
Synthesis of Programs in Computational Logic

David Basin1, Yves Deville2, Pierre Flener3, Andreas Hamfelt4, and J�rgen
Fischer Nilsson5

1 Department of Computer Science
ETH Zurich

Z�urich Switzerland
basin@inf.ethz.ch

2 Department of Computing Science and Engineering
Universit�e catholique de Louvain,

Pl. Ste Barbe 2, B-1348 Louvain-la-Neuve, Belgium
yde@info.ucl.ac.be

3 Computing Science Division,
Department of Information Technology

Uppsala University, Box 337, S-751 05 Uppsala, Sweden
Pierre.Flener@it.uu.se

4 Computer Science Division,
Department of Information Science

Uppsala University, Box 513, S-751 20 Uppsala, Sweden
Andreas.Hamfelt@dis.uu.se

5 Informatics and Mathematical Modelling
Technical University of Denmark

DK-2800 Lyngby, Denmark
jfn@it.dtu.dk

Abstract. Since the early days of programming and automated reason-
ing, researchers have developed methods for systematically constructing
programs from their speci�cations. Especially the last decade has seen a

urry of activities including the advent of specialized conferences, such
as LOPSTR, covering the synthesis of programs in computational logic.
In this paper we analyze and compare three state-of-the-art methods for
synthesizing recursive programs in computational logic. The three ap-
proaches are constructive/deductive synthesis, schema-guided synthesis,
and inductive synthesis. Our comparison is carried out in a systematic
way where, for each approach, we describe the key ideas and synthesize
a common running example. In doing so, we explore the synergies be-
tween the approaches, which we believe are necessary in order to achieve
progress over the next decade in this �eld.

1 Introduction

Program synthesis is concerned with the following question: Given a not nec-
essarily executable speci�cation, how can an executable program satisfying the
speci�cation be developed? The notions of \speci�cation" and \executable" are

here interpreted broadly. The objective of program synthesis is to develop meth-
ods and tools to mechanize or automate (part of) this process.

In the last 30 years, program synthesis has been an active research area; see
e.g. [14, 4, 40, 13, 26, 29] for a description of major achievements. The starting
point of program synthesis is usually a formal speci�cation, that is an expression
in some formal language (a language having a syntax, a semantics, and usually a
proof theory). Program synthesis thus has many relationships with formal speci-
�cation [69]. As the end product is a veri�ed correct program, program synthesis
is also related to formal methods in the development of computer systems [22],
and to automated software engineering. All of these disciplines share the goal of
improving the quality of software.

Program Synthesis in Computational Logic. It is generally recognized
that a good starting point for program synthesis is to use declarative formalisms
such as functional programming or computational logic, where one speci�es what
a program should do instead of how. We focus here on the synthesis of recur-
sive programs in computational logic, which provides an expressive and uniform
framework for program synthesis. On the one hand, the speci�cation, the result-
ing program, and their relationship, can all be expressed in the same logic. On
the other hand, logic speci�cations can describe complete speci�cations as well
as incomplete ones, such as examples or properties of the relation that is to be
computed. Since all this information can be expressed in the same language, it
can be treated uniformly in a synthesis process.

There exist many di�erent approaches to program synthesis in computational
logic and di�erent ways of viewing and categorizing them. For example, one can
distinguish constructive from deductive synthesis. In constructive synthesis, a
conjecture based on the speci�cation is constructively proved, and from this
proof a program is extracted. In the deductive approach, a program is deduced
directly from the speci�cation by suitably transforming it. As will be shown
in this paper, these two approaches can pro�tably be viewed together and ex-
pressed in a uniform framework. In a di�erent approach, called schema-based
synthesis, the idea is to use program schemas, that is some abstraction of a
class of actual programs, to guide and enhance the synthesis process. Another
approach is inductive synthesis, where a program is induced from an incomplete
speci�cation.

Objectives. Our intent in this paper is to analyze and compare three state-of-
the-art methods for synthesizing recursive programs in computational logic. The
chosen approaches are constructive/deductive synthesis, schema-guided synthe-
sis, and inductive synthesis. We perform our comparison in a systematic way: we
�rst identify common, generic features of all approaches and afterwards we use
a common example to explain these features for each approach. This analysis
forms the basis for an in-depth comparison. We show, for example, that from
an appropriately abstract viewpoint, there are a number of synergies between
the approaches that can be exploited. For example, by identifying rules with
schemas, all three methods have a common, underlying synthesis mechanism

and it becomes easier to see how the methods can be fruitfully combined, or dif-
ferentiated. Overall, we hope that our comparison will deepen the communities
understanding of the approaches | their relationships, synergies, where they
excel, and why | and thereby contribute to achieving progress in this �eld.

We see this paper as complementary to surveys of program synthesis in com-
putational logic (or more precisely in logic programming), in particular [26, 29].
Rather than a making a broad survey, we focus on the analysis and in-depth
comparison of the di�erent approaches and we also consider schema-guided syn-
thesis. Due to lack of space and to comply with our objectives, some technical
details are omitted. Here, the reader may rely on his or her intuitive understand-
ing of relevant concepts or follow pointers to references in the literature.

Organization. Section 2 presents the di�erent elements that will be used to
present and compare the chosen synthesis approaches. These elements include
general features of program synthesis approaches as well as the example that
will be used for their comparison. Sections 3 through 5 describe the three cho-
sen approaches: constructive/deductive synthesis, schema-guided synthesis, and
inductive synthesis. To facilitate a systematic analysis and comparison of the
methods, each section has a similar structure. Section 6 compares the three
approaches. Finally, Section 7 draws conclusions and presents perspectives for
future developments.

2 Elements of Comparison

In the subsequent sections, we will present three synthesis approaches. For each
approach, one representative method is described. However, before describing
them, we �rst present their general features. These features are developed in the
context of each particular method and serve both to facilitate our analysis and
systematize our comparison. We also introduce our example.

2.1 General Features

Specification. The starting point for program synthesis is a speci�cation ex-
pressed in some language. For each synthesis method, we must �x the speci�-
cation language and the form of the speci�cation (e.g., a formula or a set of
examples).

Mechanism. Program synthesis methods are based on calculi and procedures
prescribing how program are synthesized from speci�cations. Although the un-
derlying mechanisms of the various systems di�er, there are, in some cases,
similar underlying concepts.

Heuristics. Program synthesis is search intensive and heuristics are required in
practice to guide the synthesis process. Are the heuristics speci�c to a synthesis
method or are there common heuristics? How e�ective are the heuristics in the
di�erent methods and to what extent do di�erent methods structure and restrict
the search space?

Background Knowledge. Usually, non-trivial speci�cations refer to back-
ground knowledge that formalizes information about the properties of objects
used in the speci�cation, e.g., theories about the relevant data types.

Human Interaction. Human interaction involves two di�erent issues. First,
how much can a human be automatically assisted? Second, what is the nature of
human-computer interaction in synthesis? How can the human step in and, for
example, give key steps rather than leave the matter to blind search? Allowing
input at critical points requires appropriate system support.

Tool Support. What kind of tool support is needed for turning a synthesis
method into a viable system?

Scalability. Scalability is a major concern in program synthesis. Synthesis
systems should not only be able to synthesize small simple programs, but they
should also be able to tackle large or complex programs that solve real-life prob-
lems.

2.2 The Chosen Example

The same example will be used throughout the paper to facilitate a comparison
of the di�erent methods. We have chosen a problem simple enough to present
in full, but complex enough to illustrate the main issues associated with each
approach.

Speci�cation 21 Let L be a list, I a natural number, and E a term. The rela-
tion atpos(L; I; E) holds i� E is the element of L at position I. By convention,
the �rst element of a list is at position 0. The atpos relation can be formally
speci�ed as follows:

atpos(L; I; E)$ 9P; S : append (P;E � S;L) ^ length(P; I)

where append and length have their usual meaning, and are assumed to be de�ned
in the background theory.

In the formula above, and in the rest of the paper, free variables are assumed
to be universally quanti�ed over the entire formula. As list notation, we use nil
to represent the empty list, and H � T for the list with head H and tail T .

3 Constructive and Deductive Synthesis

We will now look at two approaches to synthesizing programs that are often
grouped together: constructive and deductive synthesis. We shall highlight their
similarities by viewing both from the same perspective: In both cases, deduc-
tion can be used to synthesize programs by solving for unknowns during the
application of rules.

3.1 Background

For historical reasons, and because the ideas are simplest to present there, we
begin by considering synthesis of functional programs in constructive type the-
ory.

Constructive type theories are logics used for reasoning about functional
programs. The simplest example is the simply typed �-calculus [5, 48], which we
brie
y review here. Programs in the simply typed �-calculus are terms in the
�-calculus, which are built from variables, application, and abstraction. Types
are built from a set of base types, closed under the function space constructor
!. One reasons about judgments that assert that a term t has a type T , relative
to a sequence of bindings � , of the form x1 : A1; : : : ; xn : An, which associate
variables to types. The valid judgments are inductively de�ned by the following
rules:

x : A 2 �
hyp

� ` x : A

�; x : A `M : B
abst

� ` (�x:M) : (A! B)

� `M : A! B � ` N : A
appl

� ` (MN) : B

These rules comprise a deduction system for proving that a program t has
a type T . Under the propositions-as-types interpretation, this type may also be
understood as a logical proposition (reading `!' as intuitionistic implication)
that speci�es t's properties. Of course, the speci�cation language is quite weak,
so it is diÆcult to specify many interesting properties. In stronger type theories,
such as [24, 56], types correspond to propositions in richer logics and one can,
for example, specify sorting as

` t : (8x : int list : 9y : int list : perm(x; y) ^ ord (y)) : (1)

This asserts that the program t is a function that, on input x, returns an ordered
permutation y.

The given deduction system can be used for program veri�cation: given a
program t and a speci�cation T , prove ` t : T . For example, for p and q types,
we can verify that the program �x: �y: x satis�es the speci�cation p! (q ! p):

x : p 2 x : p; y : q
hyp

x : p; y : q ` x : p
abst

x : p ` �y: x : q ! p
abst

` �x: �y: x : p! (q ! p)

(2)

Perhaps less obviously, the same rules can be used for program synthesis :
given a speci�cation T , construct a program t such that ` t : T . This can be
done by

1. Reversing the direction in which rules are applied and proofs are constructed.
That is, build the proof in a goal-directed, \re�nement style" way by starting
with the goal and working towards the axioms.

2. Leaving the program t as an unknown, or metavariable, which is solved
during proof.

Let's try this out in the example above. Using capital letters to indicate
metavariables, we begin with

` R : p! (q ! p) :

Resolving this with the (conclusion of the) abst rule yields the new goal

x : p ` R1(x) : (q ! p) ;

where R is uni�ed with �x:R1(x). Applying abst again results in

x : p; y : q ` R2(x; y) : p ;

where R1(x) = �y:R2(x; y). Finally, applying hyp uni�es the assumption x : p
with R2(x; y) : p, instantiating R2(x; y) to x and completing the proof. Compos-
ing the substitutions yields the previously veri�ed program t = �x: �y: x.

The account above is complicated by the fact that the abstraction operator �
binds variables and, to work properly, higher-order uni�cation is required when
applying rules. The rules constitute clauses in a higher-order (meta-)language
and proofs are constructed by higher-order resolution. A higher-order logic pro-
gramming language or logical framework based on higher-order resolution like
�-Prolog [27], ELF [61], or Isabelle [59] would support this kind of proof.

There are two conclusions we would like to draw. First, veri�cation and
synthesis are closely related activities. In fact, when rules are applied using
(higher-order) resolution, they are essentially identical. The only di�erence is
whether uni�cation is between ground or non-ground terms, i.e., whether or
not an answer substitution is built. This conclusion should not be surprising to
those working in logic programming: the same sequence of resolution steps can
be used to establish a ground query p(t) or a non-ground one p(X), generating
the substitution X = t.

Second, constructive synthesis is of a deductive nature and the line between
the two can be �ne. As the analogy with Prolog shows, proofs construct objects.
In type theory, the objects are programs. Indeed, the idea of proofs synthesizing
programs, sometimes called proofs-as-programs, can be decomposed into

proofs-as-programs = proofs-as-objects + objects-as-programs.

In our example, uni�cation, not the constructivity of the logic, is responsible
for constructing an object. Constructivity does not play a role in the synthesis
of objects, but rather in their execution and meaning. That is, because the
logic is constructive, the synthesized terms can be executed and their evaluation
behavior agrees with the semantics of the type theory. In contrast, [49], for
example, presents a classical type theory where programs correspond to (non-
computable) oracles that cannot be executed. There one might say that the
line is crossed from constructive (and deductive) program synthesis to deductive
object synthesis.

The use of uni�cation is at the heart of deductive and constructive synthesis.
Uni�cation is driven by resolution, to synthesize, or solve for, programs during
proofs. This idea goes back to work in the 1960s on using �rst-order resolution
to construct terms that represent plans or, more generally, programs [19, 42]. In
the logical framework community, the use of higher-order metalogics to represent
rules and the use of higher-order uni�cation to apply them is now standard, e.g.,
[2, 8, 9, 23]. For example, the Isabelle distribution [59] comes with encodings of a
number of type theories, where programs can be synthesized as described here.

The vast majority of approaches for synthesizing logic programs are based
on �rst-order reasoning, e.g., equivalence preserving transformations. There have
been many proposed methods and [26] contains a good survey. They di�er in
the form of their axioms (Horn clauses, i� -de�nitions, etc.), exact notion of
equivalence used (and there are many, see e.g., [55]), and ease of automation.
Many of these, for example unfold-fold based transformations [60], can be recast
as synthesis by resolution using rules like those presented here [7, 10].

3.2 Overview

Specifications. In type theory, programs and speci�cations belong to di�er-
ent languages. When synthesizing logic programs, the speci�cation language is
typically the language of a �rst-order theory and the programming language is
some suitable, executable subset thereof. By sharing the same language, logic
programs are well suited for deductive synthesis where speci�cations are manip-
ulated, using equivalence preserving transformations, until a formula with some
desired form or property is reached.

Mechanism. The mechanism for synthesizing logic programs during proofs is
essentially the same as what we have just seen for type theory. However, what is
proved (i.e., the form of the theorem to be proven), and the proof rules used to
establish it, are of course di�erent. Namely, we will prove theorems about equiv-
alences between speci�cations and programs and we will prove these theorems
using rules suitable for establishing such equivalences.

For our example, we will employ the following rules:

$�re

A$ A

A1 $ B1 A2 $ B2

_�split
(A1 _ A2)$ (B1 _ B2)

In addition, for building recursive programs that recurse over lists we employ
the rule schema

A1 A2 A3

ind ;
8L;X : P (L;X)$ Q(L;X)

where L is a variable ranging over lists, X denotes sequences of zero or more
variables of any type, and the assumptions Ai are:

A1 � 8L;X : Q(L;X)$ (L = nil ^ B(X))
_9H;T : L = H � T ^ S(H;T;X)

A2 � 8X : P (nil;X)$ B(X)

A3 � 8T : (8X : P (T;X)$ Q(T;X))! 8H;X : P (H � T;X)
$ S(H;T;X)

This rule, which can be derived by induction on the list L, states the equiv-
alence between predicates P and Q (which are metavariables). For the purpose
of synthesis, we can take A1 as the de�nition of Q, and A2 and A3 constrain
(and will be used to de�ne) Q's base and recursive cases. In A3, we are allowed
to use the existence of Q, when de�ning Q, but only on smaller arguments.

We will show below how, by applying these rules (using higher-order resolu-
tion), we can construct R while proving its equivalence to atpos .

Heuristics and Human Interaction. Proof rules, like those given above,
can be applied interactively, semi-interactively, or even automatically. The use
of a tactic based theorem prover [41], which allows users to write programs that
construct proofs, leaves open the degree of automation.

[50, 51], for example, show how to completely automate the construction of
such synthesis proofs in a tactic based setting. In this work, the most important
tactic implements the rippling heuristic of [17, 12]. This heuristic automates the
application of rewrite or equivalence preserving transformation rules in a way
that minimizes di�erences between terms or formulas. Rippling is typically used
in inductive theorem proving to enable the use of the induction hypothesis in
simplifying the induction conclusion and it can be used in a similar way dur-
ing program synthesis where rules that introduce recursion (like ind) produce
induction-like proof obligations. Rippling has been used to automate completely
the synthesis of a number of non-trivial logic programs. However, it should be
noted that some interaction with the user is often desirable since the application
of proof rules, in particular rules that build recursive programs, determines the
eÆciency of the synthesized program.

Background Knowledge. The approach we present here for synthesizing
logic programs involves two kinds of rules. The �rst kind are rules, like $�re

and _�split , which are derived rules of �rst-order logic. These derived rules
are not, strictly speaking, necessary (provided we are working in a complete
axiomatization of �rst-order logic), but their addition makes it easier to construct
synthesis proofs by reasoning about equivalences. The second kind of rules are
theory speci�c rules, e.g., rules about inductively de�ned data types like numbers
and lists. The rule ind given above is an example of such a rule. It is derivable
in a theory that axiomatizes lists and formalizes induction over lists.

Tool Support. For synthesizing the atpos example, we have used the Isabelle
system. Isabelle's basic mechanism for proof construction is top-down proof by
higher-order resolution, which is precisely what we require. Moreover, as a logi-
cal framework, Isabelle supports the derivation of new rules, so we can formally
derive, and thus insure the correctness of, the specialized rules needed for synthe-
sis; in our example, we derive the rules just presented in a standard �rst-order

theory of lists. Finally, tactics can be used to partially, or entirely, automate
proof construction. The Isabelle distribution comes with simpli�ers and decision
procedures that we used to semi-automate synthesis.

Scalability. The search space in most approaches to deductive synthesis is
quite large. In practice, building non-trivial programs requires an environment
that supports heuristics for automating simple proof steps, e.g., by the applica-
tion of tactics. It is also important that the user can safely augment a synthesis
system with derived rules. As we will later observe, schemas, for schema guided
synthesis, can be seen as derived rules specialized for synthesizing programs of a
particular form, and their integration with deductive synthesis approaches can
help with large scale developments. Examples of this are provided in [1].

3.3 Example

Let us illustrate our synthesis method on the atpos example. We wish to con-
struct a logic program equivalent to the speci�cation 21. As with synthesis in
the type theory, we use a metavariable, R, to stand in for the desired program.
Hence we start with

` 8L; I; E : atpos(L; I; E)$ R(L; I; E) : (3)

Working backwards, resolving (using higher-order uni�cation) this conclusion
with the conclusion of the ind rule yields the three subgoals

8L; I; E : R(L; I; E)$ (L = nil ^ B(I; E))
_9H;T : L = H � T ^ S(H;T; I; E)

8I; E : atpos(nil; I; E)$ B(I; E)
8T : (8I; E : atpos(T; I; E)$

R(T; I; E)! 8H; I; E : atpos(H � T; I; E)$ S(H;T; I; E)

and Q is uni�ed with R.
The �rst subgoal constitutes a program template, which will later be �lled

out by solving the other subgoals. In the second subgoal, expanding the de�nition
of atpos results in

` 8I; E : (9P ;S : append (P ; E � S ; nil) ^ length(P ; I))$ B(I; E) :

Let I and E be arbitrary. To show

` (9P ;S : append (P ; E � S ; nil) ^ length(P ; I))$ B(I; E) ;

observe that there are no values for P or S for which append (P ; E � S ; nil) is
true. Hence this subgoal is equivalent to

` false $ B(I; E) :

We can complete the proof with $�re
 , which uni�es B(I; E) with false .

For the third subgoal, we assume the existence of an arbitrary list T and
the antecedent of the implication (which amounts to an induction hypothesis)
and must prove the consequent (the induction conclusion). Hence, expanding
the de�nition of atpos , we assume

8I; E : (9P ;S : append (P ; E � S ; T) ^ length(P ; I))$ R(T; I; E)

and we must prove, for some arbitrary H , I , and E,

` (9P ;S : append (P ; E � S ; H � T) ^ length(P ; I))$ S(H;T; I; E) :

Now, since P ranges over lists, for any formula �(l), 9P :�(P) is equivalent
(by case analysis) to �(nil)_9H;T : �(H � T). Hence, the above is equivalent to

` ((9S : append (nil; E � S ; H � T) ^ length(nil; I))
_ (9H 0; T 0;S :append (H 0 � T 0; E � S ; H � T) ^ length(H 0 � T 0; I)))
$ S(H;T; I; E) :

We proceed by decomposing the disjunction on the left-hand side by resolving
with _�split . Doing so builds a disjunction for S, by instantiating S(H;T; I; E)
with S1(H;T; I; E) _ S2(H;T; I; E), and yields the two subgoals:

` 9S : append (nil; E � S ; H � T) ^ length(nil; I)$ S1(H;T; I; E)
` 9H 0; T 0;S : append (H 0 � T 0; E � S ; H � T)

^length(H 0 � T 0; I)$ S2(H;T; I; E)

For the �rst, the left-hand side is true whenever 9S : E = H ^ S = T ^ I = 0.
Hence, setting S to T , this subgoal is equivalent to

` (E = H ^ I = 0)$ S1(H;T; I; E) :

We can again discharge this using $�re
 , which uni�es S1(H;T; I; E) with
E = H ^ I = 0. Now, under the standard de�nition of append and length , the
second subgoal is equivalent to

` (9I 0:s(I 0) = I ^ (9T 0;S :append (T 0; E � S ; T) ^ length(T 0; I 0)))
$ S2(H;T; I; E)

where s(I 0) represents the successor of I 0. We can now simplify this using the
antecedent (induction hypothesis), which yields

(9I 0:s(I 0) = I ^ R(T; I 0; E))$ S2(H;T; I; E) :

We complete the proof with $�re
 , unifying S2(H;T; I; E) with 9I 0:s(I 0) =
I ^ R(T; I 0; E).

We are done! If we apply the accumulated substitutions to the remaining
assumption A1 we have

8L; I; E : R(L; I; E)
$ (L = nil ^ false)
_9H;T : L = H � T ^ ((E = H ^ I = 0)

_ 9I 0 : s(I 0) = I ^ R(T; I 0; E)) :

and we have proved the equivalence of (3) under this de�nition, i.e.,
atpos(L; I; E) is equivalent to the synthesized instance of R(L; I; E).

The alert reader may have wondered why we did not complete the proof
earlier by resolving with $�re
 . In this example, our goal was to transform
atpos so that the result falls within a particular subset of �rst-order formulae,
sometimes called pure logic programs [16] or logic descriptions [25], that de�ne
logic programs. These formulae can be easily translated to Horn clauses or run
directly in a language like G�odel [47]. In this case, we get the clauses:

atpos(nil; I; E) false

atpos(H � T; I; E) E = H; I = 0

atpos(H � T; I; E) s(I 0) = I; atpos(T; I 0; E)

which can be simpli�ed to

atpos(E � ; 0; E)

atpos(� T; s(I 0); E) atpos(T; I 0; E)

3.4 Analysis

Overall, when cast in this way, the deductive synthesis of logic programs is quite
similar to the previous constructive/deductive synthesis of functional programs.
In both cases, we leave the program as an unknown, and solve for it, by uni-
�cation, during proof. Of course, the metatheoretic properties of the programs
produced are quite di�erent. In the case of logic program synthesis, the rules,
as they are given, do not enforce that the object constructed has any special
syntactic properties (e.g., is a pure logic program); we only know that it is an
equivalent formula. Moreover, we do not a priori know anything about its ter-
mination behavior (although it is not diÆcult to show that the induction rule
builds predicates that terminate when the �rst argument is ground).

This kind of development, as with most approaches to logic program synthe-
sis, is best described as deductive synthesis. They are constructive only in the
weak sense that, at the metalevel (or metalogic, if one is carrying out the proof
in a logical framework), one is essentially proving a theorem of the form

9R : 8L; I; E :atpos(L; I; E)$ R(L; I; E)

and building a witness (in this case, a predicate de�nition) for R. (For more
on this notion of constructivity and the proof theory behind it, see [11].) Many
proposed methods for the constructive synthesis of logic programs can also be
explained in this way. For example, the Whelk Calculus of [71], which is moti-
vated by experiments in synthesizing relations in a constructive type theory, can
be recast as this kind of synthesis [6].

4 Schema-Guided Synthesis

We here outline Flener, Lau, Ornaghi, and Richardson's de�nition, representa-
tion, and semantics of program schemas: see [33] for details.

4.1 Background

Intuitively, a program schema is an abstraction of a class of actual programs,
in the sense that it represents their data-
ow and control-
ow, but neither con-
tains all their actual computations nor all their actual data structures. Program
schemas have been shown to be useful in a variety of applications. In synthesis,
the main idea is to simplify the proof obligations by taking the diÆcult ones
o�ine, so that they are proven once and for all at schema design time. Also, the
reuse of existing programs is made the main synthesis mechanism.

A symbol occurring in a theory T is open [52] in T if it is neither de�ned in T ,
nor a prede�ned symbol. A non-open symbol in T is closed in T . A theory with at
least one open symbol is an open theory; otherwise it is closed. This terminology
applies to formal speci�cations and logic programs. An (open) program for a
relation r is steadfast [25, 53] with respect to its speci�cation if it is correct with
respect to its speci�cation whenever composed with programs that are correct
with respect to the speci�cations of its (open) relations other than r.

Among the many possible forms of programs, there are the divide-and-conquer
programs with one recursive call: if a distinguished formal parameter, called the
induction parameter, say X , has a minimal value, then one can directly solve
for a corresponding other formal parameter, called the result parameter, say Y ;
otherwise, X is decomposed into a \smaller" value T (under some well-founded
relation �) by splitting o� a quantity H , so that a sub-result V corresponding to
T can be computed by a recursive call, and an overall result Y can be composed
from H and V . A third formal parameter, called the passive parameter, say Z,
participates unchanged in these operations. Formally, this problem-independent
data
ow and control-
ow can be captured in the following open program for r:

r(X;Y; Z) min(X;Z); solve(X;Y; Z)
r(X;Y; Z) :min(X;Z); dec(X;Z;H; T);

r(T; V; Z); comp(H;Z; V; Y)
(DC)

The relationsmin, solve, dec, comp are open. When I is the induction parameter,
L the result, and E the passive parameter, so that atpos(L; I; E)$ r(I; L;E), a
closed program for atpos is the instance of DC under the program substitution

min(X;Z) X = 0 solve(X;Y; Z) Y = Z � S
dec(X;Z;H; T) X = s(T) comp(H;Z; V; Y) Y = F � V

(�1)

This substitution captures the problem-dependent computations of that program.
But programs by themselves are syntactic entities, hence some programs

are undesired instances of open programs. For instance, the generate-and-test

program r(X;Y; Z) g(X;Y; Z); t(Y; Z) is an instance of DC under the sub-
stitution

min(X;Z) true solve(X;Y; Z) g(X;Y; Z); t(Y; Z)
dec(X;Z;H; T) true comp(H;Z; V; Y) true

An open program such as DC thus has no �xed meaning. The knowledge cap-
tured by an open program is not completely formalized, and the domain knowl-
edge and underlying language are still implicit. In order for such open programs
to be useful for guiding synthesis, such undesired instances need to be prevented
and some semantic considerations need to be explicitly added.

A program schema [33] has a name, a set of formal sort and relation pa-
rameters, a signature with sorted relation and function declarations, a set of
axioms de�ning the declared symbols, a set of constraints restricting the actual
parameters, an open program T called the template, and speci�cations S of the
relations in T , such that T is steadfast with respect to S in that axiomatization.

The schema DC can be abduced, as in [32], from our informal account of how
divide-and-conquer programs work. The parameters SX, SY, SZ, SH are sorts;
they are used in the signatures of the other parameters, which are relations.
There are no axioms because the signature declares no other symbols than the
parameters. The template is the open program DC, which de�nes the relation r
and hasmin, solve, dec, comp as open relations. The closed relation r is speci�ed
by Sr, and the open relations have Smin, Ssolve, Sdec, Scomp as speci�cations.
The conditional speci�cation Sr exhibits ir, or as the input/output conditions
of r, while Sdec exhibits idec, odec as the input/output conditions of dec. The
input/output conditions of the remaining open relations are also expressed in
terms of the parameters ir, idec, or, odec. The constraints restrict dec to succeed
at least once if its input condition holds, and then to yield a value that satis�es
the input condition of r (so that a recursive call to r is \legal") and that is
smaller than X according to �, which must be a well-founded relation (so that
recursion terminates). The open program DC is steadfast with respect to Sr,
within the given axiomatization.

In the schema REUSE , the parameters SX, SY, SZ are sorts; they are used
in the signatures of the other parameters, which are relations. There are no
axioms because the signature declares no other symbols than the parameters.
The template is the open program fr(X;Y; Z) q(X;Y; Z)g, which de�nes the
relation r and has q as the open relation. The relation r is speci�ed by Sr, and the
relation q has the same input/output conditions as r. There are no constraints
on the parameters. This schema provides for the reuse of a program for q when
starting from a speci�cation for r. The open program Reuse is steadfast with
respect to Sr, within the given axiomatization.

4.2 Overview

Let us now examine the speci�cations, mechanism, heuristics, background knowl-
edge, human interaction, tool support, and scalability of schema-guided synthe-
sis.

Schema DC(SX; SY; SZ; SH;�; ir; or; idec; odec)

sorts: SX; SY; SZ; SH

relations: ir; idec : (SX; SZ) � : (SX; SX)
or : (SX; SY; SZ) odec : (SX; SZ; SH; SX)

axioms: (none)

constrs: idec(X;Z)! 9H : SH : 9T : SX : odec(X;Z;H; T)
idec(X;Z) ^ odec(X;Z;H; T)! ir(T; Z) ^ T � X

wellFounded(�)

(C1)
(C2)
(C3)

specifs: ir(X;Z)! (r(X;Y; Z)$ or(X;Y; Z))
ir(X;Z)! (min(X;Z)$:idec(X;Z))
ir(X;Z) ^ :idec(X;Z)! (solve(X;Y; Z)$ or(X;Y; Z))
idec(X;Z)! (dec(X;Z;H; T)$ odec(X;Z;H;T))
odec(X;Z;H; T) ^ or(T; V; Z)!

(comp(H;Z; V; Y)$ or(X;Y; Z))

(Sr)
(Smin)
(Ssolve)
(Sdec)

(Scomp)

template: r(X;Y; Z) min(X;Z); solve(X;Y; Z)
r(X;Y; Z) :min(X;Z); dec(X;Z;H;T);

r(T; V; Z); comp(H;Z; V; Y)
(DC)

Schema REUSE(SX; SY; SZ; ir; or)

sorts: SX; SY; SZ

relations: ir : (SX; SZ) or : (SX; SY; SZ)

axioms: (none)

constraints: (none)

specifications: ir(X;Z)! (r(X;Y;Z)$ or(X;Y; Z))
ir(X;Z)! (q(X;Y; Z)$ or(X;Y; Z))

(Sr)
(Sq)

template: r(X;Y; Z) q(X;Y; Z) (Reuse)

Specifications. Among the many possible forms of speci�cations, there are
the classical conditional speci�cations : under some input condition ir on inputs
X , Z, a program for relation r succeeds i� some output condition or on X , Z
and output Y holds. Formally, this gives rise to the following open speci�cation
of r:

8X : SX : 8Y : SY : 8Z : SZ :
ir(X;Z)! (r(X;Y; Z)$ or(X;Y; Z))

(Cond)

The open symbols are the relations ir, or and the sorts SX, SY, SZ. Other forms
of speci�cation can also be handled.

Mechanism. Schema-guided synthesis from a speci�cation S0 is a tree con-
struction process consisting of 5 steps, where the initial tree has just one node,
namely S0:

1. Choose a speci�cation Si that has not been handled yet.
2. Choose a program schema with parameters P , axioms A, constraints C,

template T , and speci�cations S.

3. Infer a substitution �1 under which Si is an instance of the speci�cation
(available in S) of the de�ned relation in template T . This instantiates some
(if not all) of the parameters P .

4. Choose a substitution �2 that instantiates the remaining (if any) parameters
in P , such that the constraints C hold (i.e., such that �1 [�2 ` C) and such
that one can reuse existing programs PQ for some (if not all) of the now fully
instantiated speci�cations S [�1 [�2 of the open relations in template T .
Simplify the remaining (if any) speci�cations in S [�1 [�2, yielding SG.

5. Add T [PQ | called the reused program | to the node with Si and add
the elements of SG to the unhandled speci�cations, as children of Si.

These steps are iterated until all speci�cations have been handled; the overall re-
sult program P0 for S0 is then assembled by conjoining, at each node, the reused
programs. If any of these steps fails, synthesis backtracks to its last choice point.
Schema-guided program synthesis is thus a recursive speci�cation (problem) de-
composition process followed by a recursive program (solution) composition pro-
cess.

The REUSE schema can be chosen at Step 2; it forces the reuse at Step 4 of
a program for q, because q is its only open relation. Every schema leads to some
reuse at Step 4; for instance, DC results in the reuse of a program for dec.

Heuristics. Many choice points reside in schema-guided synthesis, so heuristics
are needed to make good decisions, possibly by looking ahead into the synthesis.

Some heuristics can be applied when designing a schema. For instance, a
synthesis strategy is the choice at Step 4 of the open relations for which programs
are reused. All templates envisaged by us so far have only a few meaningful
strategies, hence it is best to hardwire these. For instance, template DC has
only two interesting strategies: when starting with dec, the divide-and-conquer
schema is as above; when starting with comp, it would have to be reexpressed
in terms of the input/output conditions of r and comp, giving rise to another
schema, with the same template.

Other heuristics can be expressed as applicability conditions. For instance,
the question arises of what program schema to apply at Step 2. An implicit
heuristic can be achieved by ordering the schemas; putting REUSE �rst would
enforce our emphasis on reuse. There also is the question of how to apply a chosen
program schema at Step 3. For instance, with DC, one of the formal parameters
in the given speci�cation Sr has to be the induction parameter, and another
the result parameter. This can be done based on the sort information in Sr:
only a parameter of an inductively de�ned sort can be the induction parameter.
One can also augment speci�cations with mode information, because parameters
declared to be ground at call-time are particularly good induction parameters
[25].

Background Knowledge. Step 2 assumes a base of program schemas, captur-
ing a range of program classes. Also, Step 4 relies on a base of reusable programs.
For instance, for the DC schema, a base of speci�cations and programs for dec
programs and � well-founded relations needs to be available.

Human Interaction. Schema-guided synthesis can be fully automated, as
demonstrated withCypress [65],Kids [66],DesignWare [67], and PlanWare

[15]. However, interactive synthesis is preferable, with the human programmer
taking the creative, high-level, heuristic design decisions, and the synthesizer
doing the more clerical work. The design issues are intelligible to humans because
the very objective of program schemas is to capture recognized, useful, human-
designed programming strategies and program classes.

Tool Support. An implementation of schema-guided synthesis can be made on
top of any existing proof planner, exploiting the fact that program schemas can
be seen as proof methods [35]. This provides support for the necessary higher-
order matching and discharging of proof obligations.

Scalability. The search space of schema-guided synthesis is much smaller than
for deductive synthesis. First, schema-guided synthesis by de�nition bottoms
out in reuse, both of the template itself and of existing programs. One can
signi�cantly reduce the number of reuse queries by applying heuristics detecting
that an ad hoc program can be trivially built from the speci�cation. Second,
the proof obligations of Steps 3 and 4 are quite lightweight. Schema-guided
synthesis thus scales up to real-life synthesis tasks, especially if coupled with
a powerful program optimization workbench and suÆcient domain knowledge.
For instance, Smith [67] has successfully deployed his tools on real-life problems,
such as transportation scheduling.

4.3 Example

Let us synthesize a program from the following speci�cation, open in sort ST:

8L : list(ST) : 8I : nat : 8E : ST : true!
(atpos(L; I; E)
$ 9P ;S : list(ST) : append (P ; E � S ; L) ^ length(P ; I))

(Satpos)

The �rst iteration of synthesis proceeds as follows. At Step 1, the speci�cation
Satpos is chosen because it is the only unhandled speci�cation. At Step 2, suppose
schema DC is chosen, after a failed attempt to apply schema REUSE . At Step 3,
the speci�cation Satpos is inferred to be an instance of Sr, when atpos(L; I; E)
is seen as r(I; L;E), under the substitution

hSX; SY; SZi = hnat; list(ST); STi
ir(X;Z)$ true

or(X;Y; Z)$ 9P ;S : list(ST) : append (P ; Z � S ; Y)
^length(P ; X)

(�2)

So far, 5 of the 9 parameters of DC have been instantiated. At Step 4, suppose
the following substitution is chosen:

SH = nat A � B $ B = s(A)
idec(X;Z)$:X = 0 odec(X;Z;H; T)$ X = s(T)

This instantiates the remaining 4 parameters of DC in a way that the constraints
C1, C2, C3 hold and that the program Pdec = fdec(X;Z;H; T) X = s(T)g can
be reused to meet the now fully instantiated speci�cation Sdec. The speci�cations
of the remaining open relations in template DC are now also fully instantiated:

true! (min(X;Z)$::X = 0) (Smin)

true ^ ::X = 0!
(solve(X;Y; Z)$ 9P ;S : append (P ; Z � S ; Y) ^ length(P ; X)) (Ssolve)

X = s(T) ^ 9P ;S : append (P ; Z � S ; V) ^ length(P ; T)!
(comp(H;Z; V; Y)$ 9P 0; S0 : append (P 0; Z � S0; Y)

^length(P 0; X))
(Scomp)

They can be simpli�ed into the following speci�cations:

min(X;Z)$ X = 0 (S0

min)

X = 0! (solve(X;Y; Z)$ 9S : list(ST) : Y = Z � S) (S0

solve)

X = s(T) ^ 9P ;S : append(P ; Z � S ; V) ^ length(P ; T)!
(comp(H;Z; V; Y)$ 9F : ST : Y = F � V)

(S0

comp)

At Step 5, the program DC [Pdec becomes the reused program for Satpos ,
while S0

min, S
0

solve, and S0

comp are added to the now empty list of unhandled
speci�cations.

The next iterations of synthesis proceed as follows. When S0

min, S
0

solve, and
S0

comp are chosen, suppose applications of some suitable variants of REUSE
succeed through the ad hoc building of the programs Pmin = fmin(X;Z) X =
0g, Psolve = fsolve(X;Y; Z) Y = Z � Sg, and Pcomp = fcomp(H;Z; V; Y)
Y = F �V g. Since no new speci�cations were created, the synthesis is completed
and has discovered the substitution �1. For call-mode atpos(+;�;+), say, the
corresponding logic program

atpos(L; I; E) I = 0; L = E � S
atpos(L; I; E) :I = 0; I = s(T); atpos(V; T;E); L = F � V

can be implemented [25], say by the Mercury compiler [68], into the following
steadfast program:

atpos(E � S; 0; E)
atpos(F � V; s(T); E) atpos(V; T;E)

The comp operator had to be moved in front of the recursive call to achieve this.
(Prolog cannot do this, so mode-speci�c implementation is left as a manual task
to the Prolog programmer.)

This example illustrated a relatively simple use of the DC schema. In [31],
a quicksort program is synthesized, using a variant of the divide-and-conquer
schema DC with two recursive calls.

4.4 Analysis

Schema-guided synthesis captures recognized, useful, human-designed program-
ming strategies and program classes in program schemas. In doing so, it takes
the hardest proof obligations o�ine, preventing their repeated proof across var-
ious syntheses and making reuse of existing programs the central mechanism for
synthesizing programs. In the presence of powerful program optimization tools
and suÆcient domain knowledge, it thus naturally scales up, without any limita-
tions on speci�cation forms or program forms, due to the modular nature of the
various forms of background knowledge. Heuristic guidance issues are still best
tackled by humans, so schema-guided synthesis is best carried out interactively.

A uni�ed view of schema-guided synthesis and proof planning has been pro-
posed [35], revealing potential new aspects of program schemas, such as appli-
cability conditions capturing heuristics, as well as the possibility of formulating
program schemas as proof methods and thereby reusing an existing proof plan-
ner as a homogeneous implementation platform for both the schema applications
and the proof obligations of schema-guided synthesis.

Our future work includes redoing the constraint abduction process for more
general divide-and-conquer templates, where some nonMinimal(X;Z) is not
necessarily :min(X;Z), and crafting the corresponding strategies, in order to
allow the synthesis of a larger class of programs. Other design methodologies
need to be captured in logic programming schemas; for instance, a global search
schema has been proposed for the synthesis of constraint logic programs [37].

5 Inductive Synthesis

Following a brief introduction to inductive generalization, we present a particular
approach to induction of recursive logic program called compositional inductive
synthesis, which is described in detail in [46].

5.1 Background

The inductive approach to program synthesis originates in inductive logic. In-
ductive logic is concerned with the construction of logical theories T explaining
available observations or events. This means that, given evidence in the form
of atomic formulas a1; a2; : : : ; as, the logical induction approach is to devise an
appropriate logical theory T so that

T ` a1 ^ a2 ^ : : : ^ as:

A major concern is to constrain T so as to rule out trivial solutions, such as
T being inconsistent (thus supporting any evidence), or T being identical to the
conjunction of available evidence. In the more traditional application of logical
theories of induction in arti�cial intelligence, the quest is for a theory T taking
the form of general rules, e.g., scienti�c rules, supporting the given evidence. In
the context of induction of logic programs addressed here, the \observations" are

intended sample program input-output results in the form of atomic formulas,
and the theory T is to be a de�nite clause logic program. Thus the consistency of
T is guaranteed, but computational properties such as termination and compu-
tational tractability of the synthesized program have to be separately considered.

So the goal of inductive logic programming (ILP) is to obtain a collection of
clauses with universally quanti�ed variables, which subsumes the given �nite list
of intended program results. The main approach to achieve this goal is syntactic
generalization of the given examples. Consider atoms p(a; a�b�nil) and p(b; b�nil).
These two unit clauses generalize to the clause program p(X;X �Y) . This rests
on the existence of a dual of the most general uni�er of two atoms known as the
least general generalization (LGG) [63, 62]. In this simple case, the LGG yields
the intended program as a unit clause witness, p(X;X � Y) ` p(a; a � b � nil) ^
p(b; b � nil).

The syntactical generalization of terms has been extended to a notion of
generalized subsumption of clauses [18, 63] and further to a method known as
inverse resolution, see e.g., [58]. This method has proven useful for concept for-
mation, deductive databases and data mining. However, it is too weak for in-
duction of recursive logic programs. Consider examples of list concatenation,
e.g., p(nil; a � nil; a � nil) and p(a � nil; b � nil; a � b � nil). The least general gen-
eralization yields the clause p(X;Y � nil; a � Z) , which fails to capture the
recursive de�nition of concatenation. Providing more examples eventually leads
to an overly general clause: the universal predicate p(X;Y; Z); which subsumes
all concatenation examples though it blatantly fails to capture concatenation of
lists. A general remedy for over-generalization is to include negative examples,
which are understood as examples in the complement set of the intended result
set of atoms. In general, the key problem in synthesizing such programs is the
invention and introduction of appropriate recursive forms of clauses.

Compositional inductive synthesis employs a compositional logical language
for computing relations in analogy to functional programming languages in-
tended for composing and computing functions. The method does not apply the
above generalization mechanisms. A program takes the form of a variable-free
predicate expression ' encompassing elementary predicates and operators for
combining relations and producing new resulting relations.

Let ' ` e mean that the tuple (of terms) e is deducible from the program
predicate expression '. The computational semantics of the language can then
be explained by means of inference rules of the form

'1 ` e1 : : : 'n ` en

op('1; : : : ; 'n) ` e
;

where e depends on op and e1; : : : ; en, as explicated in the concrete rules below.
Let ' ` e1 + : : :+ en mean ' ` ei for i = 1::n, so that + combines result tuples.
Thus, ' ` e1+e2+: : : expresses that the tuples ei of the term form ht1; t2; : : : ; tni
are computable from the n-ary predicate expression '.

In the language Combilog employed here, the given elementary predicates
are constant formation, identity and list construction de�ned by the inference

rules:

constc ` hci id ` ht; ti cons ` hh; t; h � ti

In addition to the elementary predicates, there is a collection of operators,
which map argument relations to relations. The three fundamental operators are
here de�ned by:

' ` ht1; t2; : : : ; tni
(make)

make�1;�2;:::;�m(') ` ht�1 ; t�2 ; : : : ; t�mi

'1 ` e+ e0 '2 ` e+ e00

(and)
and('1; '2) ` e

'1 ` e1 '2 ` e2
(or)

or('1; '2) ` e1 + e2

The make operator is a generalized unary projection operator carrying an aux-
iliary vector of indices �1; : : : ; �m serving to reorder arguments and introduce
don't cares. As described in [46], Combilog possesses a compositional semantics
in which and is set intersection and or is set union, which motivates the inference
rules for the and and or operators. These operators re
ect, respectively, logical
conjunctions in clause bodies and multiple de�ning clauses.

This operator language becomes as expressive as ordinary clause programs
if the language is extended with facilities for naming predicate expressions and
using these names recursively in program predicate de�nitions. However, in the
present form the language does not introduce predicate names in a program.
Instead, the de�ned predicates are anonymous and in order to accommodate
recursive formulations e.g., for list processing, the iteration operators foldr and
foldl are introduced. These operators are akin to the fold operators in functional
programming and with theoretical underpinning in the theory of primitive re-
cursive functions as discussed in [45, 46], The associated rules are:

 ` ht1; t3i
(foldr 0)

foldr (';) ` ht1; nil; t3i

foldr (';) ` ht1; t2; zi ' ` hh; z; t3i
(foldr > 0)

foldr (';) ` ht1; h � t2; t3i

 ` ht1; t3i
(foldl 0)

foldl (';) ` ht1; nil; t3i

' ` hh; t1; zi foldl (';) ` hz; t2; t3i
(foldl > 0)

foldl (';) ` ht1; h � t2; t3i

For instance, with foldr available, the well-known append concatenation predi-
cate is make2;1;3(foldr (cons ; id)), where the make operator swaps the two �rst
arguments.

Below we illustrate the application of the rules using the append program,
proving make2;1;3(foldr (cons ; id)) ` ha � nil; b � nil; a � b � nili:

id ` hb � nil; b � nili
(foldr 0)

foldr (cons ; id) ` hb � nil; nil; b � nili cons ` ha; b � nil; a � b � nili
(foldr > 0)

foldr (cons ; id) ` hb � nil; a � nil; a � b � nili
(make)

make2;1;3(foldr (cons ; id)) ` ha � nil; b � nil; a � b � nili

When the inference rules are used to compute result tuples, these tuples are
unknown parameters to be determined in the course of the execution. In con-
trast, in the compositional inductive synthesis method, the result tuples are
given initially, as a contribution to the result, whereas '1; : : : ; 'n are (partly)
unknown program constituents to be determined recursively in the course of the
synthesis. These inference rules are used in the way described in Section 3.1
for building proofs in a goal directed manner where the program constructs are
unknowns, given as metavariables, and instantiated during proof. This facili-
tates understanding of the induction process as a stepwise, principled, program
composition process.

5.2 Overview

Let us now present compositional inductive synthesis in terms of its generic
features.

Specifications. In inductive synthesis, speci�cations are partial extensional
de�nitions of the programs to be induced, i.e., a set of atoms or tuples consti-
tuting sample program results. No other problem speci�c speci�cations need be
employed.

Mechanism. The operators are similar to schemas in the schema guided ap-
proach to synthesis. In the present method, the program is synthesized in a
strict recursive divide-and-conquer process by tentatively selecting an operator
and then recursively attempting synthesis of constituent parameter programs.

Our synthesis takes advantage of the metainterpreter outlined below for com-
positional programs and does not rely on generalization mechanisms. The ap-
proach can be characterized as the top-down stepwise composition and special-
ization of a Combilog program intended as a solution in the sense that the pro-
gram subsumes the program examples. The search involved in choosing between
operators is taken care of by the back-tracking mechanism in the synthesizer.

In principle, our synthesis proceeds by introducing meta-variables for the left
operand predicate expressions of ` in the proof construction, and then succes-
sively instantiating these variables in the course of the goal-driven proof con-
struction; in doing so, we also appeal to the rule

' ` e1 ' ` e2

' ` e1 + e2
;

which is used for goal splitting on the program examples. Thus the above proof
may be conceived of as a trace of a sample inductive synthesis proof.

In our metainterpreter system, the relationship ' ` e is realized as a binary
predicate syn, which simultaneously serves as metainterpreter and synthesizer.
The key principle of our synthesis method is the inverted use of our metainter-
preter so that the �rst argument program predicate is to be instantiated in the
course of synthesizing a program.

Thus the heart of the synthesizer is clauses of the following, general, divide-
and-conquer form for the available operators:

syn(comb(P1; : : : ; Pm);Ex) apply comb(Ex ;Ex 1; : : : ;Exm)

^ syn(P1;Ex 1) ^ : : : ^ syn(Pm;Exm):

Programs consisting of an elementary predicate are trivially synthesized without
recursive invocation of syn. Let us consider the synthesis of a basic predicate
expression for the head predicate yielding the head of a non-empty list, given
say the two examples ha � b � nil; ai and ha � nil; ai. Synthesis of head is initiated
with a goal clause

 syn(P; [[a; b]; a]) ^ syn(P; [[a]; a]):

A successful proof instantiates P with the synthesized expressionmake3;1(cons).

Heuristics. A detailed description of the synthesizer is found in [46]. To pre-
vent the synthesizer from running astray in the in�nite space of possible pro-
gram hypotheses, the search is conducted as an iterative deepening. To avoid
unwanted trivial program solutions, further constraints are imposed on the syn-
thesizer. Consider, for instance, synthesis of the append predicate. An overly
general solution is obtained as the universal predicate, say, with the expression
make2;3;4(constc) corresponding to the clause p(X1; X2; X3). As mentioned, such
unwanted solutions might be ruled out by the use of negative examples. How-
ever in our synthesizer we have chosen to enforce well-modedness constraints
on the synthesized programs thus suppressing the above solution in favor of the
recursive

P = make2;1;3(foldr (cons ; id));

which is obtained as the syntactically smallest solution given the two sample
results hnil; nil; nili and ha �nil; b �nil; a � b �nili and the mode pattern [+;+;�],
and complying with the usual clauses for append. The synthesis proceeds as a
goal-driven proof construction of the sample proof shown in the above section.

Background Knowledge. The elementary predicates and the operators de-
termine the admissible forms of programs and thereby constitute a form of back-
ground knowledge. No problem-speci�c background knowledge is provided but
a search bias may be imposed by providing additional auxiliary predicates.

Tool Support. For synthesizing the at pos program, a system called Com-

binduce was used, which is based on the method outlined above and described
in detail in [46].

Human Interaction and Scalability. The current experimental system
conducts the inductive synthesis automatically. The computational search costs
limit the size of inducible programs to around 6 predicates and operators.

However, we envisage integration of the CombiInduce principles into a semi-
automatic compositional development system. In this system, the programmer
can o�er assistance by proposing appropriate auxiliary predicates within the
pertinent data type. The imposition of data types will also serve to constrain
further the search space of well-moded program candidates. Recursion (fold)
over lists will be generalized to other data types later.

5.3 Example

Since at this stage, the synthesis system supports list as the only data type we
represent the number n as a list of length n with constants i, where i can be any
constant. Synthesis of the atpos program from the single sample ha�b�nil; i�nil; bi
yields the solution

atpos = foldl (make4;3;2(cons);make3;1(cons)))

as illustrated by the following trace:

make4;3;2(cons) `
h ; a � b � nil; b � nili

make3;1(cons) ` hb � nil; bi
(foldl 0)

foldl (make4;3;2(cons);make3;1(cons)) `
hb � nil; nil; bi

(foldl > 0)
foldl (make4;3;2(cons);make3;1(cons)) ` ha � b � nil; i � nil; bi

The synthesized program is the Combilog form of the de�nite clause program

atpos(L; I; E) syn(foldl (tail 0; head); [L; I; E])

syn(tail 0; [; F � T; T])

syn(head ; [F � T; F])

Synthesis with the foldr operator is not possible. However, swapping the
two subgoals of foldr yields the operator foldrrev allowing the following variant
program to be synthesized

atpos = make3;2;1(foldrrev (cons ;make1;3(cons))):

The relationship between such a pair of variant programs is theoretically
established by a duality theorem stated and proved in [44].

In order to facilitate the comparison of the synthesis approaches, let us trans-
form the �rst Combilog form of the atpos de�nite clause program into a recur-
sive atpos program. We �rst unfold the atpos clause:

atpos(L; nil; E) head(L;E)

atpos(L;X � T;E) tail 0(X;L;Z); syn(foldl (tail 0; head); [Z; T;E])

Now, unfolding head and tail, and folding back the second literal with atpos, we
obtain the following logic program.

atpos(L; nil; E) L = E � T

atpos(L;X � T;E) L = F � Z; atpos(Z; T;E)

5.4 Analysis

Check that meaning is preserved! Designing a metainterpreter for Combilog
is simpli�ed by the variable-free form of Combilog programs, the separation
of predicate expressions and terms in separate arguments, and the elimination
of introduced predicate names. These simpli�cations substantially reduce search
and allow us to e�ectively use the metainterpreter as the backbone of our ILP
method by reversing the provability metalogic programming demo predicate as
examined e.g., in [43] and in [21] for ordinary de�nite clauses.

In [46] we compare with other inductive synthesis systems and report results
on successful automatic synthesis of a number of textbook programs including
non-naive as well as naive reversal of lists. The latter program makes calls for
the auxiliary predicate append, which is recursively induced. This predicate in-
vention, which is generally considered problematic in ILP, is handled smoothly
in our compositional method since explicit predicate names are not introduced.

The outlined compositional method facilitates a program development method-
ology where customized domain speci�c operators are added to the general pur-
pose ones. Moreover, it seems that the compositional method surpasses more
traditional ILP methods with respect to predicate invention and termination
of induced programs within the considered class of primitive recursive relations
delineated by the available recursive operators.

6 Comparison

In this section, the synthesis approaches are compared from di�erent points of
view. First, we compare the synthesized atpos programs. Afterwards, we con-
trast the general features of the di�erent approaches. Finally, we conclude by
analyzing how schemas are used, implicitly or explicitly, in program synthesis
and we suggest that they play a central role in understanding di�erent synthesis
methods. In the following, we will refer to inductive synthesis, deductive syn-
thesis, and schema-guided synthesis to denote the particular synthesis methods
presented in this paper.

6.1 The atpos(L,I,E) Program

All three methods yielded the same program. This was the case even though they
di�er in which variable they choose as an induction parameter: both inductive
synthesis and schema-guided synthesis choose I as the induction parameter, while

deductive synthesis chooses L. In the case of deductive synthesis, we could just
as well have carried out induction on I . However, for schema-guided synthesis,
switching would require a separate schema with a di�erent template, namely with
an additional non-recursive clause for the non-minimal case. The same holds for
inductive synthesis where a fold combinator over numbers and an associated rule
would be required.

In general, the choice of the induction parameter will a�ect the form of
the resulting program and even its complexity [25]. In this regard, deductive
synthesis o�ers more
exibility, as one can perform induction over any well-
founded relation, and development (hence program construction) proceeds in
smaller steps. Of course, in schema-guided synthesis and inductive synthesis, one
can always introduce new schemas, respectively operators, corresponding to new
ways of building programs, as the need arises.

6.2 Speci�cation

The forms of the speci�cations in deductive synthesis and schema-guided syn-
thesis are similar. Both are �rst-order formulas asserting a possibly conditional
equivalence. In inductive synthesis, the speci�cation is a �nite set of examples
(a subset of the extensional de�nition of the relation), which is by nature in-
complete (when the extensional de�nition is in�nite). Speci�cations in inductive
synthesis may also include negative examples or properties [28, 36], but in gen-
eral they remain incomplete. This incompleteness is a signi�cant di�erence and,
as we will see, it has far-reaching consequences. Indeed, it will play a key role in
di�erentiating inductive synthesis from the other two approaches with respect
to the other generic features.

For the deductive synthesis and schema-guided synthesis approaches, in con-
trast to inductive synthesis, it is important for non-trivial applications to be
able to construct complex speci�cations and this requires ways of parameteriz-
ing and combining speci�cations. In our work on deductive synthesis, we achieve
this, in practice, by using logical frameworks like Isabelle [59], which provide
support for structured theory presentations. In schema-guided synthesis, [33]
express program schemas as extensions of speci�cation frameworks [52], which
support parameterized speci�cations and their composition.

Of course, the use of �rst-order logic as a speci�cation language has its limita-
tions. For example, in schema-guided synthesis, we needed the well-foundedness
of a relation � as a constraint in the DC schema. However, a formalization of
well-foundedness generally falls outside of �rst-order logic, unless one formal-
izes, e.g., set-theory. A work-around is to assume that some �xed collection of
relations is declared to be well-founded. The alternative is to use a stronger
(higher-order) logic or theory [1] where concepts such as well-foundedness can
be de�ned and well-founded relations can be constructed. Stronger logics, of
course, have their own drawbacks; in particular it is more diÆcult to automate
deduction.

6.3 Mechanism

As presented, the mechanisms used in the three methods appear quite dissimi-
lar. Deductive synthesis is oriented around derivations, schema-guided synthesis
was described using an algorithm for applying schemas, and inductive synthe-
sis uses a meta-interpreter to build programs. Yet it is possible to recast all
three so that the central mechanism is the same: a top-down application of
rules is used to incrementally construct a program, during a derivation, in a
correctness-preserving way. In deductive synthesis, derived rules are applied top-
down, using higher-order uni�cation to build programs as a \side-e�ect" of proof
construction. Although the mechanism for applying schemas has been presented
in an algorithmic fashion, it is possible to recast schema-guided synthesis as the
application of rules in a deductive system [1]; namely, a schema constitutes a
(derivable) rule whose premises are given by the schema's constraints and (the
completion of its) template and the conclusion is given by the schema's speci-
�cations. Viewed in this way, schema-guided synthesis, like deductive synthesis,
constructs programs, during proofs, by the higher-order application of rules. The
main distinction between the two methods boils down to the rules, granularity
of steps, and heuristics/interaction for constructing proofs. Finally, in inductive
synthesis, rules are also given for constructing Combilog programs. There, the
rules are automatically applied by a Prolog meta-interpreter.

Although they di�er in form, the rules employed by the di�erent methods
have a similar nature. Not surprisingly, in all cases, mathematical induction
plays a key role in program synthesis, as it is necessary for constructing itera-
tive or recursive programs. In deductive synthesis, induction principles can be
derived from induction principles for data types or even the inductive (least-
�xedpoint) semantics of logic programs [1]. The induction principles (perhaps in
a reformulated form, e.g., the ind rule of Section 3.2) are then explicitly applied
and their application constructs a template for a recursive program. In schema-
guided synthesis, the correctness of schemas for synthesizing recursive programs
is also justi�ed by inductive arguments. Indeed, complex schemas can be seen as
kinds of complex macro-development steps that precompile many micro steps,
including induction. One might say that induction is implicitly applied when us-
ing a schema to construct recursive programs. In inductive synthesis, programs
are iterative, instead of recursive, and programs that iterate over lists (or, more
generally, other inductively de�ned data types) are built using fold rules. Again,
mathematical induction principles play a role, behind-the-scenes, in justifying
the correctness of iteration rules, and rule application can be seen as an implicit
use of induction. There is, of course, a tradeo�. By compiling induction into spe-
cialized rules, schema-guided synthesis and inductive synthesis can take larger
steps than deductive synthesis; however, they are more specialized. In particular,
by building only iterative programs, the inductive synthesis method presented
can sharply reduce the search space, but at the price of limited expressibility.

The underlying mechanisms are, in some respects, fundamentally di�erent.
Although all three methods are based on �rst-order logic, any system imple-
menting deductive synthesis (respectively schema-guided synthesis) will require

higher-order uni�cation (respectively higher-order matching). This is necessary
to construct substitution instances for variables in rules and schemas that range
over functions, relations, and more generally, contexts (terms with holes); the
downside is that higher-order matching and uni�cation are more diÆcult than
their �rst-order counterparts, and the existence of multiple uni�ers (respectively
matchers) can lead to large branching points in the synthesis search space. The
operator form of Combilog means that rules in inductive synthesis manipulate
only �rst-order terms. Moreover, all complications concerning object language
variables are eliminated. This simpli�es the metainterpreter and reduces the
synthesis to search in the space of operator combinations subjected to well-
modedness constraints.

Finally, the di�ering nature of the speci�cations, in particular, complete ver-
sus incomplete information, makes a substantial di�erence in the underlying se-
mantics of the di�erent methods and the relationship of the synthesized program
to its speci�cation. As presented here, both deductive synthesis and schema-
guided synthesis construct programs that are (possibly under conditions) equiv-
alent to some initial speci�cation. In the case of inductive synthesis, equivalence
is weakened to implication or entailment. This changes, of course, the semantics
of the rules. Moreover it has a signi�cant impact on extra-logical considera-
tions, i.e., considerations that are not formalized in the synthesis logic (e.g.,
the program synthesized should have a particular syntactic form or complexity).
In inductive synthesis these considerations (in particular, having a syntactically
small recursive program that entails the examples) become central to the syn-
thesis process and it is important to use a well-speci�ed strategy, embodied in a
metainterpreter, to ensure them.

6.4 Heuristics

Each of the methods presented has an in�nite search space. However, the spaces
are di�erently structured and di�erent heuristics may be employed in searching
them.

In deductive synthesis, one proceeds in a top-down fashion, employing in-
duction and simpli�cation. The search space has both in�nite branching points
associated with the application of higher-order uni�cation (as there may be in-
�nitely many uni�ers) and branches of unbounded length (as induction may
be applied in�nitely often and simpli�cation may not necessarily terminate).
In practice, an e�ective heuristic is to follow an induction step by eager sim-
pli�cation; here, rippling can be used to control the simpli�cation process and
guarantee its termination. Moreover, with the exception of applying induction,
uni�cation problems are usually of a restricted form, involving \second-order
patterns," which can be easily solved [51]. Hence, it is possible, in some cases,
to use heuristics to reduce the search space to the point where synthesis can be
completely automated.

Schema-guided synthesis uses a strict recursive divide-and-conquer strategy
in the selection of operators and the synthesis of the parameter programs. It also
employs a stepwise composition/specialization of programs where the objective is

to reuse existing code. Analogous to deductive synthesis, critical branch-points
include schema selection and selection of a substitution (higher-order match-
ing is required as the same schema can be used in di�erent ways). Search can
be conducted as an iterative deepening search employing heuristics. Although
schema-guided synthesis also has an in�nite search space, it is fair to say that
when a program is in the search space, one is likely to �nd it more quickly than
with deductive synthesis since the steps in schema-guided synthesis are larger,
and hence the program is at a shallower ply in the search tree.

The search space in inductive synthesis is more diÆcult to navigate than
in the other two methods because of the additional extra-logical concerns men-
tioned previously. Here a strict control (dictated by a metainterpreter) is required
to generate candidate programs in a particular order. To make automated search
practical, the search space is restricted, a priori, by restrictions in the method.
For example, the programs synthesizable are restricted to those involving itera-
tion, instead of general recursion, and the use of combinators ensures that �rst-
order (Prolog) uni�cation suÆces for program construction. In addition there is
the well-modedness requirement and, to reduce explosive branching, the use of
or is restricted. It is an interesting question as to whether any of these pruning
measures could be pro�tably used in the other approaches.

6.5 Background Knowledge

The three approaches formalize background knowledge in di�erent ways. For de-
ductive synthesis, background knowledge about data types is given by a standard
�rst-order theory augmented with appropriately reformulated (for synthesis) in-
duction schemas (e.g., ind). For schema-guided synthesis, background knowledge
must be formalized in terms of a base of program schemas, capturing a range
of program classes, which may (or may not) directly incorporate information
about data types, as well as a database of reusable programs and information
about well-founded relations (typically associated with data types). Here, more
work is usually required to formalize background knowledge, but the payo� is
that this work is done once and for all and the resulting schemas can be used
to reduce search and guide development to specialized classes of programs. For
inductive synthesis, the background knowledge is basically the elementary oper-
ators (const, id, cons, etc.), which encode knowledge about iterative programs
operating over lists. As with the other approaches, this knowledge is domain-
dependent, and synthesizing programs operating over other data types would
require additional rules.

6.6 Human Interaction and Scalability

The deductive synthesis proof presented was constructed interactively. There,
within a �rst-order formalization of list theory, specialized rules for synthesis
were derived, and interactively applied. However, proof search can also be auto-
mated using tactics and one can adjust the size of proof steps by deriving new
proof rules (analogous to complex program schemas). This process of writing

tactics and deriving new rules is open, leads to a customizable approach, and
can, at least in theory, scale arbitrarily. The use of tactics also makes it possible
to arbitrarily mix automation with human interaction.

Conversely, the schema-guided synthesis method was presented as fully au-
tomatable, although a human could be used to drive the selection of schemas
and substitution instances. Indeed, as with deductive synthesis, this is often
preferable, as it provides a way of in
uencing extra-logical concerns, such as the
complexity of the synthesized program. The approach scales well as specialized
schemas can be tuned to particular classes of problems (divide and conquer,
global search, etc.). Moreover, there is a natural mechanism for the reuse of
programs.

For the moment, there is no human interaction in the presented method for
inductive synthesis. It is not clear either how feasible this is, given the impor-
tance that extra-logical concerns play in the synthesis process. How would a
human know, for example, that steps suggested will generate the simplest pos-
sible program? The reuse of existing programs also is not handled.

It is not clear how the inductive synthesis approach can be scaled up to
synthesize more complex programs with recursion or iteration. For complex ex-
amples, the incomplete nature of the input speci�cation makes the program
space so intractable that human interaction, heuristics, support for reuse, and
\more complete" speci�cation information, such as properties [30, 28], appear
necessary. But even with these extensions, the purely inductive approach to the
synthesis of programs with recursion or iteration remains very hard, and it seems
doubtful whether this approach will ever scale up to the synthesis of complex,
real-life programs.

When the synthesized program does not feature recursion or iteration (and
methods for this are outside the scope of this paper) then the inductive synthesis
approach can usefully scale. This is witnessed by recent progress in ILP, on
problems in domains, such as face recognition [54], where only (large) sets of
input/output examples are available as humans have diÆculty writing a formal,
complete speci�cation [34].

6.7 Tool Support

For deductive synthesis, we used Isabelle [59], a generic logical framework, for
our implementation. For schema-guided synthesis, the higher-order proof plan-
ning system �Clam can be used, upon reformulation of the program schemas as
proof planning methods [35]; this has the nice side-e�ect that the proof obliga-
tions of schema-guided synthesis can also be discharged using the same theorem
proving machinery. For inductive synthesis, a specialized Prolog implementation
was used.

It is interesting to speculate on whether generic logical frameworks, like Is-
abelle, could be e�ectively used for all three approaches. And could the ap-
proaches even be pro�tably combined?

Our discussion at the top of Section 6.3 suggests that a generic logical frame-
work can e�ectively be used for schema-guided synthesis. Of course, there are

some potential drawbacks. First, a logical framework requires recasting any syn-
thesis method as one based on theorem proving; for instance, schema-guided
synthesis was not cast this way in Section 4. This may require some contortions;
see [9] for an example of this. Second, the logical framework will impose its own
discipline for presenting and structuring theories, and this may deviate from
that desired by a particular synthesis method; e.g., speci�cation frameworks
[52] provide more structuring possibilities than those possible using the Isabelle
system. Finally, a hand-coded synthesis system will probably be more eÆcient.
Although it is easy to write a Prolog interpreter (to realize inductive synthesis)
as a tactic in a logical framework, this involves a layer of metainterpretation and
a corresponding slow-down in execution time. The price may be too high when
substantial search is involved.

As to the question whether the approaches could be pro�tably combined, the
answer is a clear `yes' for deductive synthesis and schema-guided synthesis, and
we will develop this point in the next sub-section. Combining inductive synthesis
with the other approaches raises the question of how to deal with the ensuing
redundancy in the overall speci�cation, as the incomplete part supposedly is a
logical consequence of the complete one. To a human programmer, examples
attached to a speci�cation that is intended to be complete often facilitate the
understanding of the task. But an automated synthesizer probably does not need
such help. Should there be a contradiction between the complete speci�cation
and the examples, then the overall speci�cation is almost certainly wrong. In
the absence of such a contradiction, one knows nothing about the quality of the
overall speci�cation and thus has to forge ahead. The question then arises of
how to exploit the redundancy. A convincing proposal was made by Minton [57]:
to cope with the instance sensitivity of the heuristics used to eÆciently solve
ubiquitous, NP-hard, constraint satisfaction problems, industry-strength solver
synthesizers should use training instances (i.e., the input parts of examples) in
addition to the speci�cation of the problem, so that the most suitable heuristics
can be empirically determined during synthesis. As long as the actual runs of
the synthesised program are on instances within the distribution of the training
instances, a good performance can be guaranteed.

6.8 Implicit versus Explicit Use of Schema

A central part of our comparison has been that the boundaries between deductive
synthesis, schema-guided synthesis, and inductive synthesis are somewhat
uid
with respect to the use of schemas. In particular, from the appropriate view-
point, the di�erence between deductive synthesis and schema-guided synthesis is
vanishingly small. We would like to close the comparison by driving these points
home.

The derived rules in deductive synthesis for reasoning about equivalences are
rule schemas, i.e., rules with metavariables ranging over predicates. These are
metavariables from the view of a metalogic, but they also can be viewed as
uninterpreted relations in the object logic and play the same role as the open
relation symbols in schema-guided synthesis. Viewed this way, if the background

theory of deductive synthesis is formalized as a speci�cation framework, then
the inference rules are a variation of the program schemas in schema-guided
synthesis.

For example, the ind rule with its assumptions A1{A3 presented here in de-
ductive synthesis is similar (although not equivalent) to theDC schema developed
in schema-guided synthesis. In particular:

{ ind commits to an induction parameter of type list, whereas DC has an open
sort SX for the induction parameter;

{ ind commits to one-step, head-tail decomposition of the induction parame-
ter, whereas DC has an open relation dec for this;

{ DC commits to always one recursive call in the step case, whereas ind is

exible (there can be any number of recursive calls);

{ the assumption A1 of ind plays the same role as the template DC in DC,
but they di�er in content;

{ the predicate variable B of ind plays the same role as the open relation solve
in DC;

{ the assumption A2 of ind plays the same role as the speci�cation Ssolve in
DC;

{ the predicate variable S of ind does not play the same role as the open
relation comp in DC; indeed, an instance of S may include recursive call(s),
whereas recursion is dictated by the template DC and is thus not considered
when instantiating comp;

{ the assumption A3 of ind plays the same role as the speci�cation Scomp in
DC, but they di�er in content;

{ there is no explicit equivalent of the constraints C1, C2, and C3 and the
speci�cations Smin and Sdec of DC in ind.

The di�erences here are not due to the underlying synthesis mechanism, but
are an artifact of the particular implicit schema used (for reasons of simplicity)
in this presentation of deductive synthesis. More elaborate rules and schemas,
neither committed to a particular type nor a well-founded relation, have been
developed in deductive synthesis, as presented in, e.g., [1, 3].

A similar comparison can be made between the foldr and foldl operators in
inductive synthesis, and the DC schema in schema-guided synthesis. The foldr
and foldl operators can also be seen as implicit program schemas. More elaborate
rules could also be used to build Combilog programs in larger steps.

Program schemas are thus used (implicitly or explicitly) in the di�erent
synthesis approaches. In the literature, program schemas are often reduced to
templates, formalized as higher-order expressions, and applied using higher-
order uni�cation. As shown in schema-guided synthesis, such templates must
be enhanced with semantic information, expressed for instance through axioms,
constraints, and speci�cations. Viewing such schemas as derivation rules, and
schema application as logical inference, the distinction vanishes between the
schema-guided and deductive/constructive approaches. For instance, in [1] it is
shown how schemas for transformational development can be formalized as de-
rived rules and combined with other kinds of veri�cation and synthesis. In [30,
28], a DC-like schema is used in the context of inductive synthesis.

7 Conclusion

In this paper, we have analyzed and compared representative methods of three
approaches to program synthesis in computational logic. Despite their di�er-
ences, we established strong similarities. In particular, program schemas are used
(implicitly or explicitly) in each of the methods and are central in driving the
synthesis process and exploiting synergies. We would therefore like to conclude
by discussing some limitations of schemas and open issues.

Despite their central role, schemas have their limitations. Schemas are usu-
ally expressed in some logical language, but any given language has syntactical
restrictions that in turn restrict what can be expressed as a schema. For example,
a �rst-order language �xes the arity of predicates and functions, their associated
types, etc. There is no way to capture certain simple kinds of generalization or
extra-logical annotations, for example to employ term or atom ellipses t1; : : : ; tn
of variable length n. As an example of this limitation, consider the ind rule of
Section 3.2. There we used X to denote a sequence of zero or more variables
and hence the induction rule given cannot be captured by a single schema, but
rather requires a family of schemas, one for each n. Extensions here are possible;
[64, 28, 70, 39, 20] provide notions of schema patterns that describe such families
and can be specialized as needed before, or during, synthesis.

Schemas are here de�ned as abstractions of classes of programs. At the same
time, they formalize particular design strategies, such as divide-and-conquer or
global search; part of the associated strategy can also be speci�ed by associated
tactics, which choose induction parameters, �nd appropriate well-founded rela-
tions, and so on. However, in their present form, schemas cannot handle more
sophisticated design strategies, namely strategies abstracting a class of programs
that cannot be obtained by instantiation with formulae. Typical examples are
so-called design patterns [38], which aim at the description of software design
solutions and architectures (typically described by UML diagrams and text).
How to extend schemas to handle such strategies is an open problem in program
synthesis.

Overall, by examining the relationships and di�erences between the chosen
synthesis methods, we have sought to bring out synergies and possibilities for
cross-fertilization, as well as limitations. The primary synergies involve a com-
mon mechanism: a notion of schematic rule and the use of uni�cation to ap-
ply rules in a top-down way that incrementally construct a program, during a
derivation that demonstrates its correctness. The primary di�erences concern
the nature of the speci�cations, in particular the information present; this also
manifests itself in di�erent semantics and radically di�erent search spaces for
the di�erent methods. As it is, the purely inductive approach to the synthesis
of programs with recursion or iteration remains very hard, and it seems doubt-
ful whether this approach will ever scale up to the synthesis of complex, real-life
programs. Fortunately, fruitful combinations of these synthesis approaches exist.

In the end, we believe that progress in this �eld will be based on exploiting the
identi�ed synergies and possibilities for cross-fertilization, as well as supporting
an enhanced,
exible use of schemas. We hope, with this paper, to have made a

constructive analysis of the last decade of research, thereby showing a possible
path for the next decade.

Acknowledgements

We would like to thank the anonymous referees for their feedback and our co-
investigators on research related to this paper.

References

1. P. Anderson and D. Basin. Program development schemata as derived rules. Jour-
nal of Symbolic Computation, 30(1):5{36, 2000.

2. A. Ayari and D. Basin. Generic system support for deductive program develop-
ment. In T. Margaria and B. Ste�en, editors, Proc. of TACAS'96, volume 1055 of
LNCS, pages 313{328. Springer-Verlag, 1996.

3. A. Ayari and D. Basin. A higher-order interpretation of deductive tableau. Journal
of Symbolic Computation, 2002. To Appear.

4. R. Balzer. A 15 year perspective on automatic programming. IEEE Transactions

on Software Engineering, 11(11):1257{1268, 1985.
5. H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of

Studies in Logic. North-Holland, second, revised edition, 1984.
6. D. Basin. IsaWhelk: Whelk interpreted in Isabelle. In P. Van Hentenryck, editor,

Proc. of ICLP'94, page 741. The MIT Press, 1994.

7. D. Basin. Logic frameworks for logic programs. In L. Fribourg and F. Turini,
editors, Proc. of LOPSTR'94 and META'94, volume 883 of LNCS, pages 1{16.
Springer-Verlag, 1994.

8. D. Basin. Logical-framework-based program development. ACM Computing Sur-

veys, 30(3es):1{4, 1998.
9. D. Basin and S. Friedrich. Modeling a hardware synthesis methodology in Isabelle.

Formal Methods in Systems Design, 15(2):99{122, September 1999.

10. D. Basin and B. Krieg-Br�uckner. Formalization of the development process. In
E. Astesiano, H.-J. Kreowski, and B. Krieg-Br�uckner, editors, Algebraic Founda-

tions of System Speci�cation, pages 521{562. Springer-Verlag, 1998.
11. D. Basin and S. Matthews. Adding metatheoretic facilities to �rst-order theories.

Journal of Logic and Computation, 6(6):835{849, 1996.
12. D. Basin and T. Walsh. Annotated rewriting in inductive theorem proving. Journal

of Automated Reasoning, 16(1{2):147{180, 1996.

13. A.W. Biermann. Automatic programming. In S.C. Shapiro, editor, Encyclopedia
of Arti�cial Intelligence, pages 59{83. John Wiley, second, extended edition, 1992.

14. A.W. Biermann, G. Guiho, and Y. Kodrato�, editors. Automatic Program Con-

struction Techniques. Macmillan, 1984.
15. L. Blaine, L. Gilham, J. Liu, D.R. Smith, and S. Westfold. PlanWare: Domain-

speci�c synthesis of high-performance schedulers. In Proc. of ASE'98, pages 270{
279. IEEE Computer Society Press, 1998.

16. A. Bundy, A. Smaill, and G.A. Wiggins. The synthesis of logic programs from in-
ductive proofs. In J.W. Lloyd, editor, Computational Logic, Esprit Basic Research
Series, pages 135{149. Springer-Verlag, 1990.

17. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A
heuristic for guiding inductive proofs. Arti�cial Intelligence, 62(2):185{253, 1993.

18. W. Buntine. Generalized subsumption and its application to induction and redun-
dancy. Arti�cial Intelligence, 36(2):375{399, 1988.

19. C.-L. Chang and R.C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

20. E. Chasseur and Y. Deville. Logic program schemas, constraints and semi-
uni�cation. In N.E. Fuchs, editor, Proc. of LOPSTR'97, volume 1463 of LNCS,
pages 69{89. Springer-Verlag, 1998.

21. H. Christiansen. Implicit program synthesis by a reversible metainterpreter. In
N.E. Fuchs, editor, Proc. of LOPSTR'97, volume 1463 of LNCS, pages 90{110.
Springer-Verlag, 1998.

22. E.M. Clarke and J.M. Wing. Formal methods: State of the art and future direc-
tions. ACM Computing Surveys, 28(4):626{643, 1996.

23. M.D. Coen. Interactive program derivation. Technical Report 272, Cambridge
University Computer Laboratory, UK, 1992.

24. T. Coquand and G. Huet. The calculus of constructions. Information and Com-

putation, pages 95{120, 1988.
25. Y. Deville. Logic Programming: Systematic Program Development. International

Series in Logic Programming. Addison-Wesley, 1990.
26. Y. Deville and K.-K. Lau. Logic program synthesis. Journal of Logic Programming,

19{20:321{350, 1994.
27. A. Felty and D. Miller. Specifying theorem provers in a higher-order logic pro-

gramming language. In E.L. Lusk and R.A. Overbeek, editors, Proc. of CADE'88,
volume 310 of LNCS, pages 61{80. Springer-Verlag, 1988.

28. P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer Academic
Publishers, 1995.

29. P. Flener. Achievements and prospects of program synthesis. In A.C. Kakas and
F. Sadri, editors, Computational Logic: Logic Programming and Beyond; Essays in

Honour of Robert A. Kowalski, volume 2407 of Lecture Notes in Arti�cial Intelli-

gence, pages 310{346. Springer-Verlag, 2002.
30. P. Flener and Y. Deville. Logic program synthesis from incomplete speci�cations.

Journal of Symbolic Computation, 15(5{6):775{805, 1993.
31. P. Flener, K.-K. Lau, and M. Ornaghi. Correct-schema-guided synthesis of stead-

fast programs. In Proc. of ASE'97, pages 153{160. IEEE Computer Society Press,
1997.

32. P. Flener, K.-K. Lau, and M. Ornaghi. On correct program schemas. In N.E. Fuchs,
editor, Proc. of LOPSTR'97, volume 1463 of LNCS, pages 124{143. Springer-
Verlag, 1998.

33. P. Flener, K.-K. Lau, M. Ornaghi, and J.D.C. Richardson. An abstract formalisa-
tion of correct schemas for program synthesis. Journal of Symbolic Computation,
30(1):93{127, 2000.

34. P. Flener and D. Partridge. Inductive programming. Automated Software Engi-

neering, 8(2):131{137, 2001.
35. P. Flener and J.D.C. Richardson. A uni�ed view of programming schemas and

proof methods. In A. Bossi, editor, Proc. of LOPSTR'99, pages 75{82. Tech. rept.
CS-99-16, Univ. of Venice, Italy, 1999. Also see Technical Report 2003-008 at the
Department of Information Technology, Uppsala University, Sweden, 2003.

36. P. Flener and S. Y�lmaz. Inductive synthesis of recursive logic programs: Achieve-
ments and prospects. Journal of Logic Programming, 41(2{3):141{195, 1999.

37. P. Flener, H. Zidoum, and B. Hnich. Schema-guided synthesis of CLP programs.
In Proc. of ASE'98, pages 168{176. IEEE Computer Society Press, 1998.

38. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
39. T.S. Gegg-Harrison. Extensible logic program schemata. In J. Gallagher, editor,

Proc. of LOPSTR'96, volume 1207 of LNCS, pages 256{274. Springer-Verlag, 1997.
40. A.T. Goldberg. Knowledge-based programming: A survey of program design and

construction techniques. IEEE Transactions on Software Engineering, 12(7):752{
768, 1986.

41. M.J. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: A Mechanized

Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

42. C. Green. Application of theorem proving to problem solving. In Proc. of IJCAI'69,
pages 219{239. Morgan Kaufmann, 1969.

43. A. Hamfelt and J. Fischer Nilsson. Inductive metalogic programming. In S. Wrobel,
editor, Proc. of ILP'94, volume 237 of GMD-Studien, pages 85{96, 1994.

44. A. Hamfelt and J. Fischer Nilsson. Declarative logic programming with primitive
recursive relations on lists. In M.J. Maher, editor, Proc. of JICSLP'96, pages
230{243. The MIT Press, 1996.

45. A. Hamfelt and J. Fischer Nilsson. Towards a logic programming methodology
based on higher-order predicates. New Generation Computing, 15(4):421{448,
1997.

46. A. Hamfelt, J. Fischer Nilsson, and N. Oldager. Logic program synthesis as problem
reduction using combining forms. Automated Software Engineering, 8(2):167{193,
2001.

47. P. Hill and J.W. Lloyd. The G�odel Programming Language. The MIT Press, 1994.
48. J.R. Hindley and J.P. Seldin. Introduction to Combinators and the �-Calculus.

Cambridge University Press, 1986.
49. D.J. Howe. On computational open-endedness in Martin-L�of's type theory. In

Proc. of LICS'91, pages 162{172. IEEE Computer Society Press, 1991.
50. I. Kraan, D. Basin, and A. Bundy. Logic program synthesis via proof planning. In

K.-K. Lau and T. Clement, editors, Proc. of LOPSTR'92, Workshops in Computing
Series, pages 1{14. Springer-Verlag, 1993.

51. I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and induc-
tion. Journal of Automated Reasoning, 16(1{2):113{145, 1996.

52. K.-K. Lau and M. Ornaghi. On speci�cation frameworks and deductive synthesis
of logic programs. In L. Fribourg and F. Turini, editors, Proc. of LOPSTR'94 and

META'94, volume 883 of LNCS, pages 104{121. Springer-Verlag, 1994.
53. K.-K. Lau, M. Ornaghi, and S.-�A. T�arnlund. Steadfast logic programs. Journal of

Logic Programming, 38(3):259{294, 1999.
54. C.L. Lisett and D.E Rumelhart. Facial recognition using a neural network. In Proc.

of the 11th International Florida AI Research Symposium FLAIRS-98, pages 328{
332, 1998.

55. M.J. Maher. Equivalences of logic programs. In J. Minker, editor, Foundations of
Deductive Databases and Logic Programming. Morgan Kaufmann, 1987.

56. P. Martin-L�of. Constructive mathematics and computer programming. In Proc. of

the Sixth International Congress for Logic, Methodology, and Philosophy of Science,
pages 153{175. North-Holland, 1982.

57. S. Minton. Automatically con�guring constraint satisfaction programs: A case
study. Constraints, 1(1{2):7{43, 1996.

58. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13(3{
4):245{286, 1995.

59. L.C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS. Springer-
Verlag, 1994.

60. A. Pettorossi and M. Proietti. Transformation of logic programs. In D.M. Gabbay,
C.J. Hogger, and J.A. Robinson, editors, Handbook of Logic in Arti�cial Intelli-

gence and Logic Programming. Clarendon Press, 1998.
61. F. Pfenning. Logic programming in the LF logical framework. In Logical Frame-

works, pages 149{181. Cambridge University Press, 1991.
62. G.D. Plotkin. A note on inductive generalization. In B. Meltzer and D. Michie,

editors, Machine Intelligence 5, pages 153{163. Edinburgh University Press, 1970.
63. J.C. Reynolds. Transformational systems and the algebraic structure of atomic

formulas. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages
135{151. Edinburgh University Press, 1970.

64. D.R. Smith. The structure of divide and conquer algorithms. Technical Report
52-83-002, Naval Postgraduate School, Monterey, California, USA, 1983.

65. D.R. Smith. Top-down synthesis of divide-and-conquer algorithms. Arti�cial In-

telligence, 27(1):43{96, 1985.
66. D.R. Smith. KIDS: A semiautomatic program development system. IEEE Trans-

actions on Software Engineering, 16(9):1024{1043, 1990.
67. D.R. Smith. Toward a classi�cation approach to design. In M. Wirsing and M. Ni-

vat, editors, Proc. of AMAST'96, volume 1101 of LNCS, pages 62{84. Springer-
Verlag, 1996.

68. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
An eÆcient purely declarative logic programming language. Journal of Logic Pro-

gramming, 29(1{3):17{64, 1996.
69. A. van Lamsweerde. Formal speci�cation: A roadmap. In A. Finkelstein, editor,

The Future of Software Engineering, pages 147{159. ACM Press, 2000.
70. W.W. Vasconcelos and N.E. Fuchs. An opportunistic approach for logic pro-

gram analysis and optimisation using enhanced schema-based transformations. In
M. Proietti, editor, Proc. of LOPSTR'95, volume 1048 of LNCS, pages 174{188.
Springer-Verlag, 1996.

71. G.A. Wiggins. Synthesis and transformation of logic programs in the Whelk proof
development system. In K.R. Apt, editor, Proc. of JICSLP'92, pages 351{365. The
MIT Press, 1992.

