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Abstract. In an increasing number of domains such as bioinformatics, combi-
natorial graph problems arise. We propose a novel way to solve these problems,
mainly those that can be translated to constrained subgraph finding. Our approach
extends constraint programming by introducing CP(Graph), a new computation
domain focused on graphs including a new type of variable: graph domain vari-
ables as well as constraints over these variables and their propagators. These con-
straints are subdivided into kernel constraints and additional constraints formu-
lated as networks of kernel constraints. For some of these constraints a dedicated
global constraint and its associated propagator are sketched. CP(Graph) is in-
tegrated with finite domain and finite sets computation domains, allowing the
combining of constraints of these domains with graph constraints.

A prototype of CP(Graph) built over finite domains and finite sets in Oz is pre-
sented. And we show that a problem of biochemical network analysis can be very
simply described and solved within CP(Graph).

1 Introduction

Combinatorial graph problems are present in many domains such as communication
networks, route planning, circuitry, and recently bioinformatics. The motivation for this
work lies in graph problems of biochemical network analysis. Biochemical networks
model the components of the cells (molecules, genes, reactions, etc...) and their in-
teractions. They can be modeled as directed labeled graphs. Their analysis consists in
assessing the properties of these graphs. Various problems have been solved to better
understand the structure of the biochemical networks [1]. Some of these problems can
be modeled as constrained path finding or constrained subgraph extraction problems.

The analyses performed on biochemical networks are varied and evolve at a rapid
pace. A declarative framework based on constrained programming could enable a quick
expression and resolution of these problems. It would allow the bioinformaticians to
spend less time on implementing dedicated algorithms, keeping the focus on designing
new queries and analyzing the results.

This paper introduces a graph computation domain, called CP(Graph), in constraint
programming. A new type of domain variables, graph domain variables, and constraints
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on these variables are proposed. CP(Graph) can then be used to express and solve com-
binatorial graph problems modeled as constrained subgraph extraction problems.

Related work CP(Graph) is built over the finite set computation domain [2]. It also
shares its lattice structure. The usage of sets in a language able to express and solve
hard combinatorial problems dates back to 1978 with ALICE in the seminal work of
Lauriére [3]. The usage of graphs as structures of symbolic constraint objects was pro-
posed in 1993 by Gervet [4]. In that work, a graph domain is modeled as an endomor-
phic relation domain. In 2002, Lepape et al. defined path variables [5] which were used
to solve constrained path finding problems in a network design context.

Graphs play an important role in constraint programming for the specification, de-
sign and implementation of global constraints [6], but graphs are there mainly used
for representing and exploiting a network of elementary constraints. A global path con-
straint has been proposed in [7, 8] and a global tree constraint in [9]. A path constraint is
included in CP(Graph) and its implementation is based on these related works. Finally,
the theoretical framework is related to the work on edge set quantification in monadic
second order logic of graphs [10] as our kernel constraint language on graphs also al-
lows quantification on nodes and arcs. This work is also an extension of our preliminary
work [11].

The first section presents the variables and constants used in CP(Graph) then the
constraints linking graph domain variables to the other variables. The constraints of
CP(Graph) can be separated into two classes: the kernel constraints (Section2.3) and the
others. The kernel constraints form the minimal set of constraints necessary to express
the other constraints as networks of kernel constraints. We show how to incrementally
build graph constraints by combining kernel constraints for a specific class of problems:
constrained subgraph extraction (Section 2.4).

The combination of kernel constraints is a rapid way of implementing other graph
constraints. However, it is possible to achieve a better filtering by designing a so-called
global constraint (Section 4). In order to characterize and compare the filtering of the
propagators of the constraints in CP(Graph), we introduce mixed consistency in Sec-
tion 3. It consists of bound consistency on sets and graph domain variables coupled
with arc consistency on finite domain variables.

Finally, in Section 6, the practicality of CP(Graph) is assessed by expressing a
CP(Graph) problem for a biochemical network analysis problem and by analyzing the
evolution of computation time and memory usage with problems of increasing size.

Contributions the main contributions of this work are the following:

— graph domain variables, and constraints on these variables are the major contribu-
tion of this work. We show how to use them to express other constraints on graphs
and to solve constrained subgraph extraction problems. We generalize the mode of
usage of the reachability and path constraints by allowing end-nodes to be domain
variables.

— Definition of a graph computation domain in CP.

— Specification of a minimal set of constraints on graphs.



— Suitability assessment for expressing and solving the class of constrained subgraph
extraction problems.

— Practical assessment of the suitability of CP(Graph) for constrained subgraph ex-
traction problems.

2 The CP(Graph) Framework

This section presents the basics of the CP(Graph) computation domain. Graph domain
variables and domains are described along with their integration with finite sets and
finite domains. Then, primitive constraints called kernel constraints are presented. Fi-
nally, more complex constraints are built using the kernel constraints. The construction
of the their propagator and the analysis of their consistency is presented in section 3.

2.1 Constants and Variables

A graph g = (sn, sa) is a set of nodes sn, and a set of arcs sa C sn x sn. We are first
considering directed graphs. An extension to undirected graphs is handled in a later
section.

CP(Graph) introduces graph domain variables (gd-variables for short) in constraint
programming. However, CP(Graph) deals with many types of constants and variables
related to graphs. They are presented in Table 2.1. This table presents the notations used
in this paper for constants and domain variables of each type. It also shows one partic-
ular aspect of graphs: the inherent constraint stating a arc can only be present if both
end nodes are present too. Nodes and Arcs in CP(Graph) can be labeled with integer
weights through the use of weight functions. Such functions are seen as constants in
CP(Graph), there is no domain variable for weight functions. CP(Graph) can handle
graphs with multiple weights per node or arc by using multiple weight functions.

Type Representation Constraint Constants | Variables
Integer 0,1,2, ... 20,01, - Io, I, ...
Node 0,1,2, ... no,N1,... |[No, N1, ...
Arc (0,1),(2,4), aop, i, ... AO7A17...
Finite set {0,1,2},{3,5} S0, 81y .- So,Sl,...
Finite set of nodes|{0, 1,2}, {3,5} ... sng, sni,...|SNo, SNy, ...
Finite set of arcs |{{(0, 3), (1,2)}, ... sao, sai, ... |SAq, SA1, ...
(SN,SA)
Graph SN a set of nodes SAC SN x SN|go,q1,... |Go,G1, ...
S A aset of arcs
Weight functions | U A — IN Wo, W1, ... -

Table 1: The different variables and constants of CP(Graph) along with their notations.
Note only the graph has an inherent constraint. A'and.A are the universal sets of nodes
and arcs.

Similarly to sets, there exists a partial ordering among graphs, defined by graph in-
clusion: given g1 = (sn1, sa1) and ga = (sn2, sa2), g1 C go iff sny C sng and sa; C



saz. We define graph domains as the lattice of graphs included between two bounds:
the greatest lower bound and the least upper bound of the lattice.

The domain of each gd-variable is defined according to a least upper bound graph
and a greatest lower bound graph. The least upper bound graph defines the set of possi-
ble nodes and arcs in the graph variable, while the greatest lower bound defines the set
of nodes and arcs which are known to be part of the graph variable (see Figure 1). If G is
a gd-variable, we will denote dom(G) = [g1, gu] with g, = glb(G) and gy = lub(G).
If S is a finite set variable, we denote dom(S) = [sr,su], with s;, = ¢lb(S) and
sy = lub(S).

lub z\. . glb
> 3, bed
\ :K. -
Fig. 1: Hlustration of a small graph domain with its least upper bound (lub) and greatest

lower bound (glb). Greyed nodes and arcs are displayed for convenience but are not part
of the respective graphs.

The presence of arc variables and set of arc variables along with the nodes and set of
nodes is motivated first by the works on expressiveness of monadic second order logic
on graphs [10]. That work shows that a logic where it is possible to existentially quantify
sets of nodes can be strictly less expressive than one where it is possible to existentially
quantify sets of nodes and sets of arcs. Another incentive, in the constraint community,
was the comparison of the models used in [7, 8] and [12] for a path constraint. Successor
finite domain variables were used in [12] while [7, 8] use arc boolean variables. Yet the
path propagator in [8] reasons about mandatory nodes. It is clear that providing only
arc variables is impractical as a graph cannot be constrained to contain isolated nodes
and constraints about nodes must be stated as disjunctions of arcs. Hence, offering node
and arc variables enables to express more CSPs and properties about graph variables.

2.2 Classical Finite Set Constraints

CP(Graph) is integrated with the finite domain and finite set computation domains.
Classical constraints from these domains can be combined with graph constraints to
express a CSP in CP(Graph). We present the minimal standard set of constraints on
finite domain and finite sets assumed to be present in the system.

The set constraints used in this paper are set inclusion (S; C S9), set intersection
(S1 N Sy = Ss), set difference (S; \ Sz = Ss), set cardinality (#S = I), set mem-
bership (I € S and I ¢ S), set inequality (S;1 # S2) and the set weight constraint
(Weight(S,w, I)) which holds if I is the sum of the weights of the elements of .S ac-
cording to the weight description w. We also suppose it is possible to post a constraint
for each value in a set variable S: Vi € S : C'(4). This can be done in two ways. Either
by posting #s; constraints of the form i € S = C'(4) or by waiting until 4 is known to



be in S to post the constraint C(i) : o =i € S — C(i) While the former filters more,
the latter uses less memory.

In addition to the boolean constraints like implication, negation, conjunction and
disjunction, we use the constraint of sum (linear combination of finite domain variables
using constant factors) in CP(Graph).

2.3 Kernel Graph Constraints

The kernel graph constraints constitute the minimal set of constraints needed to express
the other graph constraints of CP(Graph). These constraints relating graph variables
with arc and node variables provide the suitable expressiveness of monadic second order
logic [10].

The kernel graph constraints are ArcNode, Nodes and Arcs.

Ares(G,SA) SAisthe set of arcs of G.
Nodes(G,SN) SN is the set of nodes of G.

ArcNode(A, N1, No) The arc variable A is an arc from node N; to node Ns. This
relation does not take a graph variable into account as every arc and node has a unique
identifier in the system. If A is determined, this constraint is a simple accessor to the
tail and head of the arc A and respectively if both nodes are determined.

All CMS-definable sets of graphs [13] can be defined as constraints in CP(Graph)
by using these kernel constraints (CMS stands for countable monadic second order
logic). This can be shown by translating the building blocks of CMS logic of graphs
into CP(Graph). Monadic means that only 1-ary relation (i.e. sets) can be quantified.
CP(Graph) allows quantification over sets of nodes and arcs. Countable stands for a
predicate telling the size of a set. It is handled by the set cardinality constraint. The
edghinary relation on nodes and the incidence (inc) ternary relation on an arc and two
nodes are expressed by incy(a, ni,n2) = ArcNode(a,ni,n2) Ani € Nodes(g) A
ny € Nodes(g) N a € Ares(g) and edgg(nl,ng) = Ja : ArcNode(a,ni,m2) A
incy(a, n1,n2) Where a is determined by n, and no. We do not know a common graph
property which cannot be expressed using CP(Graph).

2.4 Building graph constraints over kernel constraints

While the kernel constraints enable to express the target problems of CP(Graph), defin-
ing higher level constraints eases the formulation of these problems. Such constraints
can be built as combinations of kernel constraints. Such networks of constraints may
not propagate as much as a dedicated global propagator for the constraint but are useful
as a reference implementation or as a quickly implemented prototype. We focus here
on constraints suitable for constrained subgraph extraction problems.

To alleviate the notation, we use a functional style for some constraints by removing
the last argument of a constraint and considering that the resulting expression denotes
the value of that omitted argument (e.g. Nodes(G) denotes SN in Nodes(G, SN)).
We also write (n1,n2) € Ares(G) instead of a € Ares(G) A ArcNode(a,nq,na).



The SubGraph(Gy, G2) constraint can be translated to
SubGraph(G1,G2) = Nodes(G1) C Nodes(Gz), Ares(G1) C Ares(Ga)
To cope with linear optimization problems we introduce the Weight constraint for
graphs:
Weight(G,w,I) holds if I is the total weight associated to the graph variable G
according to the weight function w.
Weight(G,w,I) = I = Weight(Nodes(G),w,) + Weight(Arcs(GQ), w,)

Where w,, is the restriction of the weight function to the arcs domain, and respectively,
wy, for nodes. CP(Graph) allows to express and solve constrained subgraph optimization
problems and some examples are given in the next section. A constrained shortest path
problem is also presented in the experiments section.

InNeighbors(G, N,SN) holds if SN is the set of all nodes of G' from which an
inward arc incident to IV is present in G. If NV is not in G then SN is empty. It can be
expressed as the following network of constraints.

InNeighbors(G,N,SN) = SN C Nodes(G)AN(#SN >0« N € Nodes(G)) A
Vn € Nodes(gy) :m € SN < (n,N) € Ares(G)

The last constraint must be posted for all possible member of SNV and for all possible

in-neighbor of . In this expression it is posted on a superset of these sets: Nodes(g ).

Similar expressions exist for inward arcs and the ”out” versions of these constraints.
OutDegree and InDegree are the cardinality of these sets.

Reachable(G,N,SN) states SN is the set of nodes reachable from N in G. Again,
G, N and SN are domain variables. This constraint is presented in [14] in the case of NV
determined. First we need to define the QuasiPath(G, SN, N, ny) constraints stating
the graph induced by SNV in G is a path from N to n o, with possibly additional mutually
disjoint cycles also disjoint from the path [10]. This is expressed by forcing every node
in SN to have an inward and outward degree of 1 in the induced subgraph (except for
the source NV and sink ns).

QuasiPath(G, SN, N1, N3) = Ny € SN ANy € SNA
Vn € SN : O = OutNeighbors(G,n) N SN A #0 < 1A (n # Na) = #0 = 1A
Vn € SN : I = InNeighbors(G,n) NSNAH#I <1A(n#N)=#[=1
Then Reachables(G, N, SN) is expressed by:
Vn € SN : 3SN' C Nodes(G) : QuasiPath(G,SN', N,n)

The directed acyclic graph constraint DAG(G) states a graph cannot contain cycles.
DAG(G) can be translated using this property: the set of in-neighbors of each node
must be disjoint from the set of nodes it can reach.

DAG(G) =Vn € Nodes(G) : InNeighbors(G,n) N Reachable(G,n) =)

The path constraint can be expressed in a similar way:



Path(G, N1, N2) holds if G is a path from node N, to node N, all of which are
domain variables.

Path(G) = QuasiPath(G, Nodes(G), N1, No)A#Nodes(G) = #Ares(G)+1

The InducedSubGraph(G1,G2) constraint is used in next section to express a k-cut
problem.

InducedSubGraph(Gy,G2) holds if G4 is an induced subgraph of the graph G5 i.e.
the greatest subgraph of GG containing the nodes of GG;.

InducedSubGraph(G1,G2) = SN = Nodes(G2) \ Nodes(G1)A
V(nl,n2) € Arcs(Ga) : (n1 € SN Vng € SN) XOR (nl,n2) € Ares(G)

2.5 Combining Graph Constraints to Solve Problems

Numerous NP(Hard) graph problems can be stated in CP(Graph). The graph constraints
presented in other works [6—8] can be implemented in the CP(Graph) framework and
used to solve these problems. CP(Graph) is particularly suited for problems of subgraph
extraction. We list a few example problems to show the expressiveness and conciseness
of CP(Graph). In these expressions, SubGraph(G, g) is used to declare a new graph
domain variable G with initial upper bound g. The C'ycle(G) constraint holds if G is a
closed directed path.

Finding the TSP in graph ¢ with weights w: minimize Weight(G, w) s.t.
SubGraph(G, g) A Cycle(G) A Nodes(G) = Nodes(g)

Finding the shortest weight constrained (maximum weight k) path of ¢ with weights
w, length function w;, start node n1, end node nq: minimize Weight(G,w;) s.t.

SubGraph(G, g) A Path(G,ni,n2) AN Weight(G,w) < k

Finding the minimum vertex k-cut of g with source nodes {n 1, . .., n,}, target node
n, and the weight function w :minimize Weight(Nodes(g) \ Nodes(G),w) s.t.

InducedSubGraph(g, G) AYi € [1,n] : ny ¢ Reachable(G,n;)

Prize Collecting Steiner Tree Problem: ¢ is the initial graph, the arc weights and
node prices are w, and w,,: minimize Weight(G,w,) + Weight(SN,w,) s.t.

SubGraph(G, g) A Tree(G) AN SN = Nodes(g) \ Nodes(G)

— Graph partitioning problem: equicut of a graph g of even order:
minimize # (Arcs(g) \ (Ares(G1) U Ares(Gz))) subject to:

SubGraph(Gy, g) A SubGraph(Ga, g) A Nodes(G1) U Nodes(G3) =
Nodes(g) AN #Nodes(G1) = #Nodes(Gz) = %#Nodes(g)

Section 6 will present the expression of a constrained shortest path finding problem:
finding the shortest simple path in a graph given a set of nodes which must be present
in the path and a set of pairs of mutually exclusive nodes.



3 Consistency in CP(Graph)

This section covers the propagation rules of the constraints in the kernel CP(Graph)
language. We first define mixed consistency for constraints combining graph, finite set
and finite domain variables. The constraints of the kernel are mixed consistent and
mixed consistency will be applied to other constraints in a later section.

3.1 Mixed Consistency

Given a constraint C'(X) over the variables X = X;,..., X,, with domains D =
D1 x ... x D, we first define the set of solutions of the constraint C' on the domain D
of its variables.

Sol(C, D) ={xe€D|C(x)}

We denote Sol(C, D)[X;], the projection of this set on the 4! component of its tuples.
We also note FD for finite domain variables, FS for finite set variables and GD for graph
domain variables.

Definition 1. For a graph domain variable or a finite set variable X; with domain
D; = [z, z;u], we say C isbound consistent on X; with respect to D iff

x;r, = glb(Sol(C, D)[X;]), ziv = lub(Sol(C, D)[X;])

Definition 2. For a finite domain variable X ; with domain D; = {ag, a1,...,a,}, we
say C'isarc consistent on X; with respect to D iff

Definition 3. C ismixed consistent withrespectto D iffforall 1 <i <n
if X;isaGD or FSvariable, C'isbound consistent on X'; with respect to D,
if X;isaFD variable, C isarc consistent on X; with respect to D.

3.2 Propagation Rules of the Kernel Constraints

This section covers the consistency and propagation rules of the kernel constraints of
CP(Graph). All of the rules have the domains of the variables implicitly defined by
dom(G) = [gr, gv], with g = (gsnr,gsar) and g = (gsnu, gsay), dom(SA) =
[sar, say] and dom(SN) = [snr, sny].

We consider an O(1) complexity for the inclusion or exclusion of a value in/out of a
finite domain or finite set bound and similarly for an arc of a graph domain variable. As
we consider the internal constraint of graphs (gsa x C gsnx X gsnx where X stands
for both U and L), the removal of a node of G can trigger up to d arc removals where d
is the maximal degree of g;;. We also consider a propagator knows for which variable
and value it is run in case of an update event.



The Arcs Constraint The Arcs(G, SA) constraint propagation rule is unique. Its ap-
plication leads to bound consistent domains. The new bounds of the variables G and
S A are denoted with a prime. Obviously, only the set of arcs of the bounds of G are
updated.

say, = gsa, = sar, U gsar,

/ /
say = gsay = say N gsay

The complexity of this rule is O(1) per update as it just suffices to forward update events
from one variable to the other.

The Nodes Constraint The propagation rule of the Nodes(G, SN) constraint is sim-
ilar to the Arcs propagation rule:

sn = gsn, = snp Ugsnp,

sny = gsny = sny N gsny

This rule also achieves bound consistency and its complexity is O(d) per update where
d is the maximal degree of g¢7. That is O(|say| + |snu|) over a branch of the search
tree as each node and arc can only be removed once.

The ArcNode Constraint The ArcNode(A, N1, N2) constraint links an arc variable
to two node variables. The update of the domains is straightforward:

dom/(A) = dom(A) N (dom(N71) x dom(N3))

dom/(N1) = {n1 € dom(Ny)|3na € dom(Nz), (n1,n2) € dom(A)}
dom’(N3) = {ny € dom(N2)|3n1 € dom(N1), (n1,n2) € dom(A)}

Once a fixed-point is reached, the domains are arc-consistent. The complexity is similar
as the previous one. The removal of a node from a node domain leads to at most d
removals of arcs. Here the graph under consideration is the union of the initial least
upper bounds of the graph variables in the CSP.

4 Global Constraints

In Section 2.4, we showed how graph constraints can be built by combining kernel
constraints. It however appears that dedicated propagators can be more efficient than
a combination of propagators of kernel constraints. This amounts to write a so called
global constraint, where global refers to operational globality when more pruning is
achieved or algorithmic globality when the same level of pruning is achieved [15].

We here focus on the Path and Reachable constraints and sketch global propaga-
tors for these constraints. However, other existing global constraints enforcing graph
properties or relations between graphs can be integrated with CP(Graph).



4.1 The Reachable Constraint

Reachable(G, N, SN) holds if SN is the set of nodes reachable from NV in G. This
constraint encodes the transitive closure of the adjacency relation of the graph. It is
expressible using kernel constraints but it requires to post a lot of constraints (see sec-
tion 2.4). If more pruning is to be done (detection of cutnodes, bridges, etc...), then
even more propagators have to be posted. On the other hand, an imperative algorithm
can handle these problems easily. Computation of connected components, strongly
connected components, bridges, etc... can be done with variants of depth first search
in linear time. Incremental algorithms have also been designed to handle dynamic
graphs [16]. Hence a global propagator is much more efficient for such constraints.

In CP(Graph), IV is a node variable. Constraint propagators have been defined for a
determined source node N = n [14, 11]. It is however simple to adapt these propagators
to an unknown source. A simple schema is to execute these propagators for each of the
values of the domain of the source node and perform their filtering for the values on
which they all agree. For instance, if for each value in the domain of IV, the node n of
G is found to be mandatory, then it is indeed mandatory for any value of N. If one of
these propagators would do a pruning which is inconsistent with the current domains,
then it means the according value of NV can be removed from its domain. By applying
this generic reasoning to the existing propagators it is possible adapt them.

4.2 The Path Constraint

We introduce the constraint Path(G, N1, N2, w, I), the global version of

(Path(G, N1, N2) AN Weight(G,w, I)). It holds if G is a path from Ny to N, whose
total weight is I according to the weight function w. With such a constraint, it is possible
to do cost based filtering. Note that all parameters of this constraint can be variables
except the weight function w which must be a constant. In this section, we show how
to adapt the work of [7] on cost-based filtering to this constraint in CP(Graph).

The most general mode of usage of the Path constraint is the case with four un-
bound variables. However it can be directly reduced to a problem with two unbound
variables G’ and I : Path(G’,ns,ne,w’, I) by introducing a virtual source n 5 and sink
ne. These virtual nodes are assigned a null weight in w’. We do not introduce an ad-
ditional graph domain variable G’ to do this filtering. We just pretend to temporarily
update the data structure of the least upper bound of G, gy (the updated gy is noted
gyy) to add these nodes, arcs and weights. The problem of filtering in this structure is
equivalent to the filtering in the following problem:

Path(G',ng,ne,w', I)
Nodes(G') = Nodes(G) U {ns,ne}
Ares(G') = Ares(G) U {(ns,n)|n € dom(N1)} U {(n,n.)|n € dom(Ns)}

yo Jw(x) ifred,
W= ifreac

10



The domains of N, and N, are easily filtered: all filtering made on the arcs incident to
ns and n. is reflected on the domains of N; and Na.

dom(Ny) :== OutNeighbors(gy,ns), dom(Nz):= InNeighbors(gy,ne)

By introducing these virtual nodes, we can also move all the weights to the arcs
(average of the end-nodes weights) while preserving the total weights of all the paths
from ng to n.. It allows to apply an algorithm for the cost-based filtering of the domain
of G using the lub of the domain of I. This consists in a shorter path constraint presented
for arc-weighted graphs in [7]. A lower bound of I is also obtained as a side product of
this algorithm. The complexity of this filtering is O(|gsa|.|gsn|log|gsn|) over a branch
of the search tree.

Using the lub of I to filter the domain of G is possible by applying the longest
path propagator for directed acyclic graphs of [17] on the component graph (the graph
where the strongly-connected components of the original graph are condensed to a sin-
gle node).

5 Undirected Graphs

CP(Graph) also supports undirected graphs through an undirected view of a directed
graph variable. Undirected graphs are handled like directed graphs by the framework,
only the constraints differ. Some constraints have an undirected semantic while others
have a directed graph semantic. Some graph properties like being a single connected
component are indeed defined for undirected graphs. As a undirected graph is a special
case of directed graph, properties defined for directed graphs can be applied as con-
straints on undirected graphs. On the other hand, a constraint with an undirected graph
semantic can be applied to a directed graph as it just operates on the undirected view of
the graph (regardless of the orientation of the arc). This view is handled by an additional
constraint handling the unordered couples of nodes for the undirected arcs:

UndirArcNode(A, N1, N2) A is an undirected arc between node N; and N. This
relation holds iff ArcNode(A, N1, Na) or ArcNode(A, N2, N1) holds.

6 Experiments

This section describes the prototype of CP(Graph) and the constrained path finding
experiments we did to show its practicality. Then, it discusses the results of the experi-
ments.

6.1 Prototype of CP(Graph) implemented in Oz/Mozart

We implemented a prototype of CP(Graph) over the Oz/Mozart[18] constraint program-
ming framework. In this prototype, graph domain variables are implemented using set
variables. One set is used for the nodes of the graph and one for the arcs of the graph.
This prototypes allows to state constraint satisfaction problems as well as optimization
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problems. The constraint propagators are implemented as combinations of kernel con-
straints or as dedicated global propagators. We implemented the kernel constraints, a
reachability propagator and the path propagator of [8] using the Oz language. The other
constraints are implemented by combining these constraints with finite set constraints.
As Mozart does not support finite sets of couples of integers, we use an integer encod-
ing of arcs. ArcNode provides an accessor for the end nodes of an arc and for the arc
number of a couple of nodes through the use of hash tables.

6.2 Biochemical network analyses

We used CP(Graph) to model and solve a problem for biochemical network analysis.
Biochemical network analysis consists in assessing the properties of the biochemical
networks. These networks are composed of all the genes, molecules, reactions and con-
trols (e.g. catalysis of a reaction) and their interactions, which may occur in one or
several organisms. They can be modeled by a labeled simple digraph [1, 11].

We focus here on metabolic networks, that is biochemical networks describing reac-
tions and their substrates and products. A pathway is a specific subgraph of a metabolic
network which has a known function in the metabolism. Such pathways were identified
experimentally and described in the molecular biology literature.

One type of analysis of biochemical networks consists in trying to computationally
find pathways in the metabolic network. An application of this type of analysis lies
in the explanation of DNA chip experiments: in a given context, the cell will activate
a subset of its possible reactions. A DNA chip enables to list the activated reactions.
Given such a set of reactions actually used by the cell, biologists would like to know
which pathways were at work in the cell. Our approach is to first develop a CSP able to
recover known pathways and then use it to discover new pathways as a result of a DNA
chip experiment.

Constrained Shortest Path Finding As about half of the known pathways are simple
paths [19], one type of experiment consists in trying to find these pathways by using
constrained path finding in a directed graph (knowing a few nodes of the path). In [20],
several computational path finding experiments were described. The best experiment
consisted in doing point-to-point shortest path finding in a network where each node
has a weight proportional to its degree.

Our experiment consists in redoing the former experiment with an additional con-
straint of inclusion of some intermediate reactions and mutual exclusion for certain pairs
of reactions. These pairs are reverse reactions (the reaction from substrates to products
and the one from products to substrates). Most of the time, these reactions are observed
in a single direction in each species. Hence we wish to exclude paths containing both
in our experiment. These two addtional constraints could not be easily integrated in the
previous dedicated algorithm [20]. In CP(Graph) it just consists in posting a few addi-
tional constraints. If n, ..., n,, are the included reactions and (r;1,7i2),0 < ¢ < ¢ the
mutually exclusive nodes, the program looks like: miminize Weight(G, w) s.t.

SubGraph(G, g) A Path(G,n1,nm) AV0 < i <m:n; € Nodes(G)A
Vi € [0,t] : (rin ¢ Nodes(G) V ria ¢ Nodes(G))
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In our experimental setting we first extract a subgraph of the original metabolic bipartite
digraph by incrementally growing a fringe starting by the included nodes. Then, given
a subset of the reactions of a reference pathway, we try to find the shortest constrained
path in that subgraph. The first process of extraction of a subgraph of interest is done for
efficiency reasons as the original graph is too big to be handled by the CSP (it contains
around 16.000 nodes). The results are presented in Table 2, it shows the increase of
running time, memory usage and size of the search tree with respect to the size of the
graph for the extraction of three illustrative linear pathways shown in [20]. All reactions
are mandatory in the first experiment. The results of another experiment where one
reaction out of two successive reactions in the given pathway is included in the set
of mandatory nodes, is presented in Table 3. The running time increases greatly with

Glycolysis (m=8) Heme (m=8) Lysine (m=9)

Size| t¢| Time|[Nodes| Mem||Size| ¢| Time|Nodes| Mem||Size| t| Time/Nodes| Mem
50 | 12 0.2 20| 2097||50 | 22 0.2 32| 2097||50 |18 0.2 38 2097,
100 | 28 2.5| 224| 2097|[100| 36 0.3 22| 2097||100|40 4.7 652 2097
150 | 48| 41.7| 1848| 4194|[150| 62 1.0 28 2097|| 15056 264.3 12524 15204
200 | 80| 55.0| 1172| 5242(|200| 88 398.8| 7988 18874(200|70 - - -
250 | 84| 127.6| 4496| 8912(|250(118| 173.3| 2126 9961(250|96 - - -
300 |118|2174.4/16982(60817||300 | 146 1520.2| 21756 72876| 300/ 9§ - - -

Table 2: Comparison of the running time [s], number of nodes in the search tree and
memory usage [kb], for the 3 pathways and for increasing original graph sizes. m is the
number of node inclusion constraints and ¢ the number of mutual exclusion constraints.

Glycolysis (m=5) Heme (m=5) Lysine (m=5)

Size| t¢| Time|Nodes| Mem||Size| ¢|Time|Nodes|Mem||Size| t| Time|Nodes| Mem
50 | 12 0.2 22| 2097||50 | 22| 0.3 44(2097||50 |18 0.1 16/ 2097
100| 28 2.5/ 230 2097(|100| 36/ 0.9 78/ 2097|/100|40 13.3 1292 3145
150 | 48 79.3| 5538| 6815(|150| 62| 7.3| 144 3145/|150|56 260.4 8642 14155
200 | 80 39.9| 1198 5767|[200| 88| 57.3] 950| 5242||200|70 4330.3 7455q 192937
250 | 84| 323.6| 5428 14680||250|118 36.0, 350/ 8388||250|9¢ - - -
300 |118|10470.8|94988(296747|| 300|146 - - - 1300|996 - - -

Table 3: Same experiment as in Table2, but with one reaction node included every two
(m = 5 instead of 8 or 9).

the size of the graphs. The program can however be stated in a few lines and first
results obtained the same day the experiment is designed. The limitation on the input
graph size does not guarantee to get the optimal shortest path in the original graph. This
should however not be a major problem as biologists are most of the time interested in
a particular portion of the metabolic graph. The rapidity of expression and resolution of
such a NP(Hard) [7] problem reduces this size limitation.
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Future work focuses on the limitation of running time explosion with graph size
which can be obsverved in the results tables. Current results are better than those ob-
tained with our other implementations of graph variables [21, 11]. We wish to design
more efficient heuristics for labelling (a first-fail strategy from [12] has been used).
Cost-based filtering will be implemented and used in order to limit the size of the graph
according to an upper bound of the cost of the path. A second aspect of our future work
consists in finding which constraints are needed to recover known pathways as it was
shown in [20] that non-constrained shortest paths are not able to recover all of them.

7 Conclusion

This paper introduces the CP(Graph) computation domain with graph domain variables
in order to state and solve subgraph extraction problems. CP(Graph) provides finites
domains and finite sets of nodes and arcs along with the graph domain variables as this
is more expressive than nodes or arcs alone.

The kernel constraints, a minimal set of constraints in order to build other graph con-
straints and problems, are introduced with their achieved consistency and complexity.
Graph constraints are built using the kernel constraints and we sketch a global propa-
gator for some of them. CP(Graph) provides a framework for the integration of existing
and new global constraint on graphs. We describe a path constraint based on [7, 8], with
domain variables for the source and sink. Finally we showed that CP(Graph) can be
used to simply express and solve a problem in biochemical network analysis requiring
up to now a dedicated and sophisticated algorithm.

In the proposed CP(Graph) prototype, graph domain variables are represented by a
finite set of nodes and a finite set of arcs. A dedicated data-structure for graph domain
variables will be designed and compared to the current set implementation. It will most
probably consist in a graph data-structure for both bounds of the graph domain vari-
able. The integration of CP(Graph) in an existing constraint solver will then be pursued
by integrating graph variables as native variables of the system. We are working on a
Gecode [22] implementation.

The application of CP(Graph) to bioinformatics problems will be pursued. This
should result in the need for more memory effective graph domain variables and bet-
ter branching strategies as big graphs (e.g. 16000 nodes, 45000 arcs) are under con-
sideration in this field. CP(Graph) will also be compared to other implementations of
combinatorial graph problems using constraint programming.

CP(Graph) allows to state problems about multiple graphs. An important problem
among those is the graph isomorphism problem. We are adapting the global constraints
of (mono/iso)-morphism and subgraph (mono/iso)-isomorphism of two graph domain
variables from the techniques developed in [23].
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