, by considering only them largest eigenvalues ofL+. This gives rise to anm-
dimensional subspace where the commute time distances are approximately preserved.

Finally, sinceL andL+ have the same set of eigenvectors but inverse (non zero)
eigenvalues, we do not need to explicitly compute the pseudoinverse ofL. It is only
necessary to compute the smallest non zero eigenvalues ofL, which correspond to
the largest eigenvalues ofL+, and their associated eigenvectors. Fast iterative meth-
ods exists for this purpose (Golub & Loan, 1996; Sorensen, 1996). The complexity
for computing one eigenvalue/eigenvector isO(n2) and the overall complexity for this
method is thusO(mn2).

4 Node subset minimizing euclidean commute time

The relevant node subset problem can be easily formulated and solved using the eu-
clidean commute time distances between any graph nodes and the nodes of interest.
More specifically, we consider the following goodness function :

g(S, K) =
∑
i∈S

dr(i, K) (6)

with
dr(i,K) = min

W⊆K,|W |=r

∑
j∈W

q(i, j)

Thus, the contribution of each extracted node to the goodness of the subsetS is the sum
of the commute time distances to itsr (1 ≤ r ≤ k) closest nodes of interest in the
ECTD (sub-)space. In the experiments reported below, we considered the distances to
the two closest nodes of interest, for each extracted node (r = 2). The choicer = k
would correspond to considering the distances to all nodes of interest. On one hand,
this would allow to take into account the connectivity to all nodes of interest. On the
other hand, as this measure would be more global, the extracted nodes might not be
particularly well connected to any specific node of interest. We will further study this
trade-off in our future work.

Computing an optimalS, which minimizesg for a given numbers of nodes to be
extracted, is straightforward once the commute time distances between any node of
interest and the other nodes of the graph have been computed. It simply amounts to



computedr(i,K) for each possible nodei of the graph (except thek nodes of interest
themselves) and to return the nodes with thes smallest values.

Figure 2 presents the graph of Figure 1 with nodes indexed in increasing order ac-
cording tod2(i,K) (here,K = {A,B}). Unit weight edges were considered in this
example.

A B
4 1

6
6

4 2

3

5

Figure 2: The nodes of this graph are labeled in increasing order (ties are assigned the
same rank) according to the sum of their commute time distances to A and B respec-
tively.

5 Experiments

The ultimate objective of this work is to provide a method for a biologist to automat-
ically extract a subset of relevant nodes related to given nodes of interest in a large
biochemical network. In order to assess the performance of the proposed method, pre-
liminary experiments with artificial graphs are reported here.
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Figure 3: Average degree distribution of graphs used for testing.

A set of 10 graphs of 100 nodes were randomly generated using a power-law graph
generator (Barabasiet al., 2000). For each graph, five nodes were used as initial seeds.
Next, 95 nodes were iteratively added and randomly connected to 3 nodes of the current
graph. At each step, the probability of an existing node to be connected to the new node
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is proportional to its current degree. Each generated graph contains a single connected
component and all edges have a unit weight. The degree distribution (averaged over all
generated graphs) is depicted (in log scales) in Figure 3.

For each graph tested, 10 sets ofk nodes of interest were randomly selected. Results
are reported fork = 2, 4 and 8. In each case, an increasing number ofs nodes were

extracted. The distance measureD =
∑

i∈S
d2(i,K)∑

i∈V \K
d2(i,K)

is the cumulated distance of the

subsetS of extracted nodes relative to the distance of the total setV \K of nodes which
can possibly be extracted. As we aim at minimizing a distance in this case, the smaller
D the better.

Comparative results with the method proposed by Faloutsos et al. (C. Faloutsos &
Tomkins, 2004) are possible whenk = 2. These results are presented in Figure 4. Both
approaches perform very similarly in this setting, showing that they capture essentially
the same information (at least for the tested graphs). However, Faloutsos method can-
not extract more than 29 % of nodes in this case (28 out of the 98 nodes which can
potentially be extracted with our approach). This comes from the fact that this method
only extracts nodes on loopless paths between the 2 nodes of interest. Hence a sig-
nificant fraction of the graph nodes (here 71 %) may not respect this constraint. On
one hand, this illustrates an advantage of our approach. On the other hand, Faloutsos
method is more general as it does not only extract a node subset but a connected sub-
graph. Extension of our method to deal with this more general problem is part of our
future work.
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Figure 4: Distance of the extracted subsets for increasing number of extracted nodes.
Thex axis gives the value of s

n−k , that is the percentage of extracted nodes. The green
curve (circles) corresponds to our approach minimizing commute times, while the blue
curve corresponds to the method of Faloutsos. Results are obtained fork = 2 and
averaged over 100 tests.



Figure 5 illustrates the results of our approach fork = 4 and 8 on the same graphs.
Both curves behave similarly and illustrate the generalization of our approach to larger
sets of nodes of interest. Note that the computational complexity remains essentially
the same as it is dominated by the computation of the same commute time distances in
all cases.
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(a)k = 4
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Figure 5: Distance of the extracted subsets for increasing number of extracted nodes for
k = 4 or k = 8.
In all results presented so far, all edge weights were assumed to be equal (standard

deviationσ = 0). Figure 6 presents the extraction results for another set of 10 graphs of
200 nodes for which a normal distribution on edge weight with a much larger standard
deviation (σ > 200) was defined. As slightly better performance is obtained for these
graphs as the distribution of commute time distances is sharper in this case.
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Figure 6: Extraction results for equal weight for all edges (σ = 0) or large standard
deviation (σ = 239) for a normal weight distribution. Average results for 100 tests with
k = 2 (10 randomly selected pairs of nodes of interest for each graph).
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6 Conclusion and future work

We propose in this paper a novel approach to the extraction of nodes in a biochemical
network which best explain the connections betweenk given nodes of interest in this
network. This approach uses commute time distances between nodes, a measure of
how well two nodes are connected in a graph by considering all possible paths between
them. It is based on the projection of the nodes of the network, seen as an undirected
graph, into an euclidean space. Euclidean distances between nodes in the projected
ECTD space correspond to their commute time distances in the original graph.

Several questions need to be addressed in the future.

1. The commute time distances can be approximated if the nodes of the original
graph are projected into a subspace of the full ECTD space. A lower dimension
subspace corresponds to a coarser approximation to the actual commute times
while reducing the computational complexity. We will study the trade-off be-
tween this complexity and the quality of the set of extracted nodes.

2. Our goodness measure for the extracted node subset is based on the commute
time distance from each extracted node to its two closest nodes of interest. As
discussed in section 4, alternative goodness measures will be investigated.

3. The more general problem of a relevant subgraph extraction will be considered.
Starting from the set of extracted nodes, some edge selection in the original graph
has to be designed. This should be derived from the fraction of edges responsible
for the largest part of the commute time distances between nodes.

4. Actual experiments on real biochemical networks and result interpretations by
biologists are also part of the current project. Comparisons between extracted
subgraphs and known pathways could be performed in this regard.
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