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1 Introduction

Post genomic era blah blah

In [3, 4], we proposed a constraint programming approach to biochemical network analysis The
goal is to be able to cover a broad range of analyses (including very computationally complex ones)
by using a declarative query language and at the same time still be able to perform these analyses
in reasonable time.

A first evaluation [3, 4] of the CP(BioNet) framework consisted in implementing a prototype and
testing it against a complex problem: constrained path finding. This was done using Mozart-Oz.
The results are encouraging both on the analysis and implementation sides of the problem.

This paper will focus on the implementation of the prototype of CP(BioNet) over the Oz-Mozart
system. This includes the implementation of a new kind of domain variables, graph domain variables
(from now on denoted gd-variables) and of a few propagators for constraints over these gd-variables.
All the implementation was done in the Oz language, no C++ extension was involved.

Section 2 will describe the approach we used in CP(BioNet) to express a biochemical analysis
as a subgraph finding problem then as a constraint program over gd-variables.

Section 3 will describe the Oz data structure we used for our first prototype of CP(BioNet),
then some words will be said about a later and more efficient data-structure.

Section 4 will describe the implementation of a few propagators. Whenever it was possible,
constraints available on the Mozart system were used. On the other hand, we implemented a
stateful propagator for the path constraint.

Finally Section 5 will conclude with current and future work on this prototype.

2 CP(BioNet)

This section will briefly describe our biochemical networks modeling and our approach to their
analysis. Then it will shortly describe CP(BioNet), a new constraint programming computing
domain for the analysis of biochemical networks. CP(BioNet) introduces graph domain variables
and constraints over these variables.

2.1 Biochemical networks model

Biochemical networks are networks representing the working of the cell. We adopted the aMAZE |1,
8] model of these networks. This model integrates many aspects of the functioning of the cell in
an integrated model. It consist of a object oriented model for most of the data with additional
relations to represent as many biological concepts as possible.



For the analysis of these networks, we model them as graphs whose nodes have attributes. The
set of attributes attached to each node is determined according to the family of analyses under
consideration. The simplest attributes are the three main classes present in the object-oriented
aMAZE model: entities, transforms and controls (see Figure 1). Entities are the physical small
objects in the cell: molecules, proteins, compounds, genes, mRNA, etc. Transforms link a set
of entities to an other set of entities: reactions, gene transcription, mRNA translation, protein
assembly, etc. Controls link an entity to either a transform or an other control: catalysis, inhibition,
gene expression regulation, etc.

The described prototype uses non-oriented graphs but all the algorithms and data-structures
have been extended and applied to oriented graphs. We keep non-oriented graphs in this paper for
the sake of consistency and simplicity.
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Figure 1: A small biochemical network in the object-oriented model containing bio-entities, trans-
forms and controls.

2.2 Biochemical network analysis

The size of biochemical networks became gigantic since a few years and these networks are no
longer printable as a whole (even on huge posters) nor possible to store in a single head. They
were then stored in computers using models such as the aMAZE model. This computer storage of
biochemical data leads to needs for specific data-mining tools. These tools are what biochemical
network analysis stands for.

Biochemical networks analysis consists in answering user queries. We chose to model these
queries as subgraph finding problems. The answer to a query is a graph extracted from the bio-
chemical network under analysis. We think that kind of model covers a broad range of current and
future queries about biochemical networks.

Queries like ”Find the process transforming A into B in less than X steps”, ”Find all the paths
expressed by a set of genes” or ”Show how gene G is affected by entity E” are typical examples.
They are translated into, respectively, ”Find a path from A to B of length less than X, going only
through entities and transforms”, ”Find the biggest subgraph containing no other gene than those
given and respecting common biochemistry semantics rules (e.g. discard a reaction if its catalyst or
one of its substrate is missing)”, or "Find all the paths from any regulation node attached to the
expression of gene G and node A”.

2.3 CP(BioNet): constraint programming model

To model and solve these subgraph extraction problems, we designed CP(BioNet). CP(BioNet)
consists of graph domain variables and constraints over these variables.

Graph domain variables are variables which initial domain is the set of all subgraphs of a
reference graph. This reference graph is the maximum element of their initial domain. In the
present work, it is assumed all gd-variables have the same initial domain, the same reference graph.
Problems including the comparison of different graphs are not covered by this work.

The constraints over gd-variables currently defined and implemented are:

— The unary constraint NodeInGraph(G,n) on the gd-variable G states the node n (of the
reference graph of G) must be present in graph G.

— The unary constraint ArcInGraph(G, a) on the gd-variable G states the arc a (of the reference
graph of G)) must be in present graph G.



— The unary constraint FveryArc(G) on the gd-variable G states that if two nodes are in G
and an arc joining these nodes belongs to the reference graph of G, then this arc must also
belong to G.

— The binary constraint SubGraph(P,G) on the gd-variables P and G states that P must be
a subgraph of G (nodes and arcs of P must be in G too). P and G have the same reference
graph.

— A constraint Path(P, ns,n., maxlength) states the gd-variable P must be a path from node
ns to node n. (both in the reference graph of P) of length at most maxlength.

— A constraint ExistsPath(G,ng, n., mazxlength) on the gd-variable G, derived from the Path
constraint but weaker, states that there must exist a path from ns to n. in G (and possibly
other nodes and arcs). This is logically equivalent to the introduction of a new gd-variable
P and using the SubGraph(P, G) and Path(P,ns,ne, mazxlength) constraints. However, such
an expression would be far too inefficient.

— The unary constraint Connected(G) states that a gd-variable G must be a connected graph.
This is semantically equivalent to stating that the ExistsPath constraint must be satisfied
for any pair of nodes in G.

NodelnGraph and ArcInGraph are reified constraints, they can be used in conjunction with logical
operators to build more complex constraints. For Path and FExistsPath, ns and n. must be
determined and if maxlength is a domain variable, the highest value of its domain is used.

3 The data structure used for graph domain variables

A gd-variable G can be implemented using boolean domain variables. A boolean variable per node
in the reference graph states whether this node is present in the domain of the gd-variable. This
vector of boolean variables is denoted nodes(G). The presence of arcs in the domain of gd-variables
is currently encoded with an adjacency matrix of boolean variables (see Figure 2). If N denotes
the number of nodes in the reference graph, every gd-variable is represented with N2 + N boolean
variables (actually half this number as the matrix is symmetric). This matrix is denoted adj M at(G).
Every graph domain variable has an associated constraint on its boolean domain variables to ensure
that if an arc is present then both of its endpoint nodes must be present as well. Such a constraint
can be implemented by a set of boolean constraints of the form

adjMat(G)i; = nodes(G); A nodes(G);

‘— o' Arcs Domain

H 0O 1 2 3 4 I—: :—I

ojloJoJo]o]o 1.

30 ................. 04 0 1 o o 1 o 01 g ;

Nodes 210 1fo]o1]o —_—

01 2 3 4 3]0 o0fo1] ooz I— 1
| 0 | 1 | 1 |0-1|o-1| 4]0 ]o1]ofo1]o ]:[

Figure 2: Implementation of a graph domain variable. The current domain of a variable, in the middle of
the search process, is represented in this graph and coded in tables of boolean domain variables. A node or
an arc is filled (nodes 1 and 2 and the arc joining them) when it is present in all graphs in the domain of
the gd-variable. A light gray node or arc (node 0 and arc (0,4)) is never included in a graph of the domain.
A dashed arc or unfilled node (all other nodes and arcs), may be present or absent in the graphs of the
domain. All the graphs of the current domain of this gd-variable are displayed on the right.

The gd-variable itself is implemented as a class. We chose to use a class as a design tool not
because we need to encapsulate a state. A new gd-variable is created by instantiation of the class
and by telling it its domain using an init method. Two init methods are available: one states the
domain of the variable (the reference graph), the other one states the variable is determined and
gives its reference graph and value. The constraints are available as methods of the gd-variable
instance. The instance variables of the class are:



1. the domain graph
2. the adjacency matrix
3. the array of node presence boolean variables

The adjacency matrix is implemented using a Tuple of Tuples of boolean variables (V::0#1).
The node presence boolean variables are stored in a Tuple too.

That matrix is forced to be symmetrical by unifying symmetrical variables in the matrix. The
built-in constraints for forcing that matrix and tuple of nodes to represent a graph are implemented
using N?/2 implication constraints (FD.impl).

In a later implementation, the adjacency matrix was replaced by an adjacency list: a Tuple
of Records having a boolean variable only where the reference graph has an arc. This lead to an
average twofold speedup relative to the test results showed in [3, 4]. A finite set implementation is
currently being investigated.

4 Implementation of the constraint propagators

Most of the constraints listed above are very straightforward to implement using available con-
straints over boolean variables (or more generally finite domain variables):

e NodelnGraph and ArcInGraph are both reified. They just return the boolean variable under
consideration.

e FuveryArc simply posts an implication constraint for each arc ij in the reference graph:

nodes(G); A nodes(G); = adjMat(G);;

o SubGraph(S,G) posts again a set of implications. For each node ¢ in the reference graph:
nodes(S); = nodes(G);
For each arc ¢j in the reference graph:

adeat(S)ij = adeat(G)ij

On the other hand, the Path, ExistsPath and Connected constraints were partly implemented
using a stateful propagator of our own. This section will focus on the Path constraint as the
EzistsPath constraint is just a little weaker and the C'onnected constraint propagator is a piece of
the Path propagator.

Here is the sketch of the path propagator implementation:

4.1 The path propagator implementation

The propagator of the constraint Path(P,ns,ne, maxlength) is implemented in three parts. The
first part uses integer domain propagators provided by the Oz-Mozart system. The second part is
implemented using standard graph algorithms. The third part uses more advanced graph algorithms
to further reduce the domain of the gd-variable.

1. P is constrained to contain only nodes of degree one or two. The start node n, and end
nodes n, have a degree of one, the other nodes have a degree of two. By stating this simple
constraint, P is forced to contain a path from ns to n. and possibly some cycles on nodes
not in the path (in Figure 3, a graph P consisting in a path from 0 to 4 and the cycle 5,6,7
is satisfying this first constraint). This first part of the propagator is implemented using the
sum constraint on the rows of the adjacency matrix of the graph domain variable forcing the
rows to contain exactly « (1 or 2) boolean variables with the value true (true is 1 while false
is 0 in the sum):

Vn € {ns,ne}: Zadeat(P)nyj =1
J



Vn € nodes(P) \ {ns,n.} : Z adjMat(P)n,; = 2
J

These FD.sum constraints are posted when the path constraint is called on the gd-variable
instance.

The cycles in other connected components are avoided by the second part of the propagator. It
is also possible to constrain the number of nodes in the path using the mazlength information.
A path of maximal length maxlength can contain at most maxlength + 1 nodes:

Z nodes(P); < maxlength + 1

2. P is constrained to be a single connected component. This implies that P will only be the
path from n; to n. as the cycles are in other connected components. A graph data structure
ConnGraph is built. It is the supremum (with respect to graph inclusion) of all the graphs
in the current domain of P. A node or an arc of the reference graph is not in ConnGraph if
and only if its boolean variable in P is set to false. If this boolean variable is true or unknown
(i.e. {true,false}) then the node/arc is in ConnGraph.

This ConnGraph is implemented with a class. This class holds the ConnGraph data structure
(a Dictionary of Dictionaries of integers) and methods to operate on it. A ConnGraph instance
is associated to a gd-variable and stores the maximum element of its domain. We use threads
watching each boolean variable of the gd-variable to keep this instance up to date with the
domain of the gd-variable. The job of each thread is to wait until a boolean variable is
determined and if it was set to false, update the ConnGraph accordingly.

Each time! the boolean variable associated with an arc in the adjacency matrix is set to false,
all the already included nodes of P (among those are ng and n.) are checked to see if they
are still in the same connected component. Two cases can arise:

e the constraint fails if they are not in the same connected component;

e otherwise, all nodes and arcs in other components can be eliminated from the domain of
P.

A standard breadth-first depth-limited (mazxlength) search in ConnGraph performs the con-
nected component checking. During this search, all nodes in the same component as ng are
collected within a mazlength radius (if maxlength is an integer domain variable, the highest
value of its domain is taken). As a by-product, the graph can be checked to see if it contains
cycles. If there are no cycles, the connected component of ConnGraph starting from ng is a
tree. In that case, the graph P can be forced to be the only available path from ns to n. in
ConnGraph. This is implemented with a depth-first search from ns to n. in ConnGraph.

As we do not use an incremental algorithm [7] for the connected component checking, we
avoid redoing this check for every arc deletion. Instead, we perform this connected component
checking only when the computation space is stable. The stability check is not explicit: this
stateful part of the propagator is automatically run by FD.distribute generic(...). The
propagation procedure to be run by the distributor is returned by the path constraint method.

3. Parts 1 and 2 guarantee to find a solution whenever there is one. An additional routine
improves the propagation by detecting as soon as possible that some arcs must or must not
belong to the graph P.

A bridge in a connected component of a graph is an arc the removal of which breaks the
connected component into two unconnected components. A connected component is said to be
2-edge connected if it does not contain any bridge. A 2-edge connected component algorithm
is used to find all bridges in ConnGraph [6, 5, 2]. It uses BridgeTree, an additional data
structure representing a tree. The nodes of this tree correspond to the 2-edge components of
ConnGraph and its arcs are the bridges of ConnGraph. Two nodes of BridgeT ree are labeled

n theory. See last paragraph of the description of this algorithm step.



nl and n2, corresponding respectively to the 2-edge connected component of ConnGraph
containing ng and n. (see Figure 4).
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Figure 3: The Path constraint. The graph domain variable must be a path from 0 to 4 and include
at most 3 arcs (at most 2 additional nodes). Nodes 0 and 4 are outlined in the reference graph.

Figure 4: BridgeTree on the right representing the 2-edge connected components and the bridges
of the graph on the left. The bridge (2,4) and the 2-edge connected component 4,5,6 cannot be
part of the path from 0 to 9 while both other bridges must be in that path.
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In this BridgeTree, all arcs on the path from nl to n2 must be in P and all other arcs (and
the 2-edge connected components on the other end) cannot be present in P. This information
is propagated by adding or removing these arcs and nodes from the domain of P.

The BridgeTree is just a theoretic definition. It is not built by the implementation. The
selection of positive and negative bridges is implemented using the previously cited algo-
rithm [6, 5, 2] which computes a DFS spanning tree of ConnGraph (stored as an adjacency
list over the nodes of ConnGraph: Tuple of Dictionaries). The ”Low” values (lowest node
reachable from each node) are then computed in this tree which enables to find all bridges.
A depth first search in the tree allows to find a path from ng to n. and all bridges on this
path are the bridges to be included in the gd-variable while all others can be taken out of the
domain.

A similar reasoning can be made about cut-nodes (nodes the removal of which breaks the
connected component) and the same algorithm can take care of these nodes.

Conclusion

This paper showed how we used Oz-Mozart to implement a prototype of CP(BioNet) a new com-
puting domain in constraint programming. A new type of variables, graph domain variables were
designed and implemented using the Oz language. New constraints were designed and implemented
using the Oz language too. Many time was saved by re-using domain variables and constraints
available in the Mozart system modules. Another advantage of the Mozart system is we could
implement this prototype in C if we had efficiency troubles.

We intend to design and implement a specific distributor and an optimization search engine

(using branch and bound). New constraints are also under investigation.
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