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Abstract

Parametric ordinary differential equations arise in
many areas of science and engineering. Since some
of the data is uncertain and given by intervals, tra-
ditional numerical methods do not apply. Interval
methods provide a way to approach these problems
but they often suffer from a loss in precision and
high computation costs. This paper presents a con-
straint satisfaction approach that enhances interval
methods with a pruning step based on a global re-
laxation of the problem. Theoretical and exper-
imental evaluations show that the approach pro-
duces significant improvements in accurracy and/or
efficiency over the best interval methods.

1 Introduction
Ordinary differential equations arise naturally in many ap-
plications in science and engineering, including chemistry,
physics, molecular biology, and mechanics to name only a
few. An ordinary differential equation(ODE)O is a system
of the form

u1
0(t) = f1(t; u1(t); : : : ; un(t))

: : :
un

0(t) = fn(t; u1(t); : : : ; un(t))

often denoted in vector notation byu0(t) = f(t; u(t)) or
u0 = f(t; u). In addition, in practice, it is often the case that
the parameters and/or the initial values are not known with
certainty but are given as intervals. Hence traditional methods
do not apply to the resulting parametric ordinary differential
equations since they would have to solve infinitely many sys-
tems. Interval methods, pioneered by Moore[Moo79], pro-
vide an approach to tackle parametric ODEs as they return
reliable enclosures of the exact solution at different points in
time. Interval methods typically apply a one-step Taylor in-
terval method and make extensive use of automatic differen-
tiation to obtain the Taylor coefficients[Moo79]. Their major
problem however is the explosion of the size of the boxes
at successive points as they often accumulate errors from
point to point and lose accuracy by enclosing the solution
by a box (this is called thewrapping effect). Lohner’s AWA
system[Loh87] was an important step in interval methods

which features coordinate transformation to tackle the wrap-
ping effect. More recently, Nedialkov and Jackson’s IHO
method[NJ99] improved on AWA by extending an Hermite-
Obreschkoff’s approach (which can be viewed as a general-
ized Taylor method) to intervals. Note that interval methods
inherently accommodate uncertain data. Hence, in this paper,
we talk about ODEs to denote both traditional and parametric
ODEs.

This research takes a constraint satisfaction approach to
ODEs. Its basic idea[DJVH98; JDVH99] is to view the solv-
ing of ODEs as the iteration of two steps: a forward process
that produces an initial enclosure of the solution at a given
time (given enclosures at previous times) and a pruning pro-
cess that tightens this first enclosure. The forward process is
of course standard. The real novelty is the pruning compo-
nent. Pruning in ODEs however generates significant chal-
lenges since ODEs contain unknown functions.

The main contribution of this paper is to show that an ef-
fective pruning technique can be derived from a relaxation of
the ODE, importing a fundamental principle from constraint
satisfaction into the field of differential equations.Three main
steps are necessary to derive an effective pruning algorithm.
The first step consists in obtaining a relaxation of the ODE
by safely approximating its solution using generalized Her-
mite interpolation polynomials. The second step consists in
using the mean-value form of this relaxation to solve the re-
laxation accurately and efficiently. Unfortunately, these two
steps, which were skeched in[JDVH99], are not sufficient
and the resulting pruning algorithm still suffers from tradi-
tional problems of interval methods. The third fundamental
step consists in globalizing the pruning by considering sev-
eral successive relaxations together. This idea of generating
a global constraint from a set of more primitive constraints is
also at the heart of constraint satisfaction. It makes it possi-
ble, in this new context, to address the problem of dependen-
cies (and hence the accumulation of errors) and the wrapping
effect simultaneously.

Theoretical and experimental results show the benefits of
the approach. The theoretical results show that the prun-
ing step can always be implemented to make our approach
faster than existing methods. In addition, it shows that our
approach should be significantly faster when the functionf is
very complex. Experimental results confirm the theory. They
show that the approach often produces many orders of magni-



tude improvements in accuracy over existing methods while
not increasing computation times. Alternatively, at similar
accuracy, other approaches are significantly slower. Of par-
ticular interest is the fact that our approach is not dependent
on high-order Taylor coefficients contrary to other methods.

The rest of the paper is organized as follows. Section 2 in-
troduces the main definitions and notations. Sections 3, 4, and
5 describe the pruning component. Sections 7 and 8 present
the theoretical and experimental analyses.

2 Background and Definitions
Basic Notational Conventions Small letters denote real
values, vectors and functions of real values. Capital letters
denote real matrices, sets, intervals, vectors and functions
of intervals. IR denotes the set of allclosedintervals� R

whose bounds are floating-point numbers. A vector of inter-
valsD 2 IR

n is called abox. If r 2 R, thenr denotes the
smallest intervalI 2 IR such thatr 2 I . If r 2 R

n , then
r = (r1; : : : ; rn). In this paper, we often user instead ofr
for simplicity. If A � R

n , then2A denotes the smallest box
D 2 IR

n such thatA � D. We also assume thatt0; : : : ; tk,
te andt are reals,u0; : : : ; uk are inRn , andD0; : : : ; Dk are
in IRn. Finally, we usetk to denoteht0; : : : ; tki, uk to denote
hu0; : : : ; uki andDk to denotehD0; : : : ; Dki.

We restrict attention to ODEs that have a unique solution
for a given initial value. Techniques to verify this hypothe-
sis numerically are well-known[Moo79; DJVH98]. More-
over, in practice, the objective is to produce (an approxima-
tion of) the values of the solution ofO at different points
t0; t1; : : : ; tm. This motivates the following definition of so-
lutions and its generalization to multistep solutions.

Definition 1 (Solution of an ODE) Thesolutionof an ODE
O is the functions(t0; u0)(t) : R�Rn ! R ! R

n satisfying
O for an initial conditions(t0; u0)(t0) = u0.

Definition 2 (Multistep solution of an ODE) The mul-
tistep solution of an ODE O is the partial function
ms : A � R

k+1 � (Rn )k+1 ! R ! R
n defined

by

ms(tk;uk)(t) = s(t0; u0)(t) if ui = s(t0; u0)(ti) (1 � i � k)

wheres is the solution ofO and is undefined otherwise.

Since multistep solutions are partial functions, we generalize
the definition of interval extensions to partial functions.

Definition 3 (Interval Extension of a Partial Function)
The interval functionG : IR

n ! IR
m is an interval

extensionof the partial functiong : E � R
n ! R

m if

8D 2 IR
n : g(E \D) � G(D):

whereg(A) = fg(x) j x 2 Ag.

Finally, we generalize the concept of bounding boxes, a fun-
damental concept in interval methods for ODEs, to multistep
methods. Intuitively, a bounding box encloses all solutions of
an ODE going through certain boxes at given times.

Definition 4 (Bounding box) LetO be an ODE system,ms
be the multistep solution ofO, andft0; : : : ; tkg � T 2 IR.
A boxB is a bounding boxof ms overT wrt Dk andtk if,
for all t 2 T ,ms(tk;Dk)(t) � B.
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Figure 1: Successive Integration Steps

3 The Constraint Satisfaction Approach
The constraint satisfaction approach followed in this paper
was first presented in[DJVH98]. It consists of a generic
algorithm for ODEs that iterates two processes: (1) afor-
ward process that computes initial enclosures at given times
from enclosures at previous times and bounding boxes and
(2) apruningprocess that reduces the initial enclosures with-
out removing solutions. The forward process also provides
numerical proofs of existence and unicity of the solution.
The intuition of the successive integration steps is illustrated
in Figure 1. Forward components are standard in interval
methods for ODEs. This paper thus focuses on the prun-
ing process, the main novelty of the approach.Our pruning
component is based on relaxations of the ODE as described
in the next section.To our knowledge, no other approach
uses relaxations of the ODE to derive pruning operators and
the only other approach using a pruning component[NJ99;
Rih98] was developed independently.

4 Pruning
The pruning component usessafe approximationsof the ODE
to shrink the boxes produced by the forward process. To un-
derstand this idea, it is useful to contrast the constraint sat-
isfaction to nonlinear programming[VHMD97] and to ordi-
nary differential equations. In nonlinear programming, a con-
straintc(x1; : : : ; xn) can be used almost directly for pruning
the search space (i.e., the carthesian products of the intervals
Ii associated with the variablesxi). It suffices to take an in-
terval extensionC(X1; : : : ; Xn) of the constraint. Now if
C(I 01; : : : ; I

0

n) does not hold, it follows, by definition of in-
terval extensions, that no solution ofc lies in I 01 � : : : � I 0n.
The interval extension can be seen as a filter that can be used
for pruning the search space in many ways. For instance, Nu-
merica uses box(k)-consistency on these interval constraints
[VHMD97]. Ordinary differential equations raise new chal-
lenges. In an ODE8 t : u0 = f(t; u); functionsu andu’ are,
of course, unknown. Hence it is not obvious how to obtain a
filter to prune boxes.

One of the main contributions of our approach is to show
how to derive effective pruning operators for parametric
ODEs. The first step consists in rewriting the ODE in terms
of its multistep solutionmsto obtain

8 t : @ms
@t

(tk;uk)(t) = f(t;ms(tk;uk)(t)):



t0 t1 t2te t

u0

u1

u2

u2’

u

OK

KO

Figure 2: Geometric Intuition of the Multistep Filter

Let us denote this formula8 t : fl(tk;uk)(t): This rewriting
may not appear useful sincemsis still an unknown function.
However it suggests a way to approximate the ODE. Indeed,
we show in Section 6 how to obtain interval extensions of
msand@ms

@t
by using polynomial interpolations together with

their error terms. This simply requires a bounding box for
the considered time interval and safe approximations ofms
at successive times, both of which are available from the for-
ward process. Once these interval extensions are available, it
is possible to obtain an interval formula of the form

8 t : FL(tk;Dk)(t)

which approximates the original ODE. The above formula is
still not ready to be used as a filter becauset is universally
quantified. The solution here is simpler and consists of re-
stricting attention to a finite setT of times to obtain the rela-
tion

8 t 2 T : FL(tk;Dk)(t)

which produces a computable filter. Indeed, if the relation
FL(tk;Dk)(t) does not hold for a timet, it follows that no
solution ofu0 = f(t; u) can go through boxesD0; : : : ; Dk

at timest0; : : : ; tk. The following definition and proposition
capture these concepts more formally.

Definition 5 (Multistep Filters) LetO be an ODE and s be
its solution. Amultistep filter for O is an interval relation
FL : Rk � (IRn)k ! R ! Bool satisfying

ui 2 Di

s(t0; u0)(ti) = ui (0 � i � k)

�
) 8t : FL(tk;Dk)(t):

Proposition 1 (Soundness of Multistep Filters)Let O be
an ODE and letFL be a multistep filter forO. If
FL(tk;Dk)(t) does not hold for somet, then there exists
no solution ofO going throughDk at timestk.

How can we use this filter to obtain tighter enclosures of
the solution?A simple technique consists of pruning the last
box produced by the forward process. Assume thatDi is a
box enclosing the solution at timeti (0 � i � k) and that we
are interested in pruning the last boxDk. A subboxD � Dk

can be pruned away if the condition

8t 2 T : FL(tk; hD0; : : : ; Dk�1; Di)(t)

does not hold for some evaluation pointte. Let us explain
briefly the geometric intuition behind this formula by consid-
ering what we callnatural filters. Given interval extensions

MSandDMSof msand@ms
@t

, it is possible to approximate the
ODE systemu0 = f(t; u) by the formula

8 t : DMS(tk;Dk)(t) = F (t;MS(tk;Dk)(t)):

In this formula, the left-hand side of the equation represents
the approximation of the slope ofu while the right-hand rep-
resentsthe slope of the approximation ofu. Since the ap-
proximations are conservative, these two sides must intersect
on boxes containing a solution. Hence an empty intersec-
tion means that the boxes used in the formula do not con-
tain the solution to the ODE system. Figure 2 illustrates
the intuition visually. It is generated from an actual ordi-
nary differential equation, considers only points instead of
intervals, and ignores error terms for simplicity. It illustrates
how this technique can prune away a value as a potential so-
lution at a given time. In the figure, we consider the solu-
tion to the equation that evaluates tou0 andu1 at t0 andt1
respectively. Two possible pointsu2 andu02 are then con-
sidered as possible values att2. The curve markedKOde-
scribes an interpolation polynomial going throughu0; u1; u02
at timest0; t1; t2. To determine ifu02 is the value of the so-
lution at timet2, the idea is to test if the equation is satisfied
at timete. (We will say more about how to choosete later
in this paper). As can be seen easily, the slope of the inter-
polation polynomial is different from the slope specified by
f at time te and henceu02 cannot be the value of the solu-
tion at t2. The curve markedOKdescribes an interpolation
polynomial going throughu0; u1; u2 at timest0; t1; t2. In
this case, the equation is satisfied at timete, which means
that u2 cannot be pruned away. The filter proposed ear-
lier generalizes this intuition to boxes. Both the left- and
the right-hand sides represent sets of slopes and the filter
fails when their intersection is empty. Traditional consistency
techniques and algorithms based on this filter can now be ap-
plied. For instance, one may be interested in updating the
last box produced by the forward process using the operator
Dk = Dk \ 2fr 2 Dk j FL(tk; hD0; : : : ; Dk�1; ri)(te)g:
The following definition is a novel notion of consistency for
ODEs to capture pruning of the lastr boxes.

Definition 6 (Forward Consistency of Multistep Filters)
Let FL be a multistep filter. FL is forward(r)-consistent wrt
tk,Dk andt if

hDk�r+1; : : : ; Dki = 2fhv1; : : : ; vri 2 hDk�r+1; : : : ; Dki j
FL(tk; hD0; : : : ; Dk�r; v1; : : : ; vri)(t)g:

The algorithm used in our computational results enforces for-
ward consistency of the filters we now describe.

5 Filters
Filters rely on interval extensions of the multistep solution
function and its derivative. These extensions are, in general,
based on decomposing the (unknown) multistep function into
the summation of a computable approximationp and an (un-
known) error terme, i.e.,

ms(tk ;uk; t) = p(tk;uk; t) + e(tk;uk; t):

There exist standard techniques to buildp and to bounde as
well as its derivative and the derivative error term. Section



6 reviews how they can be derived from generalized Hermite
interpolation polynomials. Here we simply assume that they
are available and we show how to use them to build filters.

In the previous section, we mention how natural multistep
filters can be obtained by simply replacing the multistep so-
lution and its derivative by their interval extensions to obtain

DMS(tk;Dk)(t) = F (t;MS(tk;Dk)(t)):

It is not easy however to enforce forward consistency on a
natural filter since the variables may occur in complex non-
linear expressions. In addition, in ODEs, the boxes are often
small which makes mean-value forms particularly interesting.

5.1 Mean-Value Filters
The mean-value theorem for a functiong states that

9� : x � � � m : g(x) = g(m) + @g
@x
(�)(x �m):

A mean-value interval extensionG of g in intervalI can then
be defined as

G(X) = G(m) +DG(I)(X �m)

for somem in I , whereDG is an interval extension of the
derivative ofg. In order to obtain a mean-value filter, consider
the ODE
@p

@t
(tk;uk)(t)+

@e

@t
(tk;uk)(t) = f(t; p(tk;uk)(t)+e(tk;uk)(t))

where the multistep solution has been expanded to make the
approximations and the error terms explicit. We are thus in-
terested in finding a mean-value interval extension wrtuk of
the functiong(tk;uk)(t) defined as

@p

@t
(tk;uk)(t)+

@e

@t
(tk;uk)(t)�f(t; p(tk;uk)(t)+e(tk;uk)(t)):

However, as mentioned earlier,e is not a computable function
and we cannot compute its derivative wrtuk. Fortunately,
it is possible to construct a mean-value filter by considering
the error terms as constants and taking a mean-value interval
extension of the functiong�(tk;uk; e; de)(t) defined as

@p

@t
(tk;uk)(t) + de� f(t; p(tk;uk)(t) + e):

If G is a mean-value interval extension ofg�, then the ODE
is approximated by an expression of the form

8t : G(tk;Dk; E(tk;Dk)(t); DE(tk;Dk)(t))(t)

whereE andDE are interval extensions of the error term
e and of its derivative with respect tot. The following two
definitions capture this development more formally and can
be skipped in a first reading.

Definition 7 (Mean-Value Interval Extension) Let g be a
function of signatureR ! R ! R. A mean-value interval
extension ofg in I 0 wrt G andDG, denoted by MVF(g,I 0), is
a function of signatureIR! IR! IR defined as

MV F (g; I 0)(X)(Y ) = G(m)(Y ) +DG(I 0)(Y )(X �m)

whereG of signatureIR! IR! IR is an interval extension
of g andDG is an interval extension of the derivative ofg wrt
its first parameter. It is easy to extend this definition to more
complex signatures.

Definition 8 (Implicit Mean-Value Filter) Let O be an
ODE u0 = f(t; u) and rewrite ms, its multistep solution, as
the summation of an approximation and an error term:

ms(tk;uk; t) = p(tk;uk; t) + e(tk;uk; t):

LetP andDP be interval extensions ofp and of its derivative
wrt t, letE andDE be interval extensions of the error term
e and of its derivative wrtt. Define functionsg� andg+ as

g�(tk;uk; e; de)(t) =
@p
@t

(tk;uk)(t) + de� f(t; p(tk;uk)(t) + e)
g+(uk)(tk; e; de)(t) = g�(tk;uk; e; de)(t):

A mean-value filter ofO in D0
k wrt E;DE is defined as

MV F (g+;D0
k)(tk;Dk; E(tk;Dk)(t); DE(tk;Dk)(t))(t):

The mean-value filter for a timet produces an interval con-
straint of the form

A0X0 + : : :+AkXk = B

where eachXi is a vector ofn elements andAi is ann � n
matrix. Assuming that we are interested in pruning the last
boxDk, we obtain a filter as

Dk := Dk \ 2fXk j A0D0 + : : :+Ak�1Dk�1 +AkXk = Bg:

Our implementation in fact uses an explicit form of this prun-
ing operator defined as

Dk := Dk \ 2fXk j Xk = A�1
k B �

Pk�1
i=0 A

�1
k AiDig:

It is simple to make this expression forward(1)-consistent
since the variables inXk have been isolated.

Definition 9 (Explicit Mean-Value Filter) With the nota-
tions of Definition 8, letO be an ODEu0 = f(t; u) and
rewrite an implicit mean-value filter ofO in D0

k wrt E;DE
as

A0(t)X0 + : : :+Ak(t)Xk = B(t)

whereAi(t) is of signatureR ! R
n�n . An explicit mean-

value filter ofO in D0
k wrt E;DE is given by

Xk = Ak(t)
�1B(t) �

Pk�1
i=0 Ak(t)

�1Ai(t)Xi:

5.2 Global Filters
The explicit mean-value filter produces significant pruning of
the boxes but it still suffers from a dependency problem typi-
cal of interval methods. Consider the application of the filter
at two successive time steps of the method. We obtain expres-
sions of the form

Xk = B1 �M1
0X0 + : : : +M1

k�1Xk�1

Xk+1 = B2 �M2
1X1 + : : : +M2

kXk

Note that the second expression considers all tuples of the
form hv1; : : : ; vki 2 hX1; : : : ; Xki to computeXk+1. But
only a subset of these tuples satisfy the first equation for a
given v0 2 X0. The key idea to remove this dependency
problem is to use a global filter which clusters a sequence
of k mean-value filters together. Figure 3 gives the intuition
for k = 3. A global filter is then obtained by predicting and
pruningk boxes simultaneously. More precisely, the idea is
to cluster thek successive filters

Xk = B1 �M1
0X0 + : : : +M1

k�1Xk�1

: : :

X2k�1 = Bk �Mk�1
k Xk�1 + : : :+Mk

2(k�1)X2(k�1)
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Figure 3: Intuition of the Global Filter

This filter can be turned into an explicit form by substituting
Xk in the second equation,Xk andXk�1 in the third equation
and so on. The resulting system can be written as a system

(Xk : : : X2k�1)
T = B �M(X1 : : : Xk�1)

T

whereM is a square matrix of sizek � n. It is important
to mention such a global filter is forward(k)-consistent wrt
t2k�1;D2k�1 and t, since the variablesXk : : :X2k�1 have
been isolated. The dependency problem has thus been re-
duced to the well-knownwrapping effectwhich has standard
solutions in interval methods.

5.3 The Wrapping Effect
Approximating the set of solutions to an equation by a box
may induce a significant loss of precision. This problem is
known as thewrapping effectand its standard solution is to
choose an appropriate coordinate system to represent the so-
lutions compactly. Let us review briefly how to integrate
this idea with our proposals. Consider a global filter that
we write asZ1 = A0Z0 + B0. The idea is to introduce
a coordinate transformationY1 = M1Z1 to obtain a sys-
temM1Z1 = M1A0Z0 +M1B0 whereM1A0 is diagonally
dominant, i.e., the non-diagonal elements are very small com-
pared to the diagonal. IfM1A0 is diagonally dominant, then
the wrapping effect induces no or little loss of precision in
computingYi. Our pruning step can easily accommodate this
idea. Iterationi definesYi = MiZi and it sendsZi, Yi and
Mi to iterationi + 1 of the main algorithm. Iterationi + 1
will have to solve the system

Zi+1 = (Ai+1M
�1
i )Yi +Bi+1:

A coordinate transformation is applied once again to obtain

Mi+1Zi+1 = (Mi+1Ai+1M
�1
i )Yi +Mi+1Bi+1

so thatMi+1Ai+1M
�1
i is diagonally dominant. The matrices

Mi are computed using QR-factorizations[Loh87].

6 Hermite Filters
We now show how to build interval extensions ofp, @p=@t,
e, @e=@t by using Hermite interpolation polynomials. In-
formally, a Hermite interpolation polynomial approximates a
continuously differentiable functionf and is specified by im-
posing that its values and the values of its successive deriva-
tives at various points be equal to the values off and of its
derivatives at the same points. Note that the number of con-
ditions at the different points may vary.

Definition 10 (Hermite(�) Interpolation Polynomial)
Let ti 2 R; u

(0)
i = ui 2 R

n and u
(j)
i = f (j�1)(ti; ui); i =

0; : : : ; k; j = 0; : : : ; �i. Consider the ODEu0 = f(t; u).
Let � 2 N

k+1 ; �i 6= 0; i = 0; : : : ; k; �s =
Pk

i=0 �i. The

Hermite(�) interpolation polynomialwrt f and (tk;uk), is
the unique polynomialq of degree� �s � 1 satisfying

q
(j)(ti) = u

(j)
i ; j = 0; : : : ; �i � 1; i = 0; : : : ; k:

It is easy to take interval extensions of a Hermite interpolation
polynomial and of its derivatives. The only remaining issue
is to bound the error terms. The following standard theorem
(e.g.,[SB80]) provides the necessary theoretical basis.

Theorem 1 (Hermite Error Term) Let p(tk ;uk; �) be the
Hermite(�) interpolation polynomial wrtf and(tk;uk). Let
u(t) � ms(tk;uk; t), T = 2ft0; : : : ; tk; tg, �s =

Pk
i=0 �i

andw(t) =
Qk

i=0 (t� ti)
�i . Then, fori = 1; : : : ; n,

� 9 �i 2 T : ei(tk;uk; t) =
1
�s!

f
(�s�1)
i (�i; u(�i))w(t);

� 9 �1;i; �2;i 2 T : @ei
@t

(tk;uk; t) =
1
�s!

f
(�s�1)
i (�1;i; u(�1;i))w

0(t) + 1
(�s+1)!

f
(�s)
i (�2;i; u(�2;i))w(t).

How to use this theorem to bound the error terms?It
suffices to take interval extensions of the formula given
in the theorem and to replace�i; �1;i; �2;i by T and
u(�i); u(�1;i); u(�2;i) by a bounding box for the ODE overT .
In the following, we callHermite(�) filters, filters based on
Hermite(�) interpolation and we denote a global Hermite(�)
filter by GHF(�). The following novel result is fundamental
and specifies the speed of convergence of Hermite filters. It
shows that the order of natural and mean-value Hermite(�)
filters is the sum of the elements in�, i.e., the number of
conditions imposed on the interpolation.

Proposition 2 (Order) Let FL be a natural or mean-value
Hermite(�) filter for ODEu0 = f(t; u). Let te � tk = �(h),
ti+1 � ti = �(h); i = 0; : : : ; k � 1, �s =

Pk
i=0 �i and

Dk = 2fu 2 R
n j FL(tk; hu0; : : : ; uk�1; ui)(te)g. Then,

under some weak assumptions onf , w(Dk) = O(h�s+1):

7 Theoretical Cost Analysis
We now analyse the cost of our method and compare it to Ne-
dialkov’s IHO(p; q) method[NJ99], the best interval method
we know of. We use the following assumptions. At each
step, the forward process uses Moore’s Taylor method and
the pruning component applies a global Hermite filter to-
gether with coordinate transformations (using Lohner’s QR-
factorization technique). For simplicity of the analysis, we as-
sume that (the natural encoding of) functionf contains only
arithmetic operations. We denote byN1 the number of�; =
operations inf , byN2 the number of� operations, and byN
the sumN1+N2. We also assume that the cost of evaluating
@f (r)=@u isn times the cost of evaluatingf (r). We define�m
as max(�), �s = �0+: : :+�k; p+q+1 = �s; q 2 fp; p+1g.
We also report separately interval arithmetic operations in-
volved in (1) products of a real and an interval matrix (Cost-
1) and (2) the generation of Jacobians (Cost-2). Table 7 re-
ports the main cost of a step in the IHO(p; q) method (IHO in
the table) and our method GHF(�) (GHF in the table). It also
shows the complexity of two particular cases of GHF(�). The
first case (GHF-1) corresponds to a polynomial with only two
interpolation points (k = 1; j�1��0j � 1), while the second
case corresponds to a polynomial imposing two conditions on
every interpolation points (�0 = : : : = �k = 2). Note that
the methods are of the same order in all cases.
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IHO � 2b�s
2
c2nN1

+O(�snN2)

GHF 7k3n3 ((�m � 1)2 + 1)knN1

+�mknN2

GHF-1 � (b�s�1
2

c2 + 1)nN1

+O(�snN2)
GHF-2 ( 7

8
�s �

21
4
)�2sn

3 (�s � 2)nN

Table 1: Complexity Analysis.
IVP GMF IHO h Precision Time

� p; q IHO GMF Ratio IHO GMF

HILB (2,2,2) 2,3 8E-3 1.8E-1 2.5E-3 72 0.09 0.08
6E-3 3.8E-4 1.6E-5 24 0.12 0.10
4E-3 1.6E-5 2.8E-7 57 0.18 0.15
2E-3 1.5E-7 1.1E-9 136 0.35 0.31
1E-3 2.0E-9 7.8E-12 256 0.70 0.68

BRUS (2,2,2) 2,3 1E-1 1.1E-1 3.3E-4 333 0.56 0.55
7.5E-2 2.2E-4 8.7E-6 25 0.74 0.74
5E-2 1.1E-5 1.9E-7 58 1.10 1.10

2.5E-2 1.5E-7 1.1E-9 136 2.20 2.20
BIO1 (2,2,2) 2,3 1.5E-1 8.9E-3 2.5E-4 36 0.16 0.14

1E-1 2.8E-5 1.0E-6 28 0.23 0.20
5E-2 2.2E-7 2.8E-9 79 0.44 0.42

2.5E-2 2.6E-9 1.6E-11 162 0.87 0.87
2BP (5,5) 4,5 1E-1 3.7E-4 7.2E-6 51 2.10 1.10

7.5E-2 1.0E-6 1.7E-8 59 2.80 1.70
(7,6) 6,6 1.25E-1 1.0E-1 3.0E-4 333 2.20 1.40

1E-1 1.4E-6 9.2E-8 15 2.70 2.00
3BP (2,2,2,2) 3,4 3E-2 6.9E-2 3.5E-4 197 0.55 0.45

2E-2 2.1E-4 6.5E-7 323 0.83 0.72
1E-2 5.3E-8 9.3E-11 570 1.60 1.60

(5,5,5) 7,7 3E-2 2.4E-2 1.4E-4 171 1.30 0.92
2E-2 4.4E-7 1.5E-9 293 1.90 1.40

LOR (3,3) 2,3 1E-2 3.1E+1 4.5E-2 689 2.50 1.90
7.5E-3 4.0E-1 4.9E-3 82 3.30 2.60
5E-3 2.5E-2 2.7E-4 93 5.00 3.90

2.5E-3 3.7E-4 2.0E-6 185 9.90 8.50
BIO2 (4,3) 3,3 6E-3 1.0E-3 4.4E-4 2.3 2.80 2.20

4E-3 4.0E-6 1.2E-6 3.3 4.10 3.20
2E-3 1.1E-8 7.3E-10 15 8.30 6.40

Table 2: Experimental Results.

The first main result is thatGHF-1 is always cheaper than
IHO, which means that our method can always be made to
run faster by choosing only two interpolation points. (The
next section will show that substantial improvement in accu-
racy is also obtained in this case). GHF-2 is more expensive
than GHF-1 and IHO whenf is simple. However,whenf
contains many operations (which is often the case in prac-
tical applications), GHF-2 can become substantially faster
because Cost-1 in GHF-2 is independent off and Cost-2 is
substantially smaller in GHF-2 than in GHF-1 and IHO. It
also shows the versatility of the approach that can be taylored
to the application at hand.

8 Experimental Analysis
We now report experimental results of our C++ im-
plementation on some standard benchmarks[HNW87;
Loh87] and two molecular biology problems, which are
real-life parametric ODEs given to us by a biologist:

u0 [t0; tf ]
Hilbert quadratic problem (HILB): (2,4) [0,0.15]
Full Brusselator (BRUS): (1,2,1) [0,14]
Two-body problem (2BP): (1,0,0,1) [0,24]
Three-body problem(3BP): (1.2,0,0,-1.05) [0,1.3]
Lorentz system (LOR): (15,15,36) [0,10]
Molecular biology problem (BIO1): (0.1,0.56,0.14) [0,4]
Molecular biology problem (BIO2): (0,0.4,0.3,0.5) [0,3]

Table 2 compares GHF(�) and IHO(p; q) methods of
the same order. It reports the precision at the last step and
execution time of both methods for the same (constant)
stepsize. The experimental results follow the same assump-
tions as in the theoretical analysis. The forward process
uses Moore’s Taylor method of orderq + 1 (same order as
the predictor used in IHO(p; q)) and a Taylor series method
of order �s to compute a bounding box, except for BIO1
and BIO2 where we use a series of order 1. The choice
of the evaluation timete involved in GHF(�) has not been
discussed yet. So far we have no theoretical result about
the optimal choice ofte. We use a simple binary search
algorithm to determine a good value forte at the beginning
of or during the integration. In our experiments, we chose
te between the last two interpolation points, keeping the
distance constant throughout the integration. Our results
could be further improved by using a variable distance.

The results indicate that our method produces orders of
magnitude improvements in accuracy and runs faster than the
best known method.The gain in precision is particularly sig-
nificant for lower orders. The theoretical results are also con-
firmed by the experiments. Whenf contains many operations
(e.g. in 3BP), using many interpolation points is particularly
effective. For very complex functions, the gain in computa-
tion time could become substantial. Whenf is simple, using
few interpolation points becomes more interesting.

As a consequence, we believe that a constraint satisfac-
tion approach to parametric ordinary differential equations is
a very promising avenue that complements well traditional
approaches.
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