
Reachability: a constrained path propagator implemented as a multi-agent
system

Luis Quesada, Peter Van Roy, and Yves Deville
Université catholique de Louvain

Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium
{luque, pvr, yde}@info.ucl.ac.be

Abstract

Reachability is a propagator that implements a generalized reachability constraint on a directed graph g. Given a
source node source in g, we can identify three parts in the Reachability constraint: (1) the relation between each node
of g and the set of nodes that it reaches, (2) the association of each pair of nodes 〈source, i〉 with its set of cut nodes,
and (3) the association of each pair of nodes 〈source, i〉 with its set of bridges.

The effectiveness of our Reachability propagator has been shown by applying it to the Hamiltonian Path problem.
The experimental evaluations that we have done in [10] show that it provides strong pruning, obtaining solutions with
very little search. Furthermore, the experiments show that Reachability is also useful for defining a good distribution
strategy and dealing with ordering constraints among mandatory nodes. These experimental results give evidence that
Reachability is a useful primitive for solving constrained path problems over graphs.

In this paper we elaborate on the implementation of Reachability. Reachability has been implemented using
a message passing approach on top of the multi-paradigm programming language Oz [7]. I.e., Reachability is a
multi-agent system where agents send each other synchronous and asynchronous messages and their transition state
functions rely on data flow and constraint programming primitives [14]. In the implementation, we profited from the
Finite Integer Set module provided by the Mozart system, which implements Oz [5].

Keywords: constraint programming, filtering algorithms, message passing, concurrent programming.

1 Introduction

Constrained path problems have to do with finding paths in graphs subject to constraints. One way of constraining
the graph is by enforcing reachability on nodes. For instance, it may be required that a node reaches a particular set
of nodes by respecting some restrictions like visiting a particular set of nodes or edges and using less than a certain
amount of resources. We have instances of this problem in Vehicle routing [9, 1, 6] and Bioinformatics [3].

An approach to solve this problem is by using Concurrent Constraint Programming (CCP) [13, 8]. In CCP, we
solve the problem by interleaving two processes: propagation and distribution. In Propagation, we are interested in
filtering the domains of a set of finite domain variables according to the semantics of the constraints that have to be
respected. In Distribution, we are interested in specifying which alternative should be selected when searching for the
solution.

In [10], we present Reachability as a propagator that is suitable for solving Hamiltonian Path with optional nodes.
Given a directed graph g, a source node source and a destination node dest, the Hamiltonian Path problem [2] consists
in finding a path going from source to dest visiting every node of g once. In Hamiltonian Path with optional nodes,
we are forced to visit only a specific subset of the nodes (instead of visiting all the nodes). We also show how a
standard approach for dealing with this kind of problem, which is based on the use of AllDiff [11] and NoCycle [1],
can be radically enhanced by using Reachability.

This paper is organized as follows: In section 2 we present the Reachability Constraint and a subset of its pruning
rules. In section 3, we show how we can use a concurrent constraint language for defining propagators. In section 4,
after presenting the CP(Graph) framework and its role in the implementation of Reachability, we show the implemen-
tation of the pruning rules in Oz. In this section, we also show that the composition of propagation, which we call
Batch Propagation, can be easily achieved when using a message passing approach. The implementation of Batch

Propagation is an important result since it plays an important role in the reduction of the computation time. This is
because it minimizes the number of activations of expensive propagators.

2 The reachability propagator

2.1 Reachability constraint

The Reachability constraint is defined as follows:

Reachability(g, source, rn, cn, be) ≡ ∀i∈N .

rn(i) = Reach(g, i)∧
cn(i) = CutNodes(g, source, i)∧
be(i) = Bridges(g, source, i)

(1)

Where:

• g is a graph whose set of nodes is a subset of N .

• source is a node of g.

• rn(i) is the set of nodes that i reaches.

• cn(i) is the set of nodes appearing in all paths going from source to i.

• be(i) is the set of edges appearing in all paths going from source to i.

• Reach, Paths, CutNodes and Bridges are functions that can be formally defined as follows:

j ∈ Reach(g, i) ↔ ∃p.p ∈ Paths(g, i, j) (2)

p ∈ Paths(g, i, j) ↔
p = 〈k1, ..., kh〉 ∈ nodes(g)h ∧ k1 = i ∧ kh = j∧
∀1≤f<h.〈kf , kf+1〉 ∈ edges(g)

(3)

k ∈ CutNodes(g, i, j) ↔ ∀p∈Paths(g,i,j).k ∈ nodes(p) (4)

e ∈ Bridges(g, i, j) ↔ ∀p∈Paths(g,i,j).e ∈ edges(p) (5)

The above definition of Reachability implies the following properties which are crucial for the pruning that Reach-
ability performs. These properties define relations between the functions rn, cn, be, nodes and edges. These relations
can then be used for pruning, as we show in section 2.2.

1. If 〈i, j〉 is an edge of g, then i reaches j.

∀〈i,j〉∈edges(g).j ∈ rn(i) (6)

2. If i reaches j, then i reaches all the nodes that j reaches.

∀i,j,k∈N .j ∈ rn(i) ∧ k ∈ rn(j) → k ∈ rn(i) (7)

3. If i reaches j and k is a cut node between i and j in g, then k is reached from i and k reaches j:

∀i,j∈N .i ∈ rn(source) ∧ j ∈ cn(i) → j ∈ rn(source) ∧ i ∈ rn(j) (8)

4. Reached nodes, cut nodes and bridges are nodes and edges of g:

∀i∈N .rn(i) ⊆ nodes(g) (9) ∀i∈N .cn(i) ⊆ nodes(g) (10) ∀i∈N .be(i) ⊆ edges(g) (11)

2

2.2 Pruning rules

We implement the constraint in Equation 1 with the propagator

Reachability(G, Source, RN, CN, BE) (12)

In this propagator we have that:

• G is a graph variable [3] whose upper bound (max(G)) is the greatest graph to which G can be instantiated,
and lower bound (min(G)) is the smallest graph to which G can be instantiated. So, i ∈ nodes(G) means
i ∈ nodes(min(G)) and i 6∈ nodes(G) means i 6∈ nodes(max(G)) (the same applies for edges). In what
follows, {〈N1, E1〉#〈N2, E2〉} will denote a graph variable whose lower bound is 〈N1, E1〉 and upper bound
is 〈N2, E2〉. I.e., if g = 〈n, e〉 is the graph that G approximates, then N1 ⊆ n ⊆ N2 and E1 ⊆ e ⊆ E2.

• Source is an integer representing the source in the graph.

• RN(i) is a Finite Integer Set (FS) [5] variable associated with the set of nodes that can be reached from node
i. The upper bound of this variable (max(RN(i))) is the set of nodes that could be reached from node i (i.e.,
nodes that are not in the upper bound are nodes that are known to be unreachable from i). The lower bound
(min(RN(i))) is the set of nodes that are known to be reachable from node i. In what follows {S1#S2} will
denote a FS variable whose lower bound is the set S1 and upper bound is the set S2.

• CN(i) is a FS variable associated with the set of nodes that are included in every path going from Source to i.

• BE(i) is a FS variable associated with the set of edges that are included in every path going from Source to i.

The definition of Reachability and its derived properties give place to a set of propagation rules. We show here the
most representative ones. The others are given in [10]. A propagation rule is defined as C

A
where C is a condition and

A is an action. If C is true, the pruning defined by A can be performed.

• From (6) ∀〈i,j〉∈edges(g) .j ∈ rn(i) we obtain:

〈i, j〉 ∈ edges(min(G))

j ∈ min(RN(i))
(13)

• From (7) ∀i,j,k∈N .j ∈ rn(i) ∧ k ∈ rn(j) → k ∈ rn(i) we obtain:

j ∈ min(RN(i)) ∧ k ∈ min(RN(j))

k ∈ min(RN(i))
(14)

• From (8)∀i,j∈N .i ∈ rn(source) ∧ j ∈ cn(i) → j ∈ rn(source) ∧ i ∈ rn(j) we obtain:

i ∈ min(RN(Source)) ∧ j ∈ min(CN(i))

j ∈ min(RN(Source))
(15)

i ∈ min(RN(Source)) ∧ j ∈ min(CN(i))

i ∈ min(RN(j))
(16)

• From (1)∀i∈N .Reach(g, i) = rn(i) we obtain:

j 6∈ Reach(max(G), i)

j 6∈ max(RN(i))
(17)

• From (1)∀i∈rn(source).cn(i) = CutNodes(g, source, i) we obtain:

j ∈ CutNodes(max(G), Source, i)

j ∈ min(CN(i))
(18)

• From (1)∀i∈rn(source).be(i) = Bridges(g, source, i) we obtain:

e ∈ Bridges(max(G), Source, i)

e ∈ min(BE(i))
(19)

3

• From (9) ∀i∈N .rn(i) ⊆ nodes(g), (10)∀i∈N .cn(i) ⊆ nodes(g) and (11)∀i∈N .be(i) ⊆ edges(g) we obtain:

k ∈ min(RN(i))

k ∈ nodes(min(G))
(20)

k ∈ min(CN(i))

k ∈ nodes(min(G))
(21)

e ∈ min(BE(i))

e ∈ edges(min(G))
(22)

One effect of these propagation rules is that, if Source reaches j, and there is only one path p from Source to
j, then p is in G. For instance, consider the example in Figure 1. Let us assume that the source node is 1 and that 1
reaches 4 (this is why 4 is in the lower bound of node 1’s FS variable). Then, let us add the constraint that edge 〈1, 3〉
is not in G. This constraint and the information we already had imply that the path from 1 to 4 passing through 2 is in
G since there is not other way of reaching 4 from 1.

Figure 1: Pruning done by Reachability when the constraint 〈1, 3〉 6∈ G is added. Dashed nodes/edges are nodes/edges
that may not be part of G (i.e., nodes/edges that are in the upper bound of G but not in the lower bound of G.

3 Defining propagators using a concurrent constraint language

We will define the Reachability propagator using a concurrent functional language, namely the declarative subset of
Oz. This language is a concurrent constraint language in the sense of Saraswat [12]. For our purposes, it can be
considered as a functional language that executes concurrently over a constraint store. The constraint store consists
of a conjunction of primitive constraints. For example, in Figure 2 we observe that Y is the integer 42, B is a Finite
Domain(FD) variable whose domain is {0, 1}, S is a FS variable whose lower and upper bounds are ∅ and {5}, Msgs
is a list that is partially determined, and Z is a record with label person that has two fields: age whose value is the
value of the variable Y, and sex whose value is w.

Information can only be added to the constraint store, by a ”tell” operation, and never removed. Threads synchro-
nize on information becoming available in the store, by an ”ask” operation.

In our framework we distinguish three types of propagators:

• Level 1. These propagators are optimizations of propagators belonging to the two other levels that are provided
by Mozart and implemented in C++. A propagator in this level can be considered as a thread that waits for
information to become available, and then adds new information. For example, the propagator implementing
the constraint X=<:Y reduces the upper bound of X to 10 when the constraint store knows that Y has upper
bound 10.

• Level 2. A propagator in this level can be considered as a set of threads, each of which executes a recursive
function that continuously waits for information to be added to the store, in order to add other information to
the store. For instance, in Figure 4, CreateCounter creates a thread that reads its messages from the stream S

and updates its state accordingly. This thread ceases to exist when reading the message stop. Notice that this
thread computes a list containing the state values.

• Level 3. Propagators in this level can be seen as agents: active entities with which one can exchange mes-
sages (see chapter 5 of [14]). An agent is supposed to receive messages from different threads, so the order in

4

Figure 2: The Oz Execution Model (Declarative subset) Figure 3: Architecture of a
Graph variable propagator

proc {CreateCounter InitState S}
fun {NextState state(val:Val output:Output) Msg}

NewOutput
in

Output=Val|NewOutput
case Msg of

inc then state(val:Val+1 output:NewOutput)
[] dec then state(val:Val-1 output:NewOutput)
end

end
proc {ProcessMsgs State=state(val:Val output:Output) S}

case S of stop|_ then Output=nil
[] Msg|RestS then

{ProcessMsgs {NextState State Msg} RestS}
end

end
in

thread {ProcessMsgs InitState S} end
end
{CreateCounter state(val:0 output:Output) Msgs}
Msgs=inc|inc|dec|stop|_

Figure 4: A thread reading messages from a stream

which the agent receives the messages is completely indeterministic. This is why the agent is equipped with a
communication channel (port) through which the messages are sent.

The global propagator of the graph variable that we are going to introduce in the next section is a level 3 prop-
agator. The need of the communication channel comes from the fact that the order in which nodes/edges are intro-
duced/excluded is not known a priori. Our solution is to have a thread per node/edge watching the insertion/exclusion
of the node/edge. Once the node/edge is include/exclude the thread (which we call watcher) sends the correspond-
ing message to the port. For instance, the following is the implementation of a node watcher. Graph.N1.isIn

is 1/0 if N1 is/is not in the graph. Once it is known that N1 is/is not in the graph the watcher sends the message
includeNode(N1)/excludeNode(N1) to the message processor.

thread
if Graph.N1.isIn==1 then {Send MsgProcessor includeNode(N1)}
else {Send MsgProcessor excludeNode(N1)} end

end

The interaction between the watchers and the message processor of the graph variable is shown in Figure 3. Notice
that in this figure there is an additional component that we are going to introduce in section 4.4.

5

S ::= S S Sequence
| X = f(l1 : Y1 . . . ln : Yn) | Value
| X =<number> | X =<atom>

| local X1 . . . Xn in S end | X = Y Variable
| proc {X Y1 . . . Yn} S end | {X Y1 . . . Yn} Procedure
| if X then S else S end Conditional
| thread S end Thread

Table 1: The Oz declarative kernel language.

Each of the pruning rules of section 2.2 can be implemented in a straightforward way as a propagator using this
computation model.

The declarative language we introduce here is based on procedures; semantically a procedure is similar to a process
in a process calculus. This is because procedures can create threads and a thread can exist indefinitely as a running
entity if it is implementing a propagator. We can still consider the language to be declarative, however, because it is
confluent (see chapter 13 of [14]). Because of the monotonicity of the store, the concurrency executes in a restricted
form that is deterministic and has no race conditions. This is clearly explained in chapter 4 of [14].

All Oz execution can be defined in terms of a kernel language whose semantics are given in chapter 13 of [14].
We will just refer to the declarative part of it.

Table 1 defines the abstract syntax of a statement S in the declarative subset of the Oz kernel language. Statement
sequences are reduced sequentially inside a thread. All variables are logic variables, declared in an explicit scope de-
fined by the local statement. Values (records, numbers, etc.) are introduced explicitly and can be equated to variables.
Procedures are defined at run-time with the proc statement and referred to by a variable. Procedure applications
block until the first argument references a procedure name. The if statement defines a conditional that blocks until
its condition is true or false in the variable store. Threads are created explicitly with the thread statement. Each
thread has a unique identifier that is used for thread-related operations.

In the following section, we are going to be using a bit of syntactic sugar to make programs easier to read. We will
do so by considering that:

• proc {...} ... in ... end is equivalent to proc {...} local ... in ... end end.

• fun {F V1 V2 ... Vn} <Stm> <Exp> end is equivalent to proc {F V1 V2 ... Vn R} ... <Stm>

R=<Exp> end, where <Exp> is an expression representing a value and <Stm> is any statement.

• fun {...} ... in ... end is equivalent to fun {...} local ... in ... end end.

Procedures are values in Oz. This means that a variable may be bound to a procedure. In particular, we have that proc
{X V1...Vn}... end is equivalent to X=proc {$ V1...Vn}... end, where the RHS is a procedure value.

4 Implementation of Reachability

4.1 CP(Graph)

CP(Graph) introduces a new computation domain focussed on graphs including a new type of variable, graph domain
variables, as well as constraints over these variables and their propagators [3, 4]. CP(Graph) also introduces node
variables and edge variables, and is integrated with the finite domain and finite set computation domain.

The kernel constraints of CP(Graph) are:

• Nodes(G, SN): SN is the set of nodes of G.

• Edges(G, SE): SE is the set of edges of G.

• EdgeNode(E, N1, N2): the edge variable E is an edge from node N1 to node N2.

Consistency techniques have been developed, graph constraints have been built over the kernel constraints and
global constraints have been proposed. CP (Graph) has also been implemented in Oz [4].

6

4.2 Implementing CP(Graph) using message passing

In [10], we re-implemented part of CP(Graph) using a Message Passing approach, for implementing our Reachabil-
ity propagator. We focussed on graph variables and provided the following implementation of the two first kernel
constraints:

• {G incN(N)} results in Nodes(G, SN) ∧ N ∈ SN

• {G exN(N)} results in Nodes(G, SN) ∧ N 6∈ SN

• {G incE(E)} results in Edges(G, SE) ∧ E ∈ SE

• {G exE(E)} results in Edges(G, SE) ∧ E 6∈ SE

• {G isN(N B)} results in Nodes(G, SN) ∧ (B = true ∨ B = false) ∧ (N ∈ SN ↔ B = true)

• {G isE(E B)} results in Edges(G, SE) ∧ (B = true ∨ B = false) ∧ (E ∈ SE ↔ B = true)

Additionally, in our implementation, {G stream($)} is the stream that contains the messages associated with
the constraints that have been imposed on G. So, if we have imposed the constraints:

{G incN(1)} {G incN(2)} {G exE(1#2)} {G incE(2#1)} {G exN(3)}

the partial value of S would be:

incN(1)|incN(2)|exE(1#2)|incE(2#1)|exN(3)|_

4.3 Pruning of Reachability

The skeleton of the implementation of Reachability is shown in Figure 5. In the implementation of Reachability there
are two basic components: a set of already provided FS/FD propagators and a global (user defined) propagator. In this
section, we will elaborate on the different propagators that constitute Reachability by referring to the pruning rules
that they implement.

Notice that CreateGlobalPropagator creates an agent whose behavior is defined by the function NextState.
The agent ceases to exist when encountering the message determined in the stream. determined signals the
determination of the graph variable. G is determined when its lower bound is equal to its upper bound (i.e.,min(G) =
max(G)). The determination of G implies that no message comes after determined.

4.3.1 Transitive closure of Reachability (Rules 13 and 14)

%% For every potential node I of G
/*1*/{FD.impl ({FS.card RN.I} >: 0) {G isN(I $)} 1}
/*2*/{FD.impl {G isN(I $)} {FS.reified.isIn I RN.I} 1}

Statement 1 imposes an implication between the cardinality of RN.I being greater than 0 and the presence of I in
G. I.e., a node should be part of the graph in order to reach another one.

Statement 2 imposes an implication between the presence of I in G and I reaching itself. This is because every
node of G reaches itself.

/*3*/Ss={G sucs($)}

%% For every potential pair of nodes <I,J> of G
/*4*/{FD.impl {FS.reified.isIn J Ss.I} {ReifiedSubSet RN.J RN.I} 1}

Ss.I is the set of successors of I. As these variables are already present in the implementation of graph variables,
we simply make the corresponding associations between those variables and Ss(Statement 3).

Statement 4 imposes an implication between J being in Ss.I and RN.J being a subset of RN.I.

7

proc {Reachability G Source RN CN BE}
...
proc {CreateGlobalPropagator G Source RN CN BE}

fun {NextState state(graph:G) Msg}
...

end
proc {ProcessMsgs state(graph:G) Stream}

case Stream of
determined|_ then
%% End of message processing

[] Msg|RestStream then
{ProcessMsgs {NextState state(graph:G) Msg} RestStream}

end
end

in
thread

{ProcessMsgs state(graph:{MakeCompleteGraph NumNodes}) {G stream($)}}
end

end
in

for I in 1..NumNodes do
%% Unary propagators
...
for J in 1..NumNodes do

%% Binary propagators
...

end
end
{CreateGlobalPropagator G Source RN CN BE}

end

Figure 5: Skeleton of Reachability

4.3.2 Pruning the upper bound of RN(i) (Rule 17)

We first have to ensure that, for every I that is already known to belong to G, RN.I gets determined when I has no
successors:

%% For every potential node I of G
/*5*/{FD.impl

({FS.card RN.I} >: 0)
{FD.impl ({FS.card Ss.I} =: 0) ({FS.card RN.I} =: 1)}
1}

We also have to ensure that I only reaches itself and the nodes that its successors reach. The following statement
does that:

/*6*/local
fun {Accumulate Sets J}

if I\=J then S={FS.var.decl} in
/*8*/{Select {G isInEdge(I#J $)} RN.J FS.value.empty S}
S|Sets

else Sets end
end
/*7*/SucSets={FoldL NodesIds Accumulate nil}
/*9*/ReachedNodes={FS.unionN {FS.value.singl I}|SucSets}

in
/*10*/{Select ({FS.card RN.I} >: 0) ReachedNodes FS.value.empty RN.I}

8

end

SucSets, defined in Statement 7, is bound to the sets of nodes reached by the successor. As we may not know a
priori whether J is going to be successor of I, the corresponding set S is a set that is either the empty set (in case J is
not a successor) or RN.J. This relation is imposed by the application of Select:

proc {Select Cond S1 S2 S3}
{FS.subset S3 {FS.union S1 S2}}
{FS.subset {FS.intersect S1 S2} S3}
thread

or Cond=1 S3=S1 [] Cond=0 S3=S2 end
end

end

Depending on Cond, Select binds S3 to S1 or S2. Moreover, as S3 is either S1 or S2, Select constrains S3 to
have only the elements that S1 and S2 have and to include the elements that S1 and S2 have in common.

Statement 10 is the one that actually constrains RN.I to be the set containing I and the nodes reached by the
successors of I. However, this is done on the condition that I is a node of G (i.e., ({FS.card RN.I} >: 0)).

This is all what is needed for pruning a graph without cycles since the sets of reached nodes of the leaves get bound
because of Statement 5, and this information is propagated to the corresponding predecessor because of Statement 10.

However, if G has cycles, the reached nodes sets do not get determined even if G is already determined. For
instance, suppose that the lower and upper bound of G is graph(1:[2] 2:[1]) and that the potential set of nodes
is {1, 2, 3}. The propagators above mentioned will basically constrain RN.1 to be equal to RN.2 (and RN.3 to be
the empty set). Additionally, due to Statement 1 and 2, nodes 1 and 2 get into the lower bound of RN.1 and RN.2.
However, no propagator removes 3 from the upper bound of neither RN.1 nor RN.2.

The upper bound of each reached nodes set is updated in the transition function of the global propagator of Reach-
ability:

fun {NextState state(graph:G) Msg}
case Msg of exE(N1#N2) then

/*11*/NewG={RemoveEdge G N1#N2}
in

/*12*/{FS.subset RN.N1 {FS.value.make {DFS.reach N1 NewG}}}
/*13*/{UpdateCutNodes CN Source NewG}
/*14*/{UpdateBridges BE Source NewG}
state(graph:NewG)

else
state(graph:G)

end
end

The internal state of the global propagator is the upper bound of G. Each time an edge is removed, this upper bound
is updated (Statement 11) and so are the upper bounds of the reached nodes sets affected (Statement 12). Notice that
it is enough to update the reached nodes set of the origin of the edge removed (N1) since the rest will be done by
Statement 10. Notice that RN.N1 is updated by imposing that RN.N1 is a subset of the nodes reached by N1 in the
upper bound G.

4.3.3 Discovering cut nodes

We have to start by keeping track of the cut nodes between the source and each other node (CN.I). As the set of cut
nodes may change when an edge is removed, we update CN.I each time an edge removal takes place by invoking
UpdateCutNodes (Statement 13). Notice that, in this statement, we are taking care of Rule 18 1.

/*15*/{FD.impl {FS.reified.isIn I RN.Source} {ReifiedSubSet CN.I RN.Source} 1}

/*16*/{FD.impl {FS.reified.isIn J RN.I} {G isN(J $)} 1}

1We present the algorithms that we use for computing cut nodes and bridges in [10]. These algorithms are based on DFS [10].

9

In order to perform the pruning of rules 15 and 16. We impose an implication between I belonging to RN.Source
and CN.I being a subset of RN.Source (Statement 15), and between J belonging to RN.I and J belonging to the nodes
of G (Statement 16). In fact, this last statement also takes the pruning performed by rules 20 and 21 into account. An
example illustrating the pruning performed by these statements is shown in Figure 6. In this example we impose the
constraint that node 1 should reach node 9. As 5 is a cutnode between 1 and 9, 5 is included in G and forced to reach
9. Additionally, 1 is constrained to reach 5.

Figure 6: Discovering cut nodes

4.3.4 Discovering bridges

As in the previous case, BE.I is updated each time an edge removal takes place by invoking UpdateBridges (State-
ment 14).

/*17*/{FD.impl {FS.reified.isIn I RN.Source} {ReifiedEdgesInGraph BE.I G} 1}

We impose an implication between I belonging to RN.Source and the bridges between Source and I belonging
to the edges of G (Statement 17). This statement covers the pruning of Rule 22 into account. An example illustrating
the pruning performed by this statement is shown in Figure 7. In this example we impose the constraint that node 1
should reach node 5. This constraint is enough to determine the only path between 1 and 5.

Figure 7: Discovering bridges

4.4 Batch propagation

In the previous implementation, we compute cut nodes and bridges each time an edge is removed. This certainly
leads to a considerably amount of unnecessary computation since the set of cut nodes/bridges evolves monotonically.
Another approach is to consider all the removals at once and make one computation of cut nodes and bridges per set
of edges removed. This optimization can be implemented by adding a concurrent process to the implementation of
graph variables. The task of this process is to batch together the messages according to their types (as shown in Figure
8). In this way, the transition function of the global propagator of Reachability will consider all the edges that have
been removed at once:

fun {NextState state(graph:G) batch(exE:Es ...)}
if Es==nil then state(graph:G)
else

10

Figure 8: Building batches

Figure 9: Simple Bridge Discovering

NewG={RemoveEdges Es G}
in

{UpdateRNs Es NewG}
{UpdateCutNodes CN Source NewG}
{UpdateBridges BE Source NewG}
state(graph:NewG)

end
end

In fact, this transition function is very similar to the previous one. The only different thing is that NewG is consid-
ering all the nodes that have been removed.

Statement 6 is a cheap way of computing bridges when there is no cycle. Notice that, in the situation of Figure 9,
the pruning performed by Statement 6 is enough for discovering the bridges between node 1 and node 6. However, the
global propagator also discovers this information. The point in having this redundancy in propagation is that, thanks
to the fact that the expensive propagator works on batches, there are cases where the expensive computation of bridges
is not activated. Suppose, for instance, that discovering the bridge 〈2, 4〉 raises a failure because 4 is not reached by 2.
This failure is discovered by the cheap propagator and the expensive one is not activated.

5 Conclusion and future work

We presented the implementation of Reachability, which has been implemented using a message passing approach
on top of the multi-paradigm programming language Oz [7]. We showed how the use of FS variables simplified the
implementation of most of the rules.

In the implementation of Reachability we distinguished two basic components: a set of already provided FS/FD
propagators and a global (user defined) propagator. We showed the global propagator as an agent that reads messages
from a stream generated by the graph variable on which Reachability is applied.

We presented a cheap way of discovering bridges based on FS pruning. After introducing our implementation of
Bath propagation using message passing, we explained why this can play an important role in the reduction of the
computation time.

From our observations in [10], we infer that the suitability of Reachability is based on the strong pruning that
it performs and the information that it provides for implementing smart distribution strategies. We also found that
Reachability is appropriate for imposing dependencies on nodes. Certainly, we still have to see whether our conclu-
sions apply to other types of graphs.

Our experiments in [10] also show that the appropriateness of Reachability is increased with the presence of
optional nodes. This is basically because we are no longer able to apply the global AllDiff propagator on the successors
of the nodes since we do not know a priori which nodes participate in the path. However, the complexity of the problem
tends to increase with the number of optional nodes if they are uniformly distributed.

11

It is important to remark that both the computation of cut nodes and the computation of bridges play an essential
role in the performance of Reachability. The reason is that each one is able to prune when the other can not. Notice
that Figure 6 is a context where the computation of bridges cannot infer anything since there is no bridge. Similarly,
Figure 7 represents a context where the computation of bridges discovers more information than the computation of
cut nodes.

A drawback of our approach is that each time we compute cut nodes and bridges from scratch, so one of our next
tasks is to overcome this limitation. I.e., given a graph g, how can we use the fact that the set of cut nodes between i

and j is s for recomputing the set of cut nodes between i and j after the removal of some edges?.
The implementation of Reachability was suggested by a practical problem regarding mission planning in the con-

text of an industrial project. Our future work will concentrate on making propagators like Reachability suitable for
non-monotonic environments (i.e., environments where constraints can be removed). Instead of starting from scratch
when such changes take place, what we want is to use the pruning previously performed in order to repair the pruning.

References

[1] Yves Caseau and Francois Laburthe. Solving small TSPs with constraints. In International Conference on Logic
Programming, pages 316–330, 1997.

[2] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, 1990.

[3] G. Dooms, Y. Deville, and P. Dupont. Constrained path finding in biochemical networks. In 5èmes Journées
Ouvertes Biologie Informatique Mathématiques, 2004.

[4] G. Dooms, Y. Deville, and P. Dupont. CP(Graph):introducing a graph computation domain in constraint pro-
gramming. Research Report INFO-2005-06, Université catholique de Louvain, Louvain-la-Neuve, Belgium,
2005.

[5] Denys Duchier, Leif Kornstaedt, Martin Homik, Tobias Müller, Christian Schulte, and Peter Van Roy. Finite Set
Constraints. December 1999. Available at http://www.mozart-oz.org/.

[6] F. Focacci, A. Lodi, and M. Milano. Solving tsp with time windows with constraints. In CLP’99 International
Conference on Logic Programming Proceedings, 1999.

[7] Mozart Consortium. The Mozart Programming System, version 1.3.0, 2004. Available at http://www.mozart-
oz.org/.

[8] Tobias Müller. Constraint Propagation in Mozart. Doctoral dissertation, Universität des Saarlandes,
Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik, Saarbrücken, Germany, 2001.

[9] G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint logic programming algorithm for the
travelling salesman with time windows, 1996.

[10] Luis Quesada, Peter Van Roy, and Yves Deville. The reachability propagator. Research Report
INFO-2005-07, Université catholique de Louvain, Louvain-la-Neuve, Belgium, 2005. Available at
http://www.info.ucl.ac.be/˜luque/SPMN/paper.pdf.

[11] Jean Charles Régin. A filtering algorithm for constraints of difference in csps. In In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pages 362–367, 1994.

[12] Vijay Saraswat. Concurrent Constraint Programming. The MIT Press, 1993.

[13] Christian Schulte. Programming Constraint Services. Doctoral dissertation, Universität des Saarlandes,
Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik, Saarbrücken, Germany, 2000.

[14] P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT Press, 2004.

12

