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LOGIC PROGRAM SYNTHESIS

YVES DEVILLE AND KUNG-KIU LAU

> This paper presents an overview and a survey of logic program synthesis.
Logic program synthesis is interpreted here in a broad way; it is concerned
with the following question: given a speci�cation, how do we get a logic pro-
gram satisfying the speci�cation? Logic programming provides a uniquely
nice and uniform framework for program synthesis since the speci�cation,
the synthesis process and the resulting program can all be expressed in
logic.
Three main approaches to logic program synthesis by formal methods are
described: constructive synthesis, deductive synthesis and inductive syn-
thesis. Related issues such as correctness and veri�cation as well as syn-
thesis by informal methods are brie
y presented.
Our presentation is made coherent by employing a uni�ed framework of
terminology and notation, and by using the same running example for all
the approaches covered. This paper thus intends to provide an assessment
of existing work and a framework for future research in logic program syn-
thesis. <

1. INTRODUCTION

Program synthesis refers to the elaboration of a program in some systematic man-
ner, starting from a speci�cation, that is a statement describing what the program
should do. A speci�cation may have many forms. We can distinguish formal speci-
�cations from informal ones. For the latter, the synthesis process cannot be totally
formalised and can only be partially automated. We thus distinguish between syn-
thesis by formal methods and synthesis by informal methods.
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Program synthesis in general has been an active area of research outside logic
programming. See [BGK84, Bal85, Gol86, Bie92], for example, for a presentation
of the major achievements. In the early days of logic programming, logic program
synthesis was one of the �rst areas of active research, mainly focusing on manual
program derivation. By the middle eighties, however, this work had dwindled
considerably. More recently, it has become an active area of research once again,
this time focusing mainly on automated or semi-automated synthesis. In this paper,
we give a brief survey of the work to date in logic program synthesis.

Logic program synthesis is concerned with the following:

Given a (non-executable) speci�cation, how to get an (executable)
logic program satisfying the speci�cation?

where the notions of \speci�cation" and \executability" are interpreted broadly.
For tackling this problem, logic programming provides a uniquely uniform frame-
work because the speci�cation, the synthesis process and the resulting program can
all be expressed in logic.

There are three main approaches to logic program synthesis by formal methods:

� In the constructive approach,1 a conjecture based on the speci�cation is
constructively proved, and from this proof the speci�ed program is extracted.
We call this approach constructive synthesis.

� Amore direct approach is to deduce clauses for the speci�ed program directly
from the speci�cation. We shall call this approach deductive synthesis.

� Another approach can induce a program from a partial speci�cation of the
program. The program is a generalisation of the partial speci�cation. We
shall call this approach inductive synthesis.

This survey covers all the above approaches. Related issues such as correctness
and veri�cation, as well as synthesis by informal methods will brie
y be presented.
This paper does not cover some other synthesis approaches, such as knowledge-
based synthesis [Smi90], synthesis by inspection (see [BF82, BGK84]), because very
little work has been done using these approaches in logic programming.

Thus this survey covers only the program synthesis part of the so-called program
development area. Program development is a much larger area since it also includes
other aspects such as program analysis (e.g. abstract interpretation, termination)
and program transformation (e.g. fold/unfold, partial evaluation), inter alia (see
related papers in this Special Issue for other aspects of Program Development).
Indeed for the whole process of program development, we should consider the re-
alistic scenario depicted by the spiral: (informal speci�cation ! incomplete formal
speci�cation ! unsatisfactory program! better speci�cation ! more satisfactory
program, and so on). This scenario shows the development process as a life-cycle,
within which program synthesis enables a transition from speci�cation to program.
We will not deal with this entire life-cycle in this survey. Rather, we concentrate
on synthesis methods. However, the reader should bear in mind the larger context
of program development.

The distinction between deductive program synthesis and program transforma-
tion is rather subjective and often depends on the context of the research. A

1Also known as the proofs-as-programs approach, after [BC85].
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possible di�erence could be that synthesis starts from some non-executable spec-
i�cation, which usually means a non-recursive description of the problem, whilst
transformation usually starts from an already executable description. Program
transformation will be covered by a separate survey in this volume. We shall not
cover other related logic programming topics such as programming environments,
inductive logic programming, and semantics.

Our aim for this survey is to provide a broad, extensive (and hopefully complete)
survey in the �eld of logic program synthesis. We shall give a coherent presentation
using a uni�ed framework of terminology and notation, and the same running ex-
ample for all the approaches covered. By so doing, we shall attempt to expose the
similarities and dissimilarities between the di�erent approaches, and to evaluate
their respective strengths and weaknesses.

Given the space limit, it is not possible to describe all the theoretical background
necessary for a full treatment of the examples, or the theoretical di�culties and
unsolved theoretical problems for each method. Nevertheless, a basic knowledge of
logic programming will be su�cient to get a precise idea of the synthesis methods
presented. However, the reader will need to read the original papers for a deeper
understanding.

We hope this paper provides an assessment of existing work and a framework
for future research in logic program synthesis.

The paper is organised as follows. In Section 2 we de�ne and explain the basic
concepts. In Sections 3, 4, 5, and 6, we present an account of constructive syn-
thesis, deductive synthesis, inductive synthesis and synthesis by informal methods
respectively. In each of these sections, we describe the approach, show the running
example for this approach, and give a brief overview of existing methods using the
approach. Finally, in Section 7, we conclude with an assessment of existing work
and pro�er our views on the way ahead.

2. BASIC CONCEPTS

In this section, we �rst de�ne and describe basic concepts such as speci�cations and
programs, and then we introduce commonly used notions of program correctness,
in the framework of logic programming. Finally, we give an overview of correctness
criteria and veri�cation methods that have been proposed.

2.1. Speci�cations and Programs

A speci�cation can be formal or informal; a program can be either a pure logic
program or a program in an existing logic programming language such as Prolog.
An informal speci�cation describes what will be called the intended relation. This
is the relation the programmer/speci�er has in mind when synthesising a program.

De�nition 1. The intended relation for a predicate r (of arity n), denoted by
I(r), is a set (of n-tuples) of ground terms.

Example 2. A pair hl1; l2i belongs to I(included) i� l1, l2 are ground lists, and
all the elements of l1 belong to l2.
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The intended relation for a predicate r can also be seen as a speci�c (Herbrand)
interpretation for the predicate r.

In logic programming, formal speci�cations are usually expressed in some logic.
Such a speci�cation will be called a logic speci�cation.

De�nition 3. A logic speci�cation of a predicate r, denoted Spec(r) is a set of
logical formulas involving r.

In the above de�nition, the form of the logic formulas de�ning a logic speci-
�cation is deliberately vague, to allow speci�cations by examples and incomplete
speci�cations. The logic formulas of a logic speci�cation Spec(r) necessarily involve
predicate r, but can also contain other predicates de�ned within the speci�cation,
or de�ned elsewhere (primitives or other speci�cations).

In Example 4, the predicate member is assumed to be a primitive such that
member(H;L) holds i� H is a member of list L. In practice, member can be
speci�ed in another speci�cation, or together with the speci�cation of included.
The second logic speci�cation in Example 4 is a \speci�cation by examples".

Example 4.
Spec1(included) = f included(L1; L2)() 8X( member(X;L1)

) member(X;L2) ) g

Spec2(included) = f included([]; [2; 1]) ,
included([1; 2]; [1;3; 2; 1]),
:included([2; 1]; []) g

A (pure) logic program can be seen as a particular case of a logic speci�ca-
tion, where the language is restricted to de�nite Horn clauses (also called program
clauses). This is called a program because it also has a procedural or operational
semantics (SLD-resolution). Sometimes, normal program clauses are used [Llo87],
allowing negations in the bodies of the clauses.

De�nition 5. A logic program for a predicate r, denoted by Prog(r), is a set of
program clauses.

A logic program for a predicate r will normally contain clauses with the pred-
icate r in the head. In Example 6 it is assumed that the predicate member and
remove all are primitives (with remove all(H;L;NL) holding i� NL is the list L
without all the occurrences of H). This restriction amounts to assuming that the
subproblems involved have been, or will be correctly implemented. They can thus
be seen as primitives for Prog(r). This simpli�cation for programs (and for logic
speci�cations) is made for ease of understanding, and can be overcome by simul-
taneously considering Prog(r) (or Spec(r)) and its subproblems [Dev90]. In the
context of synthesis, such predicates are often included in a background theory .

Example 6.
Prog1(included) = f included([]; L2) 

included([HjT ]; L2) member(H;L2);
included(T; L2) g
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Prog2(included) = f included([]; []) 
included(L1; [HjT ]) remove all(H;L1; NL1);

remove all(H;T;NT2);
included(NL1; NT2) g

Prog3(included) = f included(L1; L2) :q(L1; L2)
q(L1; L2) member(X;L1);

:member(X;L2) g

Finally, an (executable) Prolog program is a program written in the Prolog
language. The di�erence between Prolog programs and (pure) logic programs is
that most Prolog programs contain control information and/or side-e�ect procedure
calls that destroy the correspondence between the declarative semantics and the
procedural one.

Most of the existing synthesis methods focus on the declarative aspects of logic
programming, and thus usually produce logic programs rather than (executable)
Prolog programs. This is not a weakness of the methods, but rather a deliberate
separation of concerns. The transition from a correct logic program to an executable
correct Prolog program usually amounts to the introduction of suitable control
information [Dev90]. We will not cover this issue in this survey.

2.2. Correctness

Correctness (and veri�cation) is complementary to program synthesis. We have
to verify that the synthesised program ful�lls its speci�cation, or more generally,
that the synthesis method is correct (or sound), that is always producing correct
programs.

Correctness criteria relate the intended relation, the logic speci�cation and the
logic program, one to another. A logic speci�cation and a logic program denote
some relation, according to some semantics. We here introduce correctness criteria
which are parametric with respect to the chosen underlying semantics.

De�nition 7. Let Spec(r) be a logic speci�cation. The meaning of Spec(r) is
the set of ground terms2

S(r) = f t j Spec(r) j=s r(t) g

where j=s denotes the chosen semantics for logic speci�cations.

De�nition 8. Let Prog(r) be a logic program. The meaning of Prog(r) is the
set of ground terms

P(r) = f t j Prog(r) j=p r(t) g

where j=p denotes the chosen semantics for logic programs.

The semantics de�nes how a logic speci�cation (program) should be interpreted.
The meaning of a logic speci�cation (program) de�nes how the predicate r should
be interpreted, according to the speci�cation (program) and the semantics.

2We assume an underlying Herbrand universe built out of the speci�cation language.
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The chosen semantics for logic speci�cations and logic programs also involve
interpreting (primitive) predicates not de�ned in the speci�cation or in the pro-
gram { for instance a possible approach is to add suitable formulas de�ning these
predicates. An example of possible semantics for a logic speci�cation could be its
classical logical consequences. For a logic program, the semantics could be de�ned
by its least Herbrand model, or by the set of models of the completed programs
Comp(P ). We refer the reader to the survey on semantics for a detailed presenta-
tion of semantic issues.

2.2.1. Logic Programs versus Logic Speci�cations We can de�ne three correct-
ness criteria for logic programs with respect to logic speci�cations.

De�nition 9. A logic program Prog(r) is partially correct wrt a logic speci�ca-
tion Spec(r) i� P(r) � S(r).

Partial correctness requires that the meaning of the program is included in the
meaning of the speci�cation. In other words, every answer computed by the pro-
gram belongs to the speci�cation.

De�nition 10. A logic program Prog(r) is complete wrt a logic speci�cation
Spec(r) i� P(r) � S(r).

Completeness is the converse of partial correctness. It requires that the meaning
of the speci�cation is included in the meaning of the program. It ensures that every
speci�ed answer is computed by the program.

De�nition 11. A logic program Prog(r) is totally correct wrt a logic speci�cation
Spec(r) i� P(r) = S(r).

Total correctness is thus the combination of partial correctness and completeness.
Note that total correctness does not necessarily imply, from a procedural point of
view, that all SLD-derivations for a given query are �nite. By the completeness
of SLD-resolution, each correct answer corresponds with at least one �nite SLD-
derivation.

2.2.2. Logic Speci�cations versus Intended Relations The usual correctness cri-
terion for logic speci�cations with respect to intended relations is the following:

De�nition 12. A logic speci�cation Spec(r) is totally correct wrt an intended
relation I(r) i� S(r) = I(r).

Total correctness here can be decomposed into partial correctness (also called
consistency here) (S(r) � I(r)) and completeness (S(r) � I(r)). In program syn-
thesis one usually assumes the consistency of the speci�cation, but not its com-
pleteness. Some inductive synthesis methods explicitly consider incomplete speci�-
cations (e.g. speci�cation by examples). For instance, Spec2(included) is consistent
with I(included), but not complete.
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2.2.3. Logic Programs versus Intended Relations Similarly, the usual correctness
criterion for logic programs with respect to intended relations is the following:

De�nition 13. A logic program Prog(r) is totally correct wrt an intended rela-
tion I(r) i� P(r) = I(r).

Total correctness here can also be decomposed into partial correctness (P(r) � I(r))
and completeness (P(r) � I(r)). When the intended relation is informal, such a
criterion cannot be established either formally or automatically. However, since
the intended relation is a mathematical one, the correctness criterion can be estab-
lished by mathematically rigorous, although not formal, methods. Such correctness
criteria can thus be used to guide the synthesis process, especially when incomplete
logic speci�cations are considered.

Similarly, one could also de�ne equivalence criteria between logic speci�cations,
or between logic programs. Equivalence could then be decomposed into specialisa-
tion and generalisation.

When negations are allowed in the logic programs and in the queries, the cor-
rectness criteria (and the meaning of programs) are usually strengthened. For
instance, besides having P(r) = S(r), one may also require some equivalence be-
tween the negative atoms in the meaning of the program, and the negative atoms
in the meaning of the speci�cation.

Whereas veri�cation of a program proves its correctness, testing a program can
show its incorrectness. Testing a program can detect di�erences (if any) between the
executable program and the speci�cation. Tools for debugging can provide some
help to locate where the problems are. Declarative debugging aims at detecting
inconsistencies between the logic program (i.e. its declarative meaning) and the
speci�cation. See the survey on programming environments for a development of
this subject.

2.3. Overview of Correctness Literature

Most of the literature on correctness could be described in terms of the above
framework. Depending on the speci�cation language, the form of the logic programs
(with or without negations), and the chosen semantics, various approaches can
be taken. For de�nite programs, the underlying semantics is usually the least
Herbrand model (or something equivalent). We will not give a precise account of
each piece of existing work. The reader is referred to the cited references for a
detailed presentation.

A �rst formulation of correctness criteria appeared in [CT77]. This has been
systematised and extended in [Cla79] (see also [Cla81, CS77]). The programs con-
sidered here are de�nite programs. Partial correctness and completeness include the
idea of preconditions on the input. A termination criterion is also proposed. Var-
ious veri�cation methods are described: consequence veri�cation, computational
induction, and structural induction.

Hogger's work [Hog78, Hog81, Hog84] is also based on de�nite programs. He
proposes two families of criteria: the �rst one relating the declarative semantics of
the logic programs to the logic speci�cation, and the second one relating the pro-
cedural semantics of the logic program to the logic speci�cation. He also describes
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veri�cation methods based on transformation and derivation rules.
A similar approach is proposed in [BC89, BCD90] which discusses veri�ca-

tion methods and program equivalence. Program equivalence is also treated in
[Mah88, Lev91a, Lev91b]. Notice that Lever considers programs with negations.
In [GLM92], equivalence captures some observational behaviour (i.e. computation)
of programs. Generalisation of programs, called extensions, are proposed in [PS90]
in a framework for program development.

In [Dev90], correctness criteria relate intended relations to logic programs with
possible negations. A �rst set of criteria relates the intended relation to the declar-
ative semantics of the (completion of the) logic program. A second set of criteria
relates the intended relation to the sequence of computed answer substitutions of the
Prolog programs (derived from the logic program). These criteria are used within
a methodology for constructing programs, rather than for verifying programs. The
methodology also addresses the problem of types in correctness criteria. Type prob-
lems in correctness criteria and in veri�cation are also handled in [Nai87, Nai93].

In [CD88, DF88, DF89], correctness criteria and veri�cation methods based on
proof trees are proposed for de�nite programs. Programs with negations are also
treated in [FD92a].

Other veri�cation methods are proposed in [Kan86, KF86, KS86, KK88]. How-
ever, the speci�cation language is here restricted.

In [Bal78], a veri�cation technique based on a Hoare-like inference rule is pro-
posed for verifying the partial correctness and the completeness of a de�nite pro-
gram. A similar approach is described in [CM91]. Another veri�cation method
based on annotations and procedural semantics, is presented in [DM87]

Correctness criteria have also been proposed in the framework of Inductive Logic
Programming. (ILP). In this framework, the logic speci�cation is a set of positive
examples (denoted by Spec+(r)), and possibly a set of negative examples (denoted
by Spec�(r)). Correctness criteria includes coverage of the positive examples by the
logic program, what is also called consistency or completeness (P(r) � Spec+(r)),
and consistency of the logic program with respect to the negative examples (P(r) �
Spec�(r)), where P(r) is the complement of P(r). See [MR93] for further references.

For de�ning the meaning of logic programs with negations, semantics other than
the usual completed program has been proposed, but not especially in the context
of correctness: the perfect model semantics [Prz88], the stable model semantics
[GL88], the iterated least �xpoint model [ABW88], the well-founded semantics
[VGRS88], and others.

3. CONSTRUCTIVE SYNTHESIS

Constructive synthesis is an approach that originated in the functional program-
ming paradigm,3 and is also known as the proofs-as-programs approach [BC85]. It
has been the basis of various existing program synthesis systems [MW80, Cet al. 86,
Hay86]. Over the past few years, constructive synthesis has also become an active
area of research within logic programming [BSW90, Fri90].

3We use this term in a wide sense, to encompass any related work such as Kleene's work on
realisable predicates and Martin-L�of's type theory for instance.
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In functional programming, constructive synthesis is based on the Curry-Howard
isomorphism in constructive type theory [How80], which states that there is a one-
to-one relationship between a constructive proof of an existence theorem and a
program (i.e. a function) that computes witnesses of the existentially quanti�ed
variables of the theorem. That is, from a (constructive) proof of a formula of the
form

8i: 9o: r(i; o) (1)

one can extract a program such that for all inputs i, it computes an output o that
satis�es the speci�ed relation r. Thus the constructive synthesis process consists of
two steps:

1. construct the formula (1) and prove it in a constructive logic;
2. extract from the proof a program for computing r.

It is worth emphasising that the type theory is usually a higher-order (typed) logic,
and the extracted program is a function.

3.1. Description of Approach

The original constructive synthesis approach based on the functional programming
paradigm may be adapted for logic program synthesis, as has been done by Bundy
and Wiggins [BSW90, WBKH92] for instance. A di�erent constructive synthesis
formulation for logic program synthesis, used by Fribourg [Fri90], is based more
directly on logic programming. However, to acknowledge its origin in functional
programming, we shall present constructive logic program synthesis along the lines
of the work of Bundy and Wiggins.

The key idea of Bundy and Wiggins' adaptation is that a predicate (in a typed
logic) can be regarded as a truth-valued function, i.e. a predicate p(X1 : t1; : : : ; Xn :
tn) can be regarded as a function of type t1 � � � � � tn ! boole. This enables them
to use the constructive synthesis approach to synthesise predicates as functions. To
extract a (�rst-order) typed logic program from such a synthesis proof, they use a
proof system based on a �rst-order (typed) logic with a set of rules specially devised4

for constructing logic program fragments from the proof rules (see [Wig92b] for their
de�nition and proof of their correctness). It is worth emphasising that Bundy and
Wiggins extract (�rst-order) typed, pure logic programs.

3.1.1. The Starting Point: In the functional paradigm, constructive synthesis of
a program to compute a relation r starts from a theorem of the form

` 8X1 : t1; : : : ; Xn : tn : 9Y1 : t
0

1; : : : ; Ym : t0m : r(X1; : : : ; Xn; Y1; : : : ; Ym) (2)

where X1; : : : ; Xn are input variables of types t1; : : : ; tn and Y1; : : : ; Ym are output
variables of types t01; : : : ; t

0

m respectively. This speci�cation thus de�nes a relation
between the input and output variables of the program.

This theorem is usually referred to as the speci�cation theorem. However, it is
more accurate to call it the synthesis conjecture, since it is the start of the synthesis
process and it has yet to be proved.

4After the Curry-Howard isomorphism.
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To adapt this synthesis conjecture for (typed) logic program synthesis, we en-
counter two problems due to the di�erences between functional and logic programs:

� Unlike a functional program, a logic program can be used in more than one
way, i.e. in di�erent input-output modes.

� Even for a chosen input-output mode, a logic program may produce many
outputs or none at all.

A solution to these problems is to consider only the all-ground mode [BSW90].
The relation r can then be seen as a boolean-valued function. Thus the synthesis
conjecture (2) becomes:

` 8X1 : t1; : : : ; Xn : tn : 9B : boole : r(X1; : : : ; Xn) ,! B (3)

where we have no output variables (as in (2)) but only input variables X1; : : : ; Xn

(with types t1; : : : ; tn respectively); boole = ftrue; falseg.
The meaning of the operator ,! is de�ned by

` Formula ,! B i�

�
` Formula () (B =boole true)
` :Formula () (B =boole false)

�

Thus the function to be synthesised from (3) will be a logic program that is a
decision procedure for the predicate r(X1; : : : ; Xn).

Note that in this all-ground mode approach, after a logic program has been
synthesised, it is necessary to verify that the program can be used in some speci�c
mode. This is usual and it amounts to separating the logic part from the procedural
one. Such a veri�cation of modes can be performed by using existing tools such as
abstract interpretation.

3.1.2. The End Result: Thus a successful proof of the synthesis conjecture means
that a logic program exists which can answer a goal of the form r(X1; : : : ; Xn). The
(pre-de�ned) construction rules corresponding to the proof rules used in the steps
of the proof allow us to extract such a logic program. The end result of constructive
logic program synthesis is usually a typed, �rst-order, pure logic program.

3.1.3. The Synthesis Process: Starting from a synthesis conjecture, the �rst step
of constructive synthesis is to produce a proof of this conjecture, for instance in
a typed (�rst-order) constructive logic. Obviously this is not a simple task in
itself. It is usually carried out on a mechanised proof system (which embodies the
typed constructive logic), and requires the use of very sophisticated (mechanised)
development tools and proof assistants. For instance, Bundy and Wiggins [BSW90,
WBKH92, Wig92b] use a proof planner to guide and automate parts of their proofs
carried out in a proof development system.

From the proof of the synthesis conjecture, a program can be extracted. One
possible approach consists of regarding the proof itself as a program. This inter-
pretive approach is possible if we have an operational semantics for such proofs.
Usually though, a logic program is mechanically extracted >from the proof. This
is possible because each proof rule used in the proof system has an associated con-
struction rule which has been pre-de�ned and proved to be correct, allowing each
step of the proof to generate the corresponding logic clause(s).
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Programs extracted from the constructive proofs are totally correct, assuming
that the proof system is sound, and that the construction rules associated with the
proof system are correct.

3.2. Example

For a logic program for included(L1; L2), the synthesis conjecture is

` 8L1 : lists; L2 : lists : 9B : boole : included (L1; L2) ,! B

or, using the logic speci�cation Spec1(included) in Example 4 (Section 2.1),

` 8L1 : lists; L2 : lists : 9B : boole : 8X : (member(X;L1)) member(X;L2)) ,! B:

Applying induction on L1 gives two sub-conjectures:

� (base case)

` 8L2 : lists : 9B : boole : 8X : (member(X; [])) member(X;L2)) ,! B (4)

� (step case)

T : lists
8L2 : lists : 9B : boole : 8X : (member(X;T )) member(X;L2)) ,! B

` 8L2 : lists : 9B : boole : 8X : (member (X; [HjT ])) member(X;L2)) ,! B

(5)

The program fragment that can be extracted at this point of the proof is

included (L1; L2)  L1 = []; : : :
included (L1; L2)  L1 = [HjT ]; : : :

(6)

Since the base case is always true, the �rst `: : :' can be replaced by true.
By using the de�nition of member , the step case gives rise to two more conjec-

tures:
` 9B : boole : 8X : (X = H ) member(X;L2)) ,! B (7)

` 9B : boole : 8X : (member(X;T )) member(X;L2)) ,! B (8)

(7) can be proved by a further application of induction and (8) can be proved using
the induction hypothesis

8L2 : lists : 9B : boole : 8X : (member(X;T )) member(X;L2)) ,! B

in the step case.
The second `: : :' in (6) can now be replaced by

member(H;L2) ^ included (T; L2)

and so the complete program extracted from the proof is

included (L1; L2)  L1 = []
included (L1; L2)  L1 = [HjT ];member(H;L2); included(T; L2)

The synthesised logic program is thus Prog3(included) from Example 6. It is
worth noting that a proof by induction on L2 of the synthesis conjecture would lead
to Prog2(included) [LWD93].
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3.3. Overview of Methods

Our description of constructive logic program synthesis is based on the work of
Bundy and Wiggins. They use a proof development system called Whelk , which
is based on a Gentzen sequent calculus and a �rst-order typed constructive logic.
Whelk has been implemented in a proof development environment called Mollusc.
The precise notation and the details of their proof system and proof planning tech-
niques can be found in [BSW90, BvHHS90, BSH90, BvHSI90, BSvH+91, BvHHS91,
WBKH92, Wig92b]. It is worth noting that they synthesise programs either in Pro-
log, or the new logic programming language G�odel [HL91]. An analysis of modes
for the synthesised programs is made in [Wig92a].

In contrast, Fribourg [Fri90, Fri93] uses a constructive approach based directly
on logic programming. His method starts from a set P of logic procedures for
pre-de�ned predicates and a goal G of the form5

8X : 9Y : q(X;Y )( r(X)

where q(X;Y ) and r(X) are conjunctions of atoms de�ned in P . The variables
in X and Y are regarded as input and output variables respectively. A proof
of this goal will de�ne a procedure (for a new predicate) for computing Y from
X. Fribourg performs the proof using the extended execution system of Kanamori
and Seki [KS86] on the pre-de�ned predicates. The extended execution system
is the standard Prolog interpreter with an extended form of SLD-resolution and
a restricted form of structural induction. Each inference rule applied during the
proof yields a corresponding logic procedure, thus enabling a logic program to be
extracted for the new predicate on completion of the proof.

Unusually, Fribourg's method synthesises programs that are guaranteed not only
to be (partially) correct with respect to the speci�cation, but also to terminate.6

Moreover, tail-recursive programs can also be synthesised, though termination is
not guaranteed for such programs. To help automate proofs, his method makes use
of simpli�cation lemmas [Fri91].

In [Fle93], constructive synthesis techniques are used to deductively add atoms
to a logic program so that some correctness criteria with respect to a set of given
logic properties are satis�ed.

4. DEDUCTIVE SYNTHESIS

Deductive synthesis starts from a speci�cation, and derives or deduces a logic pro-
gram according to some pre-de�ned deduction rules. If the speci�cation is a set of
logic sentences, then the synthesis process consists of deducing program clauses di-
rectly from the speci�cation. In this case, we can exploit fully the uniquely uniform
framework provided by logic programming for program synthesis. Veri�cation of
partial correctness of the synthesised program reduces to showing that the deduc-
tion rules used are sound with respect to the underlying speci�cation semantics.
The resulting logic program will then be a logical consequence of the logic speci�-
cation. It is therefore hardly surprising that almost all existing deductive synthesis

5Fribourg calls such a goal an implicative goal.
6He considers a notion of existential termination.
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methods fall into this category. In general, however, synthesis may have to be done
using more sophisticated deduction strategies (possibly involving theorem proving)
which will ensure that the logic program synthesised will be correct with respect
to the speci�cation.

4.1. Description of Approach

To give a general description of (�rst-order) deductive synthesis of logic programs,
we follow a formalisation along the lines of [LO92, LO93].

4.1.1. The Starting Point: The starting point for deductive synthesis is a pair
hM; Qi where

1. M is a set of axioms (in some �rst-order language), containing the logic
speci�cation Spec(r). This speci�cation is a predicate de�ned by means of
a de�nition axiom, i.e. an i� -formula (in the language ofM) whose head is
the de�ned predicate. Other auxiliary predicates can also be de�ned in this
way.

2. Q is an instance (or a set of instances)7 of the speci�ed relation r for which
we want a program. Q thus represents a query .

M provides a general mathematical framework in which we can specify a large
class of programs (or problems). For example, M may contain a theory of lists
(complete with induction schemas for instance).

The meaning of the pair hM; Qi is the set of atoms that are instances of Q
(and hence of r) and that logically follow from M, according to the underlying
speci�cation semantics.

4.1.2. The End Result: To deduce a logic program only for the query speci�ed by
Q, a small subset of the initial axiomatisationM su�ces in general. The synthesis
process tries to derive (step by step) such a subset in the form of a set of de�nite or
normal clauses (i.e. a logic program P ), in such a way that SLD or SLDNF (instead
of full �rst-order logic) can be used on these clauses to compute the answers to Q in
an e�cient way. In other words, the synthesis process derives (using some methods)
the program P in such a way that the set of atoms that are instances of Q and
that logically follow from M (under the speci�cation semantics) is equivalent to
the set of atoms which logically follow from the completion of P , Comp(P) (under
the program semantics). The synthesised program P is thus totally correct with
respect to its logic speci�cation Spec(r), for the query Q considered.

4.1.3. The Synthesis Process: Starting from the pair hM; Qi, a typical deductive
synthesis method performs a synthesis process that can be formalised as a sequence
of the form

hM[D0 [Comp(P0); Qi ) hM [D1 [Comp(P1); Qi ) � � �
) hM [Dn [ Comp(Pn); Qi

7Not necessarily ground instances.
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where D0 � � � � � Dn are sets of de�nition axioms for de�ning (new) predicates,
D0 = f g; P0 � � � � � Pn are logic programs, P0 = f g; such that

M[Dk [Comp(Pk) j=s Comp(Pk+1); for 0 � k < n ; (9)

where j=s denotes the underlying speci�cation semantics.
Condition (9) ensures that every program Pk of the sequence is partially correct

with respect to Spec(r).
Each step of the synthesis process thus consists of adding either a de�nition

axiom or a program clause that has been derived. The logic programs P1; : : : ; Pn
are thus derived incrementally, clause by clause, so that

P1 � � � � � Pn :

Any chosen method for deriving the clauses will guarantee partial correctness as
long as it satis�es (9).

Total correctness, however, is a much more complex issue. In the formalisation
in [LO92, LO93], for example, an alternative to the standard completion of P is
considered. This yields a criterion for determining when the synthesised program
is totally correct (and hence when to stop the synthesis process).

Finally, it is worth pointing out that, in general, this description of deductive
synthesis according to [LO92, LO93] does not apply to partial deduction (partially
evaluating a logic program), although at �rst sight it may appear to do so. The
distinction, formalised in [LO94], is that partial deduction derives hComp(P2); Qi
from hComp(P1); Qi, where P1 and P2 are logic programs and Q is the chosen goal,
whereas deductive synthesis derives hComp(P ); Qi from hM; Qi where Comp(P )
(or the completion of any program in general) is only a small subsystem ofM (or
a speci�cation framework [LO94] in general).

Similarly, deductive synthesis can be distinguished from program transformation
(based on unfold or fold rules, for instance).

4.2. Example

Now we show an example of a typical deductive synthesis process, where �rst-order
logic and SLD provide the speci�cation and program semantics respectively.

Suppose we have a theory of lists, Slist , and we want to synthesise a program for
the query included(L1; L2) from the logic speci�cation Spec1(included) in Example
4 (Section 2.1). Then the starting point will be

hSlist [Dmember [Dincluded ; included(L1; L2)i

where Dmember is the following de�nition axiom for member

member(X;L)() L = [HjT ]^X = H _member(X;T ) (10)

and Dincluded is of course just Spec1(included).
The condition for partial correctness (9) here is

Slist[Dmember[Dincluded[Dk[Comp(Pk) j= Comp(Pk+1); for 0 � k < n ; (11)
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where j= denotes �rst-order consequence.
To synthesise a clause for included , we deduce it directly from Spec1(included)

included (L1; L2)() 8X: (member (X;L1)) member(X;L2))

as follows. Since we have

included ([HjT ]; L2) () 8X: (member(X; [HjT ])) member(X;L2))
() 8X: (:member(X; [HjT ])_member(X;L2))

we can deduce

included ([HjT ]; L2) () 8X: ((:X = H ^ :member(X;T )) _member(X;L2))

from Dmember (10).
Applying the distributivity law to the right-hand-side, we get

included ([HjT ]; L2) () 8X: ((:X = H _member(X;L2))^
(:member(X;T ) _member(X;L2)))

() 8X: ((X = H ) member(X;L2))^
(member(X;T )) member(X;L2)))

which gives

included ([HjT ]; L2) () member(H;L2) ^ included (T; L2) (12)

Thus we have deduced (12) from the axioms in

Slist [Dmember [Dincluded

and so we can use its if -part, namely the clause

included([HjT ]; L2) member(H;L2); included(T; L2)

and put it in P1. That is we have performed the synthesis step

hSlist [Dmember [Dincluded ; included(L1; L2)i
) hSlist [Dmember [Dincluded [Comp(P1); included (L1; L2)i

in such a way that (9) is satis�ed, that is

Slist [Dmember [Dincluded j= Comp(P1) (13)

thus ensuring the partial correctness of

P1 = fincluded([HjT ]; L2) member(H;L2); included(T; L2)g :

Similarly, we could also derive the clauses

included ([]; [])  
included ([H]; [H])  

included ([]; L2)  

from
hSlist [Dmember [Dincluded [Comp(P1); included(L1; L2)i

and add them to P1 to get the �nal program. The partial correctness of this program
is ensured by condition (9).
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4.3. Overview of Methods

As mentioned earlier, most existing methods use (�rst-order) logic sentences for
M, and deduce logic clauses by correct inference rules directly from these logic
sentences. That is, �rst-order logic and SLD respectively provide the underlying
speci�cation and program semantics.

Hansson and T�arnlund [HT79, Han80], and Clark [CT77, Cla79, Cla81] axioma-
tise the relations that they wish to compute, as well as the data structures involved,
as de�nition axioms in the form of i� -formulas in predicate logic. That is theirM
is a set of i� -formulas, and their Q is a single atomic query de�ned (or de�nable)
in terms of atoms already de�ned in M. They then deduce logic programs from
the axiomatisation either by logical deduction (natural deduction in the case of
[HT79, Han80]) or by symbolic execution (or re-writing) of Q together with other
rules for simplifying formulas such as equivalence substitutions (as in the case of
[CT77, Cla79, Cla81]). These methods guarantee partial correctness, but they re-
quire proofs of total correctness.

Hogger [Hog78, Hog81, Hog84] also starts with a set of i� -formulas forM and
a single i� formula for Spec(r). He then treats the if -part without the head as a
goal which is to be solved by a resolution-like mechanism using a `logic procedure'
consisting of the only-if part of Spec(r), as well as other relevant `clauses' from
M which are necessary for solving this goal. He calls this goal-directed derivation.
Alternatively, he also carries out the derivation using non-resolution inference rules.
Hogger's method also guarantees partial correctness, but it requires proofs of total
correctness.

Similar methods to the above have been proposed that are based on standard
techniques for logic program transformation, for example, by Kanamori and Hori-
uchi [KH87].

In contrast, the method of Lau and Prestwich [LP90, LP91] is designed to be
mechanisable. Here Spec(r) is also an i� -formula andM is a set of i� -formulas.
However, the deduction of the clause(s) for solving Q is automatically decomposed
into sub-deductions which when completed are automatically composed into their
parent deductions. This automation is possible because the user has to specify the
recursion pattern in the required procedure. This method also guarantees partial
correctness. Lau and Ornaghi [LO94] have proposed a method for synthesising
totally correct programs using their formalisation of deduction synthesis in terms
of SLDNF in [LO92, LO93].

For speci�cations expressed by restricted classes of �rst-order logic formulas, it is
possible to synthesise totally correct programs automatically. Such methods have
been proposed by Dayantis [Day87], Sato and Tamaki [ST89], who have imple-
mented a compiler for translating a class of �rst-order formulas directly into logic
programs, and Kawamura [Kaw91, Kaw92].

Finally, a couple of methods which may not at �rst sight seem to fall into this
category. Starting from the work of Bundy and Wiggins (see previous section),
Kraan [KBB93a, KBB93b] developed a method for program synthesis that is based
on proof planning. In planning the proof that a (not yet synthesised) program
meets its given speci�cation, the program's body is represented by a meta-variable.
The proof plan is completed by instantiating this meta-variable to logical formulas
deduced from the speci�cation.

In the LOPS synthesis system [BH84], the speci�cation is really an `input-output'
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synthesis conjecture (as in constructive synthesis), and the speci�ed program is de-
rived by (various strategies for) re-writing formulas as well as using domain knowl-
edge to generate relevant theorems. However, we may regard the domain knowledge
as M, and Neugebauer [Neu92, Neu93] has shown LOPS can be re-cast as a de-
ductive synthesis method for logic programs (as well as programs in other target
languages, even C!).

At this point, it is worth noting that Kreitz [Kre90, Kre93a] has studied pro-
gram synthesis at a meta-level, and has shown that the constructive and deductive
approaches are fully equivalent.

5. INDUCTIVE SYNTHESIS

Inductive synthesis refers to the process of formulating general rules from incom-
plete information, such as examples. Inductive synthesis of programs is performed
by means of inductive inference, and is part of machine learning, a branch of AI.
Inductive inference is related to the concept of generalisation (deductive synthesis
is related to specialisation) and has received much attention in functional program-
ming during the 1970s. It has been an active area of research in logic programming
since the early 1980s.

We shall �rst give a more precise description of inductive synthesis and show that
inductive synthesis of recursive logic programs has a speci�c niche within Inductive
Logic Programming (ILP). As an example of inductive synthesis, we shall then
brie
y present the Model Inference System [Sha81, Sha83], before overviewing other
existing approaches.

This section will not cover the entire Inductive Logic Programming area. Focus
will be put on methods aiming at solving \programming problems" (rather than
at concept learning), that is problems where some recursion has to be synthesised.
See [MR93, Mug92] for a complete survey and references on ILP.

5.1. Description of approach

In the speci�c framework of (recursive) program synthesis from examples, it will also
be assumed here that the speci�er/programmer \knows" (even if only informally)
the intended relation I(r). He is thus able to decide whether a given example
belongs to the intended relation or not.

In an inductive synthesis of logic programs, the logic speci�cation Spec(r) is
usually a set of positive examples (denoted by Spec+(r)), and possibly a set of
negative examples (denoted by Spec�(r)). Examples are ground atoms. In some
methods, the speci�cation can be constructed incrementally during the synthesis
process.

The assumption that the speci�er \knows" the intended relation is formalised
by assuming the consistency of the logic speci�cation with respect to the intended
relation. More precisely:

Spec+(r) � I(r)

Spec�(r) � I(r)

where I(r) denotes the complement of I(r). It is clear that a speci�cation by
examples is usually intrinsically incomplete (i.e. Spec+(r) 6= I(r)).
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The objective of inductive synthesis is to infer a logic program Prog(r) that cov-
ers at least all the examples: Prog(r) must be consistent with respect to Spec+(r)
(i.e. P(r) � Spec+(r)), and with respect to Spec�(r) (i.e. P(r) � Spec�(r)). Given
the incompleteness of the speci�cation, the synthesised program must also cover
other unspeci�ed examples. Partial correctness with respect to the logic speci�ca-
tion is thus irrelevant here. The objective is to get a program that is totally correct
with respect to the intended relation, although such an objective cannot always be
achieved in a fully automatic way. Inductive synthesis thus aims at inferring some
\natural" extension of the given examples.

Within the methods for inductive program synthesis, one can distinguish between
the trace-based approach from the model-based approach. In the trace-based ap-
proach, example traces are �rst generated. A trace is a sequence of instructions
executed by an unknown program on some given input data. Then the traces are
generalised into a program. This program may be obtained by folding, matching,
and generalising the traces. Generalisation is required since traces are related to
some speci�c inputs; folding is required in order to form loops and recursion. In
the model-based approach, synthesis aims at constructing a �nite axiomatisation of
a model of the examples. It thus makes an intensional representation of a relation
(i.e. a program) from the given (incomplete) extensional representation (i.e. the
examples).

The model-based approach to inductive synthesis of logic program is better
known as Inductive Logic Programming (ILP). ILP is at the intersection of em-
pirical (inductive) learning and logic programming [Mug91]. By empirical learning,
we mean the elaboration of a concept description from incomplete de�nitions. How-
ever, we concentrate here on a speci�c class of logic programs, namely the recursive
ones. In this speci�c case, we assume that a human speci�er knows the intended
relation. This underlines the algorithmic focus of inductive synthesis compared to
the more general scope of ILP (which also covers concept learning).

5.2. Model Inference System

One of the �rst systems for synthesising logic programs from examples is Shapiro's
Model Inference System (MIS) [Sha81, Sha83]. It can also be seen as a special
case of program debugging [Sha83], where the initial program is empty. MIS is
model-based. It is also incremental in the sense that examples are introduced one
by one. For each new example, the program induced from the previous examples
is updated to correctly handle this new example. A key feature of MIS is the
clause generator, which has the capacity of \enumerating" possible program clauses
according to some subsumption relation computed by a re�nement operator. Such
an enumeration is actually performed by searching the re�nement graph induced
by the chosen re�nement operator.

The general strategy behind a synthesis with MIS is the following. The initial
program is empty. For each new example, if it is a positive example that is not
covered by the program, a new clause covering this example is added to the program.
If the new example is a negative example that is covered by the program, then the
covering clause is removed. If the resulting program is inconsistent with respect
to the previous examples, the program is modi�ed, using the above strategy. The
resulting new program is then proposed to the user. The generated programs are
always consistent with respect to all the introduced examples.
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Example 14. Let us sketch a possible dialogue between the speci�er and MIS to
synthesise the included relation.

(Type) included(list; list)
(Mode) included(+;+); determinate
(Possibly used predicates) member( ; ); included( ; )
(E1) included([]; [1; 2])

(P1) included(L1; L2) 
(E2) :included([1]; [2])

(P2) included([]; L2) 
(E3) included([1]; [2; 1])

(P3) included([]; L2) 
included([HjT1]; L2) member(H;L2)

(E4) :included([1; 2]; [1;3])
(P4) included([]; L2) 

included([HjT1]; L2) member(H;L2),
included(T1; L2)

The speci�er must �rst declare the predicate to be synthesised, its type, mode, as
well as the possible predicates used by the program. The declaration of the possibly
used predicates is necessary for the system to limit the size of the re�nement graph.
This will only contain clauses involving the included or member predicates. After
the presentation of example (E1), the synthesised program is (P1), the most general
clause for included. Example (E2) forces the system to review this choice, and to
take something less general. With example (E3), the program must be generalised
to cover the new example. A new clause is chosen by the clause generator. It
is as general as possible, while yielding a program consistent with the previous
examples. The presentation of example (E4) forces the system to reconsider the
second program clause, and the clause generator produces a less general one.

5.3. Overview of methods

Fundamental notions for inductive synthesis are subsumption and generalisation,
as developed by [Plo70, Plo71, Rey70]. Plotkin's idea of least general generalisa-
tion has been the basis of most model-based approaches to the induction of logic
programs. Generalisation can be used in two di�erent ways, bottom-up or top-
down. In a bottom-up approach, the example included([]; [1; 2]) would yield the
bottom element (least general) among the generalisations of the examples, that
is the program clause included([]; [1; 2])  . In a top-down approach, such as in
MIS, the clauses are enumerated from the most general to the most speci�c. The
example included([]; [1; 2]) would yield the top elements (most general) among the
generalisation of the example, that is the program clause included(L1; L2) .

Top-down approaches as well as extensions and improvements of MIS have re-
ceived much attention in the ILP framework. A complete account of this work can
be found in [MR93].

Among the possible improvements of the MIS method, we mention the de�nition
of more sophisticated re�nement operators for the clause generator, the introduction
of background knowledge, and predicate invention for the used predicates.

The combination of MIS and program schemata allows a further organisation of
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the search space [Tin90, KS91]. This approach is especially adaptable to our speci�c
case where recursive programs have to be synthesised, since recursive programs can
often be classi�ed according to their design strategy (see Section 6.2).

The trace-based approach to program synthesis has received much attention in
the context of functional programming (see the survey [Smi84]). In the logic pro-
gramming context, the trace-based approach has been reformulated in [Hag90] by
means of higher-order uni�cation in a type theory with recursion. There, logic pro-
gram synthesis from examples is actually also based on the constructive paradigm.
A constructive proof for a concrete example of the theory is �rst generated, then
the proof is generalised into an inductive proof from which a program can be ex-
tracted. In the context of program transformation, Compiling Control techniques
(e.g. [BSK89]), is also related to the trace-based approach.

Speci�cations by examples can also be extended by allowing examples and prop-
erties (i.e. logic formulas). In [FD92b, FD93b, FD93a, Fle93], logic program syn-
thesis is performed by instantiating a divide-and-conquer program schema. The
speci�cation is composed of examples and properties. The whole synthesis pro-
cess combines inductive, deductive, and constructive synthesis. Di�erent synthe-
sis methods are used for instantiating the di�erent place-holders of the program
schema. One of the proposed methods, called Most Speci�c Generalisation, aims at
inductively inferring a logic program from examples, but within a restrictive setting.
This method can successfully be applied to synthesise parts of a divide-and-conquer
schema.

6. SYNTHESIS BY INFORMAL METHODS

Some of the methods that have been studied in the literature are informal in the
sense that they start from an informal description of the intended relation. The
primary objective of such methods is not necessarily the full automation of the syn-
thesis process, but rather the elaboration of practical methods for the construction
of logic programs. Usually, parts of such construction processes are, or can be,
automated, hence providing a computer-aided environment for the development of
logic programs (see also the survey on Programming Environments).

Broadly speaking, there are two main informal approaches. The �rst one con-
structs a logic program by structural induction, starting from the intended relation.
It is informal in the sense that the resulting logic program cannot be formally proven
correct with respect to the intended relation. We will not consider here the direct
construction of Prolog programs where the construction process is based on the op-
erational semantics of Prolog. The second approach starts with a program schema
and \instantiates" it to obtain a logic program. In logic programming, methods
based on program schemata basically fall into the category of informal methods
because logic speci�cations are usually absent.

6.1. Program Construction by Structural Induction

Structural induction [Bur69, Bur74] is a major technique for the construction and
the proof of correctness of programs. Basically, structural induction is a proof-by-
induction method, where the induction is on the structural form of some terms.
The construction of a program by structural induction is a construction where the
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reasoning is based on the structure of some input parameter. Such a construction
implicitly contains a correctness proof by structural induction. Although initially
introduced in the context of functional programming, it is also well-adapted for logic
program construction. Structural induction is also used in constructive synthesis.

The construction of a logic program by structural induction can be seen as a
framework allowing a precise presentation of the \natural" (manual) construction
of a logic program, but based purely on declarative semantics.

To simplify notation, let us assume that we are dealing with a binary relation
r(X;Y ). Given an intended relation I(r), the constructed logic program will have
the following form:

r(X;Y ) C1 ^ F1
...

...
r(X;Y ) Cn ^ Fn

where typically, each Ci^Fi will deal with one of the various cases of the induction
parameter, withCi determining a particular case of the induction parameter and the
corresponding Fi verifying that the intended relation holds in this case. In practice,
each Ci will often be a literal and each Fi a conjunction of literals (otherwise a
straightforward transformation can lead directly to the form of a logic program).

The construction process consists of the following:

1. Choice of an induction parameter (X or Y ).
2. Choice of a well-founded relation8 over the type of the induction parameter.
3. Construction of the structural forms Ci of the induction parameter.
4. Construction of the structural cases.

In the construction process, the predicate r as well as the other predicates in-
volved are interpreted according to their intended relations. The construction pro-
cess is thus performed within some intended Herbrand interpretation H.

The structural forms of the induction parameter must cover all the possible cases.
More formally, the formula9

8X;Y : 9(C1 _ : : :_Cn)

must be true in the intended interpretation H. The formula Fi should satisfy the
condition that

8X;Y : 9(Ci) ) ( r(X;Y ), 9(Ci ^ Fi) )

is true in the intended interpretation H.
Such an Fi formula can be obtained by reduction to simpler subproblems (be-

cause of the particular form of the induction parameter) and/or by a recursive use
of r(s; t). It is however crucial to show that s (or t) is smaller than the induction
parameter according to the chosen well-founded relation. The construction of the
Fi is certainly one of the creative tasks.

8A relation < is well-founded over a set E i� there is no in�nite decreasing sequence x1 >

x2 : : : > xi > : : : of elements of E.
9The subformula 9(F ) in the formula 8X;Y : : :9(F ) : : : denotes the existential closure of F ,

except for the variables X and Y .
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One can show that under the hypothesis that the construction process has been
correctly applied, the (completion of the) resulting logic program is totally correct
with respect to the intended relation [Dev90]. We also have that the intended
interpretation H is a model of Comp(P ), and that the interpretation of r is the
same (i.e. the intended relation I(r)) in all the Herbrand models of Comp(P ). The
choice of an induction parameter, a well-founded relation, and the structural forms
are important since di�erent choices can lead to di�erent, though correct, logic
programs.

The role of a well-founded relation is crucial to the correctness of the result-
ing program. Without a well-founded relation, (incorrect) programs of the form
r(X;Y ) r(X;Y ) could be constructed. From a procedural point of view, the
well-founded relation also ensures the termination properties of the program when
the induction parameter is ground in the query and in the recursive calls.

Example 15. Let us consider the intended relation I(included) speci�ed in Ex-
ample 2. In the intended interpretationH, included is interpreted as I(included),
member(H;L) is true i� H is a member of the list L, and X = Y is true i� Y

and Y are syntactically identical. The construction proceeds as follows:

1. Choice of an induction parameter:
We choose L1 (arbitrarily).

2. Choice of a well-founded relation (over lists):
Given two lists l1; l2, we de�ne l1 < l2 i� l1 is the tail of l2.

3. Construction of the structural forms of L1:
The possible structural forms of L1 are L1 empty and L1 non empty. Hence
the two cases:

� L1 = []
� L1 = [HjT ]

These two forms covers all the possible forms because the following formula
is true in the intended interpretation H:

8L1 : 9H;T: ( L1 = []_ L1 = [HjT ] )

4. Construction of the structural cases:
For each structural form, we have to �nd a necessary and su�cient condition
to have included(L1; L2) true in the intended relation.

� For L1 = [], the intended relation holds whatever the list L2 is. The
structural form is thus simply true. One can easily verify that the
following formula is true in the intended interpretation H:

8L1; L2 : L1 = [] ) (included(L1; L2), true)

� For L1 = [HjT ], a necessary and su�cient condition to have all the
elements of L1 belonging to L2 is to have H belonging to L2 and, all
the elements of T belonging to L2. That is,

member(H;L2) ^ included(T; L2)

Notice that T is smaller than L1 according to the well-founded relation.
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One could also easily verify that the following formula is true in the
intended interpretation H:

8L1; L2 : ( 9H;T: L2 = [HjT ] ) )
( included(L1; L2), L2 = [HjT ] ^ member(H;L2)

^ included(T; L2) )

The resulting program is then

included(L1; L2) L1 = []
included(L1; L2) L1 = [HjT ] , member(H;L2) ,

included(T; L2)

This program can be easily transformed into Prog1(included) given in Example
6. The alternative choice for the induction parameter, that is L2, would lead to
Prog2(included) in Example 6.

6.2. Schema-guided Program Construction

Programs can be classi�ed according to their design strategies (divide-and-conquer,
generate-and test, and so on). Informally, a program schema is a program template
representing a whole family of particular programs all based on the same design
strategy. These programs can be obtained by instantiating the place-holders in the
template to particular parameters or predicates. It is therefore interesting to guide
the construction of a program by a schema capturing the essence of the chosen
strategy.

Example 16 presents a (simpli�ed) version of the divide-and-conquer schema,
where the \divide" (i.e. induction) is performed on the second parameter.

Example 16.
r(X;Y ) Minimal(Y ), Solve(X;Y )
r(X;Y ) NonMinimal(Y ), Decompose(Y; F irstY;RestY ),

r(RestX;RestY ),
Process(FirstY; F irstX),
Compose(FirstX;RestX;X)

Various methods can be used (knowledge-based, schema composition, deductive/-
constructive/inductive synthesis, uses of algebraic properties of the speci�cation,
etc.), and they can be combined for instantiating the di�erent parts of the schema.
For example, a possible instantiation for the included problem could be the follow-
ing:

included(L1; L2) L2 = [], L1 = []
included(L1; L2) L2 = [H2jT2], remove all(H2; L2; NL2),

included(NL1; NL2),
H2 = H1,
insert(H1; NL1; L1)
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where remove all(H;L;NL) holds i� NL is the list L without all the occurrences
of H, and insert(H;NL;L) holds i� L is the list NL where k occurrences (for some
k > 0) of H have been added.

Given that NL1 has no occurrence of H1, the atoms insert can be replaced by
remove all, yielding Prog2(included) in Example 6.

6.3. Overview of Methods

Structural induction in logic program construction has already been seen in [CT77].
The construction of an axiomatic de�nition of a relation is performed by case anal-
ysis on the structural form of a parameter.

In Prolog textbooks, the usual guidelines for program construction are mainly
based on a very procedural approach, and mostly disconnected with structural
induction [CM84, Bra86, GKPVC86]. It should be noted that in [SS86] there is a
clear distinction between the concept of a logic program and a Prolog program.

The above presentation of program construction by structural induction is based
on [Dev90] where methods are proposed for the systematic development of logic
programs. These methods cover the whole process, starting from the intended
relation, constructing a logic program, and deriving an executable Prolog program.

In functional programming, program schemata are used in deductive synthesis,
such as in the KIDS system [Smi88, Smi90], or in program transformation [HL78].
A formalization of a strategy deriving global search algorithms from speci�cations is
described in [Kre93a]. Details can also be found in [Kre93b]. In the context of logic
programming, schemata were mostly used for assisting the manual construction of
logic programs.

In [GH89, GH90], a hierarchy of logic program schemata is proposed. These
are set in a second-order logic framework, and re
ect a divide-and-conquer de-
sign strategy. Divide-and-conquer schemata are also proposed in [DB89, Dev90]
which incorporate generalisation techniques. The schemata are integrated in an
environment for logic program development [HC92]. Various divide-and-conquer
logic program schemata are carefully detailed in [Fle93]. These are used to guide
inductive logic program synthesis.

Logic program schemata proposed in [O'K90], cover di�erent classes of problems,
and di�erent design strategies.

Stepwise enhancement is proposed in [LS88, LS90, Lak89b, Lak89a, KS90] as
a structured and procedural approach to Prolog program development. Program
schemata, called \skeletons", isolate the basic control 
ow structures. Skeletons
can be extended by means of \techniques" which can be applied to include extra
computations in the skeletons. Di�erent extensions can also be combined. [BP90]
discusses a similar system based on what the authors call Clich�es.

7. EVALUATION AND PERSPECTIVES

As we pointed out earlier, in this survey we only intend to give a short introduction
to the various synthesis methods. It would be folly to pretend that these methods on
their own can tackle all the remaining problems or unsolved theoretical di�culties
in logic program synthesis, let alone program synthesis in general! The synthesis of
a program from a speci�cation cannot be reduced to the choice of a method and the
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application of well-de�ned rules to synthesise a correct program. With this caveat,
we now conclude with a brief summary, assessment, and discussion of existing work
and potential future trends.

It is generally recognised that to achieve the goals of program synthesis, the
best formalisms to use are declarative ones, such as functional and logic program-
ming. The functional programming community has been very actively pursuing
this objective, mainly doing constructive synthesis based on constructive type the-
ory, and inductive synthesis from examples. In contrast, logic programmers have
mainly concentrated on deductive synthesis. Each of these approaches has its own
strengths and weaknesses.

In constructive synthesis, though program extraction can be mechanised, produc-
ing the proofs remains a nontrivial task and needs human interaction. In deductive
synthesis, program extraction is unnecessary (in logic programming at any rate),
and each deduction step can be automated, but the overall deduction strategy also
needs human guidance.

Constructive and deductive synthesis are usually applied starting with a complete
logic speci�cation to start with. A problem with these approaches [Bie93] is that
writing a logic speci�cation for a program is sometimes very much like writing the
program itself. A precise syntax has to be devised to completely codify the desired
behaviour, and one might prefer to write the program directly in this syntax rather
than using automated synthesis systems. On the other hand, inductive synthesis
from examples works very well. However, it can create programs automatically
only if they are small (two or three or four lines of code), and the cost in execution
time is exponential!

Synthesis by informal methods stresses what are the crucial creative steps within
the design of a program. It also enables us to abstract programming concepts such
as program schemas. As the starting speci�cation is informal, these methods cannot
be totally automated, but can yield tools supporting interactive program synthesis.

Logic programming provides a nice uniform framework for program synthesis.
On the one hand, the speci�cation, the synthesis, and the resulting program can
all be expressed in logic. On the other hand, logic speci�cations can describe
complete speci�cations as well as incomplete ones such as examples or properties
of the relation to compute. The logic programming paradigm thus o�ers a chance
to present both kinds of information within the same language, and treat them
uniformly in a synthesis process.

Although presented separately in this paper, the di�erent methods can be com-
bined in various ways. Constructive and deductive synthesis do not have to start
with complete speci�cations. It is reasonable to believe that the key to a general
synthesis method lies in a combination of the strengths of the di�erent synthe-
sis approaches. By studying these di�erent approaches in the framework of logic
programming, we hope we have taken a �rst step in the right direction.

Finally, in order to suggest or predict the future trends or directions of program
synthesis, it is useful to return to the general context of program synthesis. If
we view computer programming as a process of constructing executable code from
(fragmentary) information, then program synthesis shares with automatic program-
ming the same objective of using a machine to do computer programming. However,
to paraphrase [RW88], it would be in vain to hope that thanks to automatic syn-
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thesis there will be no more programming. It is impossible to have user-oriented,
general-purpose, and fully automatic programming systems. At least one of these
three desirable qualities has to be sacri�ced. The required input of such auto-
matic systems needs to be carefully crafted, debugged and maintained. Thus some
\programming" task will still have to be done. To quote [RW88],

\Automatic programming systems of the future will be more like vac-
uum cleaners than like self-cleaning ovens".

Realistically, then, program synthesis aims at abstracting the programming pro-
cess, letting the programmer concentrate on the really creative tasks involved. In
this perspective, the synthesis system thus becomes a partner rather than an inde-
pendent agent and we have IA (Intelligence Ampli�cation) rather than AI (Arti�cial
Intelligence) [Bie93]. Automatic programming will begin to have an impact on re-
alistic programming by o�ering users tools for interactive synthesis and not by
delivering some ultimate solution.
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