Domain Consistency with Forbidden Values

Yves Deville!, Pascal Van Hentenryck?

1 Université catholique de Louvain (yves.deville@uclouvain.be)
2 Brown University (pvh@cs .brown.edu)

Abstract. This paper presents a novel domain-consistency algorithm which does
not maintain supports dynamically during propagation, but rather maintain for-
bidden values. It introduces the optimal NAC4 (negative AC4) algorithm based
on this idea. It further shows that maintaining forbidden values dynamically al-
lows the generic algorithm AC5 to achieve domain consistency in time O(ed)
for classes of constraints in which the number of supports is O(d?) but the num-
ber of forbidden values is O(d). The paper also shows how forbidden values and
supports can be used jointly to achieve domain consistency on logical combina-
tions of constraints and to compute validity as well as entailment of constraints.
Experimental results show the benefits of the joint exploitation of supports and
forbidden values.

1 Introduction

In constraint programming, propagation aims at reducing the search space without re-
moving solutions. The propagation algorithm considers each constraint individually and
terminates when no constraint can be used to reduce the domains of the variables. The
ideal propagation for a constraint is domain consistency, also known as arc consistency:
It removes from the domain of each variable all values that do not belong to a solution
of the considered constraint. Many algorithms have been proposed for achieving do-
main consistency, such as AC3, AC4, AC6, AC7 and AC2001 (see [1]). Consistency
algorithms typically use the concept of support. For a binary constraint x over variables
x and y, a support for a pair (x, a), where a is a possible value for z, is a pair (y, b) such
that C'(x/a, y/b) holds. The optimal time complexity to achieve domain consistency for
a CSP is O(e.d?) for binary constraints and O(e.r.d") for non-binary constraints (d is
the size of the largest domain, e the number of constraints and r the largest arity of the
constraints). An algorithm such as AC4 maintains all the supports for all pairs (z, a),
while other algorithms (e.g., AC6) only maintain a single support and search for subse-
quent supports on demand. AC4 works in two steps. First, it computes all the supports
for all the variable/value pairs in each constraint. Then, it propagates the removal of a
value a from the domain of a variable z. An interesting property of the propagation step
is that its time complexity is proportional to the total number of supports.

Example 1. Consider the constraint z = y mod 10, with D(z) = {0..9} and D(y) =
{0..99}, the size of the supports for z is linear (O(#D(y)), where # A is the size of A).
The propagation step of AC4 for this constraint is also linear, while it remains quadratic
for other optimal AC algorithms such as AC6, AC7, or AC2001.

Of course, the initialization step of AC4, which computes all the supports, is O(d?)
even if the number of supports is O(d), since the algorithm has no knowledge of the
semantics of the constraint. The generic AC5 algorithm [2] was designed to exploit
the semantics of the constraints, and can then be used to generate the supports of such
constraints in linear time, resulting in an O(ed) complexity.

The scientific question addressed in this paper is the following: Is it possible to design
a domain-consistency algorithm running in time O(ed) if the number of supports is
quadratic, but the number of forbidden values (also called conflict set) is linear?

Example 2. Consider the constraint x # y mod 10, with D(z) = {0..9} and D(y) =
{0..99}. The size of the supports for x is 900, hence a complexity of O(#D(z).#D(y))
in the propagation step of AC4. Using AC3, AC7 or AC2001 does not help to reduce
this complexity. However, the size of the forbidden values is 100 (O(#D(y))). Can
we use an AC4-like algorithm that maintains the list of forbidden values instead of the
supports to obtain an O(ed) algorithm?

This paper answers this question positively and makes the following contributions:

— It proposes the NAC4 algorithm (Negative AC4) that achieves the optimal O(e.d?)
time complexity for binary CSPs, but dynamically maintains the set of forbidden
values instead of supports. It shows that both AC4 and NAC4 are instances of the
generic ACS5 algorithm: they can be combined naturally in a single constraint solver
and ACS can exploit the constraint semantics to obtain higher efficiency. NAC4 is
also generalized for non-binary CSPs.

— It identifies classes of constraints for which domain consistency can be achieved in
linear time.

— It demonstrates how the combination AC4/NAC4 can achieve domain consistency
on logical combinations of constraints over the same variables.

— It shows that the combination of AC4/NAC4 can easily be extended to provide
methods assessing the validity and the entailment of a constraint.

— It presents experimental results showing the benefits of the combination AC4/NAC4.

Related Work The idea of using forbidden values is not new in CP: what is novel in
this paper is that NAC4 maintains the set of forbidden values dynamically during the
propagation. References [3,4] use negative table constraints, where the table describes
the set of forbidden tuples. The negative table is used to find the next support of a value
by means of binary search; it is static however and not updated during propagation.
Lecoutre [5] showed that (z, a) has a support for a constraint c¢(z, y) if the size of D(y)
is strictly superior to the size of the initial conflict set of (x,). This idea is integrated in
a coarse-grained algorithm. Once again, the size of the conflict set is not updated during
the computation. The same idea is also proposed as a support condition in [6].

The consistency of a combination of constraints has been handled in different ways.
Some approaches achieve domain consistency, which is NP-hard in general. A domain-

consistency algorithm, based on AC7, was proposed in [7] for the conjunction of con-
straints. Lhomme [8] describes a domain-consistency algorithm for any combination
of constraints. It focuses primarily on constraints given in extension. Forbidden tu-
ples are used once again through a static negative table. Other approaches compute an
approximation of domain consistency, such as in [9] (cardinality), [10] (constructive
disjunction), or [11] which provides an algebra for combining constraints.

2 ACS

This section revisits the generic AC5 algorithm [2], generalizing it slightly to accom-
modate AC4, AC6, and AC2001 as instantiations.

Definition 1 (CSP). A binary CSP (X, D(X),C) is composed of a set of n variables
X ={z1,...,2,}, aset of domains D(X) = {D(z1),...,D(x,)} where D(x) is the
set of possible values for variable x, and a set of binary constraints C = {c1,..., ¢},
with Vars(c;) C X (1 <i < e). Wedenote d = mazi<i<n(#D(z)).

Let ¢ be a constraint with Vars(c) = {x,y}, a € D(z),b € D(y). c(x/a,y/b) or
¢(y/b, z/a) denote the constraint where variables x and y have been replaced by the
values a and b. We assume that testing ¢(z/a,y/b) takes O(1) time. If ¢(x/a,y/b)
holds, then (z/a,y/b) is called a support of ¢ and (y, b) is a support for (z, a) on c. If
c(x/a,y/b) does not hold, then (z/a, y/b) is called a conflict of ¢ and (y, b) is a conflict
(or forbidden value) for (z, a) on c.

Definition 2. Let ¢ be a constraint with Vars(c) = {x,y}. The set of inconsistent,
consistent, and valid values for x in c wrt a set of values B are defined as follows:

Inc(e,z, B)={(z,a)| a € D(x) AVb € B: —c(z/a,y/b)}
Cons(c,z,B)={(z,a)|a € D(x) ATb€ B :c(x/a,y/b)}
Valid(c,z, B)={(z,a)| a € D(x) A¥b € B : c(x/a,y/b)}

We use Inc(c, x) to denote Inc(c, x, D(y)) and similarly for the other sets.

Definition 3 (Domain Consistency). A constraint ¢ over {x,y} is domain-consistent
wrt D(X) iff Inc(c,z) = @ and Inc(c,y) = 0. A CSP (X, D(X),C) is domain-
consistent iff all its constraints are domain-consistent wrt D(X).

Specification 1 describes the principal methods used by AC5. The ACS5 algorithm uses a
queue Q of triplets (¢, z, a) stating that the domain consistency of constraint ¢ should be
reconsidered because value a has been removed from D(z). When a value is removed
from a domain, the method enqueue puts the necessary information on the queue. In
the postcondition, @), represents the value of () at call time. The parameter C'1 allows
us to consider a subset of constraints, which will be necessary in the initialization. As
long as (¢, z, a) is in the queue, it is algorithmically desirable to consider that value a
is still in D(z) from the perspective of constraint c. This is captured by the following
definition.

1 enqueue (in X: Variable;in &Q: Value;in Cl: Set of Constraints;
2 inout Q: Queue)

3 | //Pre:xe X,a¢ D(x)and C1 C C

4 | /' Post: Q=Qo U {(c,x,a)|lce Cl,x € Vars(c)}

5

6 post (in c: Constraint;out A: Set of Values)

7 | // Pre: c € Cwith Vars(c) = {x, y}

8 | // Post: A = Inc(c, x) U Inc(c, y) + initialization of specific data structures

9

10 boolean valRemove (in c: Constraint;in y: Variable; in b: Value;
11 out A: Set of Values)

12 | //Pre:ce C, Vars(c)={x,y},b¢ D(y, Q,c)

13 | // Post: Ay C A C Ap with Ay =Inc(c, x,D(y, Q, ¢)) N Cons(c, x, {b})

14 |/ and Az = Inc(c, x)

Specification 1: The enqueue, post, and valRemove Methods for AC5

Definition 4. The local view of a domain D(x) wrt a queue @Q for a constraint ¢ is
defined as D(z,Q,c) = D(x) U {al|(c,z,a) € Q}.

Example 3. Given a queue Q = {(c1,v,2), (c1,2,2), (c2,9,3)} and domains D(z) =
{1,2}, D(y) = D(z) = {1}, then D(z,Q,c1) = D(y,Q,c1) = D(2,Q,c1) = {1,2}.

The central method of the ACS5 algorithm is the valRemove method, where the set A
(called the delta-set in the folklore of CP due the use of the letter A in the original AC5
description) is the set of values no longer supported because of the removal of value b
in D(y). In this specification, b is a value that is no longer in D(y) and valRemove
computes the values (z, a) no longer supported because of the removal of b from D(y).
Note that values in the queue (for variable y) are still considered in the potential sup-
ports as their removal has not yet been reflected in this constraint. We also restrict our
attention to values that had the value b in their support (i.e., (z,a) € Cons(c, z,{b})).
However, we leave valRemove the possibility of achieving more pruning (A2), which
is useful for monotonic constraints [2].

The ACS5 algorithm is depicted in Algorithm 1. Function propagateQueueACS5 ap-
plies valRemove on each element of the queue until the queue is empty. Function
initACS initializes the queue. Function post(c,AA) computes the inconsistent val-
ues of the constraint c. If it removes values in some domains, only the already posted
constraints are considered by the enqueue call. The constraints not yet posted are
not concerned by such removals as they will directly use the current domain of the
variables upon posting. The post call typically initializes some data structures to be
used in valRemove. With a slight generalization of the specifications of post and
valRemove, the AC5 algorithm also handles non-binary constraints. AC5 is generic
because the implementation of post and valRemove is left open. Different con-
straints may have their own implementation of these functions. This allows AC5 to
combine, in a single framework, different algorithms such as AC4, AC6, AC7, and
AC2001 and to exploit the semantics of the constraints for achieving a better efficiency.

1 AC5(in X, C, inout D(X)) {

2 /I Pre: (X, D(X), C) is a CSP

3 | // Post: D(X) C D(X)o, (X, D(X), C) equivalent to (X, D(X)o, C)

4 |/ (X, D(X), C) is domain consistent

5 initAC5(Q);

6 propagateQueueAC5(Q) ;

7 }

8 initACS5 (out Q) { 20 propagateQueueACS (in Q) {
9 0= 0 21 while Q != 0 {

10 c1 = 0; 22 select ((c,y,b) in Q) {
11 forall (c in C) { 23 Q=0 - (¢y,b);

12 Cl += c; 24 valRemove (C,), b, A\);
13 post (¢, A); 25 forall ((x,a) in A) {
14 forall ((x,a) in A) { 26 D(x) —-= a;

15 D(x) —-= aj; 27 enqueue (X,&,C,0Q) ;
16 enqueue (X,&,C1,0Q); 28 }

17 } 29 }

18 } 30 }

19 } 31 }

Algorithm 1: The ACS Algorithm.

Proposition 1. Assuming a correct implementation of post and valRemove, ACS is
correct wrt its specification.

In ACS5, an element (c, z, a) can be put in the queue only once. The size of the queue is
thus O(e.r.d) for non-binary CSPs and O(e.d) for binary CSPs. The number of execu-
tions of valRemove is also bounded by O(e.r.d).

Proposition 2. For binary CSPs, if the time complexity of post is O(d?), and the time
complexity of valRemove is O(d), then the time complexity of AC5 is the optimal
O(e.d?). If the time complexity of post is O(d) and the amortized time complexity of
all the executions of valRemove for each constraint is O(d) (e.g., time complexity of
valRemove is O(A)), then the time and space complexity of ACS is O(e.d).

We now present AC4 as an instantiation of ACS5 by giving the implementation of post
and valRemove (Algorithm 2). valRemoveAC4 uses a data structure S to record
the supports of each value in the different constraints. It is initialized in postAC4 and
satisfies the following invariant at line 21 of Algorithm 1 (ACS5).

Let ¢ € C with Vars(c) = {z,y}:

(l.z) Va € D(z,Q,¢)) : S[z,a,c) ={be D(y,Q,c)lc(z/a,y/b)}
(2.z) Va € D(x): S[z,a,c] #0

W

1 postAC4 (in C: Constraint;out A: Set of Values) {

2 | // Pre: ¢ € Cwith Vars(c) = {x,y}

3 | // Post: A = Inc(c, x) U Inc(c, y) + initialization of the S data structure
4 post_varAcC4 (¢, x, A\i);

5 post_varAc4 (¢, y, D2);

6 AN = AUANg;

7 }

8 post_varAC4 (in C: Constraint;in X: Variable;out A: Set of Values)
9 A= 0;

10 forall(a in D(x)) {

11 s[x,a,c] = 0;

12 forall (b in D(y) : c(x/a,y/b))

13 six,ac]l += b ;

14 if (3S[x,a, c]==0)

15 A += (x,a) ;

16 }

17 }

18 valRemoveAC4 (in C: Constraint;in y: Variable;in b: Value;
19 out A: Set of Values) {

20 | //Preice C, Vars(c)={x,y},b ¢ D(y,Q,c)

21 | // Post: A = Inc(c, x, D(y, Q, c)) N Cons(c, x,{b})

22 A = 0;

23 forall(a in S[y,b,cl) {

24 S[x,a,c] -= b ;

25 if (s[x,a,c]==0 & a in D(x))
26 AN += (x,a8) ;

27 }

28 }

Algorithm 2: The post and valRemove Methods for AC4

And similarly for y. This invariant ensures the correctness of valRemoveAC4. After
calling postAC4, we also have ZaeD(x) #S[x,a,c] = ZbeD(y) #5S[y, b, c] which is
O(d?). The size of the data structure is O(e.d?).

3 NAC4

NAC4 (Negative AC4), another instance of ACS5, is based on forbidden values that are
dynamically maintained during the propagation. By NAC4, we mean the AC5 algorithm
with the postNAC4 and valRemoveNAC4 methods depicted in Algorithms 3 and 4.

NACH4 uses a data structure F' to record the forbidden values for each value in the
different constraints. For a constraint ¢ over x,y, the basic idea is that the value a
should be removed from D(z) as soon as the set of forbidden values for (z,a) and
the set D(y) are the same. This check can be performed efficiently by (1) reason-
ing about the sizes of the set of forbidden values for (z,a) and the set D(y), (2) us-

{

pPostNAC4 (in C: Constraint;out A: Set of Values) {

/I Pre: ¢ € C with Vars(c) = {x,y}

/I Post: A = Inc(c, x) U Inc(c, y)

1/ + initialization of the F, setOfSize and localSize data structures
post_varNAC4 (¢, X, A1) ;
post_varNAC4 (C, ¥, N2) ;
localsSizelx,c] = #D(x);
localSizely,C] #D(y);
AN = ANUANg;

00 N o o~ wWwNN =

©

10 }

11 post_varNAC4 (in C: Constraint;in X: Variable;out A: Set of Values)

12 A = 0;

13 forall (k in 0..#D(y))

14 setOfSizel[x,k,c] = 0;
15 forall (a in D(x)) {

16 F[x,ac] = 0;

17 forall (b in D(y) : —c(x/a,y/b))
18 F[x,a,c] += b ;

19 k = #F[x,a,C];

20 setOfSize[X,k,C]) += a;
21 if (k==#D(y))

22 A += (x,a8) ;

23 }

24 |}

Algorithm 3: The post Algorithm for NAC4.

ing a data structure sorting the conflict sets by size, and (3) recording the size of the
local view of the domains. These data structures are initialized in postNAC4 and
updated in valRemoveNAC4. The data structure F'[x,a,c| denotes the set of for-
bidden values for (x,a) and ¢, setO fSize[z, k,] denotes the set of values b such
that #F[x,b,c] = k, and localSize[z, c] denotes the size of the local view of do-
main D(x). valRemoveNAC4 first updates the size of the local view of D(y) and
removes b from the setO f Size data structure for variable y (lines 5-7). It then updates
the set of forbidden values and setO f Size for each pair (x,a) € F[y,b,] (lines 8-
13). Finally, it removes the values which are no longer supported, i.e., those values in
setO fSize[x, s,c] N D(x), where s is the local size of D(y) (lines 14-18).

The data structures satisfy the following invariant at line 21 of Algorithm 1 (ACS). Let
c € Cwith Vars(c) = {z,y}:

(3.xz) Vae D(x,Q,c): Flz,a,c ={b€ D(y,Q,c)|~c(x/a,y/b)}

(4.2) Va € D(z): Flz,a,c] C D(y,Q,c¢)

(5.2) setOfSize[x,k,c] ={a € D(z,Q,c))|#F[x,a,c] =k} (0 <k <#D(y,Q,c))
(6.x) localSize[z,c] = #D(z,Q,c)

and similarly for y. From these invariants, we have that F[z,a,c] C D(y, Q,c) at line
24 and the value a must be removed from D(z) if Flz,a,c] = D(y, Q,c). Hence, if

1 valRemoveNAC4 (in C: Constraint;in y: Variable;in b: Value,
2 out A: Set of Values) {

3 | //Pre:ce C, Vars(c)={x,y},b ¢ D(y,Q,c)

4 | /I Post: A = Inc(c, x, D(y, Q, c)) N Cons(c, x, {b})

5 localSizel[y,Ccl—— ;

6 = #r(y,b,cl;

7 setOfSizely,k,c] -= b;

8 forall(a in F[y,b,C]) {

9 F[x,ac] —= b ;

10 k = #F[x,a,C];

11 setOfSize[Xx,k+1,c] -= a;

12 setOfSize[X,k,c] += a;

13 }

14 A= 0;

15 s = localSizely,C

16 forall (a in setOfSLZe[X,S,C] : a in D(x))
17 A += (x,a);

18 }

Algorithm 4: The valRemove method for NAC4

s = localSizely, c], the algorithm must remove the values in setO fSizex, s, c| from
D(x). These invariants ensure the correctness of valRemoveNACA4.

The size of the data structure is O(e.d?). In the pruning of the postNAC4 method, the
local view of the size of domain D(y) is #D(y) since the queue does not contain ele-
ment of the form (z, ., ¢). The complexity of postNAC4 is O(d?) and the complexity
of valRemoveNAC4 is O(d). Hence, by Property 2, the overall time complexity of
NAC4 is O(e.d?), which has been shown to be the optimal complexity for achieving
domain consistency on binary CSPs.

Example 4. We illustrate NAC4 on the following CSP:

61(33, Z/) - {(174)7 (1’ 5)7 (27 2)’ (27 5)7 (3’ 1)7 (37 3)a (374)}’ G Y 7’é 4,03 1y 7é 9,
D(z) = {1,2,3}, and D(y) = {1,2,3,4,5}. The execution of postNAC4(cy,)
yields A = () and fills the data structures as follows:

Flz,1,c1] ={1,2,3} Fly,1,c1] ={1,2}

Flz,2,c1) ={1,3,4} Fly,2,c1] ={1,3}

F[w73701] :{275} F[y737cl] :{172}
F[y,4,01] = {2}
F[y,5,61] :{3}

setOfSizelx,1,¢1]=0 setOfSizely,1,¢1]={4,5}

setOfSizelx,2,c1] ={3} setOfSizely,2,c1]={1,2,3}

setOfSizelx,3,c1]={1,2} setOfSizely,3,c1] =10

setO fSizel[r,4,c1]=0

setO fSize[z,5,c1] =0

localSizelx,c;] =3 localSizely,c1] =5

POStNAC4A(cz, A) returns A = {(y,4)} and postNAC4(c3, A) yields A = {(y,5)},
giving Q = {(c1,9,4). (c1,5,5)}, D(x) = {1,2,3}, and D(y) = {1,2,3}. Method
valRemoveNAC4(cy,y, 4, AN) updates the following variables:

Flz,2,¢1] ={1,3}
setOfSizelx,3,c1] = {1}
setOfSizelx,2,c1] = {2,3}
localSizely, c1] =4
setOfSizely,1,¢1] = {5}

Since setOfSize[z,4,c1] = 0, A = 0, Q = {(c1,y,5)}, D(z) = {1,2,3}, and
D(y) ={1,2,3}. valRemoveNAC4(cy,y, 5,) updates the following variables:

Flz,3,c] = {2}
setOfSizelx,2,c1] = {2}
setO fSizelx,1,c1] = {3}
localSizely, c1] =3
setOfSizely,1,¢1] =0

Since setO fSizelx,3,c1] = {1}, A = {(z,1)}, Q@ = {(c1,2,1)}, D(z) = {2,3},
and D(y) = {1,2,3}. valRemoveNAC4(cy, , 1, AA) updates the following variables:

Fly,1,c1] ={2}
Fly,2,c1] = {3}
F[y737 Cl] - {2}

setO fSizely,2, 1]
setOfSizely, 1, cq]
localSize[z, c1]

setO fSize[x,3, 1]

0
{1,2,3}
2
0

The domains are finally D(z) = {2,3} and D(y) = {1, 2, 3}.
Proposition 3. Let ¢ € C over {z,y}. Invariants (3-6.x-y) hold at line 21 of AC5.

Proposition 4. NAC4 is correct and its time and space complexity is O(e.d?).

4 Applications

We now review a variety of applications of the principles of maintaining forbidden
values.

Sparse AC Constraints As two instances of AC5, AC4 and NAC4 can be combined,

each constraint implementing its AC4 or NAC4 version of the post and valRemove
methods. This will be denoted AC5(AC4,NAC4). A nice property of AC5(AC4,NAC4)

is that the amortized complexity of all the executions of valRemoveAC4 or valRemoveNAC4
for a constraint is bounded by the number of elements in the data structure S or F' in

this constraint. We then obtain the following specialization of Proposition 2.

Proposition 5. Ifa specialization of postAC4 or postNAC4 exploiting the constraint
semantics runs in time O(K) for each constraint of a binary CSP, then the time and

space complexity of AC5(AC4,NAC4) is O(e.K).

As a particular case, if S or F' can be filled in O(d), a domain-consistency algorithm
runs in time O(e.d), as formalized by the following class of constraints.

Definition 5. A constraint ¢ with Vars(c) = {x,y} is positively sparse wrt a domain
D iff #{(a,b) € D?|c(z/a,y/b)} is O(#D). The constraint c is negatively sparse wrt
D iff —c is positively sparse wrt D.

Example 5. Examples of positively and negatively sparse constraints are bijective con-
straints (x + y = k, where k is a constant), anti-bijective constraints (x + y # k),
functional constraints (x = |y — k| or z = y mod k), anti-functional constraints
(z # |y — k| or x # y mod k), but also include non (anti-)functional constraints such
as |x — y| = k and |x — y| # k. One can also consider congruence constraints, such as
(x +y) mod k = 0 and (z + y) mod k # 0 which are sparse when £ is O(d).

Thanks to the genericity of ACS, we can exploit the semantics of the constraints in a
specific postAC4 method for positively sparse constraints and a specific postNAC4
method for negatively sparse constraints to fill the data structure S or F' in O(d) and
obtain a time complexity of O(d).

Proposition 6. For positively and negatively sparse constraints, AC5(AC4,NAC4) can
run within a space and time complexity of O(e.d).

Combining Constraints on the same Variables Consider now a constraint ¢ over
{x,y} defined as a boolean combination of constraints {cy, ..., ¢k} on the same vari-
ables and assume for simplicity that the number of logical connectors is bounded by k.
The constraint ¢ can be posted in ACS(AC4,NAC4) with a complexity of O(k.d?). The
propagation step on this constraint to achieve domain consistency will then run in time
O(K), where K is the number of supports.

Example 6. Consider the constraint ¢ = (¢1 A ¢z) V (c3 A cq) where ¢; = x # |y — 2|,
co=y—1#zmod2,cs=xz=ly—1|,c4 = |z —2| =y, with D(z) = {0,1} and
D(y) = {1, 2}. Each constraint ¢; is domain-consistent, but neither ¢; A ¢z nor ¢z A ¢4
are. Applying AC4 (or NAC4) on ¢ will detect an inconsistency.

In some cases, such as in the above example, it is possible to achieve a better complexity
by exploiting both supports and forbidden values. They key idea is that each constraint
¢; should use either supports or forbidden values depending on its semantics. Then the
individual constraints are combined through logical operators which use the supports
and forbidden values to compute their own supports or forbidden values recursively.
Table 1 depicts the rules to combine constraints and to compute a data structure .S or F’

10

c = —cf Flz,a,c]=8[z,a,c1]

ct= -y Slz,a,c]=Flz,a,c1]

ct=ct nef Slz,a,c] =Sz, a,c1] N Sz, a, c2]
¢ =c¢] Neg Flz,a,c]=F[z,a,c1] U Flz,a, c3]
ct=c Aey S[z,a,c]=S[z,a,c1]\ Flz,a, ca]
ct=ctvet Slz, a,c] =8z, a,c1] U S|z, a, c2]
¢ =c¢; Vg Flz,a,c]=F[z,a,c1] N Flz, a, c2]
c=ci Ve, Flz,a,c]=F[z,a,c]\ S[z,a,c1]

Table 1: Rules for Combining ¢1 (z,y) and c2(z, y).

for the variables « and y according to the data structure maintained in the subexpres-
sions. The rules are given for variable x but are similar for y. A constraint ¢; using an .S
(resp. F') data structure will be denoted cj (resp. ¢;). If the post method applies these
rules on ¢, then the resulting algorithm achieves domain consistency. There is no time
or space overhead as all the operations in Table 1 can be performed in time s; + so,
where s; is the size of the data structure (S or F) for ¢;. As a particular case, if the time
complexity to post each ¢; is O(d) (e.g. functional or anti-functional constraint), the
time and space complexity of the post constraint for ¢ is O(k.d).

Proposition 7. Given a set of binary constraints C and a binary constraint c expressed
as logic combination of constraints c1, . . ., ¢, with Vars(c) = Vars(c;) (1 < i < k),
if the post method for c applies the rules of Table 1, then the resulting AC5(AC4,NAC4)
algorithm on C U {c} achieves domain consistency. If the time complexity of the post
methods of the constraints in C U {cy,...,c} is O(d), then the time and space com-
plexity of AC5(AC4,NAC4) applied on C U {c} is O((e + k).d), with e = #C.

Validity and Entailment AC5(AC4,NAC4) can be extended to support the 1svalid
and isEntailed methods (Specification 2). In AC4, a value (z,a) is detected to
be valid in c if the size of S[z,a,c] is #D(y, @, c). AC4 should then maintain the
setO fSize and local Size data structures of NAC4. In NAC4, a value (x, a) is detected
to be valid in ¢ if F|x,a,] is empty. The invariant of the data structures for both AC4
and NAC4 would then be (1-6.x-y). The theoretical complexity of ACS(AC4,NAC4) is
unchanged, while the practical complexity is roughly doubled. AC4 and NAC4 would
keep the number of valid values for each constraint c. If the valid values for x in ¢
reaches #D(x, Q, ¢), then the constraint is known to be entailed (assuming the domains
are non empty). We could also easily extend the post and valRemove methods to
post(c,A7,AT) and valRemove(c,y,b,A~,AT), where the extra argument AT re-
turns the set of new valid values, defined as

AT = Valid(c,z) U Valid(c,y)

for post, and

for valRemove. These extended domain consistency algorithms are useful for con-
straint combinators, reification and in an Ask & Tell framework.

11

Boolean isValid(in €: Constraint, in X: Variable, in a: Value)
/I Pre:c € C, Vars(c) = {x,y}, ac D(x), D(y) #0

/l Post: return true iff (x, a) € Valid(c, x, D(y, Q, ¢))

Boolean isEntailed(in €: Constraint)

// Pre: ¢ € C with Vars(c) = {x,y}, D(x) #0, D(y) # 0

// Post: return true iff Va € D(x) : (x, a) € Valid(c, x, D(y, Q, ¢))

o g~ W N =

Specification 2: The isValid and isEntailed Methods.

Combining Constraints on Different Variables Achieving domain consistency on a
combination of (binary) constraints on different variables is an NP-hard problem. An
approximation of domain consistency can be achieved by using the framework proposed
in [11], where primitive constraints produce not only the inconsistent values but also the
valid ones. Our extended AC5(AC4,NAC4) can be used for combining constraints using
the proposed algebra.

5 GNAC4: NAC4 for non-Binary Constraints

This section extends NAC4 to non-binary constraints. It is specified by methods post GNAC4
and valRemoveGNAC4 specified in Algorithms 5 and 6. A tuple or vector (vy, . .., vy,)

is denoted by v and v[z;] denotes the value v;. We denote D(X),,—, the set of tu-

ples v in D(X) with v[z;] = a.Let Y = {x1,...,2,} C X. The set of tuples in
D(z1) X ... x D(z) is denoted D(Y).

Definition 6. Let ¢ be a constraint with x,y € Vars(c), and D(X) C B(X)

Inc(c,z, B(X))={(z,a)| a € D(z) AVv € B(Vars(c))z=q : 7c(v)}
Cons(c,z,y,b)={(z,a)la € D(x) AIv:v[z] =aAv[y] =bAc(v)}.

We define Inc(c, B(X)) =J Inc(c,xz, B(X)) and similarly for Cons(c,y,b).

zeVars(c)
The data structure F' is generalized and satisfies the following invariant at line 21 of
Algorithm 1 (ACS). Let ¢ € C with z € Vars(c):

(3'.x) Vae€ D(z,Q,c): Flz,a,c] ={v € D(Vars(c),Q, ¢)z=alc(v)}
(4".x) Va € D(z): Flz,a,c] C D(Vars(c),Q,¢)z=q
(5".z) setOfSize[z,k,c] ={a € D(x,Q,c))|#Fx,a,c] =k}
(6'.x) localSizelx,c] = #D(x,Q,c)

and similarly for the other variables of c. The time complexity of postGNAC4 is
O(r.d"). The time complexity of valRemoveNGAC4 is O(r.d"~1). However, an amor-
tized analysis of GAC4 shows that each element in F' can only be removed once, hence
a global complexity of O(e.r.d") for all the executions of valRemoveGNAC4. The
complexity of GNACH4 is thus the optimal O(e.r.d").

12

1 POstGNAC4 (in C: Constraint;out A: Set of Values) {
2 | //Pre:ceC

3 | // Post: A = Inc(c)

a)/ + initialization of the F, setOfSize and localSize data structures
5 forall (x in Vars(c), k in 1..#D(Vars(c)\ {x}))

6 setOfSize[Xx,k,c] = 0;

7 forall (x in Vars(c), a in D(x)) FI[x,a.c] =0 ;

8 forall (v in D(Vars(c)): —c(v))

9 forall (x in Vars(c))

10 F[x,V[x],c] += v;

11 A = 0;

12 forall(x in Vars(c), a in D(x)) {

13 k = #F[x,a,C];

14 setOfSize[X,k,C]) += a;

15 if (k==#D(Vars(c) \ {x}))

16 A += (x,a8) ;

17 }

18 }

Algorithm 5: The post Method for GNAC4

6 Experimental Results

This section illustrates the benefits of jointly exploiting supports and forbidden values.
We evaluated AC4, NAC4, and their combination on CSPs involving the positively and
negatively sparse constraints z = ymod k, x = |y — k|, z +y =k, |z —y| = k,
(x + y) mod k = 0 and their negative version, where k is a constant. Three sets of
20 CSPs were generated: a set with only positive constraints (cPos), a set with only
negative constraint (cNeg), and a set with positive and negative constraints (cPosNeg).
The results are presented in Table 2. The name cNeg_50_200_10 means that each CSP
has 50 variables with a domain {0..199}, and 10% of constraints between all the pairs
of distinct variables. The settings were chosen to avoid trivially consistent or trivially
inconsistent CSPs. The constraints were randomly chosen using a uniform distribu-
tion. The values k are also determined using a uniform distribution. Each CSP has
been solved in Comet using four different consistency algorithms: (1) AC4 for each
constraint, (2) NAC4 for each constraint, (3) the combination AC5(AC4,NAC4) using
AC4 for positive constraints and NAC4 for negative constraints and (4) the combination
AC5(AC4* NAC*) which is similar to AC5(AC4,NAC4) but uses specialized (linear)
post methods exploiting the semantics of the constraints. For CSPs with only positive
constraints, AC5(AC4,NAC4) reduces to AC4 and, for CSPs with only negative con-
straints, AC5(AC4,NAC4) reduces to NAC4. The average execution time (in seconds)
is reported. We also report the percentage of consistent CSPs in each data set. The in-
consistency of the CSPs was always detected in the root node of the search tree. For
consistent CSPs, the search is terminated after 1000 fail nodes. The experiments were
performed on a single core of a machine with an Intel Core Duo at 2.8GHz with 4GB
memory.

13

1 valRemoveGNAC4 (in C: Constraint;in y: Variable;in b: Value,
2 out A: Set of Values) {
3 | //Pre:ce C,y e Vars(c),b ¢ D(y,Q,c)
4 | /Il Post: A = Inc(c, D(X, Q,c))n Cons(c,y, b)
5 localSizel[y,Ccl—— ;
6 k = #F[y,b,C];
7 setOfSizely,k,c]) -= b;
8 forall(v in F[y,b,C]) {
9 forall (x in Vars(c)\ {y}) {
10 a = V[x];
11 F[x,ac] =V ;
12 k = #F[x,a,c];
13 setOfSize[x,k+1,C]) —-= a; setOfSizel[x,k,C]) += a;
14 }
15 }
16 AN = 0;
17 s = erVars(c) localSize[x,c];
18 forall (x in Vars(c) \ {y}) {
19 sl = s/localSizel[X,C];
20 forall(a in setOfSize[x,s1,¢] : a in D(x))
21 AN += (x,a);
22 }
23 }
Algorithm 6: The valRemove Method for GNAC4
% Consist.| AC4 NAC4 |AC5(AC4,NAC4)|AC5(AC4* NAC4*)
cPos_10_200_01 55% 0.466 | 19.198 - 0.181
cNeg_50_200_10 100% | 27.596 2.381 - 2.027
cPosNeg_50_200_05 53% | 21.690 | 76.073 1.700 1.454

Table 2: Comparing AC4, NAC4, AC5(AC4,NAC4) and AC5(AC4*/NAC4*).

For positively sparse constraints, AC4 is much more efficient (speedup of 41) than
NAC4, while NAC4 is much more efficient than AC4 (speedup of 11.5) on negatively
sparse constraints. This shows the interest of NAC4. Using a specialized post constraint
leads to a speedup of 2.57 for AC4 and 1.17 for NAC4. For CSPs combining positively
and negatively sparse constraints, NAC4 is 3.5 times slower than AC4, which is is ex-
plained by the more complicated data structures maintained by NAC4. This last set of
CSPs shows the interest of a generic algorithm allowing the combination of different
algorithms such as AC4 and NAC4. The speedup of AC5(AC4,NAC4) compared to
AC4 is 12.7. This speedup increases to 14.9 when using specialized post methods in
ACS5(AC4* NAC4*).

7 Conclusion

This paper proposed the optimal domain-consistency algorithm NAC4 which is not
based on supports but dynamically maintains forbidden values during propagation. The
ideas behind NAC4 can be combined within the AC5 algorithm with the techniques

14

used in AC4, AC6, and AC2001 for exploiting the semantics of constraints and ob-
taining greater efficiency. In particular, forbidden values allow ACS5 to achieve domain
consistency in time O(ed) for classes of constraints in which the number of supports is
O(d?) but the number of forbidden values is O(d). The paper also shows how forbid-
den values and supports can be used jointly to achieve domain consistency on logical
combinations of constraints and to compute validity and entailment of constraints. Ex-
perimental results show that the combination of supports and forbidden values can bring
significant computational benefits in arc-consistency algorithms.

Future work includes the comparison of AC5(AC4/NAC4) with other AC algorithms,
experimental evaluation on other benchmarks, including non-binary CSP instances and
extension of NAC4 to handle negative tables represented in a compact way such as in
[12,13,14].

Acknowledgment Many thanks to Jean-Noé&l Monette for his help in the experimental
setting. This research is partially supported by the Interuniversity Attraction Poles Pro-
gramme (Belgian State, Belgian Science Policy) and the FRFC project 2.4504.10 of the
Belgian FNRS (National Fund for Scientific Research).

References

1. Bessiere, C.: Constraint propagation. In Rossi, F., Beek, P.v., Walsh, T., eds.: Handbook of
Constraint Programming. Elsevier Science Inc., New York, NY, USA (2006)
2. Van Hentenryck, P., Deville, Y., Teng, C.M.: A generic arc-consistency algorithm and its
specializations. Artif. Intell. 57(2-3) (1992) 291-321
3. Bessiere, C., Régin, J.C.: Arc consistency for general constraint networks: Preliminary re-
sults. In: IJCAL (1997) 398-404
. Lecoutre, C.: Constraint Networks: Techniques and Algorithms. ISTE/Wiley (2009)
. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Support inference for generic filtering.
In: CP. (2004) 721-725
6. Mehta, D., van Dongen, M.R.C.: Reducing checks and revisions in coarse-grained MAC
algorithms. In: IJCAL (2005) 236-241
7. Bessiere, C., Régin, J.C.: Local consistency on conjunctions of constraints. In: ECAI-98,
proceedings Workshop on Non Binary Constraints. (1998) 53-60
8. Lhomme, O.: Arc-consistency filtering algorithms for logical combinations of constraints.
In: CPAIOR. (2004) 209-224
9. Van Hentenryck, P., Deville, Y.: The cardinality operator: A new logical connective for
constraint logic programming. In: ICLP. (1991) 745-759
10. Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Design, Implementation, and Evaluation of
the Constraint Language cc(FD). In: Constraint Programming: Basics and Trends. Springer
(1994) 293-316
11. Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: IJCAL (2005)
3540
12. Gent, L.P, Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised arc con-
sistency for extensional constraints. In: AAAT’07. (2007) 191-197
13. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional constraints.
In: CP’07, Springer-Verlag (2007) 379-393
14. Cheng, K.C.K., Yap, R.H.C.: Maintaining generalized arc consistency on ad hoc r-ary con-
straints. In: CP’08, Springer-Verlag (2008) 509-523

(TS

15

