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ABSTRACT

Traffic engineering consists in improving the performance of the teleco-
munication networks which is evaluated by a large number of criteria.
The ultimate objective is to avoid congestion in the network by keeping
its links from being overloaded. In large Ethernet networks with thou-
sands of servers, such as data centers, improving the performance of the
traditional switching protocols is a crucial but very challenging task due
to an exploration in the size of solution space and the complexity. Thus,
exact methods are inappropriate even for reasonable size networks.

Local Search (LS) is a powerful method for solving computational
optimization problems such as the Vertex Cover, Traveling Salesman,
or Boolean Satisfiability. The advantage of LS for these problems is its
ability to find an intelligent path from a low quality solution to a high
quality one in a huge search space. In this thesis, we propose differ-
ent approximate methods based on Local Search for solving the class
of traffic engineering problems in data center networks that implement
Spanning Tree Protocol and Multiple Spanning Tree Protocol.

First, we tackle the minimization of the maximal link utilization in
the Ethernet networks with one spanning tree. Next, we cope with data
center networks containing many spanning trees. We then deal with the
minimization of service disruption and the worst-case maximal link uti-
lization in data center networks with many spanning trees. Last, we de-
velop a novel design of multi-objective algorithms for solving the traffic
engineering problems in large data centers by taking into account three
objectives to be minimized: maximal link utilization, network total load
and number of used links.

Our schemes reduce significantly the size of the search space by re-
leasing the dependence of the solutions from the link cost computation

iii



iv

in order to obtain an intended spanning tree. We propose efficient in-
cremental techniques to speed up the computation of objective values.
Furthermore, our approaches show good results on the credible data sets
and are evaluated by the strong assessment methods.
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1
INTRODUCTION

The aim of this thesis is to provide traffic engineering techniques for
optimizing the performance of the large-scale Ethernet networks that
implement Spanning Tree Protocol (STP) or Multiple Spaning Tree Pro-
tocol (MSTP).

1.1 Traffic engineering in switched Ethernet
networks

Traffic engineering (TE) is known as an optimization method for im-
proving the performance of a telecomunication network by analyzing,
forecasting and efficiently adjusting the traffic (data) transmission in
the network. TE is an essential task in all kinds of telecomunication
networks, including the Public Switched Telephone Networks (PSTN),
Local Area Networks (LAN), Ethernet networks, Wide Area Networks
(WAN), Cellular Telephone networks and the Internet networks [NRR11].

Data centers with huge logical storage capacity are now base of
many Internet and cloud computing services. Deploying by switched
Ethernet networks, data centers are mostly dominated by different vari-
ants of Spanning Tree Protocol. TE problems in Data Center Networks
(DCN) are very varied, both in problem formulations and evaluation cri-
teria (objectives). Some typical problem formulations for TE in DCNs
are off-line TE, online TE, Virtual LAN (VLAN) to spanning tree map-
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ping, traffic flow to spanning tree assignment, and multiple spanning
tree construction. The ultimate objective of a TE method is to avoid
the congestion in the DCN. Thus, a minimization of the maximal link
utilization value is often the most important evaluation criterion. Other
common TE objectives that can be taken into account are link delay,
network total load, energy saving, number of used links, and service
disruption in case of failures. More details are presented in Chapter 2.

This research focuses on the design and evaluation of TE techniques
to solve four types of problems:

• Minimization of the maximal link utilization in the Ethernet net-
works using spanning tree.

• Minimization of the maximal link utilization in the DCNs with
multiple spanning trees.

• Minimization of service disruption and the worst-case maximal
link utilization in the DCNs with multiple spanning trees in case
of link failures.

• Multi-objective TE for DCNs with multiple spanning trees. For
this problem, we take into account three objectives to be mini-
mized: maximal link utilization, network total load and number
of used links.

1.2 Challenges
Most of TE problems are NP-hard with an exponential solution space.
TE in typical IP networks with less than 100 nodes (routers) has been
a very challenging problem in the last decade [For00]. Current power-
ful data centers contain thousands of servers and hundreds of switches
that are divided into many VLANs [BAM10, BAAZ10]. TE methods
for DCNs deal with an explosion in the size of solution space and the
complexity. In practice, network operators would like to provide the
decisions as fast as possible. This means that exact methods are not
appropriate even for reasonable size DCN instances. The second chal-
lenge is to define TE techniques for DCNs when several objectives are
required to be optimized. A single computation for each objective value
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is already costly. Other challenges are to cope with the online optimiza-
tion problems where the traffic demands are continuously varied, to deal
with the online reconfiguration of DCN because of modifications, etc...
Thus, the design of TE approaches requires many efficient techniques
to fit the practical demands of current DCNs.

1.3 Local Search

Approaches for solving TE problems in DCNs [Med06, HZC06, LYD+03,
SdSA+09, dSS07, SdSA+11, CJZ06, MSS09, PNM+05] are often Stochas-
tic methods, including Local Search, Meta-heuristic, Evolutionary Al-
gorithm and many other Randomized Search Methods. The solutions
obtained with these approximate approaches are often not optimal but
acceptable when dealing with large DCNs.

Local search (LS) is a powerful technique that can find high qual-
ity solutions for computationally complex optimization problems (Ver-
tex Cover, Traveling Salesman or Boolean Satisfiability) in polynomial
time. LS can choose an interesting set of solutions to be explored from
a huge search space by performing intelligent moves. LS starts with an
initial solution and improves its quality by iteratively moving from one
solution to one of the neighbor solutions. The search process finishes
when some termination criterion is satisfied. A LS algorithm relies on
a neighborhood function that defines the set of neighbors for each solu-
tion. A LS algorithm also uses a heuristic (such as best improvement,
first improvement, random, etc...) to choose the neighbor. It can also
use meta-heuristics, such as Tabu Search, Simulated Annealing, Vari-
able Neighborhood Search to guide the search. Hence, local search
algorithms are well-suited for solving the TE problems in large DCNs.

1.4 Contributions
The contributions of this thesis are the following:

1. We develop and implement an efficient local search algorithm for
solving the TE problem of minimization of the maximal link uti-
lization in Ethernet networks containing one spanning tree.
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2. We extend our local search approach for networks containing one
spanning tree to cope with the minimization of the maximal link
utilization in DCNs containing many VLANs (one spanning tree
per VLAN). Our local search scheme shows good performance
for large DCNs.

3. We propose a heuristic algorithm for minimizing the worst-case
maximal link utilization and the service disruption in case of link
failures for large DCNs. The solutions obtained with our heuristic
algorithm ensure a minimum service disruption and minimize the
worst-case maximal link utilization after link failures.

4. We develop a novel design of multi-objective algorithms for solv-
ing the TE problem in large DCNs. Our multi-objective algo-
rithms show good performance by integrating the heuristics of
each single objective into the search process.

5. We introduce a solution space for the class of TE problems in
DCNs with spanning trees. Our choice of doing the search di-
rectly on spanning tree space instead of the link cost space re-
duces significantly the size of the search space. This definition of
search space also simplifies the definition of neighbor solutions
in our LS algorithms.

6. We propose incremental algorithms to maintain the link loads and
the all-pairs path lengths in the spanning tree. We show that the
incrementality improves both complexity and efficiency in the de-
sign and the implementation of our LS algorithms.

7. There are few existing assessment methods for evaluating the per-
formance of multi-objective TE techniques in DCNs. State-of-
the-art approaches often evaluate their outcomes based on each
single objective observation. We introduce a strong assessment
method using different specific metrics for evaluating the multi-
objective overall performance.
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1.5 Outline
The remainder of the thesis is organized as follows:

Chapter 2 presents the background and the related work. Basic con-
cepts of Ethernet and DCNs are introduced, followed by an overview of
TE in DCNs, Local Search and Multi-objective Optimization. We also
present the existing works in the domain.

Chapter 3 faces the challenge of designing and implementing an ef-
ficient LS algorithm for solving the TE problem in large-scale Ethernet
networks using spanning tree. Maximal link utilization is taken into ac-
count as the objective to be minimized. We present how a network prob-
lem is modeled as a graph problem and how it can be solved with a local
search algorithm. Methods for generating different network topologies
and traffic demand matrices are also developed. We then evaluate the
performance of our LS algorithm on the generated data sets.

Chapter 4 deals with the minimization of the maximal link utiliza-
tion in the DCNs with multiple spanning trees. The TE problem in Eth-
ernet networks is more challenging in large DCNs with more switches
and many spanning trees are required to be generated. We analyze dif-
ferent studies on DCNs to obtain data sets that are representative of data
centers. The description of our LS algorithm is presented, followed by
a performance evaluation.

In Chapter 5, we propose a heuristic algorithm to ensure a good load
balancing for the DCNs with a minimum service disruption in case of
link failures. We show how to configure the link costs such that the
MSTP protocol performs one unique link replacement when one of the
links of the spanning tree links fails. This minimum service disruption is
considered as a hard constraint in our heuristic algorithm for minimizing
the worst-case maximal link utilization in the DCNs.

The design of multi-objective algorithms for solving the TE prob-
lem in DCNs is described in Chapter 6, we show how the heuristics of
two single objective LSs can be included into the search process of a
bi-objective LS. We also describe how we represent, update and evalu-
ate the outcomes of a bi-objective algorithm. Different assessment met-
rics for multi-objective algorithms are adapted for evaluating the overall
performance of our LS approaches.

Finally, a general conclusion and perspectives for future work are
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presented in Chapter 7.



2
BACKGROUND AND RELATED

WORK

Traffic engineering (TE) in Ethernet networks, including data centers is
a widely researched topic because of both technology and performance
issues. Recently, with the explosion of cloud computing services, TE in
large DCNs becomes a critical need of many service providers. Differ-
ent techniques have been developed to address different TE aspects in
DCNs. In this chapter, we review the basic concepts of both networking
and optimization that are used throughout the thesis. The first section
presents an overview of data centers and different variants of the span-
ning tree protocol. Next, different classes of TE problem in DCNs are
introduced with some intuitive examples. Then, we present the defi-
nition of Constraint Satisfaction Problem, followed by a description of
Local Search. Finally, we present some background on Multi-objective
Optimization. The related work is also mentionned in each section.

2.1 Data Centers and Switching Protocol vari-
ants

Data centers are now a key part of the Internet. Their number and their
size are growing quickly. Some reports [KSG+09, BAM10, BAAZ10]
indicate that there are data centers containing up to 10K servers and
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some speculate that data centers could contain 100K servers or more.
Data centers are used for various purposes. Some data centers are
mainly used to perform computation while others are mainly used to
provide Internet services. Many data centers support various applica-
tions at the same time and each application runs on a set of virtual ma-
chines that are distributed on physical servers.

Figure 2.1: A data center network

From a networking viewpoint, data centers heavily rely on switched
Ethernet networks. A typical 3-Tier Cisco topology [Sys10] for DCNs
is illustrated in Figure 2.1. Servers are attached by using one or more
Gigabit Ethernet interfaces to top of the rack (ToR) switches at the ac-
cess (Edge) tier. ToR switches are connected to aggregation switches by
using one or more 10 Gbps Ethernet links. These aggregation switches
are then connected by using one or more 10 Gbps Ethernet links to core
switches that are attached to routers when Internet access is required.

The switched Ethernet networks used in data centers are redundant
to enable recovery in case of link or switch failures. However, currently
deployed Ethernet switches can not directly use a mesh of links and
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need to use variants of the Spanning Tree Protocol [Soc98]. Several
variants of the Spanning Tree Protocol are used.

2.1.1 Spanning Tree Protocol 802.1d
In Ethernet networks, multiple active paths between switches ensure
the service availability in case of link failures. Unfortunately, Ethernet
networks can not contain active cycles. To avoid such cycles, Ether-
net switches implement the IEEE 802.1d Spanning Tree Protocol (STP)
[Soc98] that reduces the topology of the switched network to a spanning
tree. To compute the spanning tree, special messages called configura-
tion bridge protocol data units (configuration BPDUs) are sent by the
switches. Each of these messages contains the following information
[Per99]:

• Root ID: ID of the switch assumed to be the root.

• Transmitting bridge ID: ID of the switch transmitting this config-
uration message.

• Cost: Cost of the least-cost path to the root from the transmitting
switch.

The spanning tree protocol performs a distributed computation of the
spanning tree. At first, each switch assumes itself to be the root, sets
the Root ID to its own ID, sets the Cost value to 0 and transmits its con-
figuration BPDU on every port. Configuration BPDUs are distributed
on each LAN so that each switch receives the configuration BPDUs of
its neighboring switches. The switch with the smallest ID is elected as
the root. Thus, each time a switch receives such a message, it compares
the Root ID contained in the message with its current Root ID. If the
new Root ID is smaller, it generates its own configuration BPDU (Root
ID, Transmitting bridge ID, and new Cost to the root) and transmits this
BPDU on its ports. If there is more than one least-cost path to the root,
the switch selects the one which passes via the lowest ID neighbor. The
spanning tree is created when all the switches have selected the same
Root ID and their cost of the shortest path to root are correctly calcu-
lated.
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Table 2.1: Default link costs in 802.1d standard (M: Mbit/s, G: Gbit/s)
Data rate 4M 10M 16M 100M 1G 2G 10G
STP Cost 250 100 62 19 4 3 2

Obviously, the most important parameters that determine the result-
ing spanning tree are the switch IDs and the link costs. Network oper-
ators normally configure the switch with the highest capacity (ports ×
bandwidth) as the root of their spanning trees. By default, STP assigns a
cost for each link based on its data rate (bandwidth). The link cost is an
integer number in [1..216 − 1]. Table 2.1 shows the 802.1d default cost
of an interface for a given data rate. When the switch IDs and link costs
are fixed, STP generates a specific spanning tree independently from
the traffic demand matrices. Fortunately, one can configure the switch
IDs and link costs to guide the STP standard to generate an intended
spanning tree.

2.1.2 Multiple Spanning Tree Protocol 802.1s
The IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) [Soc01] ex-
tends from 802.1d to accelerate the convergence of the alternate span-
ning tree in case of link failures or network topology changes. With
802.1d and 802.1w, the drawback is that only a small number of existed
links is included in a single spanning tree since many available links are
disabled.

The IEEE 802.1q Virtual LANs (VLANs) standard [Soc06] enables
large Ethernet networks to be logically divided into many VLANs. VLANs
are mainly used to isolate one application or one data center customer
from the others. The servers (or virtual machines) that belong to a given
VLAN can only communicate with the other servers that belong to the
same VLAN. A switched Ethernet network can contain up to roughly
4000 different VLANs.

The IEEE 802.1s Multiple Spanning Tree Protocol (MSTP) [Soc02]
is a combination of 802.1w and 802.1q enabling the service providers
to benefit from the available links by spreading different spanning trees
(one spanning tree per VLAN) over a single physical topology. Besides
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Figure 2.2: Example of Ethernet network with multi-VLAN

the big advantages enabled by the combination of two extensions of STP
802.1d, a huge configuration task is required in the network implement-
ing MSTP. In practice however, it should be noted that most implemen-
tations of MSTP can only compute up to 16 different spanning trees, and
map each VLAN onto one of these spanning trees. When many VLANs
are defined, a common spanning tree is often generated for each set of
VLANs in order to reduce the number of control frames in the network.
The complexity of the MSTP increases when each VLAN requires a
configuration of root and link costs to have its own spanning tree.

Example. Figure 2.2 depicts an Ethernet network implementing
MSTP with four VLANs. Each VLAN is supposed to provide some
specific customer services by grouping a set of connected switches in
the network. In Figure 2.2, the spanning tree for each VLAN is repre-
sented with a specific color. Links are thus used by different VLANs in
the network.
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2.2 Traffic Engineering in Data Center Net-
works

There exist many criteria to classify TE problems for DCNs. If we sim-
ply rely on the traffic demand information, TE problems can be classi-
fied into two main categories as follows:

• Off-line TE: Demand matrices are given by doing an extensive
study on the DCN traffic. Here, an off-line TE method is used to
improve the performance of the switching protocols on the given
traffic demand matrices. TE approaches for this category provide
global solutions for the network design and configuration. The
implementation of these approaches is often performed on cheap
and normal switches without modifying the standard switching
protocols.

• Online TE: The concept of online-TE was first presented by S.
Kandula et al. in [KKDC05] in 2005 to dynamically adapt the
routing when traffic changes in real-time. The network devices
(router, switch) are required to be more intelligent and more pow-
erful to perform the local adjustment due to the actual traffic situa-
tion of the network. Recently, the emergence of OpenFlow (flow-
based) switches [MAB+08] enables DCNs to support more flex-
ible policies rather than standard switching protocols. However,
this new generation network is currently in experimental phase
and is very expensive for real world implementations.

In this thesis, we focus on the off-line TE category. The TE problem in
large Ethernet networks such as DCNs is defined by an optimization of
the network quality of service (QoS) based on many evaluation metrics
such as link utilization, link delay, total network load, energy saving,
number of used links, network convergence, service disruption in case
of link failures, etc... Network operators can define their TE problem
with one or a set of metrics to be optimized that depends on their actual
needs. In practice, it is often impossible to optimize all these metrics at
the same time because an improvement in one metric can degrade the
value of other metrics. Single objective optimization can be performed
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to achieve the best solution for one metric while multiple-objective op-
timization aims to provide the best performance based on a compromise
between a given set of metrics.

To classify TE approaches, different TE problem formulations di-
vided the approaches into four main classes as follows:

• [Med06, HZC06, LYD+03] aimed to map a set of VLANs to a
given number of spanning trees.

• [dSS07, SdSA+09, SdSA+11] tried to assign a set of flows to a
set of given spanning trees.

• [CJZ06] addressed the TE problem by building source-based mul-
tiple spanning trees (construct a spanning tree for each of the
given source nodes).

• [PNM+05, MSS09] advocated for solving the TE for MSTP by
finding the set of spanning trees described by customer traffic de-
mands and given network topology.

In this thesis, we follow the same approach as in [PNM+05, MSS09].
In the remainder of this section, we introduce four TE metrics that we
deal with in this research.

2.2.1 Maximal link utilization
The main objective in most TE problems is to avoid or minimize con-
gestion. This is often evaluated by a minimization of the maximal
or worst-case link utilization in the network. Many TE techniques in
[PNM+05, Med06, HZC06, dSS07, CJZ06, LYD+03, SdSA+09, MSS09,
SdSA+11] have been proposed for minimizing the maximal link utiliza-
tion in the Ethernet networks with multiple spanning trees. The utiliza-
tion of a link is defined as the ratio between its load and its bandwidth.
With this definition, a link is overloaded if its load is greater than its
bandwidth (link utilization > 1). The link load is computed as the sum
of traffic flows on it. In DCN supporting many VLANs, the link load
is aggregated from each VLAN using it. In Figure 2.2, the load of link
(S1, S2) is aggregated from its load of VLAN 1, 3 and 4.
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Example. The computation of the maximal link utilization is illus-
trated in Figure 2.3. To simplify the observation, we consider a network
with one VLAN. We assume that each link in the network has the same
bandwidth of 10 Gbits/s. By default, a link cost of 2 is thus assigned to
every link. S2 is configured as the root because it has 4 links (like S3,
S4, S5) and has the minimal switch ID. Thus, the spanning tree gener-
ated by STP with the default link costs (see Fig. 2.3a) is computed as
follows:

Figure 2.3: Example of Ethernet network with default link costs

• Least cost path from S1 to root (S2): S1→S2

• Least cost path from S3 to root: S3→S2
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• Least cost path from S4 to root: S4→S2

• Least cost path from S5 to root: S5→S2

• Least cost paths from S6 to root: S6→S4→S2 and S6→S5→S2.
In this case, S6->S4->S2 is chosen because the ID of S4 is smaller
than the one of S5.

The five links in the spanning tree are (S1,S2), (S2,S3), (S2,S4), (S2,S5)
and (S4,S6). Assume that we have two demands: S3 wants to send 5
Gbits to S6 and S5 wants to send 6Gbits to S6. Let U [i, j] denote the
utilization of link (i, j). The utilization of each spanning tree link is
depicted in Fig. 2.3b: U [1, 2] = 0, U [3, 2] = 5/10, U [5, 2] = 6/10
and U [2, 4] = U [4, 6] = 11/10. Obviously, the maximal link utilization
in this case is 11/10. This means that links (S2,S4) and (S4,S6) are
overloaded.

A configuration of the link costs can guide the STP to avoid the
congestion of the network in this case. Simply by changing the cost
of the five links (S1-S3), (S2-S3), (S3-S5), (S4-S5) from 2 to 10 (see
Fig. 2.4a), a new spanning tree is generated by STP. The maximal link
utilization is reduced to 6/10. There is no congested links anymore in
the network (see Fig. 2.4b).

2.2.2 Total load
The total load (or sum load) of a network is defined as the sum of all link
loads in the network. Here, we reuse the example with the maximal link
utilization to illustrate the computation of the total load in the network.
Let L[i, j] denote the load of link (i, j), SumL denote the total load.

SumL =
∑
L[i, j] (∀switchi, j)

Example. In Fig. 2.3b, SumL = L[3, 2] + L[5, 2] + L[2, 4] +
L[4, 6] = 5 + 6 + 11 + 11 = 33.
In Fig. 2.4b, SumL = L[3, 4] + L[4, 6] + L[5, 6] = 5 + 5 + 6 = 16.
In this case, the configuration of link costs can guide STP to reduce by
more than 50% the total load.

The minimization of the total load is equivalent to the minimization
of the average link load in the network. This TE problem with one
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Figure 2.4: Example of Ethernet network with configured link costs

spanning tree is known as the Optimum Communication Spanning Tree
Problem (OCT) [Hu74] first proposed by T.C. Hu in 1974. OCT is a
well-known NP-hard combinatorial optimization problem. Many exact
methods have been proposed to solve this problem with small network
instances of dozen nodes. In large DCNs supporting many VLANs, it
is very challenging even to find a bound for this TE problem. Besides
the maximal link utilization, total load is often an additional objective
to evaluate the switching scheme performance.

2.2.3 Number of used links

Minimization of the number of used links is a new research topic in the
network design domain. This metric is related to the energy efficiency
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(power consumption) of the network. Recent studies in [GMMO10,
MSBR09a, MSBR09b, CSB+08] aim to find a routing scheme that min-
imizes the number of active network elements including the number of
used links in both IP and Ethernet networks.

Figure 2.5: Minimization of number of used links

In DCNs using spanning trees, this metric is significant only if the
number of VLANs is larger than one. However, to the best of our knowl-
edge, there is no previous work dealing with the minimization of the
number of used links in DCNs supporting many VLANs. In addition,
the number of used links also has an impact on the fault tolerance (num-
ber of reserved links) and the network delay (the route lengths).

Example. In the Ethernet network of Fig. 2.2, all the links in the
network are used by the spanning trees of its four VLANs. This solution
is clearly not efficient in terms of power consumption, fault tolerance
and path lengths. With the same network and the same VLANs, a better
solution with four different spanning trees is illustrated in Fig. 2.5. We
can see that three links (S3,S2), (S3,S4) and (S4,S6) can be disabled
since they do not belong to any spanning trees.

2.2.4 Service disruption after link failures
The minimization of the service disruption is included in the TE prob-
lem presented by A. F. de Sousa and G. Soares [dSS07]. When MSTP
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detects a change of topology, i.e. the failure of some switches or some
active links in the network, a recomputation of spanning tree is required
in each VLAN affected by the failure. This minimization can be ex-
pressed as a minimization of the number of link replacements in each
VLAN to maintain the spanning tree after failures.

Figure 2.6: STP reconfiguration without a minimization of number of
link replacements

Example. In Fig. 2.6, we illustrate the reconfiguration of the stan-
dard MSTP protocol after a failure of link (3, 4) in a VLAN with 7
switches and an unoptimized link cost configuration. In Fig. 2.6a, each
link of the spanning tree has a cost of 1, and the other links are assigned
with a minimum cost such that MSTP will nerver include them into the
spanning tree if there is no link failure. When the failure occurs to link
(3, 4) (see Fig. 2.6b), MSTP performs a recomputation of path cost
from each switch to the root (switch 2). Then, only the links (1, 2) and
(2, 3) are kept in the new spanning tree. All the traffic flows from/to the
switches 4, 5, 6, and 7 are affected by this failure.

In Fig. 2.7, by performing a simple modification of the link costs,
we can force MSTP to compute the same spanning tree if there is no
link failure and one unique link replacement (link (3, 4) is replaced by
link (2, 6)) by MSTP after the failure of link (3, 4).
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Figure 2.7: STP reconfiguration with optimized link costs

2.3 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) 〈X,D,C〉 is defined by a set
of variablesX = {x1, x2, ..., xn}, a set of domainsD = {D1, D2, ..., Dn}
with Di is the non-empty domain (possible values) of xi, and a set of
constraints C = {C1(X1), C2(X2), ..., Cn(Xn)}. Each constraint Ci
involves a subset of variables Xi ⊆ X and specifies the allowable com-
binations of values for the variables in Xi.

A solution to a CSP is an assignment of all variables such that all
constraints are satisfied. Some CSPs also require a solution that maxi-
mizes or minimizes an objective function. Deciding the satisfiability of
a CSP (i.e., the existence of a solution) is a NP-complete problem in the
general case.

A Constraint Satisfaction Optimization Problem (CSOP) 〈X,D,C, f〉
is a CSP 〈X,D,C〉 with an objective function f : X → R to be opti-
mized. The objective is to find a solution to the 〈X,D,C〉 that optimizes
(minimizes or maximizes) f .

In general, constraints in CSPs/CSOPs can be divided into hard con-
straints and soft constraints. Hard constraints must be satisfied by the
solution while soft constraints are allowed to have a number of viola-
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tions. Such an optimization with hard constraints is presented in Chap-
ter 5.

2.4 Local Search

Local Search (LS) [MAK07] is an efficient method that can find high
quality solution to CSP and CSOP in polynomial time. The search is
called local because LS starts from an initial solution and it repeatedly
performs changes on some features (local changes) of the solution to
move to one of its neighbors. The search process ends when some cri-
terion is met. In this section, we first present the concepts of neighbor-
hood and move in LS. Then we describe some fundamental metaheuris-
tics that can be combined with LS to improve the LS performance.

2.4.1 Principles

The neighborhood in LS is defined as a set of solutions that are produced
from a given solution by modifying some of its features. A solution and
its neighboring solutions normally share many common features. A
move (or local move) in LS is a transformation from a solution into one
of its neighbors. For instance, the neighbors of a spanning tree can be
generated by doing a link replacement on it. In this case, its neighbor-
hood is the set of spanning trees that differ from the given spanning tree
by exactly two links.

LS algorithms often start with a random intitial solution or apply
some heuristics to obtain a high quality intitial solution. The search
process is done by repeatedly performing the following steps:

• Neighborhood construction is the key definition in a LS algo-
rithm. It has an important impact on how the data structures and
the solution space are organized and represented. In some cases,
the definition of the solution and the neighborhood can reduce
significantly the size of the search space and remove the symme-
try of the problem. Neighborhood construction also influents the
ease and the efficiency of the neighbor selection and the move
strategy.
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• Neighbor selection can be done randomly or based on a quality
evaluation of each neighbor solution. For this step, heuristics such
as first improvement, best improvement or random selection are
used to choose the neighbor. In the problems with exponential
search space such as TE in DCNs, the quality evaluation of the
neighborhood is often very costly. A good design is required to
guarantee the balance between the complexity and the efficiency.
In this case, the incrementality is very important to speed up the
computation of each objective value of the neighbor solutions be-
fore applying the move. Metaheuristics are often used in this step
to guide the search. Several metaheuristics are described later in
this section.

• Move transforms from the current soltuion into its selected neigh-
bor. The computation task in this step consists of the local modifi-
cations of each solution feature and of the value of each objective
function. An incremental adaptation is a good approach for com-
puting only the local modifications of the data structures.

2.4.2 Metaheuristics

In LS, the search is performed locally. Thus, it is important to use the
metaheuristics that guide the search to escape from the local optima or
to explore the search space more efficiently. Hill-Climbing algorithm
is a simple optimization technique in the family of LS. It starts with
an arbitrary solution and iteratively performs the move to a neighbor
with better solution quality. It stops when the top of the hill is reached
- no futher improvement can be found. Unfortunately, this best found
solution is often a local optimum.

Multi-Restarts

LS with Multi-Restarts is a useful technique that guides the search to
escape from local optima. The LS algorithm is applied with different
intial solutions to increase the diversification of the search. Different
heuristics can be used for generating a good set of restart points. Fig.
2.8 depicts an example of LS with Multi-Restarts. With the different
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restart points, LS can explore different regions of the search space. Ob-
viously, the opportunity to achieve the global optimum is larger.

Figure 2.8: Local Search

Tabu Search

Tabu search [GL97] is a metaheuristic offering a diversified search in
each of its search steps. The goal of tabu search is to prevent the search
from visiting the same points in the search space. With tabu search,
LS is often allowed to perform a move that degrades the quality of the
current solution. This also prevents the LS algorithm from being stuck
in the local optimum.

Simulated Annealing

Simulated Annealing (SA) [KGV83] is a probabilistic metaheuristic.
The idea behind SA is to search for feasible solutions and to converge
to an optimal solution. In each search iteration, it selects a random
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neighbor. If the solution quality of the neighbor is better than the current
solution, then SA immediately performs the move. Otherwise, SA can
accept a move with the degradation of solution quality based on some
probability called acceptance criteria. The acceptance probability of a
move with the degradation of solution quality is decreased during the
search process until only improving moves are accepted. This is a very
efficient technique to unstuck the search from the local optimum and to
locate a good approximation to the global optimum. But the control of
the acceptance criteria is often a difficult design.

Other metaheuristics are often used for solving the combinatorial
optimization problems such as Genetic Algorithms, Variable Neighbor-
hood Search or Ant Colony Optimization.

2.5 Multi-objective Optimization
In multiple-objective optimization [YST85], a solution that improves all
the objectives should be preferred. But what if a solution’s improving
one of the objective values degrades the value of other objectives? For
example, the number of used links and the sum load could be increased
at the cost of reducing the maximal link utilization in the network. In
the context of the TE problem, network operators prefer to provide the
best (possible) QoS by striking a balance between the different objec-
tives. Thus, it is necessary to define a different concept of “optimal” for
multiple-objective optimization.

2.5.1 Pareto dominance and Pareto front
Given a minimization problem P with m objective functions, assume
that there is no priority between these m objectives. Let s1 = (f1,1, f2,1,
.., fm,1) and s2 = (f1,2, f2,2, .., fm,2) be the evaluations of two solutions
for P . We say that s1 dominates s2 (Pareto dominance) when s1 is at
least as good as s2 for every objective and strictly better in at least one
objective:

s1 � s2⇔ ∀i ∈ {1, ..,m} : fi,1 ≤ fi,2, ∃k ∈ {1, ..,m} : fk,1 < fk,2.

Example. Fig. 2.9 depicts an example of a bi-objective solution space.
By Definition 1, s1 dominates s7 but it does not dominate s2, s3, s4, s5,
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Figure 2.9: Pareto front with bi-objective optimization

s6, and s8. s2 dominates both s6 and s8 even it has the same value of
objective 1 with s8 and of objective 2 with s6.

Let A be a multi-objective algorithm for P and F denote the set of
feasible solutions generated by A for P .

Definition 2. A solution s∗ ∈ F is called Pareto optimal if s∗ is not
dominated by any solution in F . The Pareto front of A for P is the set
of all Pareto optimal solutions in F .

Hence, the output of multi-objective optimization is no longer a
unique solution but a set of non-dominated solutions, i.e., the Pareto
front.

Example. By Definition 2, the Pareto front PF in Fig. 2.9 contains
five solutions s1, s2, s3, s4, and s5 (the blue points). For each sk con-
taining in the dominated region (the red points) obtained with PF, we
can find at least one solution si in PF such that si domniates sk.
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2.5.2 Multi-objective Optimization Methods
Different methods have been proposed for obtaining or approximating
the Pareto front. The performance of each method depends on the kind
of multi-objective combinatorial problem that it deals with and on the
efficiency of its techniques.

• Stochastic [CCMn+01, LBJT07] is an incomplet method (i.e.
Local Search, Simulated Annealing, Tabu Search). Stochastic
methods normally can not achieve the Pareto front but are very ef-
ficient for finding a non-dominated set that approaches the Pareto
front for the problems with an exponential solution space.

• Genetic Algorithm [SD94, LCP11] is an incomplete, population-
based method. Genetic algorithms start with an initial population
(set of solutions) and iterately perform the selection and repro-
duction techniques to obtain a better population. This method is
also efficient for finding a non-dominated set for the problems
with an exponential solution space.

• Linear Programming [Zel74, lin99] is a fast, complete method
but restricted to linearized problems and computationally difficult
for large problems.

• Preemptive Optimization [CCK64, SS83] ranks its objectives
by preference and optimizes them following this order. A good
design is required to combine the algorithms for each single ob-
jective.

• Constraint [EZT00] selects one objective to be optimized, the
other objectives are considered as the constraints to be respected.
A bound should be defined in order to transform an objective into
a constraint.

• Weighted Sum [KdW06] converts multiple objectives into a sin-
gle objective by assigning an importance weight for each of its
objectives and adding up all the objective functions.

• Goal Programming [NY06] aims to achieve a target value for
each objective rather than optimize them. Each objective can be
considered as a soft constraint.
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Dealing with the multi-objective TE problem in DCNs, [HZC06] took
into account link load balancing and admission fairness. The frame-
work proposed in [LYD+03] considers both network throughput and
delay. Recently, [SdSA+11] aimed to minimize the n worst link loads
(with n up to the total number of network links) and the average link
load in the network. However, the final output of these approaches is a
unique solution (where the second metric is only considered as a con-
straint or a lexicographical objective) instead of a Pareto front. Thus,
the assessment of these approaches is often performed by the separative
observations on each of its objectives.

2.5.3 Local Search for Multi-objective Optimization
Stochastic methods, including Local Search [MAK07] are very efficient
to approach the Pareto front by applying metaheuristics to efficiently
explore the search space. Different approaches have been proposed for
improving the performance of LS in dealing with multi-objective opti-
mization.

• Multi-objective Steepest Descent Method (MSDM) [FS99] aims
to find a Pareto descent direction for the search that maximizes
the minimum degree of improvement of all objective functions.
This can be done by solving a quadratic programming problem
for finding the direction to move the current solution in each
search step.

• Evolution Strategies (ES) [KC00] combine the Pareto archived
evolution strategy LS with the use of population and recombina-
tion for solving a set of multiobjective knapsack problems. In
each search step, ES randomly generates a new improving solu-
tion from the current solution according to a normal distribution.

• Combined Objectives Repeated Line-search (CORL) in [BdJ05]
is a gradient-based LS method that computes the vectors for gen-
erating the convex cone of the Pareto descent directions. CORL
is guaranteed to find the set of all non-dominated improving di-
rections for any point in the parameter space of a multi-objective
optimization problem.
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• Pareto Descent Method (PDM) [HSK06] proposes a LS ap-
proach for moving solutions in the directions that simultaneously
improve all objective functions. PDM finds the directions by solv-
ing linear programming problems.

The main drawback of these methods is that they are computationally
expensive, restricted to some specific problems and inefficient for the
multi-objective optimization problems with a huge solution space, such
as TE in DCNs. In this thesis, we propose lightweight LS algorithms
using efficient metaheuristics and speeding up techniques that can give
good solutions for dealing with the TE problems in DCNs.





3
ETHERNET NETWORKS USING

SPANNING TREE

In this chapter, we first describe the TE problem in the Ethernet net-
works that use the spanning tree protocol. The objective is to minimize
the maximal link utilization in the network. We then present how this
network problem is modeled as a graph problem and how it is solved
with our LS algorithm. Next, methods for generating different network
topologies and traffic demand matrices are also developed. We conclude
the chapter with an evaluation of the performance of our LS algorithm
on synthetic data sets.

This chapter is based on our publications [HBD+10b, HFDB09]

3.1 Introduction

During the last ten years, the Ethernet technology has replaced the other
Local Area Network technologies in almost all enterprise and cam-
pus networks. Furthermore, many Service Providers deploy Ethernet
switches in metropolitan and access networks. Last but not least, data
centers are largely based on Ethernet switches. In many of these envi-
ronments, the required bandwidth is growing quickly and network op-
erators need to find solutions to ensure that their switched network can
sustain the traffic demand without having overloaded links.
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In this chapter, we deal with the TE problem in the Ethernet net-
works that implement the IEEE 802.1d Spanning Tree Protocol (STP)
[Soc98]. STP reduces the set of links in the network into a single span-
ning tree topology to prevent the duplicate frames to be forwarded by
the multiple active paths between switches. The creation of this span-
ning tree is based on the least cost (shortest) path from each switch to
an elected root switch and is independent from the traffic demands in
the network (see the description of STP in Section 2.1.1 in Chapter 2).
However, STP standard itself does not provide any technique to config-
ure the link costs for a given traffic demand matrix. Then our objective
is to provide a TE technique that optimizes the link cost configuration in
order to guide the STP to select a good spanning tree for a given traffic
demand matrix.

Local search is a powerful technique that can find high quality solu-
tions for computationally complex optimization problems (such as this
NP-hard problem of traffic engineering) in polynomial time. Hence, we
propose in this chapter a LS approach for solving this TE problem.

Searching on Link Costs or on Spanning trees?

To optimize the choice of the spanning tree by the STP protocol, two
main approaches are possible.

• Link cost optimization is perfomed by searching the link cost
space: try to change the cost of each link and thus the shortest
path from each switch to the root switch. The cost of a link is an
integer number in [1..216 − 1]. Even if we do not consider the
choices of the root, the size of the search space in this case is of
(216 − 1)m solutions (with m the number of links). In addition, it
is difficult to control the impact of the change of the link costs on
the spanning tree.

• Spanning tree optimization is done by directly searching on the
spanning tree space. With this method, the size of the search
space is reduced significantly but still exponential (i.e.

(
m
n−1

)
with

n the number of switches). Once the suitable spanning tree has
been found, one has to determine link costs such that the STP
yields the same spanning tree.
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Solving this TE problem is a very difficult task as the search space is
exponential. Exact methods are not appropriate especially for large in-
stances. In this work, we focus on approximate methods based on LS
with the spanning tree optimization approach.

Related Work

Many TE techniques have been proposed for IP, MPLS and optical net-
works in the last decade [NP09]. In IP networks, TE is usually per-
formed by tuning the OSPF link weights [SGD05, For00]. In MPLS net-
works, TE techniques use constrained MPLS Labeled Switched Paths
to redirect traffic flows around congested links [AmW99]. In optical
networks, TE techniques allocate traffic flows to wavelengths [RS95].
Other TE techniques in [PNM+05, Med06, HZC06, dSS07, CJZ06,
LYD+03, SdSA+09, MSS09, SdSA+11] have been proposed for solv-
ing the TE problem in Ethernet networks implementing the IEEE 802.
1s Multiple Spanning Tree Protocol [Soc02]. But to the best of our
knowledge, there is no previous work dealing with the optimization on
the link cost configurations for Ethernet networks using 802. 1d STP.

We evaluate our work by measuring the improvement of the solution
quality in each test compared to the solution given by the STP standard.
We also compare our solutions with the ones obtained with the IGP
Weight Optimization (IGPWO) in [HFDB09]. The goal of this compar-
ison is to see whether there is a large distance between our solutions and
the ones of IGPWO where the routing is offering of Equal Costs Multi
Paths with the participation of all links in the network.

3.2 Problem Formulation

We consider our Ethernet network as an undirected graph G = (N,E)
whereN is the set of switches andE is the set of links between switches.
Each link (s, t) has a bandwidth BW [s, t] (we assume BW [s, t] =
BW [t, s]). When link bundles are used between switches, we consider
each bundle as a single link having the bandwidth of the bundle.

We call W the matrix of the link costs (see Table 2.1 in Chapter 2)
for the default STP costs. W [s, t] is computed from BW [s, t]. Let TD
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be the matrix of the traffic demands. TD[s, t] represents the traffic that
switch s sends to switch t. Assume that a unique root is given, we call
STP (G,W ) the spanning tree obtained by the Spanning Tree Protocol
on graph G, with link costs W .

The traditional Ethernet switching problem can be defined as fol-
lows: for all pairs of nodes (s, t) so that TD[s, t] > 0, distribute the
traffic demand over the unique path from s to t in STP (G,W ).

We call L the matrix of loads on each link (s, t) in the spanning tree:
L[s, t] =

∑
flow over (s, t). For the computation of L[s, t], the traffic

flow is directed. This means that on link (s, t), L[s, t] is different from
L[t, s].

The utilization of a link (s, t) is the ratio between its load and its

bandwidth U [s, t] =
L[s, t]

BW [s, t]
. Like the computation of link load, the

link utilization is directed. The link load is kept within the capacity if
U[s,t]<1 and U[t,s]<1. If one of these two values goes above 100%, the
link (s,t) is overloaded. These definitions of link load and utilization are
equivalent to those used in [For00].

Our objective is to find a good configuration of link costs W∗ mini-
mizing the maximal utilization Umax:

Umax = max{U [s, t]|s, t ∈ N}

The formulation of this TE problem is the following:

PROBLEM 1
Input: Graph G = (N,E), bandwidth matrix BW , traffic demand ma-
trix TD
Output:

• A spanning tree SP ∗ minimizing Umax

• A link cost matrixW ∗ such that STP (G,W ∗) generates the span-
ning tree SP ∗
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3.3 Spanning Tree Optimization using Local
Search

In this section, we first present an overview of our local search algorithm
called LSA4STP (Local Search Algorithm for the Spanning Tree Pro-
tocol problem). Next we describe how to model and speed up queries
on the spanning tree with a dynamic data structure. We then present
the algorithm and the techniques allowing to break the symmetries, to
define the neighborhood structure and to guide the search. Furthermore,
we show how to incrementally compute the link loads with an efficient
technique.

3.3.1 Algorithm Description
Algorithm 1 provides the Pseudo-code of our local search algorithm
LSA4STP. Our LS algorithm aims to find the best (possible) solution
in the spanning tree space. At each iteration, an edge replacement is
performed in order to reduce Umax. The steps of LSA4STP, according
to the Pseudo-code, are:

• Line 1: The method getRoot(G) computes the root switch - one
of the two elements for creating spanning tree with the STP stan-
dard. We assume that this root is unchanged during the search
process. The detailed root selection is described in Section 3.3.3.

• Line 2: The method getDefaultCosts(BW ) returns the default
link cost matrix W computed from the bandwidth matrix BW .

• Line 3: The initial spanning tree SP is computed according to
the STP standard with the root chosen in Line 1 and the link cost
matrix W computed in Line 2.

• Lines 4 and 5: We store the initial solution obtained with the
STP standard as the best solution at the start of the search. The
method getMaxUtilization(SP ) returns the maximal link uti-
lization Umax after computing the utilization of each link in SP .

• Line 6: We use time as the termination criterion. The search is
iterated until a given time limit is reached.
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Algorithm 1: Pseudo-code for LSA4STP
1 root = getRoot(G);
2 W = getDefaultCosts(BW );
3 SP = STP (G,W );
4 U∗max = getMaxUtilization(SP );
5 SP ∗ = SP ;
6 while time_exec < time_windows do
7 (sO, tO) = selectRemovingEdge(SP );
8 (sI , tI) = selectAddingEdge(SP );
9 SP = replaceEdge(SP, sO, tO, sI , tI);

10 Umax = getMaxUtilization(SP );
11 if Umax < U∗max then
12 U∗max = Umax;
13 SP ∗ = SP ;
14 end
15 end

• Lines 7 and 8: With LSA4STP, the neighbors of a spanning tree
can be generated by performing an edge replacement on it. Thus,
an edge (sO, tO) (computed by the method selectRemovingEdge
in Line 7) will be chosen to be replaced by another edge (sI , tI)
(obtained with the method selectAddingEdge(SP ) in Line 8).
We describe the heuristics for selecting the edge to be removed
and the edge to be added in Section 3.3.4.

• Line 9: An incremetal link load update is performed in the method
replaceEdge(SP, sO, tO, sI , tI) when (sO, tO) is replaced by (sI , tI).
This incremental technique is presented in Section 3.3.5.

• Line 10-14: If the new Umax is less than the best known U∗max, we
store this solution SP as the best one SP ∗.

3.3.2 Spanning Tree Modeling and Query
In our algorithm, we manipulate a spanning tree with two kinds of ac-
tions at each step of LSA4STP: (1) update the tree (i.e., edge replace-



3.3. Spanning Tree Optimization using Local Search 35

ment) and (2) query the tree (i.e., nearest common ancestor of two ver-
tices, the father of a given vertex, etc...). Queries are usually performed
many times in the neighborhood exploration phase. For instance, in or-
der to determine whether or not an edge can be used to reconnect two
disconnected sub-trees (by removing an edge of the current tree), we
must check whether or not a given vertex belongs to a given subtree.
This can be done by querying the nearest common ancestor of two ver-
tices.

To simplify the design of our algorithm and to increase its effi-
ciency, we use the VarSpanningTree abstraction of the LS(Graph&
Tree) framework [DDVH09] for representing a tree of a given graph.
LS(Graph&Tree) is a local search framework (an extension of COMET
[VM05]) which simplifies the modeling of Constraint Satisfaction Op-
timization Problems on graphs and trees. Using this framework, many
complex computations on trees are modeled and abstracted as a simple
query. Finally, by using the incremental data structures (auto-update af-
ter each change of the tree), all queries on the spanning tree mentioned
above can be performed in O(1) time and the update action can be per-
formed in O(n) where n is the number of vertices of the given network.

3.3.3 Root Selection
Symmetry breaking [GS00] is a well-known technique in Constraint
Satisfaction Problems to speed up the search. To determine a spanning
tree, the STP needs an elected root switch and a link cost matrix. For a
spanning tree SP containing n − 1 edges, if the root is not fixed, there
are n instances of SP : SP1, SP2,.., SPn with n different roots (n the
number of nodes). This means that our search space will be expanded to
n.
(
m
n−1

)
spanning trees (withm the number of links) if we must perform

the search for all the different possible roots.
To eliminate all the symmetries in this problem, we fix a unique root

during the whole search process. This has no impact on the single path
between any pair of nodes in the spanning tree and has no impact on
Umax. Although the root determination does not change solution, it can
change the choice of the neighborhood solution in each search step. In
addition, the root also influents the balance of the tree. Network opera-
tors normally configure the switches with the highest capacity (ports ×
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bandwidth) as the root of their spanning trees. In our algorithm, we a
priori select the switch having the maximal sum of associated link ca-
pacities (bandwidth) as the root. The method getRoot(G) in Line 1 of
Algorithm 1 returns such a root.

3.3.4 Neighborhood Formulation

In the search process, we try to move in the spanning tree space to find
the solution with the smallest Umax. In this LS, two spanning trees are
considered as neighbors if they differ by exactly two edges and they can
be transformed into each other by performing one edge replacement
(see Fig. 3.1). The principle of our algorithm is that in each search step,

Figure 3.1: Edge replacement

we select an edge to be removed (Line 7 - Algorithm 1) and create a
new spanning tree by adding another edge (Line 8 - Algorithm 1). In
LS, the definition of the neighborhood is always a key design decision.
Different heuristics can be used for selecting the edge to be removed
and the edge to be added. However, the main challenge when dealing
with this TE problem for large networks is to find good solutions in
reasonable time. Thus, we must consider both the efficiency and the
complexity of each heuristic to be applied in order to ensure the overall
performance of LSA4STP. We present in this section the heuristics that
give us the best experimental results.
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Removing an edge

In order to reduce the maximal link utilization Umax, a natural question
is: how to lighten the load of the most congested link in the spanning
tree. An extreme solution is to replace this link with another one. Fig.
3.2 depicts our heuristic for electing an edge to be removed. To perform
this task, LSA4STP accomplishes the following steps:

• First, we find the most congested oriented link (smax, tmax) (Umax
= U [smax, tmax]) of SP that is not in the Tabu list (to be described
later in this section).

• Second, from (smax, tmax), we obtain a set SR of candidate edges
to be removed that contains (smax, tmax) and all the edges belong-
ing to the subtree dominated by smax, as illustrated in Fig. 3.2.
Because (smax, tmax) is the most congested link, we can assume
that this congestion is caused by the traffic coming from the sub-
tree dominated by smax.

• Third, we denote TR the tree with root tmax containing the edges
in SR. If we go from the leaves to root tmax, the more we climb
the more the traffic increases. Our heuristic in this step is to assign
to each edge in SR a probability to be selected based on its level
in TR, as illustrated in Fig. 3.2. The edges closer to the root have
a higher probability to be removed. The sum of the probabilities

associated to the edges at level i is
1

2i
, except at the last level d,

where it is
1

2d−1
to ensure that the probabilities sum to 1.

• Finally, an edge (sO, tO) is selected based on these probabilities.

The idea behind here is to have an effective choice strategy: balancing
intensification (greedy search for a solution) and diversification (con-
sider unexplored neighborhood).

Adding an edge

After having removed (sO, tO) from SP , we obtain two separate trees.
We denote TI the isolated subtree (unconnected to the root - see Fig.
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Figure 3.2: Selection of the edge to be removed

3.3). These two trees must be reconnected with an edge. Our objective
is to have a solution with fewer congestion. For choosing an edge to
be added to form the new spanning tree, LSA4STP accomplishes the
following steps:

• First, we define a set of edges SA that contains all the edges that
join SP \ TR and TI .

• Second, we select k edges having the highest bandwidth and not
in Tabu list from SA to form the set SmaxBW .

• Next, we compute the resulting Umax when adding each edge of
SmaxBW . The speeding up techniques for this estimation of Umax
are presented in Section 3.3.5.

• Last, the edge (sI , tI) in SmaxBW offering the minimal Umax is
selected, as illustrated in Fig. 3.3.

For this step, we evaluate only k edges because it is more cost-effective
than evaluating all the edges in SA. In our experiments, (k = 10) gave
good results.
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Figure 3.3: Selection of the edge to be removed

Tabu List

We use tabu search [GL97] - a heuristic offering a diversified search in
each of its search steps. The goal of tabu search is to prevent the search
from visiting the same points in the search space. In our problem, a
solution is represented by a spanning tree. We can not store and mark
all the visited spanning trees because of the expensive space complex-
ity and time complexity to detect if a spanning tree has already been
encountered. However, we implement tabu by forbidding the repetitive
replacement of a couple of edges in successive iterations.

In LSA4STP, the considered (max congested) edge, the removed
edge and the added edge are inserted into the tabu list at each search
iteration. We freeze these edges for the next x search iterations. In our
experiments, we obtained good results by setting (x = 10).
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3.3.5 Magic Cycle for Link Load Update
For the LS algorithm, it is important to visit as many points in the
search space as possible. In this problem, the computation of link loads
at each search step is a complex task. To compute the link loads, we
must recompute all pairs paths in the spanning tree and then the loads
over these paths. These computations have a costly time complexity of
O(n2log(n)). Hence, an incremental link load update is very important
to speed up the computation of Umax of a neighbor spanning tree before
and after applying the edge replacement.

Algorithm 2: Pseudo-code for Link Load Recomputation
1 L[sO, tO] = L[tO, sO] = 0;
2 cycle = computeCycle(SP, sO, tO, sI , tI);
3 foreach (src, dest) ∈ TDSet do
4 if pathInterCycle(SP, src, dest, cycle) then
5 updateCycleLoads(src, dest, TD[src, dest], cycle);
6 end
7 end

However, we show that each time we replace an edge (sO, tO) by
another edge (sI , tI), the load changes only on the links belonging to
the cycle created by adding (sI , tI) (see the proof in Appendix A). Such
a cycle is depicted in Fig. 3.4. This cycle is called ’magic’ because it is
very useful to speed up the LS algorithms proposed in this thesis.

By applying this incremental technique, we can avoid the all pairs
paths recomputation at each search iteration. Algorithm 2 provides the
Pseudo-code for computing the link loads with the following steps:

• Line 1: we assign 0 to the load of (sO, tO) because it is removed
from the tree.

• Line 2: we compute the set of edges cycle created by adding
(sI , tI) to SP .

• Lines 3 and 4: we denote TDSet the set of pairs of nodes (src, dest)
such that TD[srt, dest] > 0. For each pair of (src, dest) in
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Figure 3.4: Cycle for updating link loads

TDSet, we verify whether the path from src to dest includes
the edges of cycle or not .

• Line 5: the loads on cycle is updated with each relating pair
(src, dest).

We can then benefit from the computations that we performed on the
spanning tree before replacing (sO, tO) by (sI , tI) to compute the cycle
and its loads. The size (number of edges) of cycle depends on the net-
work topology. During our tests, we found cycle that contained usually
fewer than ten edges.

In our experiments, the technique speeds up the computation by
about 20% of the execution time on each search iteration when the num-
ber of vertices is greater or equal to 100 nodes.

3.4 Link Cost Generation
As defined in Section 3.2, our objective is to find a good configuration
of the link costs W ∗ such that STP (G,W ) yields a spanning tree mini-
mizing Umax. In this section, we present a simple algorithm to generate
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the link cost matrix ensuring that the STP computes the intended span-
ning tree with low complexity.

Algorithm 3: Pseudo-code for Link Cost Generation
1 foreach Link (s, t) ∈ E do
2 if (s, t) ∈ SP ∗ then
3 W ∗[s, t] = W ∗[t, s] = 1;
4 else
5 W ∗[s, t] = W ∗[t, s] = n;
6 end
7 end

From the spanning tree SP ∗ obtained by LSA4STP, we generate the
cost matrix W ∗ by assigning a unit cost to all the edges in SP ∗ and by
assigning a cost of n (number of nodes) to all the other edges in graph
(see Algorithm 3). After this assignment, we can see that the cost of
the longest possible path between a pair of nodes in any spanning tree is
n−1 (passes n−1 edges) while the cost of the shortest path between any
pair of nodes without using of spanning tree edges is at least n (passes
one edge). Consequently, the 802.1d protocol will produce the intended
spanning tree SP ∗.

3.5 Data Generation
We present in this section the method for generating network topologies
and traffic demand matrices for testing LSA4STP. We generated three
types of generic topologies: Grid, Cube, Expanded Tree and use two
data center topologies from the literrature: PortLand [NMPF+09] and
Fat Tree [AFLV08]. The traffic demand matrices were generated by us-
ing a uniform distribution for num_des (configurable) pairs of switches
in the network.

3.5.1 Generic topologies
We present in this section three generic topologies used in our tests. The
generation of these topologies is described hereafter.
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Grid

In a grid topology, we consider each switch as a node on the grid. In
Fig. 3.5a, we can see that in this grid topology, a node has at most four
edges. The size of the square grid is x2 with x being the number of
nodes on a line. To generate a grid topology with n switches, we choose
the smallest x such that x2 ≥ n. Among these x2 nodes, we number the
nodes increasing from left to right and from top to bottom. Our grid is
the part of the square grid containing n nodes from node 1 to node n.

Figure 3.5: Grid and Cube topologies

Cube

We can consider a cube as a composition of x square grids, x being the
number of nodes on a line (see Fig. 3.5b). As for the generation of the
grid topology, we choose the smallest x such that x3 ≥ n. The cube
network is the part containing the n first nodes from the cube.

Expanded tree

Tree or hierarchical network is a topology where there is no cycle and
the nodes are organized by levels. The generation of a n-node tree topol-
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ogy is described in Algorithm 4. First, we fix the node 1 as the root of
the tree (Line 1). At each next step, we randomly select a node u that
has not yet been considered in the current tree (Line 5). The variable
num_branch in Line 6 contains the number of child nodes of u. The
value of num_branch is an arbitrary number in interval [min..max].
We set (min = 2) and (max = 6) to generate our tree topologies.
Next, num_branch free nodes are selected randomly to be inserted into
the tree by creating num_branch edges between u and these free nodes
(Line 7 to Line 13). The node u is marked as considered so that we do
not consider it any more in the next steps (Line 14). This step is iterated
until all the nodes (from 1 to n) have been inserted into the tree (Line
4).

Algorithm 4: Pseudo-code for generating tree topology
1 root = 1;
2 in_tree = {root};
3 considered = ∅;
4 while #in_tree < n do
5 select (u ∈ in_tree) and (u /∈ considered);
6 select num_branch ∈ [min..max] ;
7 foreach i ∈ [1..num_branch] do
8 if #in_tree < n then
9 select (v ∈ [1..n]) and (u /∈ in_tree);

10 creatEdge(u, v);
11 in_tree = in_tree+ {v}
12 end
13 end
14 considered = considered+ u;
15 end

The tree obtained by Algorithm 4 is a spanning tree. We add to this
tree two types of edges ensuring that we obtain a biconnected graph
(see Figure 3.6). The advantage of a biconnected graph is: if any edge
is removed, the graph remains connected. This property ensures that the
STP can always be recomputed in case of link failures. In Figure 3.6,
the edges of type (1) connect a leaf with a higher level node while the
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edges of type (2) connect a non-leaf node (except the root) with a same
or lower level node of a different branch. For each tree, (n − 1) new
edges are added to create the biconnected graph.

To simulate networks in which a switch has many ports, we define

Figure 3.6: Expanded tree

a ratio r ensuring that each node in the tree is connected to at least r
edges. In each test, from the generated biconnected graph, we create
three more trees with ratio r15 = n/15, r10 = n/10 and r5 = n/5
(where n is the number of nodes).

Generating the link bandwidths and the link costs

For the topologies above, we use two volumes for the link bandwidth:
Fast Ethernet 100 Mb/s and Gigabit Ethernet 1Gb/s. In our tests, 80%
of the links are Fast Ethernet links and 20% of the links are Gigabit
Ethernet links.
The initial link cost matrixW is generated based on the link bandwidths
configuration BW . According to STP 802.1d, the default link cost for
Fast Ethernet is 19 and 4 for Gigabit Ethernet (see Table 2.1 in Chapter
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2).

3.5.2 Portland

Figure 3.7 depicts the PortLand DCN proposed in [NMPF+09] consist-
ing of 24 rows. There are 12 racks in each row. Each rack contains 40
servers interconnected by a ToR (top of rack) switch. Each ToR switch
has 48 GigE ports: 44 GigE ports and 4 ports of 10 GigE. Each row has
one EoR (end of row) switch containing 96 ports of 10 GigE. Each EoR
switch connects to 12 ToR switches via one of the four ports of 10 GigE
of the ToR. 24 EoR switches connect to a Core Switch Layer consisting
of 1296 ports of 10 GigE. Thus we have 313 switches in a PortLand
topology.

Figure 3.7: Portland

This PortLand design creates a 3-level spanning tree topology. As
for the trees in the previous section, we do the same steps to obtain
a biconnected graph. However, for the PortLand topology, we must
consider the available ports on ToR, EoR and Core Switch Layer when
adding edges. Because PortLand has only 3 levels, we aggregate the
two types of edges (1) and (2) in Figure 3.6 as the blue edges between
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ToR and EoR as depicted in Figure 3.7. Each ToR has 4 ports of 10
GigE, one of them is connected to an EoR, so we have 3 available ports
of 10 GigE on each ToR. Each EoR has 96 ports of 10 GigE, 12 of these
ports are connected to 12 ToRs. Another port is used to connect to the
Core Switch Layer, so we have 83 free ports of 10 GigE for each EoR.
Core Switch Layer has 1296 ports of 10 GigE, 24 ports are connected
to 24 EoRs, and so it has 1272 free ports of 10 GigE. The generated
biconnected graphs of PortLand are considered in our tests.

3.5.3 Fat Tree

Figure 3.8 depicts the Fat Tree - another topology for DCNs proposed
in [AFLV08]. It is called Fat Tree because it is not a spanning tree
like PortLand. All the ports on each switch are used to connect to the
hosts or to the other switches. The Fat Tree topology is constructed as
follows.

All the switches in Fat Tree have k ports. There are k pods. Each
pod contains k switches divided into 2 layers: Aggregation and Edge
layer. Each layer consists of k/2 switches. Each switch in the Edge
layer connects to k/2 hosts and its remaining k/2 ports connect to k/2
switches of the Aggregation layer in the same pod. There are (k/2)2

switches in the Core layer of a Fat Tree. Each Core switch connects to
one switch in the Aggregation layer of all the k pods. We number the
switches in the Aggregation layer of each pod from 1 to k/2. We split
(k/2)2 switches in the Core layer into k/2 portions, each containing
k/2 switches. We number the switches in each of these portions from
1 to k/2. The ith switch in each portion of the Core layer is connected
to the ith switch in the Aggregation layer of all the k pods. In our tests,
we set k = 16, so we have 320 switches for each Fat Tree topology.

Link bandwidths and link costs generation

Like PortLand topologies, all the links of Fat Tree in our tests are 10
GigE and according to STP 802.1d, their link costs are 2.
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Figure 3.8: Fat tree

3.5.4 Traffic Demand Matrix

Several authors have recently analyzed the traffic matrices that are found
in real data centers [KSG+09, BAM10, BAAZ10]. Unfortunately, these
datasets are for DCNs supporting many VLANs and there are no previ-
ous methods that can be used to generate traffic demands that are rep-
resentative of data centers. For this reason, we wrote a simple traffic
matrix generator that allows to test several types of traffic matrices. We
first start with a uniform traffic matrix where all switches send traffic
to all other switches in the network. Then, we generate traffic matrices
that are less and less uniform by considering that most of the traffic is
sent to a subset of the switches. These non-uniform matrices could cor-
respond to storage servers or routers that often sink a large fraction of
the traffic in data centers.

The pseudo-code in Algorithm 5 is used to generate the traffic de-
mand matrix for all our tests. We consider that there is a subset of the
switches that receive most traffic. In practice, these switches would be
the ones attached to routers in data centers or the ones attached to high
end servers in Campus networks. The method getDestinationsSet in
Line 1 returns the set of destinations for which all switches send the
traffic to. From the input parameter num_des, this method generates
the set of destinations by selecting randomly num_des nodes out of n
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Algorithm 5: Pseudo-code for generating Traffic Demand matrix
1 destinations = getDestinationSet(num_des);
2 foreach i ∈ [1..n] and j ∈ desinations do
3 if i 6= j then
4 TD[i, j] =

getUniformTD(minTD,maxTD, sumTD);
5 end
6 end

Table 3.1: Data Generation and Time Window for LSA4STP

No Topo. Type Num. Nodes sumTD(Mb) Time Window (s)
1 Grid 50 400 300
2 Cube 50 400 300
3 Expanded Tree 1 50 1000 300
4 Expanded Tree 2 100 1500 600
5 Expanded Tree 3 200 2600 1200
6 PortLand 313 120000 1800
7 Fat Tree 320 56000 1800

(number of nodes) to insert into destinations.
In our experiments, we generate for each network topology five traf-

fic demand matrices:

• All switches receive traffic - uniform matrix (num_des = n)

• 50% of switches receive traffic (num_des = n/2)

• 20% of switches receive traffic (num_des = n/5)

• 10% of switches receive traffic (num_des = n/10)

• 5% of switches receive traffic (num_des = n/20)

For each network topology, we fix a sum of traffic demand (sumTD
in Table 3.1) for all of these five traffic demand matrices. This sumTD
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depends on the network type, network size, number of links and link
bandwidths (see Table 3.1). For each pair of switches, the method
getUniformTD in Line 4 generates a traffic demand in the interval
[minTD..maxTD]. The minTD and maxTD values are computed
based on sumTD.

3.6 Experiments and Results

We generated the seven topologies described in Table 3.1. Each topol-
ogy has five traffic demand matrices as described in Section 3.5.4. For
each Expanded Tree, we have four topologies (biconnected graph, r15 =
n/15, r10 = n/10 and r5 = n/5) with the same traffic demand matrix.
The input of each test is one network topology - Graph G = (N,E),
one bandwidth matrix BW , and traffic demand matrix TD. We gener-
ated 50 tests for Cube (10 topologies x 5 traffic demand matrices), 50
tests for Grid (10 topos x 5 tdms), 200 tests for each of Expanded Tree
from 1 to 3 (40 topos (10 for each of biconnected graph, r15 = n/15,
r10 = n/10 and r5 = n/5) x 5 tdms), 50 tests for Fat Tree (10 topos
x 5 tdms), and 50 tests for PortLand (10 topos (biconnected graph) x
5 tdms). So we have 800 tests. These tests are available online in
[HBD+10a]. The time window for running LSA4STP for each topology
type is described in Table 3.1. In this thesis, the execution of our ex-
periments is performed on a high-throughput environment, made of 30
cores distributed on a set of Intel(R) Core(TM) 2 Quad CPU at 2.40GHz
with 1GB RAM for each core. Each algorithm is allocated one core, and
the distribution is managed by Condor(R) 1.

In this section, we analyze the obtained results by evaluating the
improvement of the maximal link utilization in each test and by com-
paring this solution with the one obtained with IGPWO in [HFDB09]
assuming that switches would be replaced by routers.

1http://www.cs.wisc.edu/condor/

http://www.cs.wisc.edu/condor/
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3.6.1 Improvement compared to STP 802.1d default
solution

We consider the improvement of the maximal utilization Umax as the
criterion to evaluate the performance of LSA4STP. We also measure
Umax obtained with the default costs by STP 802.1d.

We present in Fig. 3.9 our results obtained for the two generic net-
works: Cube, Grid as well as Fat Tree and PortLand. For these four
networks, LSA4STP gives the best results for the Cube since it reduces
on average the value of Umax up to 50% for all the five types of traffic
demand matrices. For the Grid, Fat Tree and PortLand, Umax is also
reduced to about 60%-80%. LSA4STP works better for the Cube, Grid

Figure 3.9: Result for Cube, Grid, Fat Tree & PortLand

than for the Fat Tree, PortLand because the link bandwidths in the Fat
Tree, PortLand are homogeneous (all 10 Gb/s) while the ones in the
Cube, Grid are not (100 Mbs and 1 Gb/s). But the reason is not the
difference of the sum of link bandwidths between the spanning trees.
In our tests, this sum of the initial (802.1d) and best Umax (LSA4STP)
one is almost the same. However, for the Cube and Grid, in the 802.1d
solutions the most congested links are the links of 100 Mb/s while the
1 Gb/s ones are not efficiently used as in the solutions obtained with
LSA4STP.



52 Chapter 3. Ethernet networks using Spanning Tree

Our local search algorithm is especially efficient for the tests of
Expanded Tree in which high quality solutions exist in a large search
space. Fig. 3.10 depicts the results of LSA4STP with the tests of Ex-
panded Tree 100 in which Umax is dropped to about 49% for the Bicon-
nected Graph, 47% for r15, 64% for r10 and 78% for r5. The reason
is always the efficient use of 1Gb/s links. With the ratio r5, the average
number of 1 Gb/s links is 97 out of 99 links of spanning tree (almost
homogeneous of link bandwidths). This number of Biconnected Graph
is 32, of r15 is 53, of r10 is 76. That explains why with the ratio r5,
LSA4STP has the similar results as Fat Tree and PortLand.

Figure 3.10: Result for Expanded Tree 100

In both of Fig. 3.9 and Fig. 3.10, we can see the same decreasing
order of Umax for each test from left to right. With the same topology
and the same sum of traffic demand (sumTD), each traffic demand ma-
trix gives a different Umax (obtained with 802.1d or LSA4STP). Higher
Umax values are observed with the more biased traffic demand matrices.
Because for all these five traffic demand matrices, all switches send traf-
fic to a number of switches (num_des). So the more switches receive
traffic the more balancing traffic is distributed to the links. Obviously,
the uniform traffic demand matrix always gives the lowest Umax.

We describe in Table 3.2 the average time for LSA4STP to find the
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Table 3.2: Average time for LSA4STP finding the best solution (in s).
(n des→ #des = n)

Topo. Type n des n/2 des n/5 des n/10 des n/20 des
Grid 192 188 170 185 124
Cube 91 165 130 130 206

Exp.Tree 1 108 103 130 128 143
Exp.Tree 2 222 224 211 306 271
Exp.Tree 3 251 232 298 321 258
PortLand 350 339 418 427 412
Fat Tree 409 392 438 385 395

best solution for each test of the seven topologies. This time for the
topologies of: 50 nodes (Cube, Grid, Expanded Tree 1) is about 2 min-
utes, 100 nodes (Expanded Tree 2) is∼4 minutes, 200 nodes (Expanded
Tree 3) is ∼5 minutes and 313 (PortLand) and 320 (Fat Tree) nodes are
∼6 minutes. We can state that LSA4STP works well for the large scale
tests when the time complexity of link load computations in each search
iteration is collapsed.

3.6.2 Comparison with IGP Weight Optimization

Several IGP Weight Optimization (IGPWO) techniques have been pro-
posed for IP networks [For00, HFDB09, SGD05, NP09]. In this section,
we compare the performance of LSA4STP to a local search algorithm
(LSA4IGPWO) in the COMET language [HFDB09]. IGP weight opti-
mization is not applicable to existing Ethernet networks as it only ap-
plies to IP routers. Compared to Ethernet switches, IP routers have the
advantage of being able to send packets over all links in the network
while the STP disables a subset of the links. Given the price difference
between IP routers and switches, large datacenters will not replace their
switches with IP routers. However, there is ongoing work within the
IETF to develop standards to allow next-generation switches to use the
IS-IS routing protocol instead of the 802.1d protocol [Per04, Per10].
This solution requires more powerful switches and it can be expected
that it will only be supported on new high-end switches initially.
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Figure 3.11: LSA4STP vs LSA4IGPWO

To compare IGPWO with LSA4STP, we performed an experiment
with the Expanded Tree containing 50 nodes and the uniform traffic
demand matrix (num_des = n). The time windows for running IG-
PWO and LSA4STP are the same (300s). To evaluate the impact of
the number of alternate paths in the topology, we varied the number
of additional links in the Expanded Tree. Figure 3.11 shows on the x
axis the number of links that were added to the tree (see Section 3.5.1)
and on the y axis the maximal link utilization for IGPWO and LS4STP.
When there are fewer than 6 links, LS4STP is within 20% of the so-
lution obtained by IGPWO. When the number of additional links in
the Expanded Tree grows, the distance between LSA4STP and IGPWO
grows as well. This is normal since LSA4STP uses only a fraction of the
links while IGPWO is able to send traffic over all links. For example,
regarding Figure 7, at 25 added links, to obtain an Umax ∼0.3, IGPWO
must use all the 74 links. So when there are link failures, this solution
given by IGPWO has no reserved link to ensure the service availability
while the number of reserved links of the one obtained with LSA4STP
is 25.
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3.7 Conclusion
In this chapter, we dealt with the minimization of the maximal link uti-
lization Umax in Ethernet networks containing one spanning tree. We
proposed a new TE technique based on local search that finds the best
(possible) spanning tree that minimizes congestion for a given traffic
matrix. Our choice of directly optimizing spanning trees instead of link
weights reduces considerably the size of the search space. We proposed
an efficient technique to recompute the link loads called "magic cycle"
at each search iteration that can avoid the all pairs paths computation.
This cycle is very useful and it is used by all our algorithms in this
thesis.

From the LS techniques viewpoint, this chapter can be considered as
the heart of the thesis. The promising results obtained with LSA4STP
motivate us to continue with local search to cope with other TE prob-
lems in large Ethernet networks. Our LS algorithm in next chapter deals
with the minimization of Umax for DCNs containing multiple spanning
trees.





4
JOINT OPTIMIZATION OF

MULTIPLE SPANNING TREES

In this chapter, we deal with the minimization of the maximal link uti-
lization in large DCNs containing multiple spanning trees. This TE
problem in Ethernet networks is now more challenging in large DCNs
with more switches and many spanning trees are required to be gener-
ated. We analyzed different studies on DCNs to obtain data sets that are
representative of data centers. The description of our LS algorithm is
presented, followed by a performance evaluation. We demonstrate the
efficiency of our LS approach comparing to the Multiple Spanning Tree
Protocol 802.1s standard [Soc02].

This chapter is based on our publication [HDBF11b].

4.1 Introduction

Current powerful data centers with thousands of servers have the pro-
ficient ability to provide computation, data access, storage and sharing
services that allow the web-based and multi-media applications to ex-
pand quickly in the trends of cloud computing. Dealing with the provi-
sioning and scalability problem, data centers are largely based on Eth-
ernet switches with many Gigabit Ethernet interfaces. Spanning Tree
Protocol (STP) 802.1d [Soc98] and its variants have heavily dominated
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in DCNs for a couple of decades. In Chapter 3, we studied the Ether-
net and DCNs that implement STP to restrict the network to a single
spanning tree rooted on, typically a core switch. The major drawback
of the STP is that it disables the links that do not belong to the selected
spanning tree. This is potentially a waste of resources since these links
exist in the network. Fortunately, the IEEE 802.1s Multiple Spanning
Tree Protocol (MSTP) standard [Soc02] enables the network operators
to divide the whole DCN into different overlapping regions called Vir-
tual Local Area Networks (VLANs) [Soc06]. With MSTP, a spanning
tree can be created for each VLAN by computing the least-cost path
from each switch to an elected root switch. The details of the MSTP
have been described in Chapter 2. However, MSTP itself cannot ensure
a good set of spanning trees for a given set of traffic demand matrices
because it inherits the same configuration method of the spanning tree
from STP.

Related Work

There exist four main approaches to deal with the TE problem for MSTP.
First, MSTP optimization techniques in [Med06, LYD+03, HZC06]

aimed to map a set of VLANs to a given number of spanning trees.[Med06]
introduced two algorithms: a Multiple Spanning Tree Generation Algo-
rithm (MSTGA) to generate a set of spanning trees that have the small-
est number of links in common (or maximum edge-disjoint trees) and a
VLAN-Spanning Tree Mapping Algorithm - a greedy algorithm to map
each VLAN to a spanning tree generated by MSTGA and to minimize
the number of used links. A tiny network with 7 nodes and 3 VLANs
was considered to evaluate the perfomance of their algorithms. Yujin et
al. propose in [LYD+03] a QoS-aware mechanism that allows to tune
the link costs and to provide VLAN mapping policy based on the traf-
fic characteristics for minimizing network throughput and delay. The
admission control algorithm in [HZC06] assigns a group of VLANs
to each given spanning tree and then maps each service request to a
VLAN in order to minimize link loads and to admit maximal amounts
of customer services. This algorithm gave good results with the small
networks of 5, 10, 15, 20, 25 nodes in full mesh.

Second, [dSS07, SdSA+09, SdSA+11] proposed heuristic schemes
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for ensuring the load balancing in Metro Ethernet using MSTP by map-
ping a set of traffic flows to a set of given spanning trees. Different
criteria were taken into account to be optimized such as service disrup-
tion and worst-case maximal link utilization in [dSS07], a given number
n of worst link loads and average link load in [SdSA+09, SdSA+11].
However, these techniques are only applicable for small networks (up
to 23 nodes).

Third, the construction algorithm proposed in [CJZ06] addresses the
TE problem for the US network with 12 vertices and 17 links by con-
structing a spanning tree for each of the given source nodes (the nodes
with non-zero total traffic requests). The drawback of this approach is
that the number of spanning trees to be constructed must be equal to the
number of nodes that send traffic in the network.

Last, [PNM+05, MSS09] advocated for solving the TE problem for
MSTP by finding the set of spanning trees in the metro domain that pro-
vides load balancing for a given set of customer traffic demands. The
heuristic proposed in [PNM+05] tried to assign weights to the links in
the networks. The limitation of this approach is that it is difficult to
control the impact of the weight updates on the creation of each span-
ning tree. In [MSS09], the Best Multiple Spanning Tree algorithm aims
to find the best set of Edge-disjoint spanning trees, and the best map-
ping of the VLANs to that set of disjoint spanning trees among all other
possible cases in a given network. Thus, its complexity is too large.

The main drawback of the approaches mentioned above is that they
are not applicable for large networks. In this work, we solve the same
TE problem as in [PNM+05] but we aim to minimize the maximal link
utilization for DCNs. To our knowledge, our solution is the first tech-
nique that allows to release the choices of spanning trees from the de-
pendence on link weights. Our scheme can tackle the TE problem for
large DCNs containing hundreds of switches instead of small networks
as in the state-of-the-art techniques.

Our LS algorithm LSA4STP proposed in Chapter 3 considered the
TE problem for the STP 802.1d in switched Ethernet networks contain-
ing one spanning tree. The promising results obtained with LSA4STP
motivate us to extend it for solving the same problem of minimization
of Umax but coping with data centers containing many VLANs (span-
ning trees). In addition, the topologies and traffic demand matrices of
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current data centers mentioned in [BAM10] are used for evaluating the
performance of our algorithm.

4.2 Problem Description

We consider our Ethernet network as an undirected graph G = (N,E)
whereN is the set of switches andE is the set of links between switches.
We call BW the matrix of link bandwidths. Each link (i, j) ∈ E
aggregates all link bundles between i and j into a single link having
the total bandwidth of the bundles (note that BW [i, j] = BW [j, i]).
Let V = {V1, V2, . . . , Vk} be the set of k given VLANs in the net-
work, with Vr = (Nr, Er)(Nr ⊆ N , Er = {(i, j) ∈ E|i, j ∈ Vr},
1 ≤ r ≤ k). Each graph Vr is assumed to be connected. We call
TD = {TD1, TD2, . . . , TDk} the set of k traffic demand matrices
where TDr[i, j] represents the traffic that switch i sends to switch j
in VLAN Vr (1 ≤ r ≤ k; i, j ∈ Vr).

Let W = {W1,W2, . . . ,Wk} be the set of link cost matrices for
the k given VLANs. We call MSTP (G, V,W ) the set of k span-
ning trees SP1(G, V1,W1), SP2(G, V2,W2),. . . , SPk(G, Vk,Wk) ob-
tained with the Multiple Spanning Tree Protocol on graph G, with set
of VLANs V and set of link cost matrices W .

The Ethernet switching problem here is to distribute all the traffic
demands TDr[i, j] > 0 (1 ≤ r ≤ k; i, j ∈ Vr) over unique path from i
to j in SPr(G, Vr,Wr). Obviously, the only set that can be configured
to change the solution (set of k spanning trees) is W .

We reuse the definitions of link load L, link utilization U and of
Umax as described in Section 3.2 in Chapter 3. Here, the values of L[i, j]
and U [i, j] on each link (i, j) in E are computed from the aggregation
of the traffic of all the VLANs that contain (i, j) in their spanning tree.

The formulation of this TE problem is the following:

PROBLEM 2
Input: Graph G = (N,E), set of k VLANs V , bandwidth matrix BW ,
set of k traffic demand matrices TD
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Output:

• A set of k spanning trees SP ∗ minimizing Umax

• A set of k link cost matrices W ∗ such that MSTP (G, V,W ∗)
generates the k spanning trees SP ∗.

The link cost generation problem is solved by applying the technique
proposed in Section 3.4 in Chapter 3 for each VLAN in V .

4.3 MSTP Optimization Using Local Search

In this section, we present our local search algorithm called LSA4MSTP
(Local Search Algorithm for the Multiple Spanning Tree Protocol prob-
lem). LSA4MSTP is extended from LSA4STP in Chapter 3. In LSA4MSTP,
we perform the search directly on the spanning trees instead of link
costs. This reduces significantly the size of the search space from (216−
1)k.m to

(
m
n−1

)k (with n the number of switches and m the number of
links). In a network with k VLANs, we found that each edge replace-
ment in a spanning tree is independent of the k−1 other spanning trees.
Thus, we reuse and modify the heuristics of LSA4STP in the definition
of neighborhood and of move for LSA4MSTP. New heuristic must be
defined for the selection of VLAN to perform the move in each iteration.

4.3.1 Algorithm description

Algorithm 6 provides the pseudo-code of LSA4MSTP. At each itera-
tion, we try to replace one edge in one of the k spanning trees to reduce
Umax. The steps of LSA4MSTP according to the pseudo-code are:

• Lines 1 and 2: The method getDefaultCosts(BW ) returns k
default link cost matrices W for k VLANs computed from the
bandwidth matrix BW . Then k initial spanning trees MSP are
computed by the MSTP standard with k link cost matrices W in
Line 1. The computation of the root for each VLANs is described
in Section 3.3.3 in Chapter 3.
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Algorithm 6: Pseudo-code for LSA4MSTP
1 W = getDefaultCosts(BW );
2 MSP = MSTP (G, V,W );
3 U∗max = getMaxUtilization(MSP );
4 MSP ∗ = MSP ;
5 while time_exec < time_windows do
6 (smax, tmax) = getMaxCongestedLink(MSP ) ;
7 selected_vlan = selectV LAN(MSP, smax, tmax) ;
8 (sO, tO) = getRemovedLink(MSP,

selected_vlan, smax, tmax) ;
9 (sI , tI) = getAddedLink(MSP, selected_vlan, sO, tO) ;

10 MSP = replaceEdge(MSP, selected_vlan, sO, tO, sI , tI) ;
11 Umax = getMaxUtilization(MSP );
12 if Umax < U∗max then
13 U∗max = Umax ;
14 MSP ∗ = MSP ;
15 end
16 end

• Lines 3 and 4: We store this initial solution obtained with MSTP
as the best solution at the start of the search. The method getMax-
Utilization(MSP ) returns Umax after computing the utilization
of each link in MSP .

• Line 5: In this LS, we also use the time as the termination crite-
rion. The choice of time limits depends on the test size (number
of nodes and number of links).

• Lines 6-8: At each search iteration, we first try to find the most
congested link (smax, tmax) (Line 6). Then, we select a VLAN
selected_vlan that contains (smax, tmax) (Line 7). An edge (sO, tO)
in selected_vlan will be chosen to be removed (Line 8). We de-
scribe this task in Section 4.3.2.

• Line 9: Section 4.3.3 describes the choice of the replacing edge
(sI , tI) in the method getAddedLink(MSP, selected_vlan, sO, tO).
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A new spanning tree for selected_vlan is created by replacing
(sO, tO) with (sI , tI).

• Line 10: An update of the link loads is performed when the edge
(sO, tO) is replaced by (sI , tI).

• Lines 11-14: If the new Umax is lower than the best known U∗max,
we store this solution as the best one.

The search process from line 6 to line 14 is iterated until the execu-
tion time reaches the time limit (Line 5). As mentioned in 3, the main
challenge when dealing with this TE problem for large DCNs is to find
good solutions in reasonable time. Thus, we try to find lightweight but
efficient heuristics for selecting the edge to be removed and the edge to
be added for LSA4MSTP.

4.3.2 Removing an edge
In each search iteration, we try to relieve the most congested link (Umax)
of its load by replacing an edge in the spanning tree containing it.
To determine which edge from which VLAN needs to be replaced,
LSA4MSTP extends the heuristic of LSA4STP. Let (smax, tmax) be the
most congested oriented link, the key decision of this heuristic is to se-
lect one of the VLANs containing (smax, tmax) to do the replacement.
In the method selectV LAN(MSP, smax, tmax) (Line 7 - Algorithm 6),
we create a set SV of VLANs that contains (smax, tmax). We assign
to each VLAN in SV a probability to be selected based on its load on
(smax, tmax). The probability for a vlan ∈ SV to be selected_vlan is:

pr[vlan] =
Lvlan[smax, tmax]∑k
i=1 Li[smax, tmax]

. Obviously,
∑

i∈SV pr[i] = 1.

This strategy can find a balance between greedy search and unexplored
neighborhood. From selected_vlan, we can assume that the congestion
is caused by the traffic coming from the subtree of the spanning tree
SPselected_vlan dominated by smax. Next, the method getRemovedLink
(MSP, elected_vlan, smax, tmax) (Line 8 - Algorithm 6) uses the heuris-
tic of LSA4STP to determine an edge (sO, tO) to be removed from the
set of edges containing (smax, tmax) and all the edges belonging to the
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subtree dominated by smax. The edges closer to the root have a higher
probability of being removed.

4.3.3 Adding an edge
After having removed (sO, tO) from SPselected_vlan, we obtain two sepa-
rate trees that must be reconnected with a new edge. Our objective is to
have a less congested solution. We consider two criteria for choosing an
edge to be added to form the new spanning tree. First, we call SA the
set of all the edges that join the two separate trees. Second, we consider
h edges having the highest remaining bandwidth from SA. Next, we
compute the resulting Umax when adding each of these h edges. The
edge (sI , tI) offering the minimal value of Umax is selected to be added
into SPselected_vlan.

This heuristic differs from LSA4STP as an edge can belong to many
spanning trees. Therefore, we can consider only the highest remaining
bandwidth edges instead of the highest bandwidth edges.

Tabu list

We also use tabu search for preventing the search from replacing the
same couple of edges in the same spanning tree. In this problem, we
insert only the added edge in each search step into the tabu list. We
do not tabu the max congested edge and removed edge as in LSA4STP
because in MSTP, an edge can be used by different spanning trees.

4.3.4 Speeding up the search
Besides the root selection technique to eliminate the symmetries and the
incremental link load computation to measure Umax and to update the
load matrix, the data structures of LSA4MSTP are designed to dynami-
cally model multiple spanning trees. In LSA4MSTP, spanning trees are
also represented using the LS(Graph&Tree) framework [DDVH09].
With these incremental data structures (auto-update after each change
of the tree), all queries on the spanning tree mentioned above can be
performed in time O(1) and the update action is performed in O(nv)
where nv is the number of vertices of the VLAN v. The computation
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of Umax for each trial edge replacement is performed locally on the
selected_vlan. This computation is also based on the "magic cycle"
described in Section 3.3.5 in Chapter 3.

4.4 Data Generation
In this section, we first present two topologies coming from the private
enterprise and cloud data centers which are studied in [BAM10]. Sec-
ond, we describe the method for generating these topologies, the traffic
demand matrices and the VLANs used for our tests. Next, we analyze
the obtained results and evaluate the performance of our local search
algorithm LSA4MSTP.

4.4.1 Data Center topologies
The extensive studies by Benson et al. [BAM10] showed that there are
three main classes of data centers, namely university campus data cen-
ters, private enterprise (PR) data centers and cloud data centers. They
collected statistics from 10 data centers in US and South America. In
this work, we only consider the large data centers of private enterprises
and clouds containing a few thousand to more than 10K servers. We
choose to not consider university campus data centers because their
size is often too small, containing only a few dozens of switches. As
depicted in Fig. 4.1 and Fig. 4.2, private enterprise data centers often
use a canonical 2 or 3-Tier Cisco architecture [Sys10] while the cloud
data centers often use the 3-Tier data center architecture in [GHJ+09].

3-Tier Cisco architecture

The architecture in Fig. 4.1 consists of core, aggregation and edge (or
access) tier. At the highest level, the core tier contains switches connect-
ing the data center to extranet, WAN or Internet. The aggregation tier
consists of switches connecting to many edge tier uplinks, and aggre-
gating flows going in and out of the data center. Core and aggregation
switches are usually equipped with 10 Gbps interfaces [Sys10]. At the
lowest level, edge tier consists of the racks. Each rack contains 20-80
servers interconnected by a Top of Rack switch (ToR). Each ToR switch
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has usually a small number (4-8 ports) of 10 Gbps uplinks and servers
are attached to their ToR switch through 1 Gbps links [Sys10]. The 2-
Tier Cisco architecture is used in small data centers where the core tier
and aggregation tier are merged into one tier.

Figure 4.1: Private Enterprise DC

Cloud data center architecture

The cloud data center architecture described in [GHJ+09] (Fig. 4.2)
is an improvement of the canonical 3-Tier Cisco architecture. In this
topology, the core tier is replaced by an intermedia tier to improve the
performance of the aggregation layer. A large number of 10GigE ports
of each aggregation switch are used to provide a huge aggregate ca-
pacity. The links of the intermediate and aggregation switches form a
complete bipartite graph [GHJ+09]. Suppose each aggregation switch
uses k 10 GigE ports, k/2 of these ports will connect to k/2 switches in
the intermedia tier. The remaining k/2 ports of each aggregation switch
are used for connecting to the ToRs in the edge tier. As in 3-Tier Cisco
architecture, core and aggregation switches are equipped with 10 Gbps
interfaces and ToRs have 4-8 10 Gbps interfaces and a large number of
1Gbps links.
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Figure 4.2: Cloud DC

In our experiments, the number of servers per rack is fixed to 20.
Thus, each private enterprise data center with 4K servers consists of
242 switches (200 ToRs + 40 aggregation switches + 2 core switches)
and each cloud data center with 10K servers contains 564 switches (500
ToRs + 32 aggregation switches + 32 intermedia switches).

4.4.2 Traffic demand matrices and VLANs generation

To obtain data sets that are representative of data centers, we analyzed
the SNMP data from [BAM10] on a private enterprise data center (53
switches). This data set allows us to synthesize the traffic flow in the
network by every 10 minutes, hour, day and week. Unfortunately, there
is no information related to the VLANs composition and on the traffic
demand between each pair of switches.

Traffic demand matrices

In spite of the fact that the VLAN and traffic demand information un-
available, the SNMP data from [BAM10] is worthy to infer traffic de-
mand matrices. The SNMP data captures the amount of traffic on each
link at a precise time. Therefore, we were able to compute the total traf-
fic entering or departing from each switch over various time intervals.
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We use the simple gravity model [ZRDG03] relying on proportional-
ity relationships to build the traffic demand matrices. This method was
developed for large-scale IP networks but we assume that it is also ap-
propriate for data center networks. The simple gravity model is defined
as follows:

TD[i, j] = TI(i, ∗) TO(∗, j)∑
k TI(∗, k)

.

where TD[i, j] is the traffic that switch i sends to switch j,
TI(i, ∗) represents the total traffic entering at switch i,
TO(∗, j) denotes the total traffic departing at switch j,
and

∑
k TI(∗, k) is the total amount of traffic departing of all switches.

In these data centers, there is always a switch receiving a large
amount of traffic (20-40% total traffic). There are about ten other switches
receiving from 2 to 18% of the total traffic. For the remaining switches,
the traffic amount is less than 2%. When we look at each line of the
traffic demand matrices, each switch has about ten “large clients" with
a demand from 2 to 30% of its total traffic volume.

For each time sample, we thus obtain a demand matrix. For each
demand matrix, we define SumTD =

∑
TD[i, j], denoting the total

amount of traffic demand. We compute the ratio between the traffic vol-

ume of each switch and the total traffic: %TD_SW [i] =

∑
j TD[i, j]

SumTD
and the ratio betwwen each traffic demand element and the total traf-

fic demand of each switch: %TD[i, j] =
TD[i, j]

TD_SW [i]
. The obtained

demand matrices will be used to generate the traffic demand matrices
of our VLANs. The traffic demand of each of our VLAN will thus be
considered as the demand of a small private enterprise data center. For
the number of racks (ToRs) in each VLAN, we consider 40 ToRs for
each VLAN in cloud topologies (with 564 nodes) and 20 ToRs for each
VLAN in private topologies (with 242 nodes). Each VLAN will then
also contain the minimum number of aggregation and core/intermediate
switches in order to cover the ToRs of the VLAN.

In our experiments, we consider three types of traffic demand ma-
trices for the VLANs.

• Internal TM: We here assume that all the traffic stays within the
VLAN and consists of flows accross the k racks (ToRs) of the
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Figure 4.3: Traffic demand matrix generation

VLAN. The demand matrix of the VLAN is thus composed of ze-
ros, except between these k ToRs (Fig. 4.3a). The traffic demand
between the ToRs of the VLAN is based on the obtained demand
matrices on a private enterprise data center (PR) presented above.
We first choose a target SumTD. Then, using %TD_SW [i] and
%TD[i, j], we derive a demand matrix as follows. The k ToRs of
the VLAN are randomly assigned to k different nodes of PR (the
nodes of PR with the smallest %TD_SW [i] are not considered).
Then, given a ToR of the VLAN associated to node i of PR, its
traffic demand with the other k ToRs of the VLAN will be a ran-
dom permutation of the top k values of %TD[i, j]. These values
are then randomly assigned.

• Internet TM: This case extends the previous case by considering
traffic outside network, consisting of traffic accross VLANs and
traffic from/to Internet. The traffic entering/leaving each VLAN
is centralized at one or two core switches (with an average of
1.5) for private enterprise networks, and at two core switches for
cloud data centers. The traffic demand matrix will thus have one
or two other non zero lines and columns (as described in Fig.
4.3b), associated to these core switches. We will assume that
20% of SumTD is interconnection traffic, and 80% of SumTD
stays within the VLAN. The traffic demand within the VLAN is
obtained as described above. The interconnection traffic is uni-
formly distributed among all the switches.
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• Uniform TM: This type of traffic will be used as a reference for
the experiments, with a uniform distribution of the traffic demand
between every pair of switches in the VLAN (see Fig. 4.3c). The
values in the matrix are varied in a small interval. The values are
chosen to achieving the targeted SumTD.

VLANs generation

We rely on two approaches for generating VLANs.

• Geographic: each VLAN is generated geographically by group-
ing a set of neighboring racks that are interconnected by the ToR
switches and a number of aggregation and core (or intermedia)
switches (i.e. the racks of servers in the same or neighboring
buildings).

• Random we assume that the racks are assigned randomly to the
different VLANs depending on their increasing need. For this
reason, each VLAN can contain a set of arbitrary racks.

In our experiments, for each data center topology, we generated 16
VLANs for both geographic and random case. The 16 VLANs are gen-
erated by combining the four time samples (4 VLANs generated using
each of the time sample). We also ensured that the 16 VLANs cover all
the switches.

In order to analyse the influence of the number of VLANs on the
performance of our algorithm, we merged the 16 VLANs, 2 by 2, in
order to obtain a new test with 8 VLANs, with an equivalent total traffic.
Two VLANs can be merged if they have at least one common switch
(for the geographic case, this common switch must be a ToR switch).
We repeated this process to obtain tests with 4, 2 and a unique VLAN
(containing all the switches in the network).

4.5 Experiments and Evaluation
The different test sets are summarized in Table 4.1. For each topology
family (private enterprise and cloud), we generated 10 topologies. For
each topology, we combined two VLAN distributions (Geographic and
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Random) with three traffic matrices (Internal TM, Internet TM and Uni-
form TM). For each of these 12 combinations, we generated 5 tests (16,
8, 4, 2 and 1 VLAN). We thus have 600 tests in our data sets. These
data sets are available online in [HDBF11a]. The time limit for running
LSA4MSTP for Private Enterprise and Cloud is 15 minutes.

Evaluation

As with LSA4STP in Chapter 3, we consider the improvement of the
maximal utilization Umax as the criterion to evaluate the performance
of LSA4MSTP. We compare two different computations of Umax. The
first one is obtained with the solution of LSA4MSTP and the second is
obtained with the default link costs of the MSTP 802.1s standard. With
802.1s, one spanning tree is computed for each VLAN based on the
least cost path from each switch in this VLAN to an elected root switch
(the switch with min ID - normally this is one of the core switches).
Because the network contains all 10 Gbps uplinks with the default cost
of 2 (see Table. 2.1 in Chapter 2), so the least cost path strategy of
802.1s seems to be limited.

We measure the improvement in each test as the ratio between Umax
[LSA4MSTP ] and Umax[802.1s]:

%Improve =
Umax[LSA4MSTP ] ∗ 100

Umax[802.1s]

Fig. 4.4 presents the Umax values for Cloud data centers. LSA4MSTP
always gives the best results for 16 VLANs, with %Improve around
50% (about half of the Umax given by 802.1s). For 8 VLANs, this im-
provement is about 60% in both geographic and random case. With
4, 2 and even 1 VLAN, LSA4MSTP also reduces Umax to about 70%-
80% in almost all the combinations. These results clearly show that our
LSA4MSTP algorithm provides better performance than 802.1s.

We describe in Table 4.2 the %Improve results for Private Enter-
prise data centers. We also observe that LSA4MSTP is more efficient
when the number of VLANs is large. For 16 VLANs with the origi-
nal traffic matrices, LSA4MSTP gives best performance with the uni-
form traffic matrices where there is no zero-demand for every source-
destination pair. The improvement is less important with the sparser
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traffic matrices as the internal VLAN matrices. In summary, our LSA4MSTP
algorithm always provides better results than 802.1s with the default
link costs. Moreover, increasing the number of VLANs clearly further
improves the quality of the solution produced by LSA4MSTP.

Fig. 4.5 shows the distribution of the link utilization with the so-
lution provided by LSA4MSTP and 802.1s on the private enterprise
topology (Internal TM/Geographic). With 16 VLANs, the 802.1s so-
lution uses only 822 links while LSA4MSTP uses 1008 links (we con-
sider both directions of a link). This distribution shows that the high
values of Umax in the 802.1s solution are concentrated on few links.
The LSA4MSTP solution, by using more links, is able to reduce Umax
from 0.66 to 0.37. For 8 VLANs, the most congested links are only con-
centrated on very few links (less than 1%) in the solutions obtained by
using the default 802.1s link costs. The link utilization of the other links
are similar in the two solutions. This analysis can also be made on the
other combinations with 4 and 2 VLANs where the congestion in the
solutions obtained with 802.1s is centralized in about 2 or 3 bottleneck
links.

We now analyze the influence of the number of VLANs on the num-
ber of used links. Let #Links[LSA4MSTP ] and #Links[802.1s] de-
note the number of links given by the solution of LSA4MSTP and of
802.1s. We compute the percentage of links on the total number of
available links #Links in the network that LSA4MSTP uses more than
802.1s:

%∆Links =
(#Links[LSA4MSTP ]−#Links[802.1s]) ∗ 100

#Links

We present in Table 4.3 the value of %∆Links for each topology type.
In the solutions given by LSA4MSTP, the spanning trees use more links
than the ones obtained with 802.1s for all the combinations with more
than 1 VLAN where #Links[LSA4MSTP ] and #Links[802.1s] are
fixed to n − 1 (with n the number of switches in the data center). We
can thus disjoin the VLAN spanning trees on the most congested links.
The value of %∆Links increases naturally with the number of VLANs.
This justifies why the best Umax results are obtained with 16 VLANs.

We further refine our analysis by presenting in Table 4.4 the aver-
age number of links connecting Intermedia - Aggregation (Int-AS) and
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Aggregation - Edge (AS-ToR) for Cloud data centers. For both 802.1s
and LSA4MSTP solutions, the number of used links Int-AS is very lim-
ited (always less than 100 links) comparing to the available links on this
level (1024 links). In contrast, the number of AS-ToR links is growing
quickly with the number of VLANs (up to 71% of available links on
this level). Obviously, for the Cloud data centers there are 500 ToRs
and only 32 Aggregation switches + 32 Intermedia switches. In addi-
tion, 80% of the total traffic amount is used for the traffic across racks.
Our LSA4MSTP algorithm always uses more links than 802.1s. It is in-
teresting to notice that LSA4MSTP can reduce 50% of Umax with only
63 more links for 16 VLANs.

We finally describe in Figure 4.6 the improvement of the LSA4MSTP
solution over execution time, for a test of the Cloud with 16 VLANs/U-
niform TM/Geographic. As expected, LSA4MSTP reduces about 50%
Umax of 802.1s (from 0.69 to 0.33) after only 10s. We can state that
most of improved solutions were found in the first 98s. In our experi-
ments, the solution found by LSA4MSTP in the first 5 minutes is often
very close to the best solution.

With the obtained results in our previous work with LSA4STP with
Grid, Cube, Expanded Tree, Fat Tree and PortLand, our local search al-
gorithms give good performance with large instances of network topolo-
gies.

4.6 Conclusion

In this chapter, we gave a new approach for the minimization of Umax
in the DCNs where the MSTP 802.1s is deployed. To cope with large
DCNs containing many VLANs, the LS algorithm proposed in Chap-
ter 3 has been extended with new heuristics. We considered the current
modern topologies for large data centers containing up to 10K servers
in our experiments. The SNMP data of a private enterprise in the US
has also been used to create traffic demand matrices for our tests. With
regard to the load balancing aspect, our results show much improve-
ment in the use of network available bandwidth. The solutions obtained
with our LS algorithm could reduce up to 50% the maximal link uti-
lization compared with the solution obtained by 802.1s for the DCNs
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with 16 VLANs. In next chapter, besides Umax, we take into account
the service disruption in case of link failures as the second objective to
be optimized.
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Figure 4.6: Improvement of Umax over execution time





5
DEALING WITH LINK FAILURES

In this chapter, we introduce a heuristic to ensure a good load balanc-
ing for the DCNs with a minimum service disruption in case of link
failure. We show how to configure the link costs such that the MSTP
standard performs a single link replacement when one of its spanning
tree links fails. This minimum service disruption is considered as a hard
constraint in our heuristic for minimizing the worst-case maximal link
utilization in the DCNs.

5.1 Introduction

Besides the ultimate objective of congestion avoidance, a natural ex-
pectation of network operators is to minimize the convergence time for
recovering connectivity and the number of traffic flows that suffer from
service disruption in case of link failures. In DCNs, the minimization
of the service disruption can be expressed as minimizing the number
of link replacements in each VLAN to maintain the spanning tree after
failures. In addition, it is difficult to perform permanently failure checks
and give out immediately a new good set of spanning trees. Thus a good
configuration of link costs is required to guide the MSTP ensuring the
network performance in both cases: with or without failure.

In dealing with this TE problem, we take into account two objec-
tives: minimization of the worst-case maximal link utilization and mini-
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mization of the number of link replacements in each VLAN considering
each single link failure from a set of given links. Obviously, the min-
imal number of link replacements for each spanning tree after a single
link failure is one. Thus, the minimization of the number of link re-
placements can be considered as a hard constraint for the minimization
of the worst-case maximal link utilization. Assume that our DCN has
m used links and k VLANs, with each failure in these m links, MSTP
must generate a set of k spanning trees. Each solution is then com-
posed of m × k spanning trees. In addition, these spanning trees must
be followed by a generation of link costs for each VLAN. Therefore,
the computation of even an arbitrary solution for this problem in DCNs
with thousands of links is very costly.

The recent study on network failures in DCNs by Gill et al. in
[GJN11] shows that the failure of the links from the Edge (ToR) level of-
ten has smaller impact on data transmission than the links in the higher
levels (Aggregation and Core) because they are the least used. Further-
more, the links from the Edge level are more reliable and less sensible
to failures than the other links in the network. In a spanning tree topol-
ogy the links from the Edge level are often connected to the leaf nodes,
hence their failure has lower impact than the other ones. From the net-
work traffic viewpoint, the failure of a link with higher utilization is
more serious than a link with lower one. To reduce the complexity of
the problem, we only consider the failure of the set of links with the
highest utilization instead of considering all the used links in the net-
work.

Related Work

Many existing techniques have been proposed to deal with the mini-
mization of the maximal link utilization Umax in the Ethernet networks
(see Section “Related Work" in Chapter 4). But there is no previous
work dealing with the minimization of the worst-case maximal link uti-
lization after link failures. In [dSS07], the authors propose two algo-
rithms dealing with the TE problem in Ethernet networks implementing
MSTP: (1) A GRASP (Greedy Randomized Adaptive Search Proce-
dure) algorithm aims to minimize Umax by generating a set of spanning
trees and assigning them to a set of given VLANs; (2) A PortCost as-
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signment algorithm that computes the link cost matrices for the best set
of spanning trees found by the GRASP algorithm in (1) ensuring the
minimum service disruption in the network due to the failure of each
active link in the network. The drawback of these two algorithms is that
the GRASP algorithm does not take the link failures into account while
the PortCost assigment in (2) does not care about the worst-case maxi-
mal link utilization due to link failures. In addition, these techniques are
supposed to deal with a small size Ethernet network with 23 switches
and 42 links. In this work, our optimization scheme aims to minimize
the worst-case maximal link utilization with a minimum service disrup-
tion due to link failures in DCNs.

5.2 Problem Statement
The Ethernet network is modeled as described in Section 4.2 in Chapter
4 with:

• Undirected graph G = (N,E) where N is the set of switches and
E is the set of links between switches.

• BW is the matrix of link bandwidths.

• V = {V1, V2, . . . , Vk} is the set of k given VLANs in the network,
with Vr = (Nr, Er)(Nr ⊆ N , Er = {(i, j) ∈ E|i, j ∈ Vr},
1 ≤ r ≤ k).

• TD = {TD1, TD2, . . . , TDk} is the set of k traffic demand ma-
trices where TDr[i, j] represents the traffic that switch i sends to
switch j in VLAN Vr (1 ≤ r ≤ k; i, j ∈ Vr).

• W = {W1,W2, . . . ,Wk} is the set of link cost matrices for the
k given VLANs and MSTP (G, V,W ) is the set of k spanning
trees SP1(G, V1,W1), SP2(G, V2,W2),. . . , SPk(G, Vk,Wk): In
this problem, the link cost matrices W and the k spanning trees
are given as input.

The Ethernet switching problem is always to distribute the traffic de-
mands TDr[i, j] > 0 (1 ≤ r ≤ k; i, j ∈ Vr) over unique path from i to
j in SPr(G, Vr,Wr).
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We call used_links the set of all the links that are used by the k
spanning trees:

used_links = {e|e ∈ E & ∃i : e ∈ SPi} with i ∈ [1..k]

Let fail_links ⊂ used_links be the set of links for which we must
consider the failure. Besides the link load L, link utilization U and
Umax, in this work, we introduce the concept of the worst-case maximal
link utilization Ufails. Let Umax[i] be the Umax computed on a given
set of k spanning trees SP ′i,1, SP

′
i,2, . . . , SP

′
i,k after the failure of some

link ei ∈ fail_links (∀j ∈ [1..k], ei /∈ SP ′i,j ). We compute Ufails as
follows:

Ufails = max{Umax[i]|∀ei ∈ fail_links}

Our problem formulation for this TE problem is defined as follows:

PROBLEM 3
Input: Graph G = (N,E), set of k VLANs V , bandwidth matrix BW ,
set of k traffic demand matrices TD, k link cost matrices W , k initial
spanning trees MSP = {SP1, SP2, . . . , SPk}(= MSTP (G, V,W )),
set of considered links fail_links.

Output: A set of k link cost matrices W ∗ minimizing the worst-case
maximal link utilization Ufails w.r.t:

• MSTP (G, V,W ∗) generates k spanning trees SP1, SP2,..., SPk
if there is no link failure in the network.

• For each failure of link ei ∈ fail_links, MSTP (G, V,W ∗) gen-
erates k spanning trees SP ∗i,1, SP

∗
i,2, . . . , SP

∗
i,k such that:

– SP ∗i,j = SPj , ∀j ∈ [1..k] and ei /∈ SPj
– SP ∗i,j is obtained from SPj by replacing ei with some eh ∈
Ej , ∀j ∈ [1..k] and ei ∈ SPj

We impose to replace the failed link by a single link in each spanning
tree that contains it. This can be seen as a hard constraint.
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5.3 Heuristic Algorithm for MSTP in case of
link failures

In this section, we present our heuristic algorithm called HA4MSTP
for minimizing the worst-case maximal link utilization Ufails in case
of link failures ensuring a minimum service disruption. Algorithm 7
provides the pseudo-code of HA4MSTP. We iteratively select each link
in fail_links to measure the impact of its failure and to configure the
link cost matrices in order to guide the MSTP standard to perform a
good link replacement in each affected VLAN. The steps of HA4MSTP
according to the pseudo-code are:

Algorithm 7: Pseudo-code for HA4MSTP
1 W ∗ = W ;
2 Ufails = 0;
3 while fail_links 6= ∅ do
4 eO = getMostUtilizedLink(fail_links);
5 vset = getV lansOnLink(eO);
6 Sort vset decreasing by load on eO;
7 restBW = getRestBW (MSP );
8 foreach vl ∈ vset do
9 eI = getReplacingLink(eO, Vvl, restBW );

10 W ∗
vl = updateLinkCost(Vvl, eO, eI);

11 restBW = updateRestBW (eO, eI);
12 end
13 Umax = computeUmax(W ∗);
14 if Umax > Ufails then
15 Ufails = Umax;
16 end
17 fail_links = fail_links \ {eO};
18 end

• Lines 1-2: We initialize W ∗ by copying the link cost matrices of
W . Ufails is also intialized with a value of 0.
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• Line 3: The failure of each link in fail_links is considered step
by step by HA4MSTP. The algorithm finishes when all links in
fail_links have been considered.

• Line 4: The method getMostUtilizedLink(fail_links) returns
the most utilized (sum of its utilization on both two directions)
link eO in fail_links. Our heuristic in this step is to consider
the links in fail_links by a decreasing order of its impact in the
network. In each VLAN, the link cost update for selecting a back-
up link for a given link can affect the choices of back-up link for
other links (see Section 5.4). Thus, this heuristic allows us to
guarantee the quality of the back-up link for the most important
links in the network.

• Lines 5-8: For each selected link eO, the set of VLANs vset that
contains eO in their spanning tree is computed by method get-
V lansOnLink(eO) (Line 5). Although an edge replacement in
the spanning tree of each VLAN is independent from the others,
but it influences the traffic in the whole network. By sorting and
considering the VLANs in vset decreasing by their load on eO
(Line 6 and Line 8), we first find an issue for the VLANs that
charged the most eO. The method getRestBW (MSP ) in Line 7
returns the matrix of remaining bandwidths restBW of each link
in the network before the failure of eO.

• Line 9: The method getReplacingLink(eO, Vvl, restBW ) re-
turns the back-up link eI for the failure of eO in each VLAN
vl ∈ vset. The heuristic for selecting eI is detailed in Section
5.4.

• Lines 10-11: The link cost matrix Wvl for VLAN vl is updated
to ensure that MSTP does a unique edge replacement (remove eO
and add eI to the spanning tree) after the failure of eO (Line 10).
Our link cost update technique is described in Section 5.5. In Line
11, restBW is updated by computing the new link utilization
matrix after replacing eO by eI in VLAN vl.

• Line 13: The maximal link utilization Umax is computed after
having considered the failure of eO in all the VLANs in vset.



5.4. Dependence of Back-up links on Link Cost Configuration 87

• Lines 14-16: If Umax is larger than Ufails, we store it as the worst-
case maximal link utilization.

• Line 17: eO is removed from the set of links to be considered
fail_links.

5.4 Dependence of Back-up links on Link Cost
Configuration

In each VLAN, the link cost matrix cannot be configured such that each
link in the spanning tree can choose any link that maintains the span-
ning tree as the back-up link for its failure.

Example. In Fig. 5.1, (6,2) is chosen as the back-up link for (3,4).
To update the link cost matrix, the cost of (1,2), (2,3), (3,4), (4,5), (5,6)
and (6,7) is always fixed to 1 because these links belong to the spanning
tree. (6,2) is chosen as the back-up link for (3,4) so its cost is also fixed
to 5. Then we must configure the other link costs such that when the
failure of link (3,4) occurs, only one link replacement (3,4) by (6,2) is
performed to maintain the spanning tree and the unique shortest path
to root (2) from 4, 5, 6 or 7 is via (6,2). This is represented by the
following inequalities:

• W [4, 2] > W [4, 5] +W [5, 6] +W [6, 2] (1)

• W [5, 2] > W [5, 6] +W [6, 2] (2)

• W [7, 2] > W [7, 6] +W [6, 2] (3)

• W [7, 1] +W [1, 2] > W [7, 6] +W [6, 2] (4)

But what if link (4,5) wants to set (5,2) as the back-up link for its fail-
ure? Obviously, the shortest path from 5 to root (2) after the failure of
(4,5) is 5 → 2 and thus W [5, 2] < W [5, 6] + W [6, 2]. This is contra-
dictory with the inequality (2). Similarly, (4,5) can not set (4,2), (7,2)
or (7,1) as the back-up link for its failure. When (6,2) is chosen as the
back-up link for (3,4), it must be also the back-up link for (4,5) and
(5,6).
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Figure 5.1: STP reconfiguration with optimized link costs

The PortCost assigment algorithm in [dSS07] presents only the math-
ematical formulas for computing the link costs in each VLAN. It does
not provide the dependence of the link cost update on the ordering of
the link failures to be considered. In this work, when a link eI is chosen
as the back-up link for link eO in the spanning tree, we determine the
set of links in the spanning tree that must use eI as their back-up link.

Assume that eI is chosen as the back-up link of eO as depicted in
Fig. 5.2. Let C = {C1, C2, .., Cq} be the switches on the cycle created
by adding eI into the spanning tree with eO = (Co, Co+1), eI = (Cq, C1)
(1 ≤ o < q).

Property 1. If eI = (Cq, C1) is chosen as the back-up link for
eO = (Co, Co+1) then each link (Co+1, Co+2), ..., (Cq−1, Cq) must set
eI as the back-up link to guarantee the minimum link replacement for
its failure.

The proof of this property is presented in Appendix B. In Fig. 5.2,
the links that must use eI as their back-up link are in the “must" part of
the cycle Co+1, ..., Cq and the links in the “optinal" part C1, ..., Co can
consider eI as a candidate for their back-up link.
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Figure 5.2: Link Cost Update

Heuristic for selecting the back-up link

From this property, our heuristic for selecting the back-up link eI for the
failure of a given link eO in the method getReplacingLink(eO, Vvl, rest-
BW ) (Line 9 - Algorithm 7) is described as follows:

• If eO is not forced to set any back-up link then we a priori select
the candidate replacing link eI in VLAN Vvl with maximal sum
of its two-direction remaning bandwidth as the back-up link for
eO. Otherwise, the back-up link eI is considered for the failure of
eO.

• We compute the cycle C = {C1, C2, .., Cq} by adding eI =
(Cq, C1) to the spanning tree SPvl of VLAN Vvl. Then eI is set as
the back-up link for each link e in the part of the cycle Co+1, ...,
Cq (with eO = (Co, Co+1) and 1 ≤ o < q).
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This heuristic aims to provide the best back-up link (with maximal
bandwith) for the most utilized links in the network. In general, these
links are also more sensitive to failure.

5.5 Link Cost Update Technique
In this section, we extend the PortCost assigment algorithm in [dSS07]
for updating the link cost configuration of each VLAN Vvl by consid-
ering the failure of a given link eO in SPvl and its back-up link eI . In
spite of the fact that the input of this problem consists of a network con-
taining many VLANs (one spanning tree for each VLAN), the link cost
configuration for each VLAN is independent from the other VLANs.

Property 2. To maintain the minimum service disruption, a link eI
replaces link eO in the spanning tree SPvl of VLAN Vvl = (Nvl, Evl)
when the failure of eO occurs if and only if for each switch v ∈ Nvl, if
the shortest cost path from v to root contains eO, then its unique second
shortest cost path to root must pass via eI .

The proof of this property is very simple. Obviously, if there exists
a switch v ∈ Nvl that has the shortest cost path from v to root con-
taining eO and the second shortest cost path to root not via eI then v
will use a different link than eI to join the root when the failure of eO
occurs. Thus the number of link replacements after the failure of eO is
more than one. Therefore, the minimum service disruption constraint is
violated.

The method updateLinkCost(Vvl, eO, eI) in line 10, Algorithm 7
updates the link cost matrix for VLAN Vvl to guarantee that MSTP per-
form a unique edge replacement (eO by eI) on SPvl after the failure of
eO. Let TI be the isolated subtree (excluding root) after the failure of
eO (see Fig. 5.2), the link cost update must ensure that:

• When there are no failures, MSTP computes exactly SPvl

• After the failure of eO, MSTP generates new spanning tree
SP ′vl = SPvl \ {eO}

⋃
{eI}. This means that the unique shortest

cost path of each switch in TI must pass via eI after the failure
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of eO. Hence, only the cost of the links that can join the two
separate trees after the failure of eO (and 6= eI) should be updated
(increased).

Algorithm 8: Pseudo-code for Link Cost Update
1 replacing_edges = getReplacingEdges(eO) ;
2 replacing_edges = replacing_edges \ {eI} ;
3 length = getNewCostToRoot(Vvl, eO, eI) ;
4 foreach e = (i, j) ∈ replacing_edges do
5 minCost = length[j]− length[i] + 1;
6 if W ∗

vl[i, j] < minCost then
7 W ∗

vl[i, j] = W ∗
vl[j, i] = minCost;

8 end
9 end

The cost update for each candidate back-up link for the failure of eO is
described in Algorithm 8 with the following steps:

• Lines 1-2: We compute replacing_edges - the set of candiate
back-up links that can join the two separate trees after the failure
of eO. When eI is removed from replacing_edges, each link in
replacing_edges is considered to perform a cost update.

• Line 3: The method getNewCostToRoot(Vvl, eO, eI) returns the
new cost length[i] from each switch i ∈ TI to root after the
failure of eO (if i /∈ TI , obviously, its cost to the root does not
change).

• Lines 4-7: For each link e = (i, j) ∈ replacing_edges, it is clear
that i and j belong to two different sub-trees after the failure of
eO. We assume without loss of generality that i ∈ TI and j /∈
TI . We then compute the minimal cost minCost of e to ensure
that the shortest cost path to root from each switch in the subtree
dominated by i must pass via eI (Line 5). If the current cost of e
(both directions) is less than minCost, we assign minCost as its
new cost (Line 6-7).
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5.6 Data Set Composition

The seven data center topologies for testing our algorithms are described
in Table 5.1. The Private Enterprise topology is a 3-Tier Cisco architec-
ture [Sys10] while the cloud data center uses the 3-Tier textbook data
center architecture in [GHJ+09]. In Table 5.1, the two VLAN gen-
eration types Geographic (Geo) and Random (Ran) are used to create
different tests on the same network topology (same nodes, same edges,
but different VLAN generations). The details of Private (PR) and Cloud
(CL) architectures are presented in Section 4.4 in Chapter 4.

Table 5.1: Data Set Composition
Size\Type PR Geo\Ran CL Geo\Ran FT Ran PL Ran ET Ran

Num. Nodes 242 564 320 313 200
Num. Links 549 2024 2048 602 398

We also use the data center topologies Fat Tree (FT) [AFLV08],
PortLand (PL) [NMPF+09] and the generic topology Expanded Tree
(ET) as described in Section 3.5 in Chapter 3. To simplify the observa-
tion with five different assessment metrics, we generate 16 VLANs and
a near-uniform traffic demand matrix for each VLAN for every topology
type in our experiments. For each test, we have two types of input link
cost matrices. The first one consists of the default costs of MSTP 802.1s
and the second one consists of the costs obtained with our LSA4MSTP
algorithm for minimizing Umax in Chapter 4.

Table 5.2: Results with LSA4MSTP optimized costs (10% links with
max. Ufails)

Topo. Unofails #UL
Ufails

∑
Changes

802.1s HA 802.1s HA
PR Geo. 0.2492 1624 0.4151 0.3388 (↓18%) 643 (40%) 16
PR Ran. 0.1901 1752 0.3169 0.2765 (↓13%) 815 (47%) 16
CL Geo. 0.2398 3875 0.5524 0.3318 (↓40%) 1836 (47%) 16
CL Ran. 0.2673 3730 0.6198 0.381 (↓39%) 1738 (47%) 16
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5.7 Experiments and Results

In this section, we use the worst-case maximal link utilization Ufails
in case of link failures as the criterion to evaluate the performance of
HA4MSTP. We compare two different analyse of the maximal link uti-
lization in case of link failures: we compute its maximum (Ufails-the
most important evaluation criterion), its average and the minimum of
each test. The first one is obtained with the cost matrices generated by
HA4MSTP. The second one is obtained with the input cost matrices. In
each test, we consider the failures of 10% of the links in the network that
have the highest utilization. These links are also the set of links that are
sensitive to failure in the network. We then simulate the failure of each
of these links and compute Umax on the new spanning tree computed
by MSTP 802.1s after failure. The worst-case maximal link utilization
Ufails is the largest Umax among the failures of each of these links. In
addition, we also analyze the number of link replacements in case of
link failures on the default solutions given by 802.1s to have a general
image of service disruption without minimization. With HA4MSTP, the
service disruption in case of link failures is minimized with one unique
link replacement in the spanning tree of each VLAN.

Fig. 5.3 represents the maximum (Ufails), the average and the mini-
mum Umax in case of link failures for the input costs and the optimized
costs obtained with HA4MSTP. The black points present the Umax with-
out link failures. Here, the input costs are assigned by the default link
costs of STP 802.1d [Soc98]. HA4MSTP gives the best results for the
tests of Private Enterprise (Geo. and Ran.) when its optimized cost
matrices guide MSTP to reduces about 20% Ufails comparing to the de-
fault input costs. For all these 7 topologies, the average reduction is
about 9.5%. Additionally, the average and the minimal Umax after fail-
ure given by HA4MSTP are also smaller than the ones with the default
input costs in almost all tests.

In Fig. 5.4, we perform the same observation as in Fig. 5.3 but the
input costs are generated by our LSA4MSTP algorithm for minimizing
Umax when there are no failures. This explains why the solutions with
no failure (the black points) are always the best solutions (with minimal
Umax) for every test. With these tests, HA4MSTP performs better with
the large networks when its optimized costs reduces up to about 33%
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Ufails in comparison to the input costs for the tests of Cloud (Geo. and
Ran.). The average reduction for all 7 topologies is about 16.5% and it
has better average and minimal Umax after failure than the input costs
for all 7 topologies in spite of the fact that HA4MSTP performs only one
link replacement in the spanning tree of each VLAN after the failure of
each considered link.

From the service disruption viewpoint, we present in Table 5.3 the
analysis of the number of link replacements after each link failure in
each spanning tree. These are the same experiments as depicted in Fig.
5.3. We can state that although the average number of link replace-
ments after each link failure avgChg of the solutions obtained with the
default input costs for all 7 topologies is just around 2 and its minimal
minChg is 1 (optimized) but its maximum maxChg is from 17 to 42
link replacements (change of up to 40% links in the old spanning after
only one link failure). For this objective, HA4MSTP ensures an optimal
service disruption with one unique link replacement in the spanning tree
of each VLAN after link failure. The execution time for the simulation
of MSTP 802.1s is always larger than the one given by HA4MSTP for
all 7 topologies.

We can find a similar analysis of the number of link replacements
after each link failure but with the LSA4MSTP costs in Table 5.4. In
this case, with the non-configured input cost, the spanning tree in each
VLAN is almost out of control after each link failure when the avgChg
of Fat Tree test is 10.96 and the maxChg of Cloud Ran. climbs up to
130 link replacements after only one link failure. In addtion, the worst-
case maximal link utilization Ufails in case of link failures obtained with
the solutions with the input costs is worse than the ones obtained with
HA4MSTP for all given tests. Once more, HA4MSTP is faster in exe-
cution time than the simulation of MSTP 802.1s for all 7 topologies.

Last, we consider the failure of 10% of the links in the network that
have the highest Ufails given by MSTP 802.1s for better understand-
ing the impact of link failures in DCNs. This experimentation is per-
formed on the same tests as Private Geo.\Ran. and Cloud Geo.\Ran.
in Table 5.4. The results are presented in Table 5.2 where we mea-
sure Unofails - the value of Umax in case of no failures (same value as
in Table 5.4), #UL - the number of links that are used by all the 16
spanning trees in case of no failures, Ufails and

∑
Changes - the total
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number of link replacements in the solutions obtained with HA4MSTP
and with MSTP 802.1s. We observe that in the worst case with the so-
lutions given by MSTP 802.1s, one single link failure can increase up
to 230% Unofails (Cloud Ran.: from 0.2673 to 0.6198) and can change
up to 47% the spanning tree links (Cloud Ran. 1738/3730, on aver-
age 109 link replacements/VLAN). In Table 5.2, we also observe that
HA4MSTP can reduce up to 40% Ufails (with Cloud Geo.) obtained
with MSTP 802.1s by performing exactly one link replacement in each
spanning tree:

∑
Changes equals to 16 (16 VLANs and 1 replacemen-

t/VLAN) for all the tests.

5.8 Conclusion
In this chapter, we introduced a bi-objective TE problem with the min-
imization of the worst-case maximal link utilization and of the service
disruption in case of link failures. Besides the traditional objective of
minimizing the congestion, we proposed an efficient link cost config-
uration technique for each VLAN in the network that can give MSTP
an auto-configurable solution with one unique link replacement in the
spanning tree of each VLAN after a link failure. Hence, the solution ob-
tained with our heuristic algorithm guarantees the optimum for the min-
imization of the service disruption and also shows good performance
for minimizing the worst-case maximal link utilization in the network
in case of link failures.

In this particular TE problem, the optimum is always guaranteed for
the second objective because it can be considered as a hard constraint
for the minimization of the worst-case maximal link utilization. In next
chapter, we will deal with the bi-objective TE problems where the op-
timum cannot be guaranteed for any objective and the outcome of our
bi-objective algorithms is a set of non-dominated solutions instead of a
unique solution as in this chapter.
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6
MULTI-OBJECTIVE TRAFFIC

ENGINEERING

In Chapter 5, we approached a multi-objective TE by solving a mini-
mization problem with two objectives. However, the minimization of
service disruption is considered as a hard constraint to be guaranteed.
This is a special case because it is often impossible to reach the opti-
mum of an objective in TE problems in large DCNs. In this chapter, we
introduce a novel design of multi-objective algorithms for solving the
TE problem in DCNs. We show how the heuristics of two single objec-
tive LSs can be included into the search process of a bi-objective LS.
We also describe how we represent, update and evaluate the outcomes
of the bi-objective algorithm. Different assessment metrics for multi-
objective algorithms are adapted for evaluating the overall performance
of our LS approaches.

6.1 Introduction

Solving the TE problem in large Ethernet networks can be defined as
the optimization of the network quality of service (QoS) based on many
evaluation metrics, such as link utilization, link delay, sum load, energy
saving, number of used links, network convergence, etc . . . It is impos-
sible to optimize all these metrics at the same time because an improve-
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ment in one metric can degrade other metrics. In practice, network op-
erators would like to achieve the best network performance based on a
compromise among a given set of metrics. Multi-objective optimization
[YST85] is recommended for solving this kind of TE problem, where
each objective is related to one metric. Solving the single objective
problem is already very complex, as the problem is NP-hard. Thus, we
focus on approximate methods based on local search.

In this chapter, we extend the TE problem defined in Chapter 4 but
with two bi-objective optimization problems. The first one is the mini-
mization of the maximal link utilization and the sum load. The second
is the minimization of the maximal link utilization and the number of
used links. The maximal link utilization appears in both problems be-
cause it is the essential metric for assessing the QoS of a TE technique.
Our contribution is mainly focused on the design, development, anal-
ysis, and evaluation of multi-objective methods for the TE problem in
data centers.

Related Work
Relating to the multi-objective TE, [HZC06] took into account link
load balancing and admission fairness. The framework proposed in
[LYD+03] considered both network throughput and delay. Recently,
[dSS07] aimed at minimizing the n worst link loads (with n ranging up
to the total number of network links) and the average link load in the net-
work. However, the final output of these approaches is a unique solution
where the second metric is only considered as a soft constraint or a lex-
icographical objective. In practice, the outcome of multi-objective al-
gorithms is often a set of non-dominated solutions called a Pareto front
[YST85] (see Section 2.5.1 in Chapter 2). In this chapter, we propose
two bi-objective algorithms that take into account the minimization of
the maximal link utilization, sum load and number of used links. Our
bi-objective algorithms aim to provide good Pareto fronts instead of a
single solution as in the state-of-the-art approaches.

It is difficult to define a reliable and convincing method to validate
a multi-objective algorithm that deals with an NP-hard problem without
the reference of a global Pareto front (optimal solution in case of multi-
objective optimization). Many assessment metrics for evaluating the
quality of a Pareto front have been presented, such as Purity and Spread
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Metric in [CMVV11], Hypervolume in [ZT98], and Binary ε-indicator
in [ZTL+03]. The drawback of these metrics is that each of them is not
strong enough to evaluate the overall performance of multi-objective
algorithms for TE in DCNs. For instance, the Purity and Binary ε-
indicator metrics cannot guarantee the quality of a considered algorithm
if its Pareto front contains few solutions. The Hypervolume and Spread
Metric need a credible method for finding good reference points. In this
work, we introduce a new strong evalution method using five different
assessment metrics (described in Section 6.4.1) for validating the Pareto
front given by bi-objective algorithms.

6.2 Problem Statement
As in the previous chapters, we model this TE problem as a graph prob-
lem with:

• Undirected graph G = (N,E) where N is the set of switches and
E is the set of links.

• BW - the matrix of link bandwidths.

• V = {V1, V2, . . . , Vk} - the set of k given VLANs in the network,
with Vr = (Nr, Er)(Nr ⊆ N , Er = {(i, j) ∈ E|i, j ∈ Vr},
1 ≤ r ≤ k).

• TD = {TD1, TD2, . . . , TDk} - the set of k traffic demand ma-
trices where TDr[i, j] represents the traffic that switch i sends to
switch j in VLAN Vr (1 ≤ r ≤ k; i, j ∈ Vr).

• W = {W1,W2, . . . ,Wk} - the set of link cost matrices for the k
given VLANs.

• MSP (G, V,W ) - the set of k spanning trees SP1(G, V1,W1),
SP2(G, V2,W2),. . . , SPk(G, Vk,Wk) obtained with the Multiple
Spanning Tree Protocol [Soc02] on graph G, with set of VLANs
V and set of link cost matrices W .

Obviously, the only set that can be configured to change the solution
(set of k spanning trees) is W . The link load L, the link utilization
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U , and the maximal link utilization Umax are defined as in the previous
chapters. We denote SumL the sum of all link loads in the network:
SumL =

∑
L[i, j] (i, j ∈ N).

Let #Links denote the number of used links in the network. A link
(i, j) is considered to be a used link if L[i, j] + L[j, i] > 0.

In this work, we perform three measures Umax, SumL and #Links
on each solution. Among these measures, the maximal link utilization
value Umax is the most important for evaluating a TE solution. The ul-
timate objective is to avoid congestion in the network (keep the value
of Umax under 100%). The second measure of the sum of all link loads
SumL is an important criterion for assessing the total traffic that flows
on each link of the network and also to assess the network delay in
some sense. The number of used links #Links is very significant in
terms of network backup in case of link failures and energy efficiency
in data centers [CSB+08]. It is impossible to obtain an optimal solu-
tion which minimizes Umax, SumL, and #Links at the same time. In
our experiments, an improvement in SumL or #Links often leads to a
degradation of Umax. In addition, taking simultaneously three objective
functions into account for a TE problem on large data centers is a very
complex task. For this reason, we divide these three objectives into two
pairs of objectives: (Umax , SumL) and (Umax , #Links).

The formulations of these two bi-objective optimizations are the fol-
lowing:

PROBLEM 4
Input: Graph G = (N,E), set of k VLANs V , bandwidth matrix BW ,
set of k traffic demand matrices TD
Output:

• Bi-objective 1 (Minimization of Umax and SumL): A Pareto front
PF(Umax,SumL), each solution in PF(Umax,SumL) is a set of k span-
ning trees minimizing the pair of objectives Umax and SumL.

• Bi-objective 2 (Minimization of Umax and #Links): A Pareto
front PF(Umax,#Links), each solution in PF(Umax,#Links) is a set
of k spanning trees minimizing the pair of objectives Umax and
#Links.
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• Given a set of k spanning trees SPi, determine a set of k cost
matrices Wi (1 ≤ i ≤ k) such that MSP (Wi) generates the
spanning tree SPi (straightforward by applying the technique pro-
posed in Section 3.4 in Chapter 3 for each VLAN in V ).

We describe in Section 6.4 the assessment methods for evaluating the
quality of the Pareto front obtained by our proposed LS algorithms (in
Section 6.3) for solving these two bi-objective problems.

6.3 Proposed Algorithms

In this work, we present five LS algorithms dealing with the TE prob-
lems described in Section 6.2. We first implement three LS algorithms
that take into account each of the three objectives to be minimized
(Umax, SumL and #Links). To obtain a bi-objective Pareto front with
these algorithms, we add an observation to store the non-dominated so-
lutions in their search process. Next, two bi-objective algorithms are
proposed based on the three single objective methods. We will re-
fer to the three single-objective minimization algorithms as MinUmax ,
MinSumL, and Min#Links; the two bi-objective algorithms will be re-
ferred to as Min(Umax,SumL) and Min(Umax,#Links).

6.3.1 Single-objective Approaches

Minimization of Umax
Our LSA4MSTP in Chapter 4 shows good perfomance with the min-
imization of Umax when it could reduce more than 50% the value of
Umax compared to the solution given by MSTP 802.1s for large DCNs
in our experiments.

Minimization of SumL
The Optimum Communication Spanning Tree Problem (OCT) [Hu74]
can be considered as a sub problem of this minimization of sum load in
network with one VLAN containing all its switches. OCT is a very
challenging combinatorial optimization problem and is proven to be
NP-hard even with a unit traffic demand matrix (TD[i, j] = 1,∀i 6= j).
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Our MinSumL LS is inspired by the MinUmax algorithm with the same
definitions of the search space and speeding up techniques.

The key design of each LS algorithm is the definition of the neigh-
borhood. MinSumL also relies on an edge exchange in each search
iteration to move from one solution to another. To find a heuristic for
this LS, we represent SumL by another formula:

SumL =
∑

i,j∈N L[i, j] =
∑

r∈[1..k]
i,j∈Vr

TDr[i, j] ∗ PathLengthr[i, j],

where k is the number of VLANs, and PathLengthr[i, j] is the number
of links on the path from i to j in the VLAN Vr.

With this new definition, we can state that the overall sum load
SumL can be changed by modifying the most contributing pair (s, t),
in which the sum load over path TDr[s, t] ∗PathLengthr[s, t] is large.
In each search iteration, we first choose a pair (s, t) from x pairs having
the largest sum load over path TDr[s, t] ∗ PathLengthr[s, t]. Next, we
apply a heuristic for selecting the edge to be removed on the path from
s to t and the edge to be added for minimizing the value of SumL. We
also use time as termination criterion, and a tabu list for this LS.

The speeding up techniques in MinUmax are reused to accelerate
the search. The main computation in this MinSumL is the computation
and comparing SumL in each search iteration. Obviously, the traffic
demand matrices are unchangeable, so the computation of path length
is the most important task. Fortunately, we can maintain incrementally
the path length between each pair of switches, relying on the "magic
cycle" described in Section 3.3.5 in Chapter 3.

When the traffic demand matrices are nearly uniform, the minimiza-
tion of SumL is equivalent to the minimization of the average path
length between each pair of switches in the network. For this reason, the
balance spanning tree construction of STP 802.1d [Soc98] with the root
in the center is also a very efficient method to reduce the overall sum
load. Thus, with the initial solution obtained with 802.1s, MinSumL
reduces by less than 1% the value of SumL, but compared to a random
initial solution, this percentage of reduction is about 12% in our exper-
iments.

Minimization of #Links
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For this Min#Links, we also iterate a move to a neighbor solution by
performing an edge exchange in each search iteration. Our heuristic for
defining the neighborhood for Min#Links is based on the following ob-
servation:
The number of used links by a set of k spanning trees can be reduced
only if in a spanning tree SPi, we replace an edge used only by SPi
by an edge used by another spanning tree SPj .
Let the numV LAN of an edge (s, t) be the number of VLANs that
have (s, t) in their spanning trees. From the initial solution obtained
with 802.1s, a set of removable edge candidatesRM is created from the
edges with the first x minimal values of numV LAN . In each search it-
eration, we randomly select an edge (s0, t0) inRM to be replaced by an
edge (sI , tI). We accept only a replacement that reduces or maintains
the current #Links. A random selection of (s0, t0) is performed after a
given number of non-improving iterations.

In our experiments, the solutions obtained byMin#Links can reduce
by about 16% the value of #Links compared to the solution given by
802.1s.

Solution quality
In Table 6.1, we measure the performance of each single objective algo-
rithm compared to the default configuration of the MSTP 802.1s stan-
dard. The data set for these experiments is described in Section 6.4.2.
In our tests, a triple measure of (Umax, SumL,#Links) is performed
on the best solution given by the three single objective LS. We assume
a value of 100% for the minimum of Umax, SumL, and #Links. If
we only consider the visible improvement in each single objective com-
pared to the MSTP 802.1s standard, then MinUmax seems to be the best
algorithm and MinSumL is possibly the worst one. However, in order
to reduce by 233.26% the value of Umax compared to 802.1s, MinUmax

uses 125.6% more links than Min#Links (about 500 more links in a
data center with 2000 links) and increases SumL by 120.25% more
than MinSumL. It is even worse for Min#Links where its best solution
increases Umax by 346.32% over that given by MinUmax , and SumL
by 131.69% compared to that obtained by MinSumL in order to reduce
118.51% #Links from the initial solution given by 802.1s. Hence, the
overall solution quality of an algorithm cannot be evaluated by its best
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Table 6.1: Single objective algorithm overall performance
%\Alg. 802.1s MinUmax MinSumL Min#Links

Umax 233.26 100 221.69 346.32
SumL 100.57 120.25 100 131.69

#Links 118.51 125.6 119.29 100

solution for a single objective.

6.3.2 Bi-objective Optimization

Of our three single objective LS, we found that MinUmax converges
much faster than MinSumL or Min#Links. Fig. 6.1 depicts the im-
provement of Umax over time of MinUmax for a data center with 564
switches and 16 VLANs with a time limit of 15 minutes. MinUmax re-
duces Umax by 52.2% compared to that of 802.1s (from 0.69 to 0.33)
after only 10s. With the same test, the improvement within the first 10
s of MinSumL is 3.6% and for Min#Links, 1.77%.

Figure 6.1: Improvement of Umax over execution time
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When we look at the number of improvements that each algorithm
makes within the first 10 s, MinUmax improved its objective value only
6 times while this number is 18 for MinSumL and 13 for Min#Links.
This convergence observation motivates our algorithmic approach to the
two bi-objective optimizations: Min(Umax,SumL) and Min(Umax,#Links).
Here, we do not consider the bi-objective (SumL,#Links) because
Umax is the essential metric in a TE problem and we cannot guaran-
tee for the network congestion avoidance with only an optimization of
(SumL,#Links).

Minimization of Umax and SumL
Algorithm 9 describes how the heuristics of two single objective LSs are
included in the search process of the bi-objective LS. In this case, we
combine MinUmax with MinSumL to define the Min(Umax,SumL) algo-
rithm. InMin(Umax,SumL), SumL is considered as Objective 1 to be reg-
ularly minimized (Line 8). The edgeExchangeHeuristicObj1(MSP,-
G, V ) returns a neighboring solution of the current solution MSP that
minimizes the SumL value by applying the edge exchange heuristic of
MinSumL. With its fast convergence, the edge exchange heuristics of
MinUmax are periodically applied in the method
edgeExchangeHeuristicObj2(MSP,G, V ) (Line 10) after each
#stepObj1 iterations to guide the search by minimizing the value of
Objective 2 – Umax. The #stepObj1 in Line 7 is an important parame-
ter for configuring to balance the convergence of Umax and SumL.

The Pareto front are updated with the non-dominated solutions found
during the search process (Line 19). We diversify the search with a ran-
dom edge replacement after a given number of non-improving search
iterations (Lines 13-16).

Minimization of Umax and #Links
The Min(Umax,#Links) LS is also defined by the pseudo code in Algo-
rithm 9. Here, #Links becomes Objective 1 and we apply theMinUmax

edge exchange heuristic to guide the search after every #stepObj1. A
random move is also applied to diversify the search when no new non-
dominated solutions are found in a given number of successive search
iterations.

Both Min(Umax,SumL) and Min(Umax,#Links) share the same design
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Algorithm 9: Bi-objective Algorithms
1 MSP = getInitialSolution(G, V ); /* by MSTP 802.1s */
2 PF = {MSP}; /* Insert MSP to Pareto front */
3 #iterations = 0;
4 #nonImprovements = 0;
5 while time_exec < time_windows do
6 #iterations = #iterations+ 1;
7 if #iterations % #stepObj1 6= 0 then
8 MSP = edgeExchangeHeuristicObj1(MSP,G, V ) ;
9 else

10 MSP = edgeExchangeHeuristicObj2(MSP,G, V ) ;
11 end
12 if MSP is dominated by PF then
13 #nonImprovements = #nonImprovements+ 1;
14 if #nonImprovements > #acceptIterations then
15 MSP = edgeExchangeRandom(MSP,G, V );
16 end
17 else
18 #nonImprovements = 0;
19 PF = updateParetoFront(PF,MSP );
20 end
21 end

described in Algorithm 9 but they are very different in their exploration
of the huge search space: they apply different definitions of neigh-
bors. The configuration of the two parameters #acceptIterations and
#stepObj1 is also different in each algorithm.

Finding Pareto front with single objective algorithms
In the assessment of our bi-objective optimization algorithms, we would
like to compare their performance with single objective algorithms. Such
a comparison is possible by extending our single objective algorithms
to compute a Pareto front. The idea is just to observe a second objective
and compute a Pareto front. In Algorithm 10, we present how a Pareto
front PF can be obtained with a single objective algorithm. Here, an
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improvement in the unique objective is normally stored (Line 8-10) but
a dominance check is also added in each search iteration to update the
Pareto front PF with the second objective (Line 12, 13). By adding this
observation, we have four more Pareto fronts in each experiment: two
PFs of (Umax, SumL) obtained withMinUmax andMinSumL; and two
PFs of (Umax, #Links) obtained with MinUmax and Min#Links.

Algorithm 10: Finding a Pareto front with a single objective al-
gorithm
1 MSP = getInitialSolution(G, V ); /* by MSTP 802.1s
standard */

2 PF = {MSP}; /* insert MSP to Pareto front */
3 MSP ∗ = MSP ; /* MSP* best solution wrt obj1

*/
4 bestObj1V alue = getObj1V alue(MSP );
5 while time_exec < time_windows do
6 MSP = edgeExchangeHeuristicObj1(MSP,G, V ) ;
7 obj1V alue = getObj1V alue(MSP );
8 if bestObj1V alue > obj1V alue then /* stock

improvement */
9 bestObj1Value=obj1Value;

10 MSP ∗ = MSP ;
11 end
12 if MSP is not dominated by PF then /* check

dominance to update PF */
13 PF = updateParetoFront(PF,MSP );
14 end
15 end

In the next section, we will use different assessment methods for
evaluating our proposed algorithms on different network topologies.

6.4 Performance Comparisons
This section is organized as follows. We first describe the evaluation
methods for multi-objective approaches in Section 6.4.1. Next, the net-
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work topologies and traffic demand matrices for our tests are presented
in Section 6.4.2 Last, our experimental results are discussed in Section
6.4.3.

6.4.1 Assessment Metrics for Multi-objective Algorithms
Many measurements can be made for evaluating the outcomes of multi-
objective algorithms. In this chapter, we consider five metrics to use
in comparing the performances of our local search approaches: Purity
[CMVV11], Spread Metric [CMVV11], Hypervolume [ZT98], Hyper-
volume-Star, and Binary ε-indicator [ZTL+03]. These five metrics are
very useful for assessing the quality of an approximation set or a Pareto
front. In this work, we denote by PFobt the Pareto front produced by
the considered algorithm and PFref the reference (or best-known) Pareto
front. PFref is the best Pareto front, combining the Pareto fronts PFobt

of all the considered algorithms. In this section, we assume without loss
of generality that all the multi-objective algorithms aim at solving the
minimization problem with two objectives.

Purity

The purity metric [CMVV11] measures the percentage of solutions of
PFobt that are both in PFobt and in PFref:

Purity = |PFobt
⋂
PFref|

|PFobt| ,

where |PFobt| is the number of solutions of PFobt and |PFobt
⋂
PFref|

is the number of solutions contained both in PFobt and in PFref.
Obviously, Purity ∈ [0, 1], Purity equals 0 when PFobt and PFref

do not share any common solution (all the solutions of PFobt are dom-
inated by some solutions of PFref), Purity equals 1 if PFobt is com-
pletely included in PFref (no other algorithm was able to compute a
solution dominating a solution of PFobt), and a large Purity means a
good multi-objective algorithm. This metric is significant when both
PFobt and PFref have many solutions. However, if PFobt = {s∗} and
s∗ ∈ PFref, then Purity = 1. In this case, we have no guarantee of the
quality of the considered algorithm.
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Spread Metric

The spread metric (Γ) [CMVV11] measures the maximum size of the
“holes" of a Pareto front. Suppose given PFobt = {s1, s2, .., sn} with
si = (fi,1, fi,2). We assume that the objective values are normalized and
are sorted in increasing order for objective 1 and in decreasing order for
objective 2. We consider two extreme points s0 and sn+1 of PFobt such
that

f0,1 ≤ f1,1 and f0,2 ≥ f1,2,
fn+1,1 ≥ fn,1 and fn+1,2 ≤ fn,2

The δ metric is defined by

δi,j = |fi,j − fi−1,j|, i ∈ [1..n+ 1], j ∈ [1..2]

where fi,j is the value of objective function j of solution si ∈ PFobt
⋃

{s0, sn+1}. The spread metric Γ is defined by

Γ = max{i ∈ [1..n+ 1], j ∈ [1..2]; δi,j}

Fig. 6.2b depicts an example of a Γ measurement with m = 3, Γ takes
the largest value δ4,1.
By this definition, PFobt is good if its maximal hole Γ is small. How-
ever, we found that PFobt1 could have a smaller Γ than PFobt2 even if
all the solutions of PFobt1 are dominated by some solutions of PFobt2.
Thus, we define a new spread metric Γ∗, measuring the spread (or cov-
erage) of PFobt over a global Pareto front PFref.
We use two extreme points s0 and sn+1 of PFref to compute both Γ(PFobt⋂
PFref) and Γ(PFref). The Γ∗ metric is defined by

Γ∗ = Γ(PFref)
Γ(PFobt

⋂
PFref)

If PFobt
⋂
PFref = ∅, then Γ∗ is undefined. So we set Γ∗ = 0 as the

worst case when PFobt does not contain any solution in PFref. With this
assumption, Γ∗ ∈ [0, 1]. Γ∗ equals 1 (ideal) if PFobt = PFref.

Finding Extreme Points for Γ∗

In [CMVV11], the authors proposed an experimental method for com-
puting the two extreme points for Γ by selecting the pair of objective
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values corresponding to the highest pairwise distance. This selection
must be performed on the non-dominated solution set over all runs in
order to obtain the two final extreme points. This method is expensive
and incompatible with the computation of our new metric Γ∗.
For the computation of Γ∗, we found that the two extreme points cannot
belong to PFobt or PFref. Let s0 = (f0,1, f0,2) and sn+1 = (fn+1,1, fn+1,2)
be two extreme points for PFref = {s1, s2, .., sn} with si = (fi,1, fi,2)
and n > 1. If n = 1, the extreme points do not need to be defined,
Γ∗ = 0 if PFobt

⋂
PFref = ∅ and Γ∗ = 1 if PFobt

⋂
PFref = PFref.

We assume that the objective values are normalized and are sorted in
increasing order for objective 1 and in decreasing order for objective
2. We put Dist1 = fn,1−f1,1

n−1
and Dist2 = f1,2−fn,2

n−1
. The extreme point

values f0,1, f0,2, fn+1,1 and fn+1,2 are defined by

f1,1 −Dist1 ≤ f0,1 ≤ f1,1 and f1,2 < f0,2 ≤ f1,2 +Dist2,
fn,1 < fn+1,1 ≤ fn,1 +Dist1 and fn,2 −Dist2 ≤ fn+1,2 ≤ fn,2 (1)

Our definition of f0,1, f0,2, fn+1,1 and fn+1,2 in (1) ensures that the dis-
tance between s0 - s1 and sn - sn+1 is always less than or equal Γ.
In addition, this definition of extreme points is more compatible with
Γ∗ because it allows us to better represent the contribution of PFobt

to PFref. In this work, we fix s0 = (f1,1, f1,2 + Dist2) and sn+1 =
(fn,1 +Dist1, fn,2).

Figure 6.2: Measurement methods
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Hypervolume

The hypervolume (HP) metric [ZT98] measures the “volume" of the
dominated region defined by a Pareto front and a reference point smax.
Suppose given PFobt = {s1, s2, .., sn} with si = (fi,1, fi,2). Let smax =
(fmax1 , fmax2 ) be a reference point such that fmax1 ≥ maxi∈[1..n]{fi,1}
and fmax2 ≥ maxi∈[1..n]{fi,2}. HP is defined as the surface area of the
union of all the rectangles defined by each of the solutions in PFobt and
the reference point smax.
Fig. 6.2a presents an example of the hypervolume computation of a
Pareto front obtained from a bi-objective algorithm. In this work, we
normalize the values to [0,1] for each objective (smax = (1, 1)). Thus,
HP ∈ [0, 1]. With HP, the quality of a Pareto front is evaluated by the
surface of the dominated region which it covers. A method with a large
HP is considered better than a method with a smaller HP. HP is useful
for comparing the performance of different algorithms solving a specific
multi-objective problem. However, with two different reference points,
a Pareto front PFobt1 could cover a bigger region than a Pareto front
PFobt2 even when the solutions of PFobt1 are completely dominated by
the solutions of PFobt2. So, a unique reference point is required when
comparing different Pareto fronts.

Finding the Reference Point smax
In [ZT98], the authors simply used the point (0,0) in the context of a
maximization problem as the reference point for computing the hyper-
volume HP of its Pareto front. However, if the considered Pareto fronts
are too far from (0,0), the “volume" of HP consists of a large surface of
the insignificant region that can make the HP metric inexact. We have
the same problem with the minimization problem if the reference point
is too far from the Pareto front considered.
For a Pareto front PFobt = {s1, s2, .., sn} with si = (fi,1, fi,2), we de-
fine its upper bound point s∗ = (f ∗1 , f

∗
2 ) as

f ∗1 = fn,1 +Dist1, f ∗2 = f1,2 +Dist2, if n > 1,
f ∗1 = f1,1 + 1

2
.max(f1,1, f1,2), f ∗2 = f1,2 + 1

2
.max(f1,1, f1,2), if n = 1

(2)

Given m Pareto fronts to be compared PFobt1, PFobt2, ..., PFobtm, let
s∗i = (f ∗i,1, f

∗
i,2) be the upper bound point of PFobti. The unique refer-
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ence point smax = (fmax1 , fmax2 ) for computing the HP of these Pareto
fronts is defined by

fmax1 = maxi∈[1..m](f
∗
i,1) and fmax2 = maxi∈[1..m](f

∗
i,2)

Our definition of reference point for HP is based on the solution val-
ues of all the Pareto fronts considered. In (2), an additional distance is
added to the maximal values of each objective ensuring that s1 and sn
contribute to the HP of each Pareto front considered.

Hypervolume-Star

The hypervolume-star (HP ∗) metric is a combination of the purity and
the hypervolume metric. We introduce this new hypervolume metric to
disable the dependence of the purity on the number of solutions. We
define the HP ∗ metric of a Pareto front PFobt over a global Pareto front
PFref) by

HP ∗ = HP (PFobt
⋂
PFref)

HP (PFref)

We have HP ∗ ∈ [0, 1] because PFobt
⋂
PFref ⊆ PFref. HP ∗ measures

the contribution of PFobt in the hypervolume PFref. HP ∗ equals 0 if
PFobt

⋂
PFref = ∅ (PFobt and PFref do not share any common solu-

tion). HP ∗ equals 1 if PFobt
⋂
PFref = PFref (ideal when PFobt is the

global Pareto front PFref). In the computation of HP ∗, one should use
the same reference point smax for computing HP (PFobt

⋂
PFref) as for

HP (PFref).
For computing HP*, we only consider the subset PFobt

⋂
PFref of

PFref. Thus, the upper bound point s∗ref of PFref (computed by formula
(2)) is used as its reference point smax (smax = s∗ref ).

Binary ε-indicator

For a bi-objective minimization problem, we define when a solution
s1 = (f1,1, f1,2) ε− dominates a solution s2 = (f2,1, f2,2), denoted as
s1 �ε s2 as follows:

(s1 �ε s2)⇔ ∀i ∈ [1..2] : fi,1 ≤ ε.fi,2
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The ε-indicator I(PFobt, PFref) is the minimum factor ε such that for
any solution s2 in PFref there exist at least one solution s1 in PFobt that
is not worse by a factor ε in all objectives [ZTL+03].

I(PFobt, PFref) = infε∈R{∀s2 ∈ PFref,∃s1 ∈ PFobt : s1 �ε s2}

We have I(PFobt, PFref) ∈ ]0, 1]. The ε-indicator I(PFref, PFobt) com-
pares the distance of PFobt with PFref. With this metric, when com-
paring with PFref, the ideal value is I(PFref, PFobt) = 1. This occurs
when PFobt ⊆ PFref: none of the solutions of PFobt is dominated by
a solution of PFref. All of the solutions of PFobt are thus in the global
Pareto front PFref. As to the purity, the limitation of this measure is that
it does not consider the number of solutions of PFobt. If PFobt = {s∗}
and s∗ ∈ PFref, then I(PFref, PFobt) = 1 although one cannot thus
assess the quality of PFobt.

6.4.2 Data Set Composition
We use the same seven data center topologies as described in Chapter
5 for testing our algorithms (see Table 6.2 with two VLAN generation
types Geographic (Geo.) and Random (Ran.), 16 VLANs and the near-
uniform traffic demand matrices for every topology type in our experi-
ments. These data sets are available online in [HDB12]. The time limit
for running our algorithms was fixed to 30 minutes for all the network
topologies considered.

Table 6.2: Data Set Composition
Size\Type PR Geo\Ran CL Geo\Ran FT Ran PL Ran. ET Ran

Num. Nodes 242 564 320 313 200
Num. Links 549 2024 2048 602 398

6.4.3 Results and Evaluation
In this section, the Pareto fronts obtained with our five proposed LS al-
gorithms in Section 6.3 are evaluated on the same data sets (Table 6.2).
For each bi-objective problem, PFref is the Pareto front which is the
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union of all the solutions produced by all the algorithms considered. In
each test, the Pareto fronts PFobt obtained by MinUmax , MinSumL, and
Min(Umax,SumL) are compared in the bi-objective 1 problem: minimiza-
tion of Umax and SumL. In the same manner, the Pareto fronts PFobt

obtained by MinUmax , Min#Links, and Min(Umax,#Links) are evaluated
in the bi-objective 2 problem: minimization of Umax and #Links.

In this section, we assume without loss of generality that all the
objective values are normalized to [0,1]. Thus, in each test, the extreme
point 1 is s0(0, 1), the extreme point 2 is sn+1(1, 0) and the reference
point is smax(1, 1). Each Pareto front is assessed by the five metrics
described in Section 6.1: Purity, Hypervolume (HP), Hypervolum-Star
(HP*), Binary ε-indicator (I), and Spread Metric (Γ∗). The values of
each metric are in [0,1], and the value 0 is the worst and 1 is the ideal.

Our detailed results for the seven network topologies in Table 6.2
are presented in Tables C.1 to C.14 (see Appendix ) with these five
assessment metrics. Each table describes the evaluation for one bi-
objective problem (Umax, SumL) or (Umax,#Links) on a given test.
Table 6.3 represents the overall performance for the bi-objective prob-
lem 1 (Umax, SumL) by computing the average value of each metric
from the seven tables for (Umax, SumL). Table 6.4 provides the same
computations for (Umax,#Links). In our experiments, we also report
the number of solutions in each Pareto front (#Sol) as a reference as-
sessment metric for better understanding the outcomes given by the five
principal metrics.

Bi-objective problem 1: Minimization of Umax and SumL
In Table 6.3, we can see that none of the five metrics of MinUmax is
the best, although its PFobt has more than 24 solutions. MinSumL has
the best value for the metrics Purity and I. However, these metrics are
significant only when PFobt has many solutions but PFobt of MinSumL
has on average only 1.5 solutions. Min(Umax,SumL) has the best value
for three metrics: HP, HP*, and Γ∗, and its values for Purity and I
are very close to those of MinSumL, with more than 12 solutions in its
PFobt. As expected, Min(Umax,SumL) is the best method for solving this
bi-objective problem.

Fig. 6.3 depicts the assessment metrics for (Umax, SumL) on an
expanded tree topology. None of the five metrics of MinUmax is the
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Table 6.3: Performance Comparison Umax, SumL
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 24.3 0.2884 0.6788 0.3971 0.8830 0.4986
Min(Umax,SumL) 12.7 0.8946 0.8683 0.9158 0.9846 0.6640
MinSumL 1.5 0.8961 0.2075 0.1650 0.9884 0.3883

best because most of its solutions in PFref have a large value for SumL,
and its PFobt is mainly contained in the dominated region (Purity =
0.2884). Thus, the surface of the dominated region covered byMinUmax

measured with HP* (in Fig. 6.3b) is much smaller than this surface
measured with HP (in Fig. 6.3a).

In Fig. 6.3, we can state that MinSumL has the best value for the
metrics Purity and I, because its PFobt has only one solution, which
is contained in PFref. The PFobt of Min(Umax,SumL) is completely in-
cluded in the center of PFref and it dominates many solutions ofMinUmax .
Its Purity, 0.8946, is very large compared to this value for MinUmax .
However,MinUmax andMinSumL are clearly better thanMin(Umax,SumL)

from the single objective performance.
The Min(Umax,SumL) LS provides a good Pareto front by ensuring a

small value of SumL with a significant decrease of Umax compared to
the solution obtained by 802.1s (see Table 6.3). Futhermore, the PFref

obtained by these three LSs offers a wide range of solutions for solving
this TE problem.

Bi-objective problem 2: Minimization of Umax and #Links
As expected, Min(Umax,#Links) is the best method when it has the best
value for all the five assessment metrics (see Table 6.4). Min(Umax,#Links)

has a Purity of 0.9964 much larger than the Purity of MinUmax or
Min#Links.

Fig. 6.4 depicts a measurement for (Umax,#Links) on a cloud data
center topology with geographic VLAN generation. In this test, all the
non-dominated solutions given by Min(Umax,#Links) can be found at the
center of PFref. As shown in Fig. 6.4b, the hypervolume covered by
Min(Umax,#Links) is the largest. We can state that by keeping a small
value of Umax and #Links for all its solutions, Min(Umax,#Links) pro-



118 Chapter 6. Multi-objective Traffic Engineering

vides good choices for network operators. In Fig 6.4, Min(Umax,#Links)

can reduce the value of Umax from 0.7 to 0.3 using only 720 links while
MinUmax needs 750 links to approximate Umax. In addition, we can
easily choose a solution in PFobt of Min(Umax,#Links) with a reasonable
Umax (less than 0.5) which uses a small number of links in the network.

Table 6.4: Performance Comparison Umax, #Links
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 18.3 0.6611 0.2667 0.3515 0.8729 0.5812
Min(Umax,#Links) 11.8 0.9964 0.6972 0.9255 0.9992 0.7602
Min#Links 7.0 0.3412 0.3090 0.1356 0.8745 0.5279

In this test, compared to the solution obtained with 802.1s MSTP
standard,Min#Links can reduce about 80 links whileMinUmax markedly
reduces the value of Umax: from 0.7 to about 0.2. Especially, the PFref

is composed of the important contributions of all the PFobt obtained
with these three LSs.

6.5 Conclusion
In this chapter, we turned to the multi-objective TE problem in DCNs.
We proposed a new design of multi-objective algorithms, based on LS.
Our algorithms show good performance for large data centers by inte-
grating the heuristics of each single objective into the search process.

There are few existing assessment methods for evaluating the per-
formance of multi-objective TE techniques in DCNs. The state of the art
approaches often evaluate their outcomes based on each single objective
observation. In this work, we introduced a strong assessment method
for evaluating the multi-objective overall performance with three ob-
jectives: minimization of maximal link utilization Umax, sum load and
number of used links. The non-dominated set of solutions (Pareto front)
obtained by our bi-objective algorithms offers the network operators a
wide range of good solutions for solving this TE problem in DCNs.

We think that it is interesting to adapt our design of multiple-objective
algorithms for three or more objectives intead of two objectives. How-
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ever, the real challenge is to produce a credible method for evaluating
the algorithms with more than two objectives.
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7
CONCLUSION

This thesis focussed on providing efficient TE techniques for improving
the perfomance of large Ethernet networks, such as those found in data
centers. Our approximate schemes are proposed for the TE problems
considering different objectives in the networks that use STP 802.1d
or MSTP 802.1s where network or each of its VLANs is reduced into a
single spanning tree. We proved that our approximate approaches based
on Local Search are very efficient for solving the NP-hard TE problems
in the large networks. We summarize the main achievement of the thesis
in Section 7.1. The limitations of our works and the possible directions
for future work are presented in Section 7.2.

7.1 Results

In this thesis, four TE problems in large Ethernet networks have been
addressed in each chapter by an increasing order of difficulty and of
complexity.

As a first approach, chapter 3 coped with the minimization of the
maximal link utilizationUmax in Ethernet networks containing one span-
ning tree. Our TE technique based on local search aims to find the best
(possible) spanning tree that minimizes congestion for a given traffic
matrix. From this chapter, we learned that the choice of directly opti-
mizing spanning trees instead of link weights reduces considerably the
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size of the search space. We proposed a new efficient incremental tech-
nique called “magic cyle" that allows to speed up the computation of
link loads after each link replacement. This incremental technique was
used by all our LS algorithms and we show that it improves both com-
plexity and efficiency in the design and the implementation of our LS
algorithms. Our LS algorithm shows good results with different kinds
of traffic demand matrices and network topologies.

The promising results obtained in chapter 3 motivated us to deal
with the minimization of Umax in the DCNs where the MSTP 802.1s
is deployed. In Chapter 4, we extended the LS algorithm proposed in
Chapter 3 with new heuristics to cope with large DCNs containing many
VLANs. Current modern topologies for large data centers containing up
to 10K servers were considered for evaluating our LS algorithm. Also,
the SNMP data of a private enterprise in the US has been used to simu-
late the traffic demand matrices in DCNs. The solutions obtained with
our LS algorithm could reduce up to 50% Umax compared with the solu-
tion obtained by 802.1s for the DCNs with 16 VLANs. What we learned
from this study is that our LS algorithm for minimizing Umax converges
very fast since it can approach the best (found) solution within the first
10s of execution time in many tests.

Chapter 5 introduced a bi-objective TE problem with the minimiza-
tion of the worst-case maximal link utilization (the worst Umax) and of
the service disruption in case of link failures (the number of link re-
placements in each spanning tree after the failure of a given link). In
this chapter, besides the traditional objective of minimizing Umax, our
heuristic algorithm provides an efficient link cost configuration tech-
nique for each VLAN in the network that can give MSTP an auto-
configurable solution with one unique link replacement in each span-
ning tree after a link failure. Thanks to this link cost configuration tech-
nique, the second objective was thus considered as a hard constraint in
the minimization of the worst Umax. Hence, the solution obtained with
our heuristic algorithm guarantees the optimum for the minimization of
the service disruption and also shows good performance for minimizing
the worst-case maximal link utilization in the network in case of link
failures.

The network quality of service is normally expressed by many dif-
ferent objectives to be optimized. Chapter 6 turned to the multi-objective
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TE problem in DCNs. We proposed a new design of multi-objective LS
algorithms. Our algorithms show good performance for large data cen-
ters by integrating the heuristics of each single objective into the search
process. There are few existing assessment methods for evaluating the
performance of multi-objective TE techniques in DCNs. The state of
the art approaches often evaluate their outcomes based on each single
objective observation. In this chapter, we introduced a strong assess-
ment method for evaluating the multi-objective overall performance.
The non-dominated set of solutions (Pareto front) obtained by our bi-
objective algorithms offers the network operators a wide range of good
solutions for solving this TE problem in DCNs. Our main contribution
in this chapter is that we solved a TE problem in DCNs by following the
traditional methodology for multi-objective optimization from problem
formulation, algorithm design and development to analysis and evalua-
tion.

Finally, our approximate methods show good performance and strong
independency by approaching different aspects of the TE problems in
large Ethernet networks with large intances of network topologies and
traffic demand matrices.

7.2 Future Work

Nothing is perfect. The main limitation of our approaches in this thesis
is that we dealt with off-line TE problems on given static traffic de-
mand matrices. The second limitation is the lack of different switching
protocols other than Spanning Tree Protocol and its variants for DCNs.
These limitations are due to the academic nature of the research com-
munity because of the lack of a real world network for performing the
experiments. However, from these non-technical limitations, we would
like to state some interesting future research possibilities:

• Multiple Traffic Demand Matrices: It would be interesting to
extend our local search approaches for solving the same TE prob-
lems but with multiple traffic demand matrices instead of one
traffic demand matrix for the whole network in case of network
with STP and for each VLAN in case of network containing many
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VLANs. With the good results obtained in this thesis, we believe
that this reasearch direction is promising.

• Mutiple Link Failures: In Chapter 5, we considered only each
single link failure for a set of given crucial links in the network.
But what if more than one link failure occur in the network at
a moment? This is also an interesting possibility that could be
taken into account for this TE problem.

• More Objectives: From the multi-objective viewpoint, many other
objectives could be considered for optimizing the performance of
the DCNs. We can cite here energy efficiency [CSB+08], network
convergence, network delay, etc... In this thesis, we proposed
only the approaches for bi-objective TE, but a problem with three
or more objectives should also be considered in order to obtain
better solutions for improving the performance of the DCNs. Ob-
viously, these problems are more challenging but closer to the
need of network operators.

• Online TE: The optimization techniques must dynamically adapt
the routing when traffic changes in real-time [KKDC05]. This
kind of TE problems requires a fast and efficient optimization
method, and also credible methods for analysing and preventing
the traffic in the networks.

• OpenFlow: The emergence of OpenFlow (flow-based) switches
[MAB+08] enables DCNs to support more flexible policies rather
than standard switching protocols. With OpenFlow switches, we
can apply more complex and more intelligent (i.e. multi-path in-
stead of unique shortest cost path with spanning tree) switching
schemes on each switch for improving the performance of DCNs.

• TRILL: Recently, the TRILL [PED+11] (TRansparent Intercon-
nection of Lots of Links) protocol proposed by R. Perlman allows
the ease of configuration of Ethernet while benefitting from the
routing techniques provided at Layer 3 with the ability of mul-
ticast and broadcast. Although, this protocol still needs time to
convince the network operators to replace the Spanning Tree Pro-
tocols but it is also a potential direction for the future research.



A
CYCLE LOAD UPDATE PROOF

This appendix presents the details of our proof that:
When an edge (sO, tO) is replaced by another edge (sI , tI) in a span-
ning tree SP , the load changes only on the cycle C created by adding
edge (sI , tI) to SP .

Let C = {C1, C2, .., Cq} be the cycle created by adding eI into the
spanning tree with eO = (Co, Co+1), eI = (Cq, C1) (1 ≤ o < q) (see
Fig. A.1). We call TI the isolated subtree (excluding root) after re-
moving eO from SP (see Fig. A.2). We denote s the source node, d
the destination node and TD[s, d] the traffic that s wants to send to d.
For each pair (s, d) such that TD[s, d] > 0, we will prove that the load
changes on a link e of the path from s to d if and only if e ∈ C.

PROOF

Case 1: s, d ∈ TI or s, d ∈ SP \ TI
Obviously, the path from s to d is unchanged after removing eO and
adding eI . Thus the load does not change on the path from s to d.

Case 2: s ∈ SP \ TI and d ∈ TI
2.1. s ∈ SP \ TI and s ∈ subtree dominated by C1

We call a vertex u dominates a vertex v in spanning tree SP if u is one
of the vertices in the path from v to root.
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Figure A.1: Cycle created by an edge replacement

Because s ∈ SP \TI and s ∈ subtree dominated by C1, we assume that
Cx is the vertex on the cycle C that is closest to s and Cx dominates s
(see Fig. A.3). We call Cy the vertex on the cycle C that is closest to d
and Cy dominates d.
The old path from s to d before replacing eO by eI (the red path in Fig
A.3)

s→ . . .→ Cx → . . .→ eO(Co → Co+1)→ . . .→ Cy → . . .→ d

The new path from s to d after replacing eO by eI (the blue path in Fig
A.3)

s→ . . .→ Cx → . . .→ eI(C1 → Cq)→ . . .→ Cy → . . .→ d

To update the load for sending TD[s, d] units of traffic from s to d, we
can state that the two sub paths s → . . . → Cx and Cy → . . . → d
do not change before and after replacing eO by eI . We must remove
TD[s, d] units of traffic from the load of each link in Cx → . . . →
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Figure A.2: Isolated tree after removing edge

eO(Co → Co+1) → . . . → Cy (except eO, its load becomes 0) and add
TD[s, d] units of traffic to each link in Cx → . . . → eI(C1 → Cq) →
. . . → Cy. Obviously, all the links in these two sub paths belong to the
cycle C by adding eI to SP . Hence, in this case, the load changes only
on the cycle C.

2.2. s ∈ SP \ TI and s /∈ subtree dominated by C1

In this case, the old path from s to d before replacing eO by eI (the red
path in Fig A.4)

s→ . . .→ C1 → . . .→ eO(Co → Co+1)→ . . .→ Cy → . . .→ d

The new path from s to d after replacing eO by eI (the blue path in Fig
A.4)

s→ . . .→ eI(C1 → Cq)→ . . .→ Cy → . . .→ d

Like in Case 2.1, the two sub paths s → . . . → C1 and Cy → . . . → d
do not change before and after replacing eO by eI . Thus, we must re-
move TD[s, d] units of traffic from the load of each link in C1 → . . .→
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Figure A.3: s ∈ SP \ TI and s ∈ subtree dominated by C1

eO(Co → Co+1) → . . . → Cy (except eO, its load becomes 0) and add
TD[s, d] units of traffic to each link in eI(C1 → Cq) → . . . → Cy. All
these links also belong to the cycle C by adding eI to SP . So the load
changes only on the cycle C.

Case 3: s ∈ TI and d ∈ SP \ TI
Same proof as in Case 2 because in the spanning tree the path from s to
d is unique and contains the same links as the path from d to s.
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Figure A.4: s ∈ SP \ TI and s /∈ subtree dominated by C1





B
LINK COST UPDATE PROOF

This appendix presents the details of our proof of Property 1 in Chapter
5:
Assume that eI is chosen as the back-up link of eO as depicted in Fig.
B.1. Let C = {C1, C2, .., Cq} be the switches on the cycle created by
adding eI into the spanning tree with eO = (Co, Co+1), eI = (Cq, C1)
(1 ≤ o < q).

If eI = (Cq, C1) is chosen as the back-up link for eO = (Co, Co+1)
then each link (Co+1, Co+2), ..., (Cq−1, Cq) (the red part of the cycle in
Fig. B.1) must set eI as the back-up link to guarantee the minimum link
replacement for its failure.

PROOF

Because eI is the back-up link for the failure of eO, then the unique sec-
ond shortest path to root from each vertex in Co+1, Co+2, ..., Cq−1, Cq
must pass via eI to ensure that when the failure of eO occurs, the new
spanning tree genrated by MSTP is created by replacing eO by eI . (*)
For each link e = (Ci, Ci+1) with o+ 1 ≤ i < q. We assume that e use
a link e′ as its back-up link (e′ 6= eI). Thus the unique second short-
est path to root from Ci+1 must pass via e′ and not via eI because only
one link replacement is allowed. However, Ci+1 is one of the vertex in
Co+1, Co+2, ..., Cq−1, Cq. This is contradictory to the constraint in (*).
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Hence, the Property 1 in Chapter 5 is proved.

Figure B.1: Link Cost Update



C
MULTI-OBJECTIVE TE

RESULT DETAILS

This appendix presents the detail results of our algorithms in Chapter 6.

Table C.1: Performance Comparison Umax, SumL - Cloud Geographic
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 23.2 0.0690 0.7459 0.1313 0.8733 0.5612
Min(Umax,SumL) 12 0.9417 0.9722 0.9773 0.9995 0.8704
MinSumL 1 1 0.0852 0.0965 1 0.5109

Table C.2: Performance Comparison Umax, #Links - Cloud Geo-
graphic

PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 24.6 0.6016 0.4101 0.5117 0.9036 0.4910
Min(Umax,#Links) 16 1 0.6458 0.9179 1 0.7212
Min#Links 6.4 0.5313 0.2006 0.1614 0.9426 0.4408
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Table C.3: Performance Comparison Umax, SumL - Cloud Random
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 19.1 0.0628 0.6376 0.1732 0.8721 0.4749
Min(Umax,SumL) 9 0.8778 0.9741 0.9475 0.9999 0.8603
MinSumL 1 1 0.1250 0.1608 1 0.4684

Table C.4: Performance Comparison Umax, #Links - Cloud Random
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 18.6 0.8065 0.3467 0.4602 0.9181 0.4357
Min(Umax,#Links) 17.3 0.9942 0.6744 0.9276 0.9992 0.6461
Min#Links 13.3 0.4361 0.4762 0.2547 0.8994 0.4142

Table C.5: Performance ComparisonUmax, SumL - Private Geographic
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 15.7 0.0701 0.6720 0.1048 0.8720 0.4289
Min(Umax,SumL) 16.6 0.9217 0.9858 0.9236 0.9811 0.7713
MinSumL 1.9 1 0.3826 0.3841 1 0.4544

Table C.6: Performance Comparison Umax, #Links - Private Geo-
graphic

PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 13.3 0.7368 0.3516 0.4340 0.9008 0.4376
Min(Umax,#Links) 16.3 0.9877 0.7514 0.9253 0.9981 0.6685
Min#Links 10.9 0.1743 0.4662 0.1507 0.8001 0.3642

Table C.7: Performance Comparison Umax, SumL - Private Random
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 18.3 0.0601 0.5252 0.1416 0.8846 0.4481
Min(Umax,SumL) 21.1 0.9384 0.9778 0.9694 0.9990 0.9521
MinSumL 1 1 0.0519 0.0782 1 0.4067
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Table C.8: Performance Comparison Umax, #Links - Private Random
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 16.3 0.7669 0.3356 0.4071 0.9048 0.4835
Min(Umax,#Links) 14.2 0.9930 0.7297 0.9407 0.9974 0.7609
Min#Links 9.8 0.2041 0.4296 0.1203 0.8962 0.4159

Table C.9: Performance Comparison Umax, SumL - Fat Tree
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 41.7 0.6595 0.8034 0.8424 0.9185 0.5236
Min(Umax,SumL) 15.2 0.8618 0.8011 0.9253 0.9711 0.3834
MinSumL 2.6 0.7308 0.3416 0.2261 0.9604 0.2354

Table C.10: Performance Comparison Umax, #Links - Fat Tree
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 43.7 0.4966 0.1335 0.2133 0.6338 0.7383
Min(Umax,#Links) 5.3 1 0.5568 0.9148 1 0.8538
Min#Links 4.2 0.9286 0.2790 0.1833 0.9730 0.6955

Table C.11: Performance Comparison Umax, SumL - PortLand
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 29.4 0.7211 0.7055 0.9064 0.9674 0.5559
Min(Umax,SumL) 7.6 0.7895 0.5674 0.7476 0.9918 0.2644
MinSumL 1 0.7000 0.0856 0.0347 0.9985 0.2102

Table C.12: Performance Comparison Umax, #Links - PortLand
PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 6.9 0.3043 0.2260 0.1909 0.9226 0.6181
Min(Umax,#Links) 7.3 1 0.8452 0.9707 1 0.8251
Min#Links 1.2 0 0.1136 0 0.8589 0.5907
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Table C.13: Performance Comparison Umax, SumL - Expanded Tree
200

PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 22.6 0.3761 0.6619 0.4800 0.7933 0.4978
Min(Umax,SumL) 7.3 0.9315 0.7997 0.9200 0.9494 0.5461
MinSumL 1.9 0.8421 0.3808 0.1747 0.9600 0.4324

Table C.14: Performance Comparison Umax, #Links - Expanded Tree
200

PF \Metric #Sol Purity HP HP* I Γ∗

MinUmax 4.7 0.9149 0.0631 0.2435 0.9263 0.8645
Min(Umax,#Links) 6.1 1 0.6770 0.8814 1 0.8457
Min#Links 3.5 0.1143 0.1976 0.0789 0.7512 0.7742
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