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Abstract

Parametric ordinary differential equations arise in
many areas of science and engineering. Since some
of the data is uncertain and given by intervals, tra-
ditional numerical methods do not apply. Interval
methods provide a way to approach these problems
but they often suffer from a loss in precision and
high computation costs. This paper presents a con-
straint satisfaction approach that enhances interval
methods with a pruning step based on a global re-
laxation of the problem. Theoretical and exper-
imental evaluations show that the approach pro-
duces significant improvements in accurracy and/or
efficiency over the best interval methods.

Introduction

which features coordinate transformation to tackle the wrap-
ping effect. More recently, Nedialkov and Jackson’s IHO
methodNJ99 improved on AWA by extending an Hermite-
Obreschkoff’s approach (which can be viewed as a general-
ized Taylor method) to intervals. Note that interval methods
inherently accommodate uncertain data. Hence, in this paper,
we talk about ODEs to denote both traditional and parametric
ODEs.

This research takes a constraint satisfaction approach to
ODEs. lts basic idefDJVH98; JDVH99 is to view the solv-
ing of ODEs as the iteration of two steps: a forward process
that produces an initial enclosure of the solution at a given
time (given enclosures at previous times) and a pruning pro-
cess that tightens this first enclosure. The forward process is
of course standard. The real novelty is the pruning compo-
nent. Pruning in ODEs however generates significant chal-
lenges since ODEs contain unknown functions.

The main contribution of this paper is to show that an ef-

Ordinary differential equations arise naturally in many ap-fective pruning technique can be derived from a relaxation of
plications in science and engineering, including chemistrythe ODE, importing a fundamental principle from constraint
physics, molecular biology, and mechanics to name only &atisfaction into the field of differential equatioi$iree main
few. An ordinary differential equatiofODE) O is a system
of the form

often denoted in vector notation hy(t) =

=
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filt,ui(t),. .., un(t))
wn(8) = faltyur(®),- -, un(t))

f(t,u(t)) or

steps are necessary to derive an effective pruning algorithm.
The first step consists in obtaining a relaxation of the ODE

by safely approximating its solution using generalized Her-

mite interpolation polynomials. The second step consists in
using the mean-value form of this relaxation to solve the re-

laxation accurately and efficiently. Unfortunately, these two

steps, which were skeched [ADVH99, are not sufficient

u' = f(t,u). In addition, in practice, it is often the case that and the resulting pruning algorithm still suffers from tradi-
the parameters and/or the initial values are not known wittional problems of interval methods. The third fundamental
certainty but are given as intervals. Hence traditional methodstep consists in globalizing the pruning by considering sev-
do not apply to the resulting parametric ordinary differentialeral successive relaxations together. This idea of generating
equations since they would have to solve infinitely many sysa global constraint from a set of more primitive constraints is
tems. Interval methods, pioneered by MofMoo7d, pro-  also at the heart of constraint satisfaction. It makes it possi-
vide an approach to tackle parametric ODEs as they returfle, in this new context, to address the problem of dependen-
reliable enclosures of the exact solution at different points ir¢ies (and hence the accumulation of errors) and the wrapping
time. Interval methods typically apply a one-step Taylor in-effect simultaneously.

terval method and make extensive use of automatic differen- Theoretical and experimental results show the benefits of
tiation to obtain the Taylor coefficienioo79. Their major  the approach. The theoretical results show that the prun-
problem however is the explosion of the size of the boxesng step can always be implemented to make our approach
at successive points as they often accumulate errors frofiaster than existing methods. In addition, it shows that our
point to point and lose accuracy by enclosing the solutiorapproach should be significantly faster when the funcfian

by a box (this is called therapping effegt Lohner's AWA  very complex. Experimental results confirm the theory. They
system[Loh87] was an important step in interval methods show that the approach often produces many orders of magni-



tude improvements in accuracy over existing methods whil
not increasing computation times. Alternatively, at similar
accuracy, other approaches are significantly slower. Of par-
ticular interest is the fact that our approach is not dependent
on high-order Taylor coefficients contrary to other methods.
The rest of the paper is organized as follows. Section 2 in
troduces the main definitions and notations. Sections 3, 4, and
5 describe the pruning component. Sections 7 and 8 present
the theoretical and experimental analyses.

S(to’Do)(tl)

2 Background and Definitions to ty t,

Basic Notational Conventions Small letters denote real Figure 1: Successive Integration Steps
values, vectors and functions of real values. Capital letters

denote real matrices, sets, intervals, vectors and functio . . .

of intervals. IR denotes the set of atllosedintervalsC R r§ The Constraint Satisfaction Approach

whose bounds are floating-point numbers. A vector of inter-The constraint satisfaction approach followed in this paper
vals D € IR" is called abox If r € R, thenr denotes the was first presented iflDJVH9E. It consists of a generic
smallest interval € IR such that- € I. If » € R*, then  algorithm for ODEs that iterates two processes: (Ipma

7 = (71,...,7,). In this paper, we often useinstead off  ward process that computes initial enclosures at given times
for simplicity. If A C R*, thenOA denotes the smallest box from enclosures at previous times and bounding boxes and
D € IR" such thatd C D. We also assume th&j, ..., ¢,  (2) apruningprocess that reduces the initial enclosures with-

te andt are realsyo, ..., u, are inR”, andDy, ..., D, are  out removing solutions. The forward process also provides
inIR™. Finally, we use, to denot€(ty, . .., tx), u, to denote  numerical proofs of existence and unicity of the solution.
(uo, ..., ur) andDy, to denotg(Dy, . . ., Dy). The intuition of the successive integration steps is illustrated

We restrict attention to ODEs that have a unique solutiorin Figure 1. Forward components are standard in interval
for a given initial value. Techniques to verify this hypothe- methods for ODEs. This paper thus focuses on the prun-
sis numerically are well-knowfMoo79; DJVH98. More-  ing process, the main novelty of the approa€hur pruning
over, in practice, the objective is to produce (an approximacomponent is based on relaxations of the ODE as described
tion of) the values of the solution ap at different points in the next section.To our knowledge, no other approach
to, t1,...,tm. This motivates the following definition of so- uses relaxations of the ODE to derive pruning operators and
lutions and its generalization to multistep solutions. the only other approach using a pruning compord&ia99;
Definition 1 (Solution of an ODE) Thesolutionof an ODE ~ Rih98 was developed independently.

O is the functiors(to, ug) (t) : RxR™ — R — R" satisfying

O for an initial conditions(tg, ug)(to) = ug- 4 Pruning

Definition 2 (Multistep solution of an ODE) The mul-
tistep solution of an ODE O is the partial function
ms : A C R x (R*)¥! — R — R" defined

The pruning component ussafe approximationsf the ODE
to shrink the boxes produced by the forward process. To un-
derstand this idea, it is useful to contrast the constraint sat-

by _ isfaction to nonlinear programmirfy HMD97] and to ordi-
ms(tr, we)(t) = s(to, uo)(t) if ui = s(to,uo)(ti) (L <i < k) nary differential equations. In nonlinear programming, a con-
wheres is the solution of? and is undefined otherwise. straintc(zy, ..., #,) can be used almost directly for pruning

. . . . . ._the search space (i.e., the carthesian products of the intervals
Since multistep solutions are partial functions, we generaliz§. ,<qqciated with the variables). It suffices to take an in-
f )

the definition of interval extensions to partial functions. terval extensiorC'(X1,. .., X,,) of the constraint. Now if
Definition 3 (Interval Extension of a Partial Function) C(13,...,1I}) does not hold, it follows, by definition of in-
The interval functionG : IR* — IR™ is an interval terval extensions, that no solutionefiesinlj x ... x I},.
extensiorof the partial functiory : E C R* — R™ if The interval extension can be seen as a filter that can be used
VD e IR" : (EN D) C G(D). for pruning the search space in many ways. For instance., Nu-
merica uses boX{-consistency on these interval constraints
whereg(A) = {g(z) | z € A}. [VHMD97]. Ordinary differential equations raise new chal-

Finally, we generalize the concept of bounding boxes, a funlenges. Inan ODE/'¢ : u’ = f(t, u), functionsu andu’ are,
damental concept in interval methods for ODEs, to multisteg®f course, unknown. Hence it is not obvious how to obtain a
methods. Intuitively, a bounding box encloses all solutions ofilter to prune boxes.

an ODE going through certain boxes at given times. One of the main contributions of our approach is to show

Defrition  (Bounding box) LetO be an ODE sysermus (S 11, et PLring shertars for premennc
be the multistep solution @, and{to,...,tx} C T € IR ' b 9

A box B is abounding boxof ms overT wrt Dy andty, if, of its mulistep solutiomsto obtain
forallt € T', ms(ty, D)(t) C B. Vi 2me(y ug)(t) = £t ms(te, ug)(t)).



MSandDMSof msand 35”3, itis possible to approximate the
u ODE systemu' = f(t,u) f)y the formula

* Vit: DMS(ty, Dy)(t) = F(t, MS(t, Dp) (1))

In this formula, the left-hand side of the equation represents
the approximation of the slope aofwhile the right-hand rep-
resentsthe slope of the approximation af Since the ap-
proximations are conservative, these two sides must intersect
on boxes containing a solution. Hence an empty intersec-
w0 u e w2 t tion means that the boxes used in the formula do not con-
Figure 2: Geometric Intuition of the Multistep Filter tain the solution to the ODE system. Figure 2 illustrates
the intuition visually. It is generated from an actual ordi-
nary differential equation, considers only points instead of
intervals, and ignores error terms for simplicity. It illustrates
how this technique can prune away a value as a potential so-
ution at a given time. In the figure, we consider the solu-
lon to the equation that evaluatesutg andu; attg andt;
respectively. Two possible poinis, andu), are then con-
sidered as possible valuestat The curve marke&Ode-
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Let us denote this formult : fi(tg,uz)(¢). This rewriting
may not appear useful sinoasis still an unknown function.
However it suggests a way to approximate the ODE. Indee
we show in Section 6 how to obtain interval extensions of
msand% by using polynomial interpolations together with

their error terms. This simply requires a bounding box for i . e | ial qoina th ;
the considered time interval and safe approximationsisf SC'IDEs an interpolation polynomial going throug us , u;
at timesty, t1,t,. To determine ifu), is the value of the so-

at successive times, both of which are available from the forl— i tti the idea is to test If th tion | tisfied
ward process. Once these interval extensions are available, Ht ion at timet,, the idea is to test i the equation is satisfie
at timet.. (We will say more about how to choosg later

is possible to obtain an interval formula of the form o . _
in this paper). As can be seen easily, the slope of the inter-
Vit: FL(ty,Dg)(t) polation polynomial is different from the slope specified by

X p -
which approximates the original ODE. The above formula istJ:O?]t ;ltr?e tgrggdcgre\z/gcr?:;rﬁgg]lgggsecﬁiht)ee\s/aahrj]ein?cfa:hgl:t(i)g:]
still not ready to be used as a filter because universally 2 P

quantified. The solution here is simpler and consists of re%)h?lsyr;grsnéaltr?g'ggutgtrigl;%?os%gf}g daatlttgr;@es\f\%i?ﬁ tr2n.ea|1rr115
stricting attention to a finite st of times to obtain the rela- ' q £

tion that us cannot be pruned away. The filter proposed ear-
. lier generalizes this intuition to boxes. Both the left- and
) vteT: FL(t’“fD’“)(t) ) _ the right-hand sides represent sets of slopes and the filter
which produces a computable filter. Indeed, if the relationajls when their intersection is empty. Traditional consistency
FL(ty, Dy)(t) does not hold for a time, it follows that no  techniques and algorithms based on this filter can now be ap-

solution ofu’ = f(t,u) can go through boxedo,...,Dr  plied. For instance, one may be interested in updating the
attimesty, ..., t,. The following definition and proposition |ast box produced by the forward process using the operator
capture these concepts more formally. Dy =D, NO{re Dy | FL(tg,(Do,...,Dp_1,r))(te)}.

Definition 5 (Multistep Filters) Let( be an ODE and s be The following definitio_n is a novel notion of consistency for
its solution. Amultistep filterfor © is an interval relation ~ ODESs to capture pruning of the lasboxes.
FL:RF x (IR*)* — R — Bool satisfying Definition 6 (Forward Consistency of Multistep Filters)
Let FL be a multistep filter. FL is forward)-consistent wrt
) } = Vt: FL(tg,Dg)(¢). ti, Dy andt if
iy _ _ (Di—rs1,-- -, Di) = O{(v1,...,v,) € (Diepia,--., Di) |
Proposition 1 (Soundness of Multistep Filters)Let O be FL(t,(Do,...,Di_r,v1,...,0:))(t)}.
an ODE and let 'L be a multistep filter forO. |If

FL(t,Dy)(t) does not hold for some then there exists 1he algorithm used in our computational results enforces for-
no solution of® going throughD, at timest. ward consistency of the filters we now describe.

u; € D;
s(to,uo)(t;) =w; (0<i<k

How can we use this filter to obtain tighter enclosures of5 Filters
the solution?A simple technique consists of pruning the last
box produced by the forward process. Assume fhats a  Filters rely on interval extensions of the multistep solution
box enclosing the solution at timte (0 < 7 < k) and thatwe  function and its derivative. These extensions are, in general,
are interested in pruning the last bk A subboxD C D, ~ based on decomposing the (unknown) multistep function into
can be pruned away if the condition the summation of a computable approximatioand an (un-

known) error terne, i.e.,
VYt € T : FL(tg,(Do,...,Dr_1,D))(t)

does not hold for some evaluation poit Let us explain
briefly the geometric intuition behind this formula by consid- There exist standard techniques to byildnd to bouna as
ering what we calhatural filters Given interval extensions well as its derivative and the derivative error term. Section

ms(tkauk7t> = p(tkaukvt) + e(tkvukvt)'



6 reviews how they can be derived from generalized Hermitd®efinition 8 (Implicit Mean-Value Filter) Let O be an
interpolation polynomials. Here we simply assume that theyODE v’ = f(t,u) and rewrite ms, its multistep solution, as
are available and we show how to use them to build filters. the summation of an approximation and an error term:

~In the previous ;ection, we mention hpw natural multistep ms (b, Uk, t) = p(te, wp, t) + e(tr, ug, t).

filters can be obtained by simply replacing the multistep so-

lution and its derivative by their interval extensions to obtain L€t andD P’ be interval extensions pfand of its derivative

wrt ¢, let E and DE be interval extensions of the error term
DM S(ty, Dg)(t) = F(t, MS(ti, D) (t)). e and of its derivative wrt. Define functiong* andg™ as

It is not easy however to enforce forward consistency on a g” (tk, ux, e, de)(t) = 22(tx, u)(t) + de — f(t, p(te, ur)(t) +€)
natural filter since the variables may occur in complex non- 9" (k) (br, e, de)(t) = g™ (bx, uk, e, de)(t).
linear expressions. In addition, in ODEs, the boxes are ofteR mean-value filter of in DY wrt E, DE is defined as
small which makes mean-value forms particularly interesting.

MVF(g*, D})(tk, Dy, E(tx, Di)(t), DE(tk, Di) (1)) (#)-

5.1 Mean-Value Filters i . .
The mean-value filter for a timeproduces an interval con-

The mean-value theorem for a functigistates that straint of the form
Hx<E<migla) =gm)+ L@ —m). AoXo + ...+ A Xy = B
A mean-value interval extensia@n of ¢ in interval I can then  where each¥; is a vector ofn elements andi; is ann x n
be defined as matrix. Assuming that we are interested in pruning the last

box Dy, we obtain a filter as

G(X)=G(m)+ DGI)(X —m)
Dy =Dy NO{Xy | AoDo + ...+ Ap_1Dp_1 + A Xy, = B}.
for somem in I, where DG is an interval extension of the
derivative ofy. In order to obtain a mean-value filter, consider Our implementationin fact uses an explicit form of this prun-
the ODE ing operator defined as

- 1 k— 1 1LA.D.
2D (b0 ) (1) 9 (6, we) (1) = (1 (b w) (Dbl ue)(t)) D= DD X = 4505 = 2ip A7 AD).
] It is simple to make this expression forward(l)-consistent
where the multistep solution has been expanded to make thgnce the variables if(;, have been isolated.
approximations and the error terms explicit. We are thus in-
terested in finding a mean-value interval extensiomwrof ~ Definition 9 (Explicit Mean-Value Filter) With the nota-
the functiong(ty, uy)(t) defined as tions of Definition 8, letO be an ODEw' = f(t,u) and
op 5 rewrite an implicit mean-value filter a in Dg wrt E,DFE
(thUk)(t)+a—§(tk7Uk)(t)—f(tp(tk,Uk)(t)+€(tkvuk)(t))~ as
Ao(t)X() +...+ Ak(t)Xk, = B(t)

ot
However, as mentioned earlieris not a computable function where 4, (t) is of signatureR — R™*". An explicit mean-
d/alue filter of O in DY wrt E, DE is given by

and we cannot compute its derivative wirf. Fortunately,
it is possible to construct a mean-value filter by considerin
- _ k— —
the error terms as constants and taking a mean-value interval Xp = Au () B(t) — SE1 AL ()7 A1) X,

extension of the functiop* (tx, u, e, de)(t) defined as i=0
ap d 5.2 Global Filters
By (b w) () + de = f(t, p(ti, wi)(?) +e). The explicit mean-value filter produces significant pruning of

If G is a mean-value interval extension @f, then the ODE  the boxes but it still suffers from a dependency problem typi-
is approximated by an expression of the form cal of interval methods. Consider the application of the filter

at two successive time steps of the method. We obtain expres-
Vt : G(tx, Dy, E(tx, Dg)(t), DE(tr, Di)(t))(t) sions of the form
where E and DE are interval extensions of the error term X
e and of its derivative with respect to The following two Xit1
definitions capture this development more formally and ca
be skipped in a first reading.

Bl —M{Xo+.. .. + M_, X,
B? — M2X, + ...+ M} X,

rNote that the second expression considers all tuples of the
o _ form (vq,...,vg) € (X1,...,X}) to computeXy,,. But
Definition 7 (Mean-Value Interval Extension) Let g be a  only a subset of these tuples satisfy the first equation for a
function of signatureR — R — R. A mean-value interval givenv, € X,. The key idea to remove this dependency
extension of in I’ wrt G and DG, denoted by MVF(d)), i problem is to use a global filter which clusters a sequence
a function of signaturéR — IR — IR defined as of £ mean-value filters together. Figure 3 gives the intuition
/ _ / _ for k = 3. A global filter is then obtained by predicting and

MVE(g, (X)) = Gm)(Y) + DG(I)(Y)(X = m) pruningk boxes simultaneously. More precisely, the idea is
whereG of signaturdR — IR — IRis an interval extension to cluster thek successive filters

of g and DG is an interval extension of the derivativegfrt - B'— M!Xg4 ...+ M X

its first parameter. It is easy to extend this definition to more 0o ko1t
complex signatures. Xops

= BF_ M,f_le—l +...+ M2k(k71)X2(k*1>



Hermite@) interpolation polynomiaivrt f and (ty, uy), is
Xo X, X, Xs Xa Xs the unique polynomiaj of degree< o, — 1 satisfying
t t, t, ts t ts q(j)(ti):ugj)7 j=0,...,0i—1, i=0,...,k.
Itis easy to take interval extensions of a Hermite interpolation
Figure 3: Intuition of the Global Filter polynomial and of its derivatives. The only remaining issue

is to bound the error terms. The following standard theorem
(e.g.,[SB8Q) provides the necessary theoretical basis.

Theorem 1 (Hermite Error Term) Let p(ty, uy, ) be the
Hermiteg) interpolation polynomial wrtf and (ty, uy). Let
u(t) = ms(ty,ug, t), T = O{to, ... tg,t} 05 = S, 03
(Xg.o . Xop-1)'=B—-M(X;...Xp1)T andw(t) = [Tr_, (t —t;)7. Then,fori = 1,...,n,

where M is a square matrix of sizé x n. It is important ~ ®3& € T : ealtu, i, 8) = 4 £ 7V (&, u(&)w(1);

to mention such a global filter is forwarb)-consistent wrt ~ ® 3&1.:, &2, € T+ %88 (by, up, t) =

ta1, Dox1 andt, since the variables(y ... Xory have L #7o 7D (g 5 u(en))w' (1) + iy £ (6o, u(6a) o (t).
been isolated The dependency problem has thus been re-
duced to the well-knowmrapping effectvhich has standard
solutions in interval methods.

This filter can be turned into an explicit form by substituting
X}, inthe second equatiofX;;, andX_, in the third equation
and so on. The resulting system can be written as a system

How to use this theorem to bound the error termg$
suffices to take interval extensions of the formula given
in the theorem and to replac€;, & :,&,; by T and
5.3 The Wrapping Effect u(fi),u(fl,i),u(fz,i) bya boundlng box for the ODE ovét.

o . . n the following, we callHermiteg) filters, filters based on
Approximating the set of solutions to an equation by a bo>4_| : . . .
may induce a significant loss of precision. This problem isf ermite@) interpolation and we denote a global Hermit(

known as thewrapping effecand its standard solution is to ilter by GHF(). The following novel result is fundamental

choose an appropriate coordinate system to represent the Ssngvis??ﬁgﬁiéhsrggfi? r?;tcu ?grzﬁs'xgaﬁng'ﬁe?g;{; It
lutions compactly. Let us review briefly how to integrate

this idea with our proposals. Consider a global filter thatf'lterS is the sum of the elements in L., the numher of

we write asZ; = ApZy + Bp. The idea is to introduce conditions imposed on the interpolation.

a coordinate transformatiori = M;Z; to obtain a sys- Proposition 2 (Order) Let F'L be a natural or mean-value
tem M, Z, = M, Ao Zo + M, By whereM, A, is diagonally  Hermiteg) filter for ODE ' = f(t,u). Lett. — t, = O(h),
dominant, i.e., the non-diagonal elements are very small contit1 — t; = O(h), i = 0,...,k — 1,0, = ¥ ¢, 0; and
pared to the diagonal. I/, A, is diagonally dominant, then Dx = O{u € R" | FL(tg, (uo, ..., ug—1,u))(t.)}. Then,
the wrapping effect induces no or little loss of precision inunder some weak assumptionsfano(Dy) = O(h7=t1).
computingY;. Our pruning step can easily accommodate this ) )

idea. Iteration definesY; = M;Z; and it sendsZ;, Y; and 7 Theoretical Cost Analysis

M; to iterationi + 1 of the main algorithm. lteration+1 e now analyse the cost of our method and compare it to Ne-
will have to solve the system dialkov’s IHO(p, ¢) method[NJ9d, the best interval method
Zigy = (Ai—i-lMi_l)Yi + Biys. we know of. We use the following as§umptions. At each
. o . . ~ step, the forward process uses Moore’s Taylor method and
A coordinate transformation is applied once again to obtain the pruning component applies a global Hermite filter to-
o _ar oAl —1yy n gether with coordinate transformations (using Lohner’'s QR-
Mi1Ziy = (Mig1 Aipd M7 )Yi + Mig Bigy factorization technique). For simplicity of the analysis, we as-
so thatM; 1 A;41 M, * is diagonally dominant. The matrices sume that (the natural encoding of) functifreontains only

M; are computed using QR-factorizatidih®h87]. arithm(_atic Qperations. We denote by the number ok, /
operations inf, by IV, the number oft: operations, and bV
6 Hermite Filters the sumN; + N,. We also assume that the cost of evaluating

df") /duisn times the cost of evaluating™ . We definer,,

. o 4 . asmaxo),os = og+...+ox, p+q+1 =05, ¢ € {p,p+1}.

e, Je/0t by using Hermite interpolation polynomials. In- \wa 455 report separately interval arithmetic operations in-
formally, a Hermite interpolation polynomial approximates ayolved in (1) products of a real and an interval matrix (Cost-

. 1) and (2) the generation of Jacobians (Cost-2). Table 7 re-
?)'orts the main cost of a step in the IHO§) method (IHO in

the table) and our method GHF)((GHF in the table). It also
"Shows the complexity of two particular cases of Ghlf-(The

first case (GHF-1) corresponds to a polynomial with only two

We now show how to build interval extensionsgfdp/ot,

tives at various points be equal to the valueg aind of its
derivatives at the same points. Note that the number of co
ditions at the different points may vary.

Definition 10 (Hermite(c) Interpolation Polynomial) interpolation pointsk = 1, |0y — 0¢| < 1), while the second
Lett; € Ru® = w; € R* andu) = fU=D(t;,u), i =  case corresponds to a polynomial imposing two conditions on
0,....,k, j = 0,...,0;. Consider the ODE/ = f(t,u). every interpolation pointss = ... = o = 2). Note that

Leto € Nt g; £ 0, i = 0,...,k, 0s = ¢ 0;:. The the methods are of the same order in all cases.



l | Cost-1 | Cost-2 I
IHO - 2[Z °nNy
+0(osnN>)
GHF 7k>n3 ((om — 1)* + 1)knNy
+omknNa
GHF-1 - (757 +1)n;
+O(O’S’nN2)
GHF-2 | (fo. — Z)oin® (o0s —2)nN
Table 1: Complexity Analysis.
IVP GMF IHO h Precision Time
o P, g IHO | GMF | Ratio | IHO | GMF
T HILB (2,2,2) 23 8E-3 1.8E-1 2.5E-3 72 0.09 0.08
6E-3 3.8E-4 1.6E-5 24 0.12 0.10
4E-3 1.6E-5 2.8E-7 57 0.18 0.15
2E-3 1.5E-7 1.1E-9 136 0.35 0.31
1E-3 2.0E-9 7.8E-12 256 0.70 0.68
BRUS (2,2.2) 23 1E-1 1.1E-1 3.3E-4 333 0.56 0.55
7.5E-2 2.2E-4 8.7E-6 25 0.74 0.74
5E-2 1.1E-5 1.9E-7 58 1.10 1.10
2.5E-2 1.5E-7 1.1E-9 136 2.20 2.20
BIO1 (2,2.2) 23 15E-1 8.9E-3 2.5E-4 36 0.16 0.14
1E-1 2.8E-5 1.0E-6 28 0.23 0.20
5E-2 2.2E-7 2.8E-9 79 0.44 0.42
2.5E-2 2.6E-9 1.6E-11 162 0.87 0.87
2BP (5,5) 45 1E-1 3.7E-4 7.2E-6 51 2.10 1.10
7.5E-2 1.0E-6 1.7E-8 59 2.80 1.70
(7.6) 6,6 1.25E-1 1.0E-1 3.0E-4 333 2.20 1.40
1E-1 1.4E-6 9.2E-8 15 2.70 2.00
3BP (2,2,2,2) 34 3E-2 6.9E-2 3.5E-4 197 0.55 0.45
2E-2 2.1E-4 6.5E-7 323 0.83 0.72
1E-2 5.3E-8 9.3E-11 570 1.60 1.60
(5,5.5) 7,7 3E-2 2.4E-2 1.4E-4 171 1.30 0.92
2E-2 4.4E-7 1.5E-9 293 1.90 1.40
LOR (3.3) 2,3 1E-2 3.1E+1 4.5E-2 689 2.50 1.90
7.5E-3 4.0E-1 4.9E-3 82 3.30 2.60
5E-3 2.5E-2 2.7E-4 93 5.00 3.90
2.5E-3 3.7E-4 2.0E-6 185 9.90 8.50
BIO2 (4,3) 33 6E-3 1.0E-3 4.4E-4 23 2.80 2.20
4E-3 4.0E-6 1.2E-6 33 4.10 3.20
2E-3 1.1E-8 7.3E-10 15 8.30 6.40

Table 2: Experimental Results.

Table 2 compares GHF] and IHO@,q) methods of

the same order. It reports the precision at the last step and
execution time of both methods for the same (constant)
stepsize. The experimental results follow the same assump-
tions as in the theoretical analysis. The forward process
uses Moore’s Taylor method of order+ 1 (same order as
the predictor used in IH®( ¢)) and a Taylor series method

of order o, to compute a bounding box, except for BIO1
and BIO2 where we use a series of order 1. The choice
of the evaluation time,. involved in GHF¢) has not been
discussed yet. So far we have no theoretical result about
the optimal choice oft.. We use a simple binary search
algorithm to determine a good value fgrat the beginning

of or during the integration. In our experiments, we chose
te between the last two interpolation points, keeping the
distance constant throughout the integration. Our results
could be further improved by using a variable distance.

The results indicate that our method produces orders of
magnitude improvements in accuracy and runs faster than the
best known method:he gain in precision is particularly sig-
nificant for lower orders. The theoretical results are also con-
firmed by the experiments. Whefcontains many operations
(e.g. in 3BP), using many interpolation points is particularly
effective. For very complex functions, the gain in computa-
tion time could become substantial. Whgis simple, using
few interpolation points becomes more interesting.

As a consequence, we believe that a constraint satisfac-
tion approach to parametric ordinary differential equations is
a very promising avenue that complements well traditional
approaches.
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