
Constraint-Based Local Search
for Constrained Optimum Paths Problems

Quang Dung PHAM1, Yves DEVILLE1, Pascal Van HENTENRYCK2

1 Université catholique de Louvain B-1348 Louvain-la-Neuve, Belgium
{quang.pham,yves.deville}@uclouvain.be

2 Brown University, Box 1910 Providence, RI 02912, USA
pvh@cs.brown.edu

Abstract. Constrained Optimum Path (COP) problems arise in many
real-life applications and are ubiquitous in communication networks.
They have been traditionally approached by dedicated algorithms, which
are often hard to extend with side constraints and to apply widely. This
paper proposes a constraint-based local search (CBLS) framework for
COP applications, bringing the compositionality, reuse, and extensibil-
ity at the core of CBLS and CP systems. The modeling contribution is
the ability to express compositional models for various COP applications
at a high level of abstraction, while cleanly separating the model and the
search procedure. The main technical contribution is a connected neigh-
borhood based on rooted spanning trees to find high-quality solutions to
COP problems. The framework, implemented in COMET, is applied to Re-
source Constrained Shortest Path (RCSP) problems (with and without
side constraints) and to the edge-disjoint paths problem (EDP). Com-
putational results show the potential significance of the approach.

1 Introduction

Constrained Optimum Path (COP) problems appear in many real-life applica-
tions, especially in communication and transportation networks (e.g., [5]). They
aim at finding one or more paths from some origins to some destinations sat-
isfying some constraints and optimizing an objective function. For instance, in
telecommunication networks, routing problems supporting multiple services in-
volve the computation of paths minimizing transmission costs while satisfying
bandwidth and delay constraints [3, 6]. Similarly, the problem of establishing
routes for connection requests between network nodes is one of the basic op-
erations in communication networks and it is typically required that no two
routes interfere with each other due to quality-of-service and survivability re-
quirements. This problem can be modeled as edge-disjoint paths problem [4].
Most of COP problems are NP-hard. They are often approached by dedicated
algorithms, such as the Lagrangian-based branch and bound in [3] and the vertex
labeling algorithm from [7]. These techniques exploit the structure of constraints
and objective functions but are often difficult to extend and reuse.

This paper proposes a constraint-based local search (CBLS) [10] framework
for COP applications to support the compositionality, reuse, and extensibility

at the core of CBLS and CP systems. It follows the trend of defining domain-
specific CBLS frameworks, capturing modeling abstractions and neighborhoods
for classes of applications exhibiting significant structures. The COP framework
can also be viewed as an extension of the LS(Graph & Tree) framework [8] for
those applications where the output of the optimization model is one or more
elementary paths (i.e., paths with no repeated nodes). As is traditional for CBLS,
the resulting COP framework allows the model to be compositional and easy to
extend, and provides a clean separation of concerns between the model and
the search procedure. Moreover, the framework captures structural moves that
are fundamental in obtaining high-quality solutions for COP applications. The
key technical contribution underlying the COP framework is a novel connected
neighborhood for COP problems based on rooted spanning trees. More precisely,
the COP framework incrementally maintains, for each desired elementary path,
a rooted spanning tree that specifies the current path and provides an efficient
data structure to obtain its neighboring paths and their evaluations.

The availability of high-level abstractions (the “what”) and the underlying
connected neighborhood for elementary paths (the “how”) make the COP frame-
work particularly appealing for modeling and solving complex COP applications.
The COP framework, implemented in COMET, was evaluated experimentally on
two classes of applications: Resource-Constrained Shortest Path (RCSP) prob-
lems with and without side constraints and Edge-Disjoint Path (EDP) problems.
The experimental results show the potential of the approach.

The rest of this paper is organized as follows. Section 2 gives the basic def-
initions and notations. Section 3 specifies our novel neighborhoods for COP
applications and Section 4 presents the modeling framework. Section 5 applies
the framework to two various COP applications and Section 6 concludes the
paper.

2 Definitions and Notations

Graphs Given an undirected graph g, we denote the set of nodes and the set
of edges of g by V (g), E(g) respectively. A path on g is a sequence of nodes <
v1, v2, ..., vk > (k > 1) in which vi ∈ V (g) and (vi, vi+1) ∈ E(g), (i = 1, . . . , k−1.
The nodes v1 and vk are the origin and the destination of the path. A path is
called simple if there is no repeated edge and elementary if there is no repeated
node. A cycle is a path in which the origin and the destination are the same. This
paper only considers elementary paths and hence we use “path” and “elementary
path” interchangeably if there is no ambiguity. A graph is connected if and only
if there exists a path from u to v for all u, v ∈ V (g).

Trees A tree is an undirected connected graph containing no cycles. A spanning
tree tr of an undirected connected graph g is a tree spanning all the nodes of g:
V (tr) = V (g) and E(tr) ⊆ E(g). A tree tr is called a rooted tree at r if the node
r has been designated the root. Each edge of tr is implicitly oriented towards
the root. If the edge (u, v) is oriented from u to v, we call v the father of u in

tr, which is denoted by fatr(u). Given a rooted tree tr and a node s ∈ V (tr),
we use the following notations:

– root(tr) for the root of tr,
– pathtr(v) for the path from v to root(tr) on tr. For each node u of pathtr(v),

we say that u dominates v in tr (u is a dominator of v, v is a descendant of
u) which we denote by u Domtr v.

– pathtr(u, v) for the path from u to v in t (u, v ∈ V (tr)).
– ncatr(u, v) for the nearest common ancestor of two nodes u and v. In other

words, ncatr(u, v) is the common dominator of u and v such that there is no
other common dominator of u and v that is a descendant of ncatr(u, v).

3 The COP Neighborhoods

A neighborhood for COP problems defines the set of paths that can be reached
from the current solution. To obtain a reasonable efficiency, a local-search algo-
rithm must maintain incremental data structures that allow a fast exploration
of this neighborhood and a fast evaluation of the impact of the moves (differen-
tiation). The key novel contribution of our COP framework is to use a rooted
spanning tree to represent the current solution and its neighborhood. It is based
on the observation that, given a spanning tree tr whose root is t, the path from
a given node s to t in tr is unique. Moreover, the spanning tree implicitly spec-
ifies a set of paths that can be reached from the induced path and provides the
data structure to evaluate their desirability. The rest of this section describes
the neighborhood in detail. Our COP framework considers both directed and
undirected graphs but, for space reasons, only undirected graphs are considered.

Rooted Spanning Trees Given an undirected graph g and a target node t ∈ V (g),
our COP neighborhood maintains a spanning tree of g rooted at t. Moreover,
since we are interested in elementary paths between a source s and a target
t, the data structure also maintains the source node s and is called a rooted
spanning tree (RST) over (g, s, t). An RST tr over (g, s, t) specifies a unique
path from s to t in g: pathtr(s) =< v1, v2, ..., vk > in which s = v1, t = vk and
vi+1 = fatr(vi), ∀i = 1, . . . , k− 1. By maintaining RSTs for COP problems, our
framework avoids an explicit representation of paths and enables the definition
of an connected neighborhood that can be explored efficiently. Indeed, the tree
structure directly captures the path structure from a node s to the root and
simple updates to the RST (e.g., an edge replacement) will induce a new path
from s to the root.

The Basic Neighborhood We now consider the definition of our COP neighbor-
hood. We first show how to update an RST tr over (g, s, t) to generate a new
rooted spanning tree tr′ over (g, s, t) which induces a new path from s to t in g:
pathtr′(s) 6= pathtr(s).

Given an RST over (g, s, t), an edge e = (u, v) such that e ∈ E(g) \ E(tr)
is called a replacing edge of tr and we denote by rpl(tr) the set of replacing

edges of tr. An edge e′ belonging to pathtr(u, v) is called a replacable edge of
e and we denote by rpl(tr, e) the set of replacable edges of e. Intuitionally, a
replacing edge e is an edge that is not in the tree tr but that can be added to tr.
This edge insertion creates a cycle C and all the edges of this cycle except e are
replacable edges of e. Let tr be an RST over (g, s, t), e a replacing edge of tr and
e′ a replacable edge of e. We consider the following traditional edge replacement
action [1]:

1. Insert the edge e = (u, v) to tr. This creates an undirected graph g′ with a
cycle C containing the edge e′.

2. Remove e′ from g′.

The application of these two actions yields a new rooted spanning tree tr′ of g,
denoted tr′ = rep(tr, e′, e). The neighborhood of tr could then be defined as

N(tr) = {tr′ = rep(tr, e′, e) | e ∈ rpl(tr), e′ ∈ rpl(tr, e)}.

It is easy to observe that two RSTs tr1 and tr2 over (g, s, t) may induce the
same path from s to t. For this reason, we now show how to compute a subset
Nk(tr) ⊆ N(tr) such that pathtr′(s) 6= pathtr(s),∀tr′ ∈ Nk(tr).

We first give some notations to be used in the following presentation. Given
an RST tr over (g, s, t) and a replacing edge e = (u, v), the nearest common
ancestors of s and the two endpoints u, v of e are both located on the path from s
to t. We denote by lowncatr(e, s) and upncatr(e, s) the nearest common ancestors
of s on the one hand and one of the two endpoints of e on the other hand, with the
condition that upncatr(e, s) dominates lowncatr(e, s). We denote by lowtr(e, s),
uptr(e, s) the endpoints of e such that ncatr(s, lowtr(e, s)) = lowncatr(e, s) and
ncatr(s, uptr(e, s)) = upncatr(e, s). Figure 1 illustrates these concepts. The left
part of the figure depicts the graph g and the right side depicts an RST tr over
(g, s, r). Edge (8,10) is a replacing edge of tr; ncatr(s, 10) = 12 since 12 is the
common ancestor of s and 10. ncatr(s, 8) = 7 since 7 is the common ancestor of
s and 8. lowncatr((8, 10)) = 7 and upncatr((8, 10)) = 12 because 12 Domtr 7;
lowtr((8, 10)) = 8; uptr((8, 10)) = 10.

We now specify the replacements that induce new path from s to t.

Proposition 1. Let tr be an RST over (g, s, t), e = (u, v) be a replacing edge
of tr, let e′ be a replacable edge of e, and let tr1 = rep(tr, e′, e). We have that
pathtr1(s) 6= pathtr(s) if and only if (1) su 6= sv and (2) e′ ∈ pathtr(sv, su),
where su = upncatr(e, s) and sv = lowncatr(e, s).

A replacing edge e of tr satisfying condition 1 is called a preferred replacing
edge and a replacable edge e′ of e in tr satisfying condition 2 is called preferred
replacable edge of e. We denote by prefRpl(tr) the set of preferred replacing edges
of tr and by prefRpl(tr, e) the set of preferred replacable edges of the preferred
replacing edge e on tr. The basic COP neighborhood of an RST tr is defined as

N1(tr) = {tr′ = rep(tr, e′, e) | e ∈ prefRpl(tr), e′ ∈ prefRpl(tr, e)}.

s

1 2

3

45

6

7

8 9

1011

12

t

a. The undirected graph g

s

1 2

3

45

6

7

8 9

1011

12

t

b. A spanning tree tr rooted at t of g

Fig. 1. An Example of Rooted Spanning Tree

s

1 2

3

45

6

7

8 9

1011

12

t

a. current tree tr

s

1 2

3

45

6

7

8 9

1011

12

t

b. tr′ = rep(tr, (7, 11), (8, 10))

Fig. 2. Ilustrating a Basic Move

The action rep(tr, e′, e) is called a basic move and is illustrated in Figure 2. In
the current tree tr (see Figure 2a), the edge (8,10) is a preferred replacing edge,
ncatr(s, 8) = 7, ncatr(s, 10) = 12, lowncatr((8, 10), s) = 7, upncatr((8, 10), s) =
12, lowtr((8, 10), s) = 8 and uptr((8, 10), s) = 10. The edges (7,11) and (11,12)
are preferred replacable edges of (8,10) because these edges belong to pathtr(7, 12).
The path induced by tr is: < s, 3, 4, 6, 7, 11, 12, t >. The path induced by tr′

is: < s, 3, 4, 6, 7, 8, 10, 12, t > (see Figure 2b).
Basic moves ensure that the neighborhood is connected.

Proposition 2. Let tr0 be an RST over (g, t, s) and P be a path from s to t.
An RST trk inducing P can be reached from tr0 in k ≤ l basic moves, where l
is the length of P.

Proof. The proposition is proved by showing how to generate that instance trk.
This can be done by Algorithm 1. The idea is to travel the sequence of nodes of
P on the current tree tr. Whenever we get stuck (we cannot go from the current
node x to the next node y of P by an edge (x, y) on tr because (x, y) is not in
tr), we change tr by replacing (x, y) by a replacable edge of (x, y) that is not
traversed. The edge (x, y) in line 7 is a replacing edge of tr because this edge is
not in tr but it is an edge of g. Line 8 chooses a replacable edge eo of ei that is
not in S. This choice is always done because the set of replacable edges of ei that
are not in S is not null (at least an edge (y, fatr(y)) belongs to this set). Line 9
performs the move that replaces the edge eo by the edge ei on tr. So Algorithm
1 always terminates and returns a rooted spanning tree tr inducing P. Variable
S (line 1) stores the set of traversed edges.

Algorithm 1: Moves
Input: An instance tr0 of RST on (g, s, t) and a path P on g, s =

firstNode(P), t = lastNode(P)
Output: A tree inducing P computed by taking k ≤ l basic moves (l is the

length of P)
S ← �;1

tr ← tr0;2

x← firstNode(P);3

while x 6= lastNode(P) do4

y ← nextNode(x,P);5

if (x, y) /∈ E(tr) then6

ei← (x, y);7

eo← replacable edge of ei that is not in S;8

tr ← rep(tr, eo, ei);9

S ← S ∪ {(x, y)};10

x← y ;11

return tr;12

Neighborhood of Independent Moves It is possible to consider more complex
moves by applying a set of independent basic moves. Two basic moves are in-
dependent if the execution of the first one does not affect the second one and
vice versa. The sequence of basic moves rep(tr, e′1, e1), . . . , rep(tr, e′k, ek), de-
noted by rep(tr, e′1, e1, e

′
2, e2, ..., e

′
k, ek), is defined as the application of the ac-

tions rep(trj , e′j , ej), j = 1, 2, ..., k, where tr1 = tr and trj+1 = rep(trj , e′j , ej),
j = 1, 2, ..., k − 1. It is feasible if the basic moves are feasible, i.e., ej ∈ pre-
fRpl(trj) and e′j ∈ prefRpl(trj , ej), ∀j = 1, 2, ..., k.

Proposition 3. Consider k basic moves rep(tr, e′1, e1), . . . , rep(tr, e′k, ek). If all
possible execution sequences of these basic moves are feasible and the edges
e′1, e1, e

′
2, e2, ..., e

′
k, ek are all different, then these k basic moves are independent.

s

1 2

3

45

6

7

8 9

1011

12

t

a. The current tree tr

s

1 2

3

45

6

7

8 9

1011

12

t

b. tr′ = rep(tr, (7, 11), (8, 10), (3, 4), (1, 5))

Fig. 3. Illustrating a Complex Move

We denote by Nk(tr) the set of neighbors of tr obtained by applying k indepen-
dent basic moves. The action of taking a neighbor in Nk(tr) is called k-move.

It remains to find some criterion to determine whether two basic moves
are independent. Given an RST tr over (g, s, t) and two preferred replacing
edges e1, e2, we say that e1 dominates e2 in tr, denoted by e1 Domtr e2, if
lowncatr(e1, s) dominates upncatr(e2, s). Then, two preferred replacing edges e1
and e2 are independent w.r.t. tr if e1 dominates e2 in tr or e2 dominates e1 in
tr.

Proposition 4. Let tr be an RST over (g, s, t), e1 and e2 be two preferred re-
placing edges such that e2 Domtr e1, e′1 ∈ prefRpl(tr, e1), and e′2 ∈ prefRpl(tr, e2).
Then, rep(tr, e′1, e1) and rep(tr, e′2, e2) are independent and the path induced
by rep(tr,e′1,e1,e′2,e2) is pathtr(s, v1) + pathtr(u1, v2) + pathtr(u2, t), where
+ denotes path concatenation and v1 = lowtr(e1, s), u1 = uptr(e1, s), v2 =
lowtr(e2, s), and u2 = uptr(e2, s).

Figure 3 illustrates a complex move. In tr, two preferred replacing edges (1,5)
and (8,10) are independent because lowncatr((8, 10), s) = 7 which dominates
upncatr((1, 5), s) = 6 in tr. The new path induced by tr′ is: < s, 3 ,1, 5, 6, 7, 8,
10, 12, t > which is actually the path: pathtr(s, 1) + pathtr(5, 8) + pathtr(10, t).

4 The COP Modeling Framework

Our COP modeling framework is implemented in COMET as an extension of
the LS(Graph & Tree) framework which provides graph invariants, graph con-
straints, and graph objectives [8]. Graph invariants maintain properties of dy-
namic graphs, such as the sum of weights of all the edges and the diameter
of a tree, etc. Graph constraints and graph objectives are differentiable objects
which maintain some properties of a dynamic graphs (for instance, the number

1. LSGraphSolver ls();

2. VarPath path(ls,g,s,t);

3. PreferredReplacingEdges prefReplacing(path);

4. PreferredReplacableEdges prefReplacable(path);

...

9. int d = MAXINT;

10. forall(ei in prefReplacing.getSet())

11. forall(eo in prefReplacable.getSet(ei))

12. d = min(d,C.getReplaceEdgeDelta(path,eo,ei));

Fig. 4. Exploring the Basic Neighborhood

of violations of a constraint or the value of an objective function) but also allow
to determine the impact of local moves on these properties, a feature known as
differentiation.

Our COP modeling framework introduces a new type of variable VarPath
to model elementary paths. A path variable path(g,s,t) encapsulates an RST
over (g, s, t) and may appear in a variety of constraints and objectives. For
instance, PathCostOnEdges(path,k), where k is the index of a considered weight
on the edges of a graph, maintains the total weight accumulated along the path
path from s to t, PathEdgeDisjoint(Paths) is a graph constraint defined over
an array of paths that specifies that these paths are mutually edge-disjoint,
while MinEdgeCost(path,k), MaxEdgeCost(path,k) maintain the minimal and
maximal weight of edges on the same path. NodesVisited(path,S) maintains
the number of nodes of S visited by path. These abstractions are examples of
graph objectives which are fundamental when modeling COP problems. For
example, in QoS, we consider shortest path from an origin to a destination with
constraints over bandwidth which is defined to be the minimum weight of edges
on the specified path. As usual in CBLS, the objectives can be combined with
traditional arithmetic operators (with +,-,* operators) and used in constraints
expressed with relational operators.

Figure 4 illustrates the COP framework with a simple snippet to explore the
basic neighborhood. Line 1 initializes a LSGraphSolver object ls which manages
all the VarGraph, VarPath, graph invariants, graph constraints and graph objec-
tives objects. Line 2 declares and initializes randomly a VarPath variable. This
variable encapsulates an RST over (g, s, t) which evolves during the local search.
prefReplacing and prefReplacable are graph invariants which maintain the
set of preferred replacing edges and preferred replacable edges (lines 3-4). Lines
9–12 explore the basic neighborhood to find the best basic moves with respect to
a graph constraint C. The getReplaceEdgeDelta (line 12) method returns the
variation of the number of violations of C when the preferred replacable edge eo
is replaced by the preferred replacing edge ei on the RST representing path.

5 Applications

5.1 The Resource Constrained Shortest Path (RCSP) problem

The Resource constrained shortest path problem (RCSP) [3] is the problem
of finding the shortest path between two vertices on a network satisfying the
constraints over resources consumed along the path. There are some variations of
this problem, but we first consider a simplified version introduced and evaluated
in [3] over instances from the OR-Library [2]. Given a directed graph G =
(V,E), each arc e is associated with a length c(e) and a vector r(e) of resources
consumed in traversing the arc e. Given a source node s, a destination node t
and two vectors L, U of resources corresponding to the minimum and maximum
amount that can be used on the chosen path (i.e., a lower and an upper limit
on the resources consumed on the path). The length of a path P is defined
as f(P) =

∑
e∈P c(e). The resources consumed in traversing P is defined as

r(P) =
∑

e∈P r(e) The formulation of RCSP is then given by:
min f(P)
s.t. L ≤ r(P) ≤ U
P is elementary path from s to t on G.

The RCSP problem with only constraints on the maximum resources consumed
is also considered in [5, 7]. The algorithm based on Lagrangian relaxation and
enumeration from [5] and the vertex-labeling algorithm combining with several
preprocessing techniques in [7] are known to be state-of-the-art for this problem.
We give a Tabu search model (RCSP TABU) for solving the RCSP problem
considering both constraints of minimum and maximum resources consumed.
This problem is rather pure and does not highlight the benefits of our framework
but it is interesting as a starting point and a basis for comparison.

The RCSP Modeling The model using the COP framework is as follows:

void stateModel{
1. LSGraphSolver ls();
2. VarPath path(ls,g,s,t);
3. range Resources = 1..K;
4. GraphObjective go[Resources];
5. forall(k in Resources)
6. go[k] = PathCostOnEdges(path,k);
7. PathCostOnEdges len(path,0);
8. GraphConstraintSystem gcs(ls);
9. forall(k in Resources){
10. gcs.post(L[k] <= go[k]);
11. gcs.post(go[k] <= U[k]);
12 }
13. gcs.close();
14. GraphObjectiveCombinator goc(ls);
15. goc.add(len,1);

16. goc.add(gcs,1000);
17. goc.close();
18. PreferredReplacingEdges prefReplacing(path);
19. PreferredReplacableEdges prefReplacable(path);
20. ls.close();
21.}

Line 1 declares a LSGraphSolver ls. A VarPath variable representing an RST
over (g, s, t) is declared and initialized in line 2. Lines 3–6 create K graph objec-
tives representing resources consumed in traversing the path from s to t where
PathCostOnEdges(ls,path,k) (line 6) is a modeling abstraction representing
the total weights of type k accumulated along the path from s to t3. Variable
len represents the length of the path from s to t (line 7). Lines 9–12 initial-
ize and post to the GraphConstraintSystem gcs (line 8) the constraints over
resources consumed in traversing the path from s to t.

In this model, we combine the graph constraint gcs with coefficient 1000 and
the graph objective len with coefficient 1 in a global GraphObjectiveCombinator
goc to be minimized (lines 14–17). We introduce two graph invariants prefRepla-
cing and prefReplacable to represent the set of preferred replacing edges of
path and the sets preferred replacable edges of all preferred replacing edges of
path (lines 18–19).

The search procedure not described here is based on tabu search on the
neighborhood N2 because the exploration on basic neighborhood N1 gave poor
results. At each local move, we consider the best neighbor which minimizes goc.
We take this neighbor if it improves the current solution. Otherwise, a random
neighbor which is not tabu will be taken. Solutions are made tabu by putting
the edges appearing in the replacements into two tabu lists: one list for storing
the edges to be added and another one for storing the edges to be removed. The
length of these lists are set to be the number of vertices divided by 5.

Experimental Results We compare the model with the algorithm described in
[3] over the benchmarks from OR-Library [2] and over a modification of these
benchmarks. The original benchmarks contains 24 instances whose orders vary
from 100 to 500 and the number of resources are 1 or 10. Instance 14 does not
have any feasible solution. On instances from the original benchmarks, the upper
limit values of the resources consumed is small such that the pruning techniques
used in [3] reduce substantially the problem sizes. The Algorithm in [3] is thus
particularly efficient on these instances. The second benchmark is generated by
modifying some upper limit values as follows. We chose the large instances of
order 500 (instances numbered from 17 to 24). For instances numbered 17–20
(number of resources is equal to 1), we slightly decrease the upper limit values.
For instances numbered 21–24 (number of resources is equal to 10), we multiply
some upper limit values by 10. In order to compare the model with the algorithm

3 Each arc has multiple properties, the property indexed by 0 is the length and prop-
erties indexed from 1 to k are resources consumed in traversing this arc.

instances opt t* min max % avr t min t max t std dev min’ max’ %

rcsp1 131 0.62 131 131 100 0.26 0.25 0.28 0.01 131 131 100
rcsp2 131 0.05 131 131 100 0.26 0.24 0.26 0.01 131 131 100
rcsp3 2 0.60 2 2 100 2.11 0.48 5.82 1.29 2 2 100
rcsp4 2 0.09 2 2 100 3.82 0.82 10.19 2.96 2 7 100
rcsp5 100 0.84 100 100 100 0.83 0.6 0.97 0.1 100 100 100
rcsp6 100 0.84 100 100 100 0.75 0.6 0.95 0.1 100 119 100
rcsp7 6 1.40 6 6 100 21.44 3.48 55.08 15.17 6 9 100
rcsp8 14 1.58 14 14 100 51.28 1.22 183.94 47.03 14 ∞ 80
rcsp9 420 0.04 420 420 100 122.5 2.14 483.43 115.26 420 ∞ 60
rcsp10 420 0.03 420 420 100 71.04 4.14 416.6 92.89 420 ∞ 90
rcsp11 6 0.11 6 6 100 7.75 1.84 18.44 3.81 6 7 100
rcsp12 6 0.09 6 6 100 9.12 2.34 25.12 6.52 6 6 100
rcsp13 448 0.44 448 448 100 90.06 7.94 276.02 66.81 448 ∞ 70
rcsp14 - - - - - - - - - - - -
rcsp15 9 9.28 9 9 100 93.43 31.89 284.25 60.53 9 ∞ 70
rcsp16 17 8.84 17 17 100 279.89 33.43 1049.57 253.27 17 ∞ 30
rcsp17 652 55.91 652 652 100 56.64 19.9 106.07 23.65 652 652 100
rcsp18 652 56.45 652 652 100 57.27 25.61 116.98 22.56 652 652 100
rcsp19 6 0.59 6 6 100 28.15 7.92 66.72 13.32 6 6 100
rcsp20 6 1.07 6 6 100 46.85 12.79 118.63 31.08 6 15 100
rcsp21 858 3.20 858 858 100 242.3 61.68 679.96 190.7 858 ∞ 50
rcsp22 858 1.86 858 858 100 294.94 108.41 827.04 186.13 858 ∞ 50
rcsp23 4 50.74 4 4 100 280.36 11.92 1053.61 279.03 4 ∞ 90
rcsp24 5 54.05 5 ∞ 80 719.92 24.13 1737.43 574.94 5 ∞ 20

Table 1. First Experimental Results of RCSP TABU: Original Instances.

from [3], we implemented that algorithm in COMET (denoted by RCSP BEA)
following the description in the paper.

The RCSP TABU model is executed 20 times with a time window of 30
minutes for each instance. The first experimental results are shown in Table 1
(columns 1–10). The structure of the table is described as follows. Column 2 is
the optimal value of the objective function and column 3 is the execution time
(in seconds) of the RCSP BEA model. Columns 4 and 5 present the minimal and
maximal value of the objective function in 20 runs of RCSP TABU. Column 6
is the rate of finding the optimal solution. Columns 7–10 show the average, the
minimal, maximal, and the standard deviation of the execution time necessary to
find the optimal solution. The results show that the RCSP TABU model found
the optimal solutions in all 20 runs over all instances except the instance rcsp24
(only 15 runs found the optimal solution) and the instance rcsp14 (a feasible
solution does not exist). The table also shows that on the original benchmark,
the RCSP BEA model found optimal solutions faster than our RCSP TABU
model except for some instances (see lines 1, 3, 5, 6, 17, 18, 23, 24).

The experimental results for the second set of benchmarks are shown on
Table 2 (Columns 11–13 should be ignored for now). Column 2 presents the
execution times of the RCSP BEA model for finding optimal solutions. The
remaining columns report results of the RCSP TABU model. Columns 3–6 show

instance t* avr t min t max t std dev %solved avr it

rcsp17 01 57.58 54.16 26.18 159.76 30.63 100 12.95
rcsp17 02 58.88 56.26 30.1 138.43 26.95 100 18.25
rcsp18 01 56.57 57.4 27.35 120.06 23.19 100 17.55
rcsp18 02 56.64 60.32 16.98 266.61 52.56 100 16.95
rcsp19 01 75.56 40.65 11.78 108.21 25.02 100 41.05
rcsp19 02 59.36 56.9 8.74 134.95 35.54 100 56.95
rcsp20 01 74.98 49.32 6.66 136.49 38.17 100 57.4
rcsp20 02 58.34 51.6 8.72 177.01 36.72 100 55.9
rcsp21 01 164.5 72.91 31.74 108.89 22.07 100 11.15
rcsp21 02 154.67 63.88 34.02 128.04 21.13 100 12.15
rcsp22 01 157.6 73.85 28.28 118.14 24.48 100 11.1
rcsp22 02 150.95 72.42 33.07 180.05 30.97 100 11.7
rcsp23 01 130.08 76.99 21.58 216.21 51.99 100 38.9
rcsp23 02 129.34 70.3 21.64 250.5 54.97 100 30.65
rcsp24 01 129.09 153.04 34.35 418.23 113.86 100 75.7
rcsp24 02 129.44 94.54 24.13 402.08 80.31 100 49.25

Table 2. Second Experimental Results of RCSP TABU: More Difficult Instances.

the average, minimal, maximal, and standard deviation of execution times to find
optimal solutions. Column 7 present the percentage for finding optimal solutions.
The final column reports the average of the number of moves. Experimental
results show that our RCSP TABU model found optimal solutions faster than
the RCSP BEA model in most cases. The reason is that, on these instances,
the constraints over resources consumed are easy to satisfy but the search space
is much larger. The reduction techniques in [3] do not reduce the search space
much and the search procedure of the RCSP BEA model is thus much slower.

5.2 The RCSP problem with Multiple Choice Side Constraints

In order to illustrate the flexibility of our modeling approach, we consider the
RCSP problem with the following side constraint over nodes on the path: The set
of nodes V is partitioned into Q subsets S1, S2, ..., SQ and the path is required
to visit at most one node from each subset. This constraint arises when solving a
subproblem in a branch-and-price method for a variation of the vehicle routing
problem, known as Multi-Resource Routing Problem (MRRP) [9]. This problem
cannot be solved with RCSP BEA without a substantial programming effort.

The Modeling The MC RCSP problem is modeled by extending the RCSP
model: the Multiple Choice constraints are stated and posted into the GraphCons-
traintSystem gcs. This can be done by simply adding the following snippet to
the RCSP model:

1. GraphObjective nv[1..Q];
2. forall(q in 1..Q){
3. nv[q] = NodesVisited(path,S[q]);
4. gcs.post(nv[q] <= 1);

5. }
where NodesVisited(ls,path,S[q]) is an abstraction representing the number
of nodes in S[q] visited by the path. Notice that such a side constraint cannot
be handled by the algorithm of [3].

Experimental Results We experiment the model over the benchmark from the
OR-library where the set of subsets S1, S2, ..., SQ is generated as follows. We take
a random feasible solution to the RCSP problem which is an elementary path
v1, v2, ..., vq satisfying the resource constraints. Then, we partition V into Q = 3∗
q sets S1, S2, ..., SQ where vj ∈ Sj ,∀j ∈ {1, 2, ..., q} and the size differences are at
most one. This ensures that there exists at least one feasible solution v1, v2, ..., vq

to the MC RCSP problem. The model is executed 10 times with 10 minutes
of time window for each instance. Experimental results are shown in Table 1
(columns 11–13) where column 13 presents the rate of finding feasible solutions.
Columns 11–12 present the minimal and maximal value of the best solution in
different executions. In most cases, the rate for finding feasible solutions is high
except instances 16 and 24. In some cases, the model finds optimal solutions.

5.3 The EDP problem

We are given an undirected graph G = (V,E) and a set T = {< si, ti >| si 6= ti ∈
V } representing a list of commodities (]T = k). The EDP problem consists of
finding a maximal cardinality set of mutually edge-disjoint paths from si to ti on
G (< si, ti >∈ T). In [4], a Multi-start Simple Greedy and an ACO algorithms
are presented. The ACO is known to be state-of-the-art for this problem. We
propose a local search algorithm using the following model:

void stateModel{
1. LSGraphSolver ls();
2. VarPath path[j in 1..k](ls,g,s[j],t[j]);
3. PathEdgeDisjoint ed(path);
4. ls.close();
5.}

where line 2 initializes an array of k VarPaths representing k paths between
commodities. The edge-disjoint constraint ed is defined over paths from s[i] to
t[i] and is stated in line 3.

In [4], the following criterion is introduced which quantifies the degree of
non-disjointness of a solution S = {P1, P2, ...Pk} (Pj is a path from sj to tj):

C(S) =
∑
e∈E

(max{0,
∑

Pj∈S

ρj(S, e)− 1})

where ρj(S, e) = 1, if e ∈ Pj and ρj(S, e) = 0 otherwise. The number of vio-
lations of the PathEdgeDisjoint(P1, P2, ..., Pk) constraint in the framework is
defined to be C({P1, P2, ..., Pk}) and the proposed local search algorithm tries
to minimize this criterion.

instance com.
MSGA ACO Local search

q t q t q t

mesh25x25.bb
62 36.95 546.854 31.1 880.551 38.85 1165.47
156 44.65 863.007 47.5 965.921 55.5 1082.78
250 50.5 672.962 60.5 972.396 67.95 967.087

mesh15x15.bb
22 20.55 517.601 18.6 500.812 21 384.828
56 27.15 651.27 28.35 988.782 30.3 485.693
90 31 797.534 34.55 746.96 36.05 435.308

bl-wr2-wht2.10-50.rand.bb
50 18.7 688.651 19.6 201.235 20.05 228.382
125 27.2 643.51 31.15 338.446 31.2 241.047
200 36.6 625.138 41.55 164.783 41.7 202.186

bl-wr2-wht2.10-50.sdeg.bb
50 18.65 470.26 19.75 223.396 20.1 311.887
125 28.1 662.916 31.55 163.151 31.85 357.25
200 33.3 487.999 38.05 217.362 38.25 178.417

Table 3. Experimental results for the EDP problem

From a solution which is normally a set of k non-disjoint path, a feasible
solution to the EDP problem can be extracted by iteratively removing the path
which has most edges in common with other paths until all remaining paths are
mutually edge-disjoint as suggested in [4]. In our local search model, we extend
this idea by taking a simple greedy algorithm over the remaining paths after that
extraction procedure in hope of improving the number of edge-disjoint paths.

Experimental Results For the experimentation, we re-implemented in COMET the
Multi-start Greedy Algorithm (MSGA) and the ACO (the extended version)
algorithm described in [4] and compare them with our local search model. The
instances in the original paper [4] are not available (except some graphs). As a
result, we use the instance generator described in [4] and generate new instances
as follows. We take 4 graphs from [4]. For each graph, we generate randomly
different sets of commodities with different sizes depending on the size of the
graph: for each graph of size n, we generate randomly 20 instances with 0.10*n,
0.25*n and 0.40*n commodities. In total, we have 240 problems instances. Due
to the high complexity of the problem, we execute each problem instance once
with a time limit of 30 minutes for each execution. Experimental results are
shown in Table 3. The time window for the MSGA and the ACO algorithms are
also 30 minutes. The Table reports the average values of the objective function
and the average execution times for obtaining the best solutions of 20 instances
(a graph G = (V,E) and a set of r ∗ |V | commodities, r = 0.10, 0.25, 0.40). Table
3 shows that our local search model gives very competitive results. It finds better
solutions than MGSA in 217/240 instances, while MSGA find better solutions
in 4/240 instances. On the other hand, in comparison with the ACO model,
our model finds better solutions in 144/240 instances, while the ACO model
find better solutions in 11/240 instances. This clearly demonstrates the potential
benefits of our COP framework, from a modeling and computational standpoint.

6 Conclusion

This paper considered Constrained Optimum Path (COP) problems which arise
in many real-life applications. It proposes a domain-specific constraint-based lo-
cal search (CBLS) framework for COP applications, enabling models to be high
level, compositional, and extensible and allowing for a clear separation between
model and search. The key technical contribution to support the COP frame-
work is a novel neighborhood based on a rooted spanning tree that implicitly
defines a path between the source and the target and its neighbors, and pro-
vides an efficient data structure for differentiation. The paper proved that the
neighborhood obtained by swapping edges in this tree is connected and pre-
sented a larger neighborhood involving multiple independent moves. The COP
framework, implemented in COMET, was applied to Resource Constrained Short-
est Path problems (with and without side constraints) and to the edge-disjoint
paths problem. Computational results showed the potential significance of the
approach, both from a modeling and computational standpoint.

Acknowledgments We would like to thank Maria José Blesa Aguilera who has
kindly provided some graphs for the experimentation. This research is partially
supported by the Interuniversity Attraction Poles Programme (Belgian State,
Belgian Science Policy) and the FRFC project 2.4504.10 of the Belgian FNRS
(National Fund for Scientific Research).

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, New Jersey, United States, 1993.

2. J. E. Beasley. Or-library, url=http://people.brunel.ac.uk/ mastjjb/jeb/info.html.
3. J. E. Beasley and N. Christofides. An algorithm for the resource constrained

shortest path problem. Network, vol. 19, pages 379–394, 1989.
4. M. Blesa and C. Blum. Finding edge-disjoint paths in networks: An ant colony

optimization algorithm. Journal of Mathematical Modelling and Algorithms, 6(3),
pages 361–391, 2007.

5. W. M. Carlyle and R. K. Wood. Lagrangian relaxation and enumeration for solv-
ing constrained shortest-path problems. Proceedings of the 38th Annual ORSNZ
Conference, 2003.

6. J. C. N. Cĺımaco, J. M. F. Craveirinha, and M. M. B. Pascoal. A bicriterion
approach for routing problems in multimedia networks. Network, 41:206–220, 2003.

7. I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algo-
rithms for the weight-constrained shortest path problem. Networks, 42:135–153,
2003.

8. Q. D. Pham, Y. Deville, and P. Van Hentenryck. Ls(graph & tree): A local search
framework for constraint optimization on graphs and trees. Proceedings of the 24th
Annual ACM Symposium on Applied Computing (SAC’09), 2009.

9. K. Smilowitz. Multi-resource routing with flexible tasks: an application in drayage
operation. IIE Transactions, pages 38(7):555–568, 2006.

10. P. Van Hentenryck and L. Michel. Constraint-based local search. The MIT Press,
London, England, 2005.

