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DESIGN, IMPLEMENTATION, AND
EVALUATION OF THE CONSTRAINT
LANGUAGE cc(FD)

PASCAL VAN HENTENRYCK, VIJAY SARASWAT,
AND YVES DEVILLE

This paper describes the design, implementation, and applications of the
constraint logic language cc(FD). cc(FD) is a declarative nondeterministic
constraint logic language over finite domains based on the cc framework
[33], an extension of the CLP scheme [21]. Tts constraint solver includes
(non-linear) arithmetic constraints over natural numbers which are approxi-
mated using domain and interval consistency. The main novelty of cc(FD)
is the inclusion of a number of general-purpose combinators, in particu-
lar cardinality, constructive disjunction, and blocking implication, in con-
junction with new constraint operations such as constraint entailment and
generalization. These combinators significantly improve the operational ex-
pressiveness, extensibility, and flexibility of CLP languages and allow issues
such as the definition of non-primitive constraints and disjunctions to be
tackled at the language level. The implementation of cc(FD) (about 40,000
lines of C) includes a WAM-based engine [44], optimal arc-consistency al-
gorithms based on AC-5 [40], and incremental implementation of the com-
binators. Results on numerous problems, including scheduling, resource
allocation, sequencing, packing, and hamiltonian paths are reported and
indicate that cc(FD) comes close to procedural languages on a number of
combinatorial problems. In addition, a small cc(FD) program was able to
find the optimal solution and prove optimality to a famous 10/10 disjunc-
tive scheduling problem [29], which was left open for more than 20 years

and finally solved in 1986.
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1. Introduction

Constraint Logic Programming (CLP) is a new class of declarative programming
languages combining nondeterminism and constraint solving. The fundamental idea
behind these languages, to use constraint solving instead of unification as the kernel
operation of the language, was elegantly captured in the CLP scheme [21]. The CLP
scheme can be instantiated to produce a specific language by defining a constraint
system (i.e. defining a set of primitive constraints and providing a constraint solver
for the constraints). For instance, CHIP contains constraint systems over finite do-
mains [36], Booleans [4] and rational numbers [19, 41], Prolog IIT [10] is endowed
with constraint systems over Booleans, rational numbers, and lists, while CLP(})
[22] solves constraints over real numbers. The CLP scheme was further generalized
into the cc framework of concurrent constraint programming [33, 34, 35] to accom-
modate additional constraint operations (e.g. constraint entailment [27]) and new
ways of combining them (e.g. implication or blocking ask [33] and cardinality [38]).

CLP langnages'support, in a declarative way, the solving of combinatorial search
problems using the global search paradigm. The global search paradigm amounts to
dividing recursively a problem into subproblems until the subproblems are simple
enough to be solved in a straightforward way. The paradigm includes, as spe-
cial cases, implicit enumeration, branch and bound, and constraint satisfaction. It
is best contrasted with the local search paradigm, which proceeds by modifying
an initial configuration locally until a solution is obtained. These approaches are
orthogonal and complementary. The global search paradigm has been used suc-
cessfully to solve a large variety of combinatorial search problems with reasonable
efficiency (e.g. scheduling [6], graph coloring [23], Hamiltonian circuits [9], mi-
crocode labeling [16]) and provides, at the same time, the basis for exact methods
as well as approximate solutions (giving rise to the so-called “anytime algorithms”
[13)).

CLP languages over finite domains (e.g. CHIP [17, 36]) have been applied to
numerous discrete combinatorial problems, including graph coloring, cutting stock,
microcode labeling, warehouse location, and car-sequencing. For many problems,
they allow a short development time and an efficiency which compares well with
procedural languages implementing the same approach. For other problems how-
ever, the CLP scheme appears to lack flexibility and operational expressiveness
since 1t only offers constraint solving over a fixed set of predefined constraints. As
a consequence, many problems lose their natural formulation and need to be re-
cast in terms of more basic variables and constraints, inducing a significant loss in
efficiency.

The research described in this paper is an attempt to overcome some of the lim-
itations of CLP languages while preserving their benefits: short development time
and referential transparency. It describes cc(FD), an instance of the cc framework
over finite domains.

1In the following, we use the term CLP languages generically to denote both CLP and cc
languages.



The main novelty in the design of cc(FD) is the inclusion of a number of gen-
eral purpose combinators, i.e. cardinality, constructive disjunction, and blocking
implication. The combinators are general-purpose in the sense that they apply
to any constraint system and are not tailored to the constraint system of cc(FD)
and declarative since they preserve referential transparency. In conjunction with
new constraint operations such as constraint entailment and generalization, the
new combinators significantly enhance the operational expressiveness and efficiency
of CLP languages and enable us to address issues such as the definition of non-
primitive constraints and the handling of disjunctions at the language level. As a
consequence, the combinators, together with a small and natural set of constraints
over integers, preclude the need for many ad-hoc extensions which were introduced
for efficiency reasons but were difficult to justify from a theoretical standpoint.
cc(FD) preserves or improves the efficiency of problems previously solved by CLP
languages over finite domains but also allows the solving of problems that were
previously out of scope for CLP languages, e.g. resource allocation and disjunctive
scheduling problems. In particular, we were able, using cc(FD), to find the optimal
solution, and prove its optimality, to a famous 10/10 scheduling problem [29], which
was left open for more than 20 years and finally solved in 1986 [6].

The key novelties in the implementation of cc(FD) (about 40,000 lines of C)
are the inclusion of optimal consistency algorithms based on AC-5 [40], dynamic
specializations of data structures and constraints, and incremental algorithms for
the combinators.

The contributions of this paper are as follows:

1. it presents cc(FD), a simple, uniform, and clean declarative nondeterministic
constraint logic language over finite domains;

2. 1t demonstrates, by means of simple examples, programming idioms to design
non-primitive constraints and pruning techniques without resorting to ad-
hoc extensions;

3. 1t discusses how cc(FD) can be implemented to obtain a efficient perfor-
mance;

4. it gives experimental results which indicate the viability of this approach for
a variety of problems;

5. it shows that, even for very complex problems such as the famous 10/10
scheduling problem, cc(FD) can find optimal solutions and prove optimality
without specific constraints, although there is still a large gap in performance
compared to procedural languages.

The rest of this paper is organized as follows: the first section presents a motivat-
ing example, the perfect square problem, to acquaint the reader with the program-
ming style in cc(FD). The next section discusses the design of cc(FD), including
the constraint solver, the combinators, and some higher-order predicates. Section
4 discusses the implementation while the last section reports a large number of
experimental results.

This paper is a revised version of the technical report with the same name which
appeared in 1992. The revisions were mostly concerned with style and technical
points and no attempt was made to update the references in the body of the text.
Instead, a retrospective section is included after the conclusion to assess the impact
of the paper and to relate to some current and future research.



sizeMaster(112).
sizeSquares([50,42,37,35,33,29,27,25,24,19,18,17,16,15,11,9,8,7,6,4,2]) .

FIGURE 2.1. The Data for the Perfect Square Problem

2. A Motivating Example

To illustrate several features of cc(FD), we present a program to solve the so-called
perfect square problem. The purpose of the program is to build a square, called
the master square, out of a number of given squares. All the squares must be used
and they all have different sizes. The squares are not allowed to overlap and no
empty space is permitted in the master square. The sizes of the squares (i.e. the
size of their side) and the size of the master squares are given and are depicted
in Figure 2.1. This problem is very combinatorial and there is no hope to solve it
using simple backtracking approaches. An interesting fact is that 21 is the smallest
number of squares, all of different sizes, which can be packed to produce a master
square.
Most programs in cc(FD) follow the following schema

solveProblem(...) :-
generateVariables(...),
stateConstraints(...),
stateSurrogateConstraints(...),
makeChoices(...).

The first goal in the body simply creates the problem variables and specifies their
ranges. The second goal states the problem constraints. Since, in general, the
constraint solver only approximates the constraints, the last goal makes nondeter-
ministic choices to obtain a solution. The third goal states surrogate constraints, i.e.
constraints expressing properties of the solutions. These constraints are redundant
from a semantic standpoint but are fundamental from an operational standpoint
since they may dramatically reduce the search space. This is a traditional technique
in operations research. For the perfect square problem, the top-level predicate is
as follows:

packSquares(Xs,Ys) :-—
generateSquares(Xs,Ys,Sizes,Size),
stateNoOverlap(Xs,Ys,Sizes),
stateCapacity(Xs,Sizes,Size), stateCapacity(Ys,Sizes,Size),
labeling(Xs), labeling(¥s).

The first goal generates the lists of variables Xs and Ys of « and y coordinates of all
squares, a list Sizes with the given sizes of all squares, and the given size Size of
the master square. The goal stateNoOverlap states the no-overlapping constraints
while the goals stateCapacity state surrogate constraints exploiting the fact that
there 1s no empty space. The last two goals are nondeterministic goals to generate
values for the coordinates. We now study these procedures in more detail.

Each square i is associated with two variables X; and Y; representing the co-
ordinates of the bottom-left corner of the square. Each of these variables ranges



between 0 and S - S; where S is the size of the master square and S; is the size of
square ¢. The following procedure describes the creation of the two lists of variables
as well as the list of the sizes.

generateSquares(Xs,Ys,Sizes,Size) :-
sizeMaster(Size), sizeSquares(Sizes),
generateCoordinates(Xs,Ys,Sizes,Size).

generateCoordinates([1,[1,[],).

generateCoordinates([X|Xs], [Y|¥s], [S|Ss],Size) :-
MaxCoord := Size - S, X "€ 0..MaxCoord, Y € 0..MaxCoord,
generateCoordinates(Xs,Ys,Ss,Size).

The no-overlap constraint between two squares (X1,Y1,S1) and (X2,Y2,S2) where
(X1,Y1) and (X2,Y2) are the positions of the squares and S1 and S2 are their
respective sizes can be expressed using constructive disjunction, one of the combi-
nators of cc(FD):

nooverlap(X1,Y1,S1,X2,Y2,82) :-
X1+ 81 <7X2V X2+82<X1VYL+8S1<TY2VY2+s2 <Y1

The precise syntax of cc(FD) will be presented in Section 3.1. The disjunction
simply expresses that the first square must be on the left, on the right, below, or
above the second square. Operationally, cc(FD) removes all values not satisfied by
any of the disjuncts (in conjunction with the accumulated constraints) from the
domain of the variables.

There 18 no need to state the no-empty space constraint thanks to the domain
of the coordinates, the no-overlap constraint and the hypothesis that the surface of
the master square is equal to the sum of the areas of the squares.

A traditional technique to improve efficiency in combinatorial search problem
amounts to exploiting properties of all solutions by adding redundant or surrogate
constraints. In the perfect square problem, the sizes of all squares containing a
point with a given x-coordinate (resp. y-coordinate) must be equal to S, the size
of the master square, since no empty space i1s allowed. These surrogate capacity
constraints can be stated using cardinality and linear equations. For a given position
P, the idea is to associate with each square i a boolean variable Bi (i.e. a 0-1
variable) that is true iff square ¢ contains a point with x-coordinate (resp. y-
coordinate) P. The boolean variable is obtained using the cardinality operator of
cc(FD), i.e.

#(Bi,[Xi < P #& P <" Xi + Si - 1 1,Bi).

A cardinality formula #(/, [c1, ..., ¢s], u) states that the number of formula which
are true in {c1,...,¢,} is no less than [ and no more than w. Operationally, the
cardinality formula uses constraint entailment to find out if there 1s a way to satisfy
the constraint and constraint solving when there is a unique way to satisfy the
formula. The surrogate constraint for position P and the = coordinate can now be
stated as a simple linear equation:

Bl # S1 + ... + Bn * Sn =" Size.

The program to generate a surrogate constraint is as follows:



capacity(Position,Coordinates,Sizes,Size) :-—
accumulate(Coordinates,Sizes,Position,Summation),
Summation =" Size.

accumulate([1,[]1,_,0).

accumulate([C|Cs], [S|Ss],P,B*S + Summation) :-
B € 0..1,
#(B,[C <" P#x P < C + S - 11,B),
accumulate(Cs,Ss,P,Summation).

The generation of places for the squares requires to give values to the # and the y
coordinates of all squares. We use the idea of [1] for the labeling of a coordinate,
exploiting the fact that no empty space i1s allowed. At each step, the program
identifies the smallest possible coordinate and selects a square to be placed at this
position. On backtracking, another square is selected for the same position. The
labeling is as follows:

labeling([]).

labeling([Coord|Coords]) :-
minlist([Coord|Coords],Min),
selectSquare([Coord|Coords],Min,Rest),
labeling(Rest).

selectSquare([Coord|Coords] ,Min,Coords) :-
Coord =" Min.

selectSquare([Coord|Coords] ,Min, [Coord|Rest]) :-
Coord >~ Min,
selectSquare(Coords,Min,Rest).

The first goal in the labeling finds the smallest position for the remaining squares
while the second goal chooses a square to assign to the position. Since no empty
space 18 allowed, such a square must exist.

This concludes our motivating example. As is easily shown, the program is
rather small and about one page long. It packs 21 or 24 squares in a master
square in about 30 seconds on a Sun Sparc Station, illustrating the expressiveness
and efficiency of the language. It is important however to stress the importance of
redundant constraints for this example: without them, the program is not practical.

3. The Design of cc(FD)

We now turn to the design of cc(FD). cc(FD) is a small and uniform language,
based on a small constraint system (from a conceptual standpoint) and a number
of general-purpose combinators. The key contribution is of course the inclusion
of the new combinators and their associated constraint operations. The novelty
in the constraint solver is its simplicity and the explicit distinction between do-
main and interval reasoning, two techniques that were previously hidden in the
implementation. This section reviews the various aspects of the design of cc(FD).



3.1. The Constraint System

3.1.1. SYNTAX AND SEMANTICS In this section, we describe the functionality of
the constraint system of cc(FD). We focus on finite domains and omit the traditional
constraints on first-order terms.

Primitive constraints in cc(FD) are built using variables, natural numbers, the
traditional integer operators +, —, *, div, mod and the relations

> 7> =4 ,7< 7<, and >, >, =7 A7, <7, <7
div and mod represent the integer division and remainder. The arithmetic relations
are duplicated to make explicit the two forms of reasoning used in the constraint
solver: domain consistency (operators prefixed by “tilde”) and interval consistency
(operators postfixed by “tilde”). The former are used to form domain constraints
and the latter interval constraints. Variables appearing in constraints are assumed
to take values from a finite set of natural numbers, e.g. the set of natural numbers

that can fit in a memory word. For convenience, cc(FD) also provides the range
constraints

z € far,...,an], "€ lu, 2 ¢ [ar,...,a,], 2 ¢ l.u
and
z € ar,...,an], © €L, v & ar,...,a,], © & l.u

although they can easily be obtained from the previous constraints in conjunction
with the combinators. Note that the negation of a constraint is also a constraint. In
the following, we use the term constraint store to denote a conjunction of constraints
and use o possibly subscripted to denote constraint stores. Let us precise that a
computation state in cc(FD) is a pair (B,o) where B is a conjunction of goals
that remain to be solved and ¢ 1s a constraint store representing all constraints
accumulated up to that point. The above constraints are also called primitive
constraints. We will see that the combinators allow us to define new (non-primitive)
constraints.

3.1.2. CONSTRAINT OPERATIONS As mentioned previously, the combinators of
cc(FD) are general-purpose and not tailored to the above constraint system.?’They
use three operations on a constraint system C:

1. constraint solving: deciding the consistency of a constraint store o, i.e.
C @)

2. constraint entailment: deciding whether a constraint ¢ is entailed by a
constraint store o, i.e. C = (V)(o = ¢);

3. constraint generalization: finding a generalization o of a set of constraint
stores {o1,...,0,}, such that

CEM@izo) 1<i<n) (1
For constraint generalization, we would like in general the strongest constraint o
satisfying property (1). This is given, for instance, by the lub operation (least

upper bound) when the constraint system is a complete lattice with respect to
the implication order on constraints. Many constraint systems do not enjoy the

20ur current design and implementation efforts are devoted to build cc(Q) and cc(B), two
instances of the same framework for rational linear arithmetics and Boolean algebra.



existence of a lub but any constraint store satisfying property (1) is sufficient.

3.1.3. CONSTRAINT PROCESSING IN cc(FD) Constraint solving and constraint
entailment are decidable problems for cc(FD) (since only a finite set of integers
is considered) but they are NP-complete problems®. For this reason, cc(FD) ap-
proximates them by using domain and interval reasoning. The main idea behind
domain reasoning is to use constraints to remove values from the domains, to use the
domains to decide constraint entailment, and to generate membership constraints
during generalization.*The main idea behind interval reasoning is to use constraints
to reduce the lower and upper bounds on the domains, to use the bounds to de-
tect entailment, and to generate new bounds during generalization. The purpose
of the next two sections 1s to describe the solver of ¢c(FD) in a precise way. For
simplicity, we assume that all constraints are implicitly defined on a set of variables

{$1a"'axn}'

3.1.4. DoMAIN REASONING Domain reasoning is applied on the domain con-
straints "> | 7> "= | 7# [7< "< . Instead of checking consistency of these
constraints, cc(FD) checks domain satisfiability, 1.e. 1t enforces domain consistency
and checks if none of the domains is empty. The key idea is to associate with each
variable its possible set of values. We now define the three operations for domain
reasoning: domain consistency, domain entailment and domain generalization.

Definition 3.1. A constraint ¢ is domain-consistent wrt Dy, ... D, if, for each
variable z; and value v; € D;, there exist values vi,...,vi_1,%i41,...,05 In
Dy,...,Di—1,Diq1, ..., Dy such that ¢(vy, ..., v,) holds. A constraint store o is
domain-consistent wrt Dy, ..., D, if any constraint ¢ in ¢ is domain-consistent
wrt Dy, ..., Dy

In cc(FD), domain consistency is achieved in an incremental way by reducing the
domains of the variables at each computation step.

Definition 3.2. The reduced domains of a constraint store ¢ are the largest do-
mains Dy,..., D, such that o 1s domain-consistent wrt Dq,..., D,, 1.e. for
all domains D}, ..., D! such ¢ is domain-consistent wrt Dj,..., D/ we have
Dy CDi&...&D), C D,.

Definition 3.3. A constraint store ¢ is domain-satisfiable iff none of its reduced
domains is empty.

It is easy to show that the reduced domains of a constraint store o exist and
are unique and that all the solutions of ¢ are in its reduced domains. Domain
consistency is thus a sound approximation of consistency.

Constraint entailment is replaced by the notion of domain entailment. Intu-
itively, a constraint is entailed by the constraint store if it is satisfied for all possible

3Entailment problems in cc(FD) can be reduced to constraint-solving problems because no
new variables are allowed and the negation of a constraint is a constraint.

4The use of domain consistency in programming language was suggested first by Mackworth
[26].



combinations of values that are still in the domains of the variables.

Definition 3.4. A constraint c¢(xq, ..., 2,) is domain-entailed by Dy, ..., D, iff, for
all values v1,...,vy in Dy,..., Dy, ¢(v1,...,v,) holds.

Definition 3.5. A constraint store ¢ domain-entails a constraint ¢ iff ¢ is domain-
entailed by the reduced domains of o.

Domain entailment is a sound relaxation of entailment: domain entailment implies
entailment.

Finally, generalization is replaced by the notion of domain generalization. Intu-
itively, the generalization of a set of constraint stores are range constraints obtained
by taking the pointwise union of the reduced domains of the constraint stores.

Definition 3.6. The domain generalization of a set of constraint stores {o1,..., 0, }
is the constraint store

"€ U;n:l D{ & .. &k, € U;n:l D

where D}, ..., Di are the reduced domains of o;.

The definition of domain generalization satisfies property (1). Tt is not the strongest,
but provides a practical compromise between efficiency and expressiveness.

3.1.5. INTERVAL REASONING Interval reasoning is applied on the interval con-
straints >, >7, =7 £7, <7, < 7. Instead of checking consistency of these
constraints, cc(FD) enforces interval consistency. The basic difference compared to
domain consistency is that the reasoning is only concerned with the minimum and
maximum values in the domains. We now define the three operations for interval
reasoning: interval consistency, interval entailment and interval generalization. In
the following, we use D* to denote the set min(D)..max(D) where min(D) and
maxz (D) denote respectively the minimum and maximum values in D.

Definition 3.7. A constraint c¢ is interval-consistent wrt Dy, ..., D, if, for each
variable #; and value v; € {min(D;), max(D;)}, there exist values v1,...,v;_1,
Vigl, -, Up 10 DY, .0, DY such that e(vy, ..., v,) holds.

Note how only the lower and upper bounds are considered for variable z;. The
remaining definitions for interval satisfiability are modelled after those of domain
satisfiability. Existence and uniqueness of the reduced domains for interval con-
straints can easily be shown as well as the soundness of interval satisfiability.

The first definition for interval entailment becomes as followdefinition 3.8. A
constraint ¢(xzy, ..., x,) is interval-entailedby Dy, ..., Dy iff, for all values vy, ..., v,
in Dy,..., D% e(vy, ..., v,) holds.

The remaining notions are defined in a similar way as for domain-reasoning.
Finally, the interval generalization is computed as follows.

Definition 3.9. The interval generalization of a set of constraint stores {o1,..., 0, }
is the constraint store
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where D}, ..., Di are the reduced domains of o;.

3.1.6. THE CONSTRAINT SOLVER Given a set of domain constraints Sy and
interval constraints S;, the constraint solver in cc(FD) checks if S3 and S; are
simultaneously domain-satisfiable and interval-satisfiable with respect to the same
domains. It also reduces the domains accordingly.

Frample 3.1. [Domain Consistency] The goal
7- X"€1..2, Y € 0..10, X "= Y mod 3

produces the reduced domains Dx = 1.2 and Dy = {1,2,4,5,7,8 10}. Adding
the constraint Y ¢ {2,5,8} would produce the domains Dx = {1} and Dy =
(1,4,7,10}.

Frample 3.2. [Interval Consistency] The goal
7- X"€1..2, Y € 0..10, X =" Y mod 3

produces the reduced domains Dx = 1..2 and Dy = 1..10. Adding the constraint
Y "¢ {2,5,8} would produce the domains

Dx =1.2& Dy = {1,3,4,6,7,9,10

3.2. The Cardinality Combinator

3.2.1. MoTIivATION The constraint solver in cc(FD) 1s only concerned with con-
junction of constraints. Many practical applications however contain disjunctive
information and an adequate processing of disjunctions is often a prerequisite to
obtain a satisfactory solution. Consider, for instance, a disjunctive scheduling prob-
lem where two tasks ¢ and j cannot be scheduled at the same time. The no-overlap
constraint between these two tasks can be expressed as

disjunctive(Si,Di,Sj,Dj) = S, +D; <7 S;.
disjunctive(Si,Di,Sj,Dj) = S; + Dy <7s;.

assuming that S;, S; are the starting dates of ¢ and j and D;,D; their respective
durations. The main problem with this formulation comes from the fact that the
no-overlap constraint is only used for making choices and never to reduce the search
space. However, when it is known that the constraint “task ¢ precedes task 57 is not
consistent with the constraint store, the other alternative “task j precedes task ¢’
must hold and hence can be added to the constraint store achieving early pruning
of the search space. This handling of disjunctions requires constraint entailment
as a primitive constraint operation and treats constraints locally. It enables the
system to deduce constraints from disjunctions and is the key idea behind the
cardinality operator which, in addition, generalizes this idea to threshold operators.
The cardinality operator has been used in numerous applications including car-
sequencing, disjunctive scheduling, hamiltonian path, and DSP scheduling to name
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a few.

3.2.2. DESCRIPTION In its most primitive form, the cardinality combinator is an
expression of the form #£({, [e1, ..., ¢cn], ) where [, u are integers and ¢y,..., ¢, are
primitive constraints. Declaratively, it holds iff the number of true constraints in
[c1,...,¢n] 18 no less than [ and no more than w. The cardinality operator generalizes
the usual logical connectives. 1 A ... A ¢, is equivalent to #(n,[c,...,cn], n),
e V... Ve, to #(1,[e1,...,en],n) and —e to #(0,[¢],0). Other connectives can
then be obtained easily.

The key feature of the cardinality combinator is its operational semantics. The
main idea is that constraint entailment is used in a local manner to determine if
the cardinality expression has a solution. When only one way of satisfying the
cardinality is left, the appropriate constraints are added to the constraint store.
More precisely, the two basic cases are:

1. a cardinality #(n,[c1, ..., ¢p], ) requires c1, ..., ¢, to be true; e1, ..., ¢, are
then added to the constraint store;
2. acardinality #(-, [e1,. .., ¢n], 0) requires —eq, . . ., ey to be true; ey, ..., —ep

are then added to the constraint store.

Assuming that o is the constraint store at some computation step, the two reduction
cases are:

o #(l [c1, ..., cn],u) reduces to #(I —1,[e1, ..., ¢im1,Cig1y -y n],u— 1)

if C = (V)(o = ¢)

o #(l [c1, ..., cn],u) reduces to #({,[c1, ..., ¢i—1, Cig1, .-, Cnl, 1)

if C |E (V)(o = —¢).
In practice, entailment is approximated through domain and interval entailment,
depending on ¢;. cc(FD) offers various extensions to the primitive form: ! and u
can be any arithmetic terms and the ¢; can also be cardinality combinators. The
last case is handled by means of a simple rewriting rule [38]. Logical connectives
(prefixed with #) can also be used freely in cc(FD) and are interpreted as abbre-
viations for cardinality formulas. Finally, when only one bound is relevant, special
forms such as U #> [cy,...,c,] and L #< [c¢y,...,¢,] can be used. The imple-
mentation exploits the special forms to obtain better performance as discussed in
the implementation section.

bl

Fzample 3.3. [Disjunctive Constraints] The no-overlap constraint mentioned in the
motivation can be expressed as

disjunction(s;,D;,S;,D;)
1 #S [Si + D; SN S]', S]' + D]' SN Sz])
It achieves the pruning described previously. When the negation of one of the

constraints is implied by the constraint store, the other constraint is automatically
added to the store. For instance, the goal

?7- 81 € 1..6, S, € 1..10, disjunction(S;,7,52,6).

produces the reduced domain S; “ € 1..3, S5~ € 8..10. The no-overlap con-
straint is an important part of the disjunctive scheduling programs reported in the
experimental results.
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Fzample 3.4. [Communication Constraints] An interesting application of the car-
dinality combinator occurs in the Digital Signal Processing (DSP) application of
[8, 37], whose results are also reported in the experimental results. The purpose
of the application is to allocate tasks to processors in an architecture combining
pipeline processing and master-slave processing in order to minimize the total delay
of the DSP application. To solve the problem, it is necessary to express a com-
munication constraint between each two successive tasks in the task graph of the
application. The delay between two tasks is 0 when both tasks are assigned to the
same processor, 1 when one of them is assigned to the master processor or if the
processor of the second task follows the processor of the first task in the pipeline,
and 2 otherwise (the communication goes through the master). It is expressed in
cc(FD) by

delay(Sl,Pl,Sz,Pz) i
Delay "€ 0..2,
Delay "= 0 #& Py "= P»,
Delay "= 1 #& Py "# Py #A (P, "= Py + 1 #V Py "= 1 #V Py "= 1
Sy "> 81 + Delay.

In the above constraint, S;, Ss are the starting dates of tasks 1 and 2 and Py, Ps
are their associated processors. The master processor is processor 1. This constraint
is a key component of our solution which compares very well with a specific branch
and bound algorithm written in C.

Fzample 3.5. [Capacity Constraints] The motivating example contains a third use
of cardinality for the capacity constraints. The main technique here is to associating
a boolean with a constraint using cardinality

B € 0..1, #(B,[c],B).

Arbitrary constraints on the boolean can now be expressed and two-way propaga-
tion takes place between the boolean and the constraint. This technique is used in
the perfect square application.

3.3. Constructive Disjunction

3.3.1. MoTivaTioN Constructive disjunction was motivated by the need to achieve
a more global pruning for digjunctions than the one offered by cardinality. Con-
sider, for instance, the definition of maximum(X,Y,Max) which holds iff Max is the
maximum of X and Y. Using cardinality, it can be expressed as

maximum(X,Y,Max) :-
X <7 Max,
Y <" Max,

Max =" X #V Max =" Y.



13

Unfortunately, the above implementation produces no pruning on the maximal
value of Max. For instance, the goal

?7- X7€ 5..10, Y € 4..11, Max "€ 0..20, maximum(X,Y,Max).

produces the reduced domains Dx = 5..10, Dy = 4..11, Dpjae = 5..20 because
both constraints in the cardinality are treated locally and are consistent with the
constraint store. Constructive disjunction makes sure to produce Dprar = 5..11.

3.3.2. DESCRIPTION A constructive disjunction is an expression of the form o1V
.. Vo,oro V...V, The difference between™V and V comes from the two forms
of generalizations available in cc(FD): domain generalization and interval general-
ization. c¢c(FD) allows also the presence of cardinality formulas and constructive
disjunctions in the disjuncts by using simple rewriting rules.

Declaratively, a constructive disjunction can be read as a simple disjunction.
The operational behaviour is however the important feature. If any of the disjuncts
is entailed by the current constraint store ¢, then the constructive disjunction is
clearly satisfied. Otherwise, the new constraint store is simply ¢ AT where T is the
domain or interval generalization of {o Aoy,...,0 Ao, }.

Of course, the generalization is computed incrementally (and added to the con-
straint store) each time the constraint store is modified. In other words, the idea
is to extract, at any computation step, common information from the disjuncts in
conjunction with the constraint store. In cc(FD), the common information takes
the form of range constraints.

Frample 3.6. [Maximum Constraints] The maximum constraint is expressed as

maximum(X,Y,Max) :-
X <7 Max,
Y <" Max,
Max =~ X V Max =" Y.

The goal
?7- X7€ 5..10, Y € 4..11, Max "€ 0..20, maximum(X,Y,Max).

leads to the reduced domains Dysq = 5..10, Dx = 5..10 for the first digjuncts and
to Dargr = 5..11, Dy = 5..11 for the second disjunction. The interval generalization
produces the domains Dyrqae = 5..11, Dx = 5..10, Dy = 4..11. The maximum
constraint is an important component of the solution to disjunctive scheduling
problems.

Fzample 3.7. [Distance Constraints] Another example of constructive digjunction is
the handling of constraints of the form | X —Y| > I. This is used in the applications
referred to as satell and satel2 in the experimental results. The implementation
is simply

absolute distance(X,Y,I) :-
X-Y >IVY-X>7.

Contrary to the maximum constraint which only makes pruning on the bounds of
the domains, the above constraint removes values in the middle of the domains.
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For instance, the query
?7- X7€1..10, Y € 1..10, absolutedistance(X,Y,8).
produces the reduced domains D, = {1,2,9,10}, D, = {1,2,9, 10}.

Fzample 3.8. [Disjunctive Scheduling] In the previous examples, the digjuncts were
simple primitive constraints but in cc(FD) they can be any constraint store, i.e.
any conjunction of primitive constraints. For instance, in disjunctive scheduling,
one often need conditional expressions of the form

(Min >"%X; , Xy "= Entry) V ...V (Min >~ X, , X, "= Entry).

Operationally, the intention is that Min be greater than at least one of the X; that
can be equal to Entry.

3.4. The Implication Combinator

3.4.1. MoTivaTION Blocking implication [27, 33, 20] is a combinator generaliz-
ing coroutining mechanisms in logic programming. The main idea behind corou-
tining mechanisms is to postpone execution of a goal until some conditions on its
variables are satisfied. The main idea behind blocking implication is to use con-
straints for the conditions. As a consequence, blocking implication is a convenient
tool to implement local propagation of values, pruning rules; and algorithm anima-
tion. It is used in many applications including hamiltonian circuits, test generation,
and digjunctive scheduling. All graphical animations also use blocking implication.

3.4.2. DESCRIPTION In its simplest form, a blocking implication is an expression
of the form ¢ — B where ¢ i1s a primitive constraint and B is a body. Declaratively,
it can be read as an implication. The key feature is once again the operational
semantics. The body of the implication is executed only if ¢ is entailed by the
constraint store. If —¢ is entailed by the constraint store, the implication simply
succeeds. Otherwise, the implication suspends and the body will be executed only
when a latter constraint store entails ¢ due to the addition of other constraints.

cc(FD) also allows cardinality formulas instead of the constraints since once
again the operational semantics can be given by simple rewrite rules. It also allows
expressions such as £ixed(T) with T being an arithmetic term to be used instead
of c. An expression £ixed(T) — B executes B as soon as T is constrained to take a
unique value by the constraint store and is an abbreviation of the constraint #(1,
[T = minant, T = minsint+1, ..., T = max_int 1, 1) where min_int
and max_int are a lower and upper bound of the finite set of natural numbers that
can fit in a memory word.

Fzample 3.9. [Local Propagation] Local propagation can be implemented in a sim-
ple way using blocking implication. For instance, a logical and-gate using local
propagation techniques would be:

and(X,Y,Z) :-

X =0—2Z =0,
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Y =0—-2Z2 =0,
Z' =1 —-(X"=1, Y =1),
X'=1 —-Y =12,
Y =1 —X"= 12,
X'=Y —X"= 2.

The first rule says that, as soon as the constraint store entails X = 0, the con-
straint Z = 0 must be added to the constraint store. Note that the last three rules
which actually do more than local value propagation; they also propagate symbolic
equations and one of them is conditional to a symbolic equality.

Fzample 3.10. [Disjunctive Scheduling] In disjunctive scheduling, a number of tasks
are required not to overlap. A typical pruning technique amounts to establishing
which tasks can be entry of the disjunction (i.e. can be scheduled first) and which
tasks can be exit of the disjunction (i.e. can be scheduled last). To determine the
entry, a typical rule is

S; + TotalDuration ~> ExitDate — Entry “# ¢

where S; represents the starting date of a task, TotalDuration the summation of
the durations of all tasks in the disjunction, and ExitDate is the maximum end
date of the tasks which can be exits of the disjunction. It simply expresses that
if the constraint store implies that the starting date of task ¢ added to the total
duration is greater than the maximum end date, then task ¢ cannot be an entry of
the disjunction.

Frample 3.11. [Algorithm Animation] Blocking implication is the main tool to
produce graphical algorithm animation. For instance, in a n-queens problem, the
animation would show the queens already placed and the values removed from the
remaining queens. The animation is obtained by using blocking implications of the
form

fixed(Q2) — show_queens(Q2,2)

to display the queen associated with column 2 and
Q2 "# 4 — show.removed(4,2)

to show that the value 4 is no longer possible for queens 2. The appeal of this
approach is that the graphical animation is completely separated from the program
and runs in coroutining.

3.5. Higher-Order Predicates

cc(FD) contains also a number of higher-order predicate for optimization purposes.
The basic forms are
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minof (Goal,Function,Res)
maxof (Goal,Function,Res)
minof _r(Goal,Function,Res)
maxof_r(Goal,Function,Res)

The purpose of these predicates is to obtain an optimal solution to a goal with
respect to an objective function (i.e. an arithmetic term). Two versions of the
predicates are given. The first version uses a depth-first branch and bound algo-
rithm while the second version uses a restarting strategy. Special care is taken in
the depth-first branch and bound when a new solution is found to backtrack to a
point where the solution can potentially be improved upon. The restarting strategy
may be of interest when heuristics are strongly influenced by the value of the best
solution found so far [32]. The typical technique to solve optimization problems
amounts to embedding the choice part in the higher-order predicate:

solve problem(...) :-—
create_variables(...),
state_constraints(...),
minof (make_choice(...),Function,Res).

Finally, cc(FD) also contains a number of non-logical predicates giving access to
the domains. These predicates should only be used for defining heuristics in the
choice process (e.g. choosing the next variable to instantiate as the one with the
smallest domain).

4. Implementation

As mentioned previously, the implementation of ¢cc(FD) includes a version of the
WAM [44], suitably enhanced with constraint processing facilities. The WAM deals
mostly with the control part of the execution and leaves the constraint-solving
part to the cc(FD) constraint engine. The introduction of constraints is almost
exclusively achieved by a set of built-in predicates, keeping the interface between
the two parts to a strict minimum. In particular, no new instructions have been
added to WAM apart from those necessary to achieve the coroutining facilities
required by the implication combinator. The main reason behind this choice comes
from the fact that in cc (FD) constraints cannot be simplified when first encountered
since they are used for combinatorial search problems almost exclusively. As a
consequence, adding specialized instructions for the constraints only will speed the
actual creation of the constraints which is small compared to the time needed for
constraint solving.’As a consequence, cc(FD) preserves the simplicity and speed
of the WAM. Note also that the implementation does not sacrifice the efficiency
of constraint solving as our experimental results indicate. The specialization of
constraints simply does not occur at the WAM level but inside the constraint solver.
In the rest of this section, we concentrate on the main features of the constraint
system and of the combinators.

5This is in sharp contrast with CLP(R) where constraints may be used to express determinitic
problems. Turning them into assignments and removing calls to the constraint solver is thus of
primary importance to obtain good performance on these problems.
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4.1. Constraint System

Domain representation is an important aspect of the constraint system. cc(FD)
uses different domain representations depending on the application. When the im-
plementation only needs interval reasoning for a given domain variable, the domain
representation is simply two integers: a lower and an upper bound. When some
values are removed from the middle of the domain, a more explicit representation,
an array of booleans, is constructed to indicate the presence or the absence of the
element. This 1s completely transparent to the user.

Constraints are attached directly to parts of the domain representation. For
instance, inequalities are attached to the lower and upper bounds of the domains;
X "< Yis attached to the lower bound of X (to update the lower bound of Y) and to
the upper bound of Y (to update the upper bound of X). Disequations are attached
to the domain as a whole and are only considered when one variable is instantiated.
Finally, constraint entailment (e.g. entailment of X "# 3) also attaches constraints
to elements of the boolean array. This enables the system to check entailment of
unary constraints (a very frequent case) in constant time over the whole execution.
Once again, the representation is adapted depending on the need of the application.

Modifications to the domains are trailed by remember pairs

<address,old value>.

Time stamps are used to avoid trailing twice the same address in between two
choice points. It is important to note that time stamps are useful, not to speed up
the computation, but rather to keep memory consumption to a reasonable level.
The domain of the variables may change many times in between two choices and,
without time stamps, the memory taken by the trail may become larger than the
representation of the constraint system. Time stamps are instrumental in making
sure than the trail cannot exceed the size of the constraint system (in between two
choice points).

4.2. Constraint Algorithms

Constraints are also classified depending upon their complexity. cc(FD) has spe-
cialized algorithms for nonlinear, linear, binary, and unary constraints. Once again,
this is fully transparent to the user. The specialization is performed at run-time in
the present implementation but global flow analysis should allow us to move most
of the work at compile-time in the next version of the system.

The constraint-solving algorithms are based on (non-binary) generalization of the
AC-5 algorithm [40] using a breath-first strategy. In particular, domain-consistency
of any combination of binary functional (e.g. X "= Y), anti-functional (e.g. X ~#
Y), monotonic (e.g. X~ > Y), and piecewise constraints (e.g. X~ = Y mod 7),
require O(cd) amortized time, where ¢ is the number of constraints and d is the
size of the largest domain [40]. Once again, the system (dynamically) compiles
constraints differently depending on their properties. For instance, a constraint
such as X "= Y mod ¢ will be compiled into expressions of the form

Var Y# a — X # amod c
Va: X#Fa —-Y#HT*xC+a

when the constraint is recognized as functional due to the domains of the variables.
Operationally these expressions can be seen as abbreviations for a finite number of
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blocking implications. The implementation however uses constant space to repre-
sent them. When the above constraint is not functional, it behaves operationally
as a set of cardinality formulas of the form

X'=a#e Y €S

where S is the set of values supporting «. At the implementation level, the space
requirement 1s proportional, not to the size of the domains, but rather to the number
of groups in the piecewise decompositions.

Interval consistency of non-binary monotonic constraints requires O(cdn?) amor-
tized where n is the number of variables in the largest constraints. An optimal al-
gorithm of complexity O(cdn) exists [39] for linear constraints but our preliminary
experimentations indicate that 1ts overhead may reduce its interest.

The breath-first strategy makes sure that domain consistency of monotonic con-
straints has a complexity which is quadratic in the number of variables and con-
straints independently of the domain sizes contrary to a depth-search strategy which
may be exponential.

4.3. The Cardinality Operator

A cardinality operator of the form #(l,[c1,...,¢n], u) is implemented by keeping
two counters for the number of formulas which are true and false respectively. In
addition, the system spawns n constraint-entailment procedures checking if the ¢;
or their negations are entailed by the constraint store. When the true-counter
reaches the upper bound, all remaining constraints are forced to false, i.e. their
negations are added to the constraint store. When the false-counter reaches n — [
all remaining constraints are forced to be true, i.e. they are added to the constraint
store. Specific optimizations are possible for various specialized forms. For instance,
when the lower bound is unimportant (e.g. uw #> [e1,...,¢,]), entailment needs
only to be checked for the constraints ¢, ..., ¢, and not their negations.

Note also that our implementation of cardinality enables to implement arc-
consistency on arbitrary binary constraints within the optimal (time and space)

bounds of the AC-4 algorithm [28].

4.4. Constructive Disjunction

Constructive disjunction in cc(FD) is implemented in terms of constraint solving in
order to obtain an incremental behaviour. The key idea is to rename the variables
in each disjunct independently and to add the renamed disjuncts to the constraint
store. In doing so, the implementation reuses the algorithms available for constraint
solving, achieving both efficiency and reuse of existent code. The astute reader
would have noticed that special care is needed in case of failures. The connections
between the renamed variables and the original variables is achieved through a
number of (internal) constraints which are essentially of two types

1. subsumption constraints: these constraints force the domain of a variable
to be a subset of the domain of another variable;

2. union constraints: these constraints force the domain of a variable to be
a subset of the union of the domains of other variables.
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Subsumption constraints have been investigated previously by Parker [30] as a lan-
guage extension. In cc(FD), they are only used inside the implementation since
their directed nature is somewhat in contradiction with the multi-directional phi-
losophy of constraint logic programming. Many optimizations are present in the
system to handle efficiently the cases where some variables appear only in a subset
of the disjuncts. For instance, these optimizations make sure that constructive dis-
junction comes close to cardinality for the case where both apply and constructive
disjunction does not produce more pruning.

4.5. Blocking Implication

Blocking implementation is a generalization of the traditional if-then-else con-
struct. The compilation schema is simply

< check entailment of the constraint >
JUMPIFNOTTRUE labelfalse
< execute body >
JUMP next
labelfalse: JUMPIFFALSE next
< handle suspension >
next:

The handling of suspension amounts to creating an entailment procedure for the
constraint and attaching the body to the procedure. Whenever a constraint is
entailed, 1ts associated body is inserted in a list of bodies which are executed as
soon as possible, 1.e. after a built-in procedure or at the neck of a user-defined
procedure. The list is executed in a depth-first manner for simplicity and closely
follows the traditional implementation of delay mechanisms (e.g. [7]).

5. Experimental Results

In this section, we report a number of experimental results of cc(FD). All times
are for a Sun Sparc Station I (Sun 4/60). Table 5.1 shows the search time, the
total time, the potential search space, the number of variables, and the number
of constraints for a number of problems, and the number of lines of the program.
The search time is the time spent in the nondeterministic part of the program
while the total time includes reading of data, creating the variables, and stating
the constraints. The number of variables and constraints are taken just before
the nondeterministic part of the program although, in some cases, constraints are
generated during the choice process as well. The potential search space does not
always reflect the difficulty of the problem but should provide some more indica-
tion on the sizes of the problems dealt with by cc(FD). The number of lines (which
includes blank lines and comments) gives also an idea of the compactness of the pro-
grams which enables a short development time. Bridge is a disjunctive scheduling
problem from [3], car is a car-sequencing problem [15, 31], cutting is the numer-
ical statement of a cutting-stock problem taken from [12], satell, satel2 are
two resource allocation problems with distance constraints, square is the perfect
packing problem, hamilton is the Euler knight problem, donald, sendmory are
two cryptarithmetic problems, queens8, queensall, queens96 are n-queens pro-
grams to find respectively the first solution to the 8-queens problem, all solutions to



20

Problem Search Time | Total Time | Search Space | Variables | Constraints | lines
Bridge 3.9 4.6 277 46 445 | 140
Car 0.92 9.37 20100 600 12390 | 225
Cutting 7.8 11.3 47 72 79 | 303
Satell 9.8 41.6 247200 5158 6678 | 338
Satel? 8.1 13.09 4478 36192 1362 20911 | 338
square 38.15 60.66 2124 9366 52584 | 105
hamilton 1.45 4.61 292310 64 6560 | 166
donald 0.05 0.06 10'° 15 63 50
sendmory 0.00 0.01 810 8 38 46
queens8 0.02 0.04 8® 8 92 52
queens8all 0.63 0.65 8® 8 92 52
queens96 0.80 2.94 967% 96 13776 52
magiclil 0.14 0.25 11t 11 165 58
magic16 0.39 0.57 16 16 320 58
magic21 0.77 1.12 2121 21 525 58

TABLE 5.1. Experimental Results of cc(FD)

the 8-queens problem, and the first solution to the 96 queens problems. magicii,
magic16, magic21 are various instances of the magic series problem taken from
[38, 36] for sizes 11, 16, and 21. The main message of the table is cc(FD) is at
least as efficient as existing constraint languages on these benchmarks, even when
ad-hoc constraints are replaced by general combinators. It i1s a proof of concept
that the extensions can be implemented efficiently.

Table 5.2 compares cc(FD) with a specialized branch and bound algorithm writ-
ten in C on a number of DSP problems [8, 24]. Both algorithms were run on the
same machine. As can be seen from the data, cc(FD) compares very well with the
specialized program especially for the largest problems. The cc(FD) program is
about 200 lines long. The important message here is the fact that a short cc(FD)
program written with minimal effort is competitive or outperforms a procedural
program written over a much longer period of time. The pruning techniques of
cc(FD) are probably more sophisticated than those of the procedural program,
simply because it 1s easy to express the constraints and because experimentation is
cheap. But this is part of the advantages of using constraint languages: it is easier
to come up with a better design for many problems. Of course, implementing this
design in C will lead to better performance.

Table 5.3 compares cc(FD) with a specialized scheduling algorithm [5]. The
algorithm is not state-of-the-art (see for instance [6, 2]) but the comparison is still
significant because, on the one hand, the techniques in [2, 6] are very specific and
do not scale easily to other scheduling problems and, on the other hand, cc(FD)
has not been designed with scheduling applications in mind at this stage. The
applications are very difficult scheduling problems, requiring sophisticated handling
of disjunctions. The potential search space of a 6/10 problem is 233°. c¢c(FD), in
its present state, cannot compete in pure speed with the specialized program but
the difference is mainly a constant factor, showing that the pruning techniques of
cc(FD) are quite effective. The cc(FD) program is about 440 lines long. Finally,
it is interesting to point out that the cc(FD) program is able to solve optimally
and prove optimality of a famous 10/10 job shop scheduling which was posed in
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Problem Size | Processors Topology Total Delay | cc(FD) | Specialized BB
RDADO1 9 3 Pipeline 3 0.78 0.016
RDADO2 9 3 Pipeline 3 0.72 0.016
RDADO03 6 5 Architecture-like 5 0.22 0.000
RDADO4 19 6 Parallel Pipelines 3 1.66 51.700
RDADO5 12 4 Pipeline 3 1.12 0.016
RDADO06 16 5 Parallel Pipelines 3 2.68 6.300
RDADO7 12 4 Parallel Pipelines 2 0.56 0.050
RDADO08 15 5 Merging Tasks 3 3.23 963.13
RDADO09 9 6 Many Generators 2 0.18 0.016
RDAD10 15 5 Parallel Pipelines 4 3.90 0.033
RDAD20 13 5 Architecture-like 3 0.99 0.016
RDAD40 25 8 Parallel Pipelines 5 54.40 77777
RDAD41 25 8 Parallel Pipelines 4 4.24 0.100

TABLE 5.2. Results on Actual DSP Applications

Nb. of Machines | Nb. of jobs | Nb. of tasks | cc(FD) | Specialized BB
5 11 55 26 4
4 13 52 27 2
5 12 60 11 7
4 14 56 81 24
6 10 60 620 158
9 8 56 578 209
7 7 49 246 37

TABLE 5.3. Results on Disjunctive Scheduling Application

1963 [29] and left open for 25 years before being solved in [6]. The algorithm in
[6] is very involved including relaxation techniques to preemptive scheduling. This
problem requires about 90 hours of computation. The message behind this result
is twofold: on the one hand, cc(FD) can express sophisticated pruning techniques
and solve some problems considered hard in 1986 and, on the other hand, cc(FD) is
still substantially slower than specialized algorithms. Better support for scheduling
problems is certainly needed to bridge the gap between cc(FD) and specialized
programs.

The above results seem to indicate that cc(FD) is a step in closing the gap
between declarative constraint languages and procedural languages. Very difficult
problems are now in the scope of cc(FD), which comes close in efficiency to spe-
cialized algorithms written in procedural programs. However, there are classes of
applications where the gap is still substantial and more work 1s needed to find the
right abstractions and compilation techniques.

6. Conclusion

In this paper, we have presented the design, implementation, and applications of
cc(FD), a declarative nondeterministic constraint language over finite domains.
cc(FD) is a small and uniform language based on a conceptually simple constraint
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solver and a number of general-purpose combinators. The key novelty in cc(FD) is
the availability of the combinators which enable to address, at the language level, is-
sues such as the handling of disjunctions, the definition of non-primitive constraints,
and the control of the search exploration. The implementation of cc(FD) (about
40,000 lines of C) includes optimal consistency algorithms, adaptable data struc-
tures, and incremental techniques for the combinators. The experimental results
indicate that cc(FD) can tackle very difficult problems with an efficiency which
comes close to procedural languages in many cases. Future work on cc(FD) will be
devoted to the generalizations of the combinators to arbitrary goals and to global
flow analysis to specialize constraints and data structures at compile time. These
extensions may further improve expressiveness and efficiency. Finally, instantiations
of the framework to Boolean algebra and rational numbers are currently developed.

7. Retrospectives

It is interesting to consider, five years later, what was accomplished by the paper
and how 1t relates to current research.

7.1. The Impact: Towards Modeling Languages

The main contribution of cc (FD) was probably to distinguish between basic and non
basic constraints and to show the benefits of general combinators for defining new
constraints. The combinators of cc(FD) subsumed most ad-hoc constraints present
in the constraint languages of the time, without inducing significant penalty in
performance. They let users define (to a certain extent) new constraints tailored
to an application. Today’s constraint languages such as Ilog Solver and Prolog-1V
all contain versions or variations of the cardinality operator and Ilog Solver 4.0 will
include constructive disjunction as well. Constraint entailment was also shown to
be appropriate, not only for concurrent languages, but also to express control and
combinators in constraint languages. These features are now standard technology in
constraint programming, although their exact syntax may differ from the proposal
in the paper.

More generally, the paper was a step in moving towards constraint languages
even closer to applications and, in particular, towards modeling languages for con-
straint programming. cc(FD), through the use of general combinators, raised the
descriptive power of the language, moving away from programming to a rough form
of modeling. It provided the initial impetus to look at modeling languages and led,
although very indirectly, to the design of Numerica [43], a modeling language for
global optimization which is compiled into the constraint language Newton [42],
which is based on the same technology as cc(FD). It is our belief that modeling
languages will become more and more popular in the future, since they automate
the most mundane aspects of constraint programming without sacrificing too much
efficiency.

Another contribution of the paper was to separate clearly interval and domain
reasoning which were interleaved in rather ad-hoc ways in constraint languages of
the time. This separation is clearly acknowledged today and an important area of
research is to enforce arc consistency or interval consistency on global constraints.
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Of course, arc and interval consistency often achieve different tradeoffs between
computation resources and pruning.

It is interesting as well to observe that early versions of the paper also started
the so-called glass-box approach to constraint programming. This had the side-
effect of producing new results in the implementation of constraint programming
over finite domains. The CLP(FD) system [14] is a good example of this approach
and it is significantly more efficient than cc(FD).

7.2. The Failure? Towards Lower-Level Constraint Languages

The underlying dream behind the paper was the declarative specification of user-
defined constraints. The cc(FD) combinators all have a simple logical semantics
which is approximated by an operational semantics capturing some reasoning tech-
niques often used in applications. Our hope in 1992 was that many other specific
constraints could be accommodated in a similar way. Progress has been realized
along this line with techniques such as generalized propagation [25] and constraint-
handling rules [18]. However, it is sufficient to look at recent publications in the
area of disjunctive scheduling [11, 45] to realize that our hope is still far from re-
ality. These papers present two fundamental different approaches to disjunctive
scheduling, characterize well the state-of-the-art in 1996, and provide a data point
complementing our results. Reference [11] proposes a new algorithm for disjunc-
tive scheduling. The algorithm uses a new lower bound and is implemented in C.
Reference [45] presents a constraint program in Prolog-TV which consists of a sim-
ple declarative part which is enhanced by redundant constraints at the meta-level.
The performance ratio between the two approaches (a procedural and a declara-
tive approach) is still very significant and comparable to the ratio observed in this
paper.

Languages such as CHIP and Ilog Solver have predefined constraints or libraries
for scheduling applications. It was clear in 1992 that this was doable and, from an
industrial standpoint, it is clearly the only viable approach at this point. However,
from a programming language standpoint, this is hardly satisfactory as it sends the
message

The language is not expressive enough to accommodate new user-
defined constraints without inducing a significant penalty in execution
or development time.

Which conclusions should be drawn? Perhaps constraint languages are still too
high-level and should include both procedural and declarative components. Perhaps
the right abstractions have not yet been found or the right compilation techniques
have not yet been designed. Most of these constraints express simple inference
rules and it is obviously unsatisfactory to write them in C. In addition, it is not
really clear why there is such a difference in time and a systematic study of this
performance gap 1s strongly needed.

Another limitation of cc(FD) was his support for implementing search proce-
dures. In some applications, the search process may have a tremendous impact
on the efficiency of constraint programs, yet the support of cc(FD) for the search
process was minimal. One of the lessons of using cc(FD) was the need for more
appropriate abstractions. This limitation is easier to remedy however and can be
addressed by high-level abstractions appropriate even for modeling languages. But
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cc(FD) clearly underestimated the importance of these abstractions.

In summary, 1t is highly probable that, in the future, there will be more and more
hybrid constraint languages with procedural and declarative components, each of
which appropriate for different purpose. It is also certain that there is still a strong
need for improving the process of adding new constraints, and ... old dreams die

hard.
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