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Chapter 1

Introduction

Constraint Programming (CP) is the science and technology for dealing with
constraints. It is at the crossing of Artificial Intelligence (AI), Operations
Research (OR), Algorithmics and programming languages. One of the main
field in CP is that of solving constraint satisfaction problems (CSP) by
combining constraint propagation with search. A constraint satisfaction
problem is specified by a set of variables each with a set of possible values
called their domain and a set of constraints to be satisfied. An assignment
of a value from its domain to each variable is a solution to the CSP if it
satisfies all constraints.

To find exact solutions to CSPs, the search space is explored by inter-
leaving a domain filtering step with a choice step. The role of the filtering
phase also called constraint propagation is to reduce the search space by
identifying values which belong to no solution and can be safely removed
from a variable’s domain. The choice step splits the problem into two or
more easier subproblems. These steps are interleaved until the subproblems
are easy to solve. The shape of the search tree and the way it is explored
is under the control of the user which can choose which type of choices are
used and in which order the search tree is explored.

Higher Level Programming in CP Over the years, some works have
been dedicated towards providing higher level constructs to model and solve
constraint satisfaction problems within CP: global constraints, constraint
combinators, modeling languages and global variables.

Global constraints are constraint aggregating a common pattern of con-
straints and using a dedicated filtering algorithm for this conjunction of
simpler constraints. They ease the modeling process by providing a high-

10



CHAPTER 1. INTRODUCTION 11

level construct which can be applied to a wide range of problems. They also
speed-up the resolution by providing an efficient filtering algorithm which
outperforms the uninformed combination of the filtering algorithms of the
basic constraints.

Constraint combinators were presented in [34] and allowed the user to
declaratively specify higher level constraints by combining basic constraints
with disjunction, implication and cardinality operators.

Modeling languages such as OPL [120] allow to express CSPs and search
strategies using high-level algebraic and set notations which are then trans-
lated to a lower level constraint language and engine using integer variables
and constraints.

Finally, higher-level variable types such as sets [55] allow to model the
problem with higher level variables and constraints which are directly han-
dled by the solver without being translated to integers. This allows the
solver to better exploit the structure inherent to the variable type.

Graphs in Constraint Programming Graphs are used in several areas
of Constraint Programming. First, binary CSPs — CSPs whose constraints
involve two variables — have been represented as graphs called constraint
networks and these graphs have been used to study the properties of these
CSPs. These networks have also been used to describe global constraints as
networks of simple constraints in the global constraint catalog [3]. A generic
filtering algorithm for global constraints based on this graph representation
has also been introduced [5].

Graph problems have been modeled using integer CSPs. Several differ-
ent integer models have been used to represent graphs and several global
constraints have been designed to model graph properties.

Finally, global constraints such as the global cardinality constraint (GCC)
or the all different constraint (alldiff which holds if its arguments are pairwise
distinct) use graphs in their filtering algorithm.

These subjects and their close relation with graph intervals are presented
in more depth in section 3.6.

Contributions

e We introduce graph variables and basic constraints that open a high-
level declarative framework for expressing and solving graph based
CSPs.

e We show that this framework integrates with the former models and
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provides an high level interface to apply graph constraints on different
underlying graph models.

e We show that applications for graph intervals extend beyond graph
variables in CP. In particular, we show that classical filtering algo-
rithms for global constraints such as GCC or alldiff can be interpreted
as filtering algorithms for simple graph properties.

e The set of basic graph constraints is enriched with a set of global graph
constraints which model classical graph properties and relations such
as subgraph, connected or spanning tree. Filtering algorithms for these
constraints are designed, presented and implemented. We analyze,
integrate, extend, and implement the simple path [37, 21] and shorter
path [110, , 19] constraints.

e Two novel graph constraints for weighted spanning tree problems are
introduced'. Their filtering algorithms are based on state of the art
graph algorithmic components. They provide two compact modeling
tools which generalize the problems of minimum spanning tree verifi-
cation, minimum spanning tree sensitivity, robust spanning tree design
and inverse parameter optimization.

e We design, implement and evaluate a practical framework based on
the Gecode library. This proof of concept provides a new variable
type, reusable models for dealing with graphs and constraints over
these models and variable type. This software has been released as an
open-source contribution to Gecode.

e This implementation of CP(Graph) is applied to a constrained path
finding problem arising in Bioinformatics. Several experiments are
presented and discussed to evaluate this implementation of CP(Graph)
on top of Gecode and further developments are proposed.

Outline The next chapter is dedicated to background on graph theory
and constraint programming. We describe and formalize important aspects
of constraint programming such as the execution model which is assumed

! This work is joint work with Irit Katriel. It has been conducted over nearly a year
and is the result of several iterative refinements of the algorithms, proofs and presentation.
My personal contribution resides in the original idea for several of the algorithms, lemmas
and proofs; particularly for the MST constraint. We both contributed significantly to
every parts of this work.
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in the rest of the thesis. We also define some notions of graph theory which
are used in the rest of this thesis.

Chapter 3 describes the bases of the CP(Graph) computation domain.
The lattice structure of sets of graphs is described and used to define graph
intervals. We then present a small set of kernel constraints which connect
graphs with other computation domains of CP. This set of constraints was
designed as a compact set of constraints to be introduced along with graph
variables in order to allow the modeling of graph-based problems using graph
variables in CP. We illustrate this by using these constraints to express
higher-level graph constraints and classical graph problems. We also show
that some constraints cannot be decomposed into basic constraints in a
compact way.

The second part of this thesis concerns global graph constraints. In
Chapter 4, we describe a set of graph constraints for enforcing several graph
properties in a graph CSP. We present and prove consistency levels and
filtering algorithms for these constraints.

In Chapter 5, we present two novel global graph constraints for weighted
spanning trees: the minimum spanning tree constraint and the weight bounded
spanning tree constraint. Filtering algorithms are designed and their level
of consistency is proved.

In Chapter 6, we describe an implementation of the CP(Graph) compu-
tation domain as an extension to the Gecode library. We describe a basic
API for graph domains and show how graph models based on sets or integers
can be integrated in this model. We describe a graph variable type imple-
mentation and features to help develop graph constraints and graph CSPs.
We stress the integration of the CP(Graph) computation domain with other
domains.

In Chapter 7, we first present an application of CP(Graph) to constrained
path finding in biochemical networks. Another application to graph match-
ing by Deville et al. [30] is described. It consists in the use of a single
graph monomorphism constraint and graph variables to model problems
ranging from graph monomorphism to approximate subgraph isomorphism.
We then evaluate the Gecode implementation of the CP(Graph) computa-
tion domain. Some experiments are presented to compare the efficiency of
the different graph models for different classes of problems in Gecode. Two
other experiments on the connected constraint and the Knight’s tour high-
light the benefits of using global graph constraints. Another experiment
highlights some shortcomings of the chosen execution model when dealing
with many basic constraints over a graph variable instead of higher level
constraints such as those presented in Chapters 4 and 5. Optimizations and
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an adaptation of the execution model are sketched in this chapter too.
We finally conclude this thesis and discuss future works.

14



Chapter 2

Background

Before the presentation of the CP(Graph) computation domain in chapter 3,
we go through a few preliminary notions about constraint programming and
graph theory. The constraint programming section covers basic notions but
also the execution model, constraint services and notation which are used
in the rest of this thesis. The graph theory part defines notions which are
used to express graph based CSPs or design filtering algorithms for graph
constraints.

2.1 Constraint Programming

2.1.1 Constraint Satisfaction Problems

Let X = {X1,..., X} be a set of variables. Let U be the universal set of all
possible values. Each variable X € X" has a set of possible values D(X) C U
which can be assigned to the variable and which is called the domain of the
variable. In the rest of this section, we consider that the set X of variables
is enough for all CSPs.

An assignment s is the instantiation of each variable X € X to a single
value s(X): D(X) = {s(X)}. In this case, the variables are said to be
assigned or fixed. On the other hand, when the domain of a variable contains
more than one value, the variable is said to be unassigned or non-fized.

As the elements of 2/ — each possible set of values of 2/ — might require
large amounts of memory to represent, it can be more convenient to only
allow some specific sets of values (which are more compact to represent).
This was formalized as approzimate domains in [11].

A domain approzimation A is a subset of 24 which is closed under inter-
section and contains at least these elements: the empty domain (), a complete

15



CHAPTER 2. BACKGROUND 16

domain V' C U and singletons {v} for each value v in V' (these mandatory
elements constitute an unit approximate domain in [11]).

Using this notion of domain approximation, we define a store as an
element of A¥ where A is the domain approximation used in the CSP. A
store is a tuple of variable domains: A store D defines a domain D(X) for
each variable X of the CSP. A store also constitutes a set of assignments.

It is convenient to be able to denote the smallest approximate domain
enclosing any given set of values; The function apz 4 : 24 — A does it. This
function is also extended element-wise to stores: (2¢)¥ — Ak If D is a
store with domains in 2“ (no approximation, D € (2“)* ) then VX € X :
apra(D)(X) = apza(D(X)).

Example 2.1. For integers (Z), the enumerated domain is 2% denoting
all subsets of the set Z, and an integer variable X can have the following
domain D(X) = {—1,3,5}. A common domain approximation is the integer
intervals A = {[i..j]|i,7 € Z}'. The set {-1,3,5} is not part of the integer
intervals and cannot be the approximate domain of X if this approximation
is used. Instead, the smallest enclosing interval [—1..5] = apza({—1,3,5})
would be its domain D(X).

A CSP over the variable set X can be formalized as a pair (C, D) where
C is a set of constraints and D is a store.

Let C' denote a set of constraints ¢; each dealing with a subset scope(c;)
of the variables in X. A constraint can be viewed as a relation, or a set
of tuples of values which satisfy the constraint. As in [11], to simplify this
formal presentation, we consider that all constraints deal with the whole set
X of variables and can be considered as a set of valid assignments instead
of a set of tuples. Indeed, any constraint can be viewed as a constraint with
an extended scope X: if a variable is not part of the scope of the original
constraint, it can take any value. We write s € ¢ to state that s is an
assignment satisfying the constraint c.

An assignment s is a solution to the CSP if it satisfies all the constraints.
More formally, Ve € C : s € ¢. Or, equivalently, s € (NC'). We denote the
set of solutions of a CSP (C, D) by Sol(C, D); it is the set of assignments
among D which satisfies all the constraints: Sol(C, D) = (NC)N D

Two CSPs (C,D) and (C',D’) over the same set X of variables are
equivalent if their set of solutions is equal: Sol(C, D) = Sol(C',D").

A CSP (C, D) is failed if it has no solutions (Sol(C, D) = 0)). A common
case of failed CSP is when D(X) = ) for one variable X of the CSP.

i > g, [i.9] = 0. If i = 4, [i.5] = {i}.
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A constraint ¢ is entailed by the CSP (C, D) if it is a logical consequence
of the CSP: Sol(C,D) C c¢. Detecting entailment might be as hard as
solving the CSP. Another more common notion is that of entailment by the
store (called domain entailment in [$4]) : ¢ is entailed by the store D iff
Sol((, D) C c. In practice, it is not constraint entailment but propagator
entailment which is used; This notion is defined below.

2.1.2 Filtering Algorithms

Each constraint is associated with a filtering algorithm (also called propa-
gator) aiming at reducing the domain of the variables in its scope without
removing solutions. The process of reducing the domains is called filtering,
pruning or propagation. It can be formalized by a filtering function which
transforms a CSP into an equivalent CSP while reducing the domains.

Let (C,D) be a CSP over the set of variables X with a domain ap-
proximation A. A filtering function f € A¥ — A* must have the following
properties:

Property 2.2. [11] Let Dy and Dy be stores and let f denote a filtering
function associated with the constraint c. f must satisfy the following prop-
erties:

e Contractant: f(Dy) C D
e Monotone: D1 C Dy = f(D1) C f(D2)
e Correct: DyNe C f(Dy)

Example 2.3. Consider the constraint X; < X, with domains D(X;) =
[0..5] and D(X3) = [—2..3]. As no solution exists with X; > 3 or X5 <0, we
can filter the domains of the two variables to D(X;) = [0..2] and D(X3) =
[1..3]. This example of filtering is contractant and correct.

A filtering function f is entailed by the store D if every smaller store is a
fixed point of the function: VD' C D : f(D') = D’. Programs implementing
filtering functions are called propagators and entailment of the implemented
filtering function is also called propagator subsumption.

Local Consistency

In the previous example, any stronger filtering of the variable domains would
remove solutions to this constraint and would thus not be correct. This
filtering is optimal. The notion of optimal filtering ca be formalized in the
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following way: Let f. be a filtering function for constraint ¢ for a domain
approximation A. f. is optimal iff VD, f.(D) = apz a(Sol({c}, D)).

The amount of filtering done by a propagator can be characterized by
properties relating the set of solutions and the set of values in the domains.
Such a set of properties is called the level of local consistency of a CSP.
The two most used local consistency notions in CP are arc-consistency (also
called domain consistency) and bounds consistency (sometimes called inter-
val consistency and for which several distinct and incompatible definitions
have been presented [105]).

A CSP with enumerated domains is said to be generalized arc consis-
tent (GAC [11]) if for each constraint, each value of each variable domain
appears in at least one tuple of the constraint. In other words, a CSP is
generalized arc consistent if the store is a fixed point of an optimal filter-
ing function for each individual constraint. The term arc consistency comes
from the modeling of a binary CSP — a CSP containing only constraints on
two variables — as a graph. For CSPs containing N-ary constraints the terms
hyper-arc consistency, generalized arc consistency or domain consistency are
used instead. For unary constraints the term node-consistency is used.

Example 2.4. Consider the constraint X; = X9 —1 with domains D(X;) =
{0,1,7} and D(X3) = {1,4,8}. Computing arc consistent domains for this
constraint leads to D(X;) = {0,7} and D(X2) = {1, 8}.

Arc consistency can also be modeled as an optimization problem: Let
(C, D) denote a CSP, create another CSP (C’, D’) which contains the fol-
lowing additional Boolean variables B; ; with D'(B; ;) = [0, 1] for each pair
of variable i and value j. The set C’ of constraints of the new CSP contains
the additional constraints B; ; < X; = j which link these variables to the
original variables of the CSP. Computing arc consistent domains for (C, D)
then amounts to find the maximum value for each B; ; variable subject to
C’" and D'. For instance, if the solution to the problem of maximization of
variable Bj 7 for the CSP (C’,D’) is 0 then 7 must be excluded from the
domain of X in order for the CSP (C, D) to be arc consistent.

Another notion of local consistency, bound consistency for an arithmetic
constraint ¢ corresponds to the following property: for each variable X;, for
each value b in {min(D(X;)), max(D(X;))} there exists an real assignment
s, a solution to the continuous relaxation of ¢, with b = s(X;) and for each
other variable X, s(X;) € [min(D(X};)), max(D(Xj;)].

Example 2.5. Consider the same constraint X7 = X9 — 1 with the same
domains D(X;) = {0,1,7} and D(X32) = {1,4, 8}. This constraint is already
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bounds consistent. The min and max of both domains can be extended
to a real solution of the constraint. On the other hand, for a constraint
X7 = 2Xy, and the domains D(X;) = [0,7] and D(X2) = [1,8], bounds
consistent domains are respectively [1,4] and [2,8]. Indeed, value 1 for Xs
can be extended to a solution with X; = 0.5 but value 0 for X; cannot.
Hence the minimum of X; must be set to at least 1, excluding the solution
with X7 = 0.5. For the upper bound, the values 5, 6 and 7 of X7 correspond
to assignments outside the domain of X9 and must be removed.

2.1.3 Search and Execution Model

The domains of variables in a CSP define a search space, the space of all
potential assignments of values to variables. The goal is to find an assign-
ment satisfying all the constraints (or all of them or the best one according
to some optimization criterion). The process is called solving the CSP.

In global search, the CSP is solved by decomposing the problem into
smaller subproblems until the subproblems are solvable in a straightforward
manner. This process could explore the search space exhaustively. But as
the size of this space is exponential in the number of variables, only a small
part of it can be explored in practice. The reduction of domains done by
filtering algorithms shrinks the search space that needs to be explored while
guaranteeing that no solution is lost.

Execution Model

The general schema of the search algorithm is described in algorithm 1. It
maintains a list of available unexplored subproblems (called Fringe in the
algorithm), picks one and runs the constraint propagation step on it. Then,
if the space is not solved or failed, it applies a choice step to compute ad-
ditional subproblems (called alternatives). Notice that the way alternatives
are computed and the order in which they are explored is not specified by
this search skeleton. It is up to the user to choose an appropriate search
algorithm and heuristic.

In the constraint propagation step, filtering algorithms are run according
to algorithm 2 until the domains are reduced to a fixed point of all filtering
functions associated to the constraints of the CSP. This algorithm is taken
from [1 1] and is an adaptation of classical arc consistency algorithms such as
AC-3 [79]. Tt is the type of constraint propagation algorithm used in many
solvers.
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Data: (C,D) a CSP, F a set of filtering functions f, for each ¢ € C.
Let S = Sol(C, D) be the set of solutions to this CSP.
Result: S is returned
begin
Fringe — {(C, D)}
S—10
while Fringe # () do
pop (C', D) from Fringe
< Apply Constraint Propagation on (C’, D") >
if (C’, D) is solved then
S+— SuD
else if (C', D) is not failed then
Fringe «— Fringe U < Compute alternatives of
(c', D) >
end
end
end

Algorithm 1: Global Search Skeleton

Data: (C, D) a CSP, F a set of filtering functions f, for each ¢ € C.
Let S = Sol(C, D) be the set of solutions to this CSP.
Result: D is updated such that (C, D) is a CSP equivalent to the
original (S = Sol(C, D) after the update) and such that
each f. is at fixed point Ve € C': f.(D) = D.
begin
W —C
while W £ ) AVX € X : D(X) # 0 do
pop c from W
D' — D
D «— f(D)
if D # D’ then
W —— W U {c|3X € scope(c) N D(X) # D'(X)}
end
end
end

Algorithm 2: Simple Constraint Propagation Algorithm (adapted
from [11])
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Assumed Services

The implementation of CSPs is assumed to provide the following services:

e read/write access to the domain representation (D) of the variables.
The write operation is assumed to be contractant: only a smaller
domain can be reassigned to a variable.

e operators to manipulate domain representation (at least the compu-
tation of the intersection of two domains)

e the ability to add new constraints to the set of constraints.

The feature of removal of subsumed constraint propagators is not mandatory
but helpful and subsumption detection will be considered when designing
filtering algorithms. We do not use constraint rewriting operators [11] which
allow the replacement of a subset of the constraints of the CSP by another
set of constraints.

Notation

Syntactically, when we write
D(X1) «— D(X1) N D(X3) (2.1)

we mean that the N operation is applied to the current value of the domains
of variables X7 and X5 and that the result of this operation is assigned as the
new domain of X in the store. Also when referring to a domain abstraction
using intervals (e.g. intervals of integers, intervals of real values and set or
graph intervals) we use the following notation for the bounds: D(X;) for
the lower bound of the domain and respectively D(X;) for the upper bound;
D(X1) = [D(X1), D(X1)].

When a filtering rule must only be applied in some circumstances, we

use the following notation:
Guard

Rule

where Guard is a Boolean expression over the current value of the domains
and Rule is a filtering rule — a domain assignment such as the rule 2.1.

Search Heuristics

In the problem decomposition step, several alternatives are considered, each
consisting in adding a constraint to the CSP. For the search to be exhaustive,
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the disjunction of these choice constraints must be entailed by the constraint
store.

In practice, the constraints added are often simple constraints which only
affect the domains and need not be added to the set of constraints. There
can be any number of alternatives at each choice point. Three common
strategies are binary split (where the two alternatives are X; < a and X; >
a), enumeration (the two alternatives are X; = a and X; # a) or labeling
where each value of the domain of a variable is tried (the alternatives are
Xi =a, X; = b, ...). In these cases, the search tree is also determined
by the order of variables. For instance, it is possible to branch on values of
variable X7 then X5 or the other way around. At each choice point the value
ordering can be chosen too e.g. X1 = a or X7 = b could be tried first. This
choice of variable and value ordering can be done beforehand or dynamically
during the search. The latter alternative can take into account the current
state of the domains and constraints at each choice point.

When the shape of the search tree (i.e. the alternative computation
function) is determined, there remains to decide the way to explore this
search tree: It can be explored in any order. The most common order is
depth-first but other search strategies have been proposed such as A* [61] or
limited discrepancy search [62]. In the case of depth first search, the fringe
is implemented as a stack on which new alternatives are pushed and from
which the latest pushed alternative is popped for constraint propagation.

Note that it is not necessary to actually represent the CSPs contained
in the fringe in memory, it is only necessary to be able to reconstruct one
in order to be able to apply the constraint propagation on it.

2.1.4 Beyond Finite Domains

A computation domain is first determined by a type of values, e.g. integers,
sets, multisets or tuples. Then it is determined by a set of constraints needed
to express and solve problems with this computation domain. Finally, it is
determined by the domain abstraction: a practical model for representing
the variable domains.

The design of a computation domain needs to consider first a set of
mathematical properties of the values it models. These properties are ex-
ploited to design the domain abstraction and to design efficient constraint
propagators. As variable domains can be seen as a communication channel
between filtering algorithms, the domain abstraction characterizes the kind
of information that can transit in this channel and it must be designed to
provide useful information to the filtering algorithms.
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There are several reasons for adding new domains in CP. The first is
the need for an efficient handling of a class of problems which were either
not modelable or not easy to model without the new domain. The best
example is the continuous domain, the reals. The domain of a real variable
is an interval bounded by floats. To deal with undetermined real values, the
traditional calculus is extended to an interval calculus in which operators
deal with intervals instead of values. Constraints are built on these operators
and narrow domains while always enclosing the actual solutions. Branching
is done by splitting intervals.

In theory, for expressing any discrete domain, all we need is integer do-
mains (sets or graphs can be describe with Booleans; see section 3.2). But
in a practice, abstractions ease the design of smaller and more robust mod-
els. Another advantage is the possibility to tune the constraint solver to
use effectively the structure inherent to these higher level variables. Finally,
when designing filtering algorithms, high level abstractions ease the mathe-
matical reasoning and clarify the proofs of properties about these high-level
structures (see chapters 4 and 5).

Existing Domains

Apart from integers and Booleans (which are usually encoded as 0/1 in-
tegers), the most common discrete domain is sets. They have been intro-
duced by Gervet in [55] which integrated them in ECLIPSE under the name
CONJUNTO. They had been implemented in ILOG [90] and were later im-
plemented in Mozart [33]. In [55], the domain abstraction used for sets is
set intervals. Set intervals are intervals of the partial order defined by set
inclusion. As depicted in figure 2.1, set intervals are defined by two bounds:
the greatest lower bound (glb), the set of all elements which must belong to
the value of the set variable and the least upper bound (lub), the set of all
elements which can belong to the value of the set variable. Obviously, the
glb is part of the lub.

More formally, a set interval [sr, si7] defines the following (possibly empty)
set of sets : {s|s, € s C sy}. Set intervals define a domain abstraction as
they allow to represent single sets ([s, s]) and are closed under intersection
(s}, b1 (53, 2] = [s}, U3, sh .

The basic constraints over set variables and their filtering rules are de-
tailed below. We present the filtering rules for three representative con-
straints, the interested reader is referred to [55] for the filtering rules of
other constraints.

Interval S € [s1, s2] The set variable S is constrained to belong to the set
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------

Figure 2.1: A set interval defines a set of sets. The lub set sy defines the
set of all possible values and the glb set sy, defines the values known to be
included in every set. The set interval [{1,2},{1,2, 3,4}] represents the set
of sets {{1,2},{1,2,3},{1,2,4},{1,2,3,4}}.

interval [s1, s2] where s and sy are fixed sets. As the domain abstrac-
tion is a set interval, this constraint is directly encoded in the variable
domain (by intersecting the current interval domain [D(S), D(S)] of
the variable S with [s1, s2]). The constraint is then entailed.

Intersection S; = Sy N S3 This constraint links three set variables S, S
and S3 and holds if S; is the intersection of Sy and S3. Its optimal
filtering rules are the following:

1. The values which are for sure in Sy and S3 must be included in
S1
D(S1) «— D(51) U (D(S2) N D(S3))

2. The values which are for sure in S| must be included in S5

D(S2) «— D(S2) U D(S1)

3. The values which are definitely not in Ss or not in .S3 cannot
belong to 51

D(81) «— D(S1) N D(S2) N D(Ss)

4. The values which are in S3 for sure and which are certainly not
in S7 cannot belong to S

D(82) «— D(S2) \ (D(S3) \ D(S1))

5. The rules for updating D(S3) are symmetric to those for Ss.
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If one of these rules computes an empty domain, the constraint fails.
The propagator is entailed only when all domains are fixed. To make
an optimal filtering algorithm out of these rules, one has to apply
them until they reach a fixed point. It can be shown that a single
application of these updating rules in the order they are presented
(first prune lower bounds then prune upper bounds) leads to a fixed
point.

Union S; = 52U S5 This constraint links three set variables Sq, So and Ss
and holds if Sy is the union of Sy and Sj3.

Difference S; = Sy \ S3 This constraint links three set variables S, Sy and
S3 and holds if Sy is Sy minus Sj3.

Cardinality [ = #5 This constraint holds if the integer variable I is
equal to the cardinality of the set S. Its optimal filtering rules are the
following:

1. The values of I must be enclosed by the cardinality of the set
bounds

D(I) «— D(I) N [max(D(I), #D(S)), min(D(I), #D(S))]
2. If the cardinality is fixed and corresponds to one of the bounds
then the set is that bound:
D(I) = {i} N#D(S) =i

D(S) «— D(5)

D(I) = {i} N#D(S) =i
D(8) «— D(S)

These rules, applied in this order, compute a fixed point. The con-
straint is entailed when the variables are fixed.

Membership I € S, I ¢ S The first constraint holds if the value of the
integer variable I belongs to the set value of the set variable S. The
second is its negation. The filtering rules for the membership con-
straint are the following:

1. The values which are for sure not in S cannot be the value of I

D(I) «— D(I)n D(S)
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2. If I has a fixed value, this value must belong to .S

D(I) = {i}
D(S) — D(S) u{i}

The constraint is entailed if all possible values of I already belong to
S for sure: D(I) C D(S)

Multiple domain abstractions have been described for sets. Set cardinal-
ity (number of elements) also defines a partial order among sets and has been
used in conjunction with sets intervals in [2]. The total lexicographic order
has also been investigated with an hybrid lattice-lexicographic representa-
tion [104]. Recently, a domain abstraction based on the length-lexicographic
total order? has also been proposed in [56]. Finally, an enumerated domain
based on binary decision diagrams (BDD) has been used in [63].

Other domains such as multisets (bags) or sequences — strings, tuples,
lists — have also been proposed. In CLPS [77], sets, multisets and lists
domains are represented with an enumerated domain. Otherwise, they are
most of the time implemented as a vector of integer variables. Then, these
domains are characterized by a set of integer constraints with a semantic
dedicated to strings, list or multisets. For instance the period [10] constraint
is an integer constraint which holds when the list of integer variables in its
scope models a periodic list of values. The Same [J] constraint holds when
two lists of integer variables model the same multiset. In the same spirit, [13]
presents disjoint, partition and intersection constraints for multisets.

In chapter 3, we describe the graph intervals which have a lattice struc-
ture similar to that of sets.

Towards the Introduction of a Graph Domain

Graphs were already present in ALICE [76], a seminal constraint program-
ming system, with the constraints Hamiltonian path and circuit. A set of
predicates and rules to handle graphs in Constraint Handling Rules (CHR) [44]
is described in [39]. They have been mentioned as first class objects in CLP
as a special kind of relation in [53]. In that work, relations are finite sets of
pairs and graphs are modeled as relations between a set of nodes and itself.
The absence of nodes in that domain representation has some shortcom-
ings for the communication between constraints (see section 3.2.3). Path
variables were mentioned in [78] to solve a network design problem. We
presented the concept of graph domain variable in [29] and published it

2The order of words in a crossword dictionary
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in [35, 37]. The path variables of [78] became the digraph variables of ILOG
and were presented in [103].
Many practical problems can be modeled using graphs, and CP has

been applied to many such problems. For instance, vehicle routing [19], the
traveling salesman problem (TSP) [12, 22, 85], network design [7&, 1] and
bio-informatics [7, 50]. However these problems were modeled using integer

and Boolean variables. Many efforts have been spent on discovering and
implementing pruning rules for graph properties and many such rules have
been rediscovered over the years, mostly for paths and circuits. We believe
that one cause for this fact is the co-existence of several possible models
for representing a graph using integers, the absence of a thorough study of
graph constraints and of a rich collection of graph constraints in available
constraint solvers.

We show in this thesis how the introduction of a graph computation
domain can ease the development of such pruning rules, serve as a corpus of
such rules and present graph models, graph variables and filtering algorithms
for constraint programming over graphs.

2.1.5 Prerequisites and CSP Notation

In the rest of this thesis and for the CP(Graph) implementation, we assume
the availability of several constraints over Boolean, integer and set variables.
We also consider that Boolean variables are encoded as 0/1 integer variables.

Classical Constraints
We assume the availability of the following basic integer constraints:
e Iy =1 : equality
e [y £ I : difference
e [y < I : order
o Jo =11 + I5: sum
e [y =11 x Is: product

We assume the availability of a linear arithmetic constraint of the fol-
lowing form with b and @;(0 < i < k) a set of integer constants, and
Xi(0 <i < k) a set of integer variables.

Z aiXi < b

0<i<k
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We also use the alildiff constraint which holds if all its parameters are
pairwise distinct.
Classical Boolean constraints:

e By = —~B; the “not” relation.

e By = B1V Bs the “or” relation.

By = By A By the “and” relation.

By = B1 = B5 the “implication” relation.

By = B; & Bs the “equivalence” relation.
e By = B ¢ Bs the “XOR” relation.

Reified integer constraints (a reified constraint is obtained by identifying
the truth value of a constraint with a Boolean variable):

e B & (Iy = 1) : reified equal ((B, Iy, I1) can be assigned the values
(0,3,4) or (1, 3,3) for instance).

e B & (Ip < 1)) : reified no greater than.

The set constraints presented in the previous section and their reified
version are assumed to be available too.

CSP Notation

To alleviate the notation, we express the CSPs in a formal mathematical
syntax rather than a programming language syntax. The logic we use is a
subset of monadic second order logic. That logic allows quantification over
elements and sets of elements. The constraints are expressed by using either
constraint predicates or relational symbols. When the context allows no
ambiguity, we can use a relational symbol to denote a reified constraint. For
instance, we might use C to denote either the subset constraint over two
sets or its reification Subset(Sy, S2, B) which holds if B, a Boolean variable,
is equal to the truth value of the relation S; C Ss. In a CSP expression, all
free variables are existentially quantified. We use the symbol = to denote
a decomposition of the constraint on the left side into a conjunction of
constraints on the right side.

We naturally use the symbol V for universal quantification. As uni-
versal quantification is not supported in most CP frameworks, we give a
translation of this expression into two semantically equivalent models using
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constraints available in most of the frameworks. Let S be a set variable and
C' a constraint with an integer parameter x, or its decomposition in a logical
expression with a free variable z. We use the expression Vz € S : C(z) to
express that the constraint C' must hold for all elements in the set variable
S.

Two translations of this notation are presented, the first has a consis-
tency level higher than the second. The first translation uses reified con-
straints; these are constraints augmented with a Boolean parameter which
value is true if and only if the relation modeled by the constraint holds.
For instance, Xo <p X1) = Xo < X; < B. A filtering algorithm for a
constraint C' must be augmented with a filtering algorithm for the negation
of this constraint to obtain a reified propagator.

Our first translation of the notation Vx € S : C(z) amounts to posting,
for each z; € D(S), the constraint z; € S = C(x;) where = is the Boolean
implication constraint and € and C are reified. In a pseudo programming
language syntax, each of the constraints z; € S = C(z;) would be:

declare SetVar S

declare integer xi

forall xi in upper_bound_values(S):
new BooleanVar Bri, Bli
implies(Bli,Bri)
reified_is_in(xi,S,Bli)
reified_C(xi,Bri)

This translation is only possible if a reified version of the constraint exists
in the language or constraint library. Otherwise, an alternate translation
can be used: as soon as x; € S is known to be entailed, post the constraint

declare SetVar S
declare integer xi
forall xi in upper_bound_values(S):
new BooleanVar Bi
reified_is_in(xi,S,Bi)
as_soon_as(Bi,1):
post(C,xi)

While this second translation has the same semantics for fixed variables,
that is the same set of solutions, it does not provide the same amount of
filtering as the first translation which filters each element x; from D(S) when
it is known that C'(z;) does not hold.
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2.1.6 Constraint Programming Systems

Constraint logic programming, that is logic programming augmented with
syntactic constraints was first developed in Prolog IT [23] with disequations.
Finite domains [6] were introduced in the CHIP [33] constraint logic pro-
gramming system. Other Prolog systems such as GNU Prolog [31] and
ECLIPSE [124] were then developed. OPL [65] is the first modeling lan-
guage to combine high-level algebraic and set notations which are then
translated into a constraint program. The underlying constraint solver is
ILOG Solver [29].

Constraint solvers such as ILOG Solver provide a constraint program-
ming API for procedural languages such as C or C++. The language
Oz [113, 97] and its open-source implementation Mozart provide a mul-
tiparadigm framework in which, among others, the functional, concurrent
and logic programming paradigms can be combined with the concept of first-
class computation spaces to implement a constraint programming frame-
work [105]. The Gecode [18] constraint development environment is an
open-source C++ library. Its architecture is described in [106, | and
in section 6.1. The implementation of the CP(Graph) computation domain
on top of Gecode is described in chapter 6. A Mozart implementation of a
prototype of our computation domain was described in [30].
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2.2 Graph Theory

In this section we present graph theory notions which are necessary for the
understanding of the rest of this thesis. These notions are used extensively
in chapters 4 and 5 which deal with graph constraints. For chapter 3, which
introduces the CP(Graph) domain, only basic notions such as graph, path,
connected graph or tree are necessary. An index of these graph theory
definitions is available at the end of this thesis.

2.2.1 Graphs

A directed graph, denoted by G = (V, E) is defined as two sets: V' the set of
its vertices (or nodes) and E C (V' x V), the set of its edges (or arcs). Such
a directed graph is depicted in figure 2.2. For an edge (u,v), u is called the
source or tail of the edge and v is called the target or head of the edge.

a
@
b
C
O~lll-0
d

Figure 2.2: Directed graph. Edge (or arc) a is the pair of vertices (or nodes)
(2,2). Edge cis (3,4) and d is (4, 3).

On the other hand, an undirected graph is also denoted by G = (V, E)
but its edges are sets of two nodes: E C {{u,v}lu € VA,v € V Au # v}.
One is presented in figure 2.3.

Figure 2.3: Undirected graph. Edge a is {2,3} and b is {2,4}.

A symmetric directed graph is a graph in which (u,v) € E < (v,u) € E.
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Note that an undirected graphs corresponds to a unique symmetric directed
graph: Each edge {u,v} of the undirected graph corresponds to two edges
(u,v) and (v,u) of the directed graph.

The reverse of an edge (u,v) of a directed graph is the edge (v,u). The
reverse G’ of a directed graph G is the directed graph composed of all reverse
edges of G. A symmetric graph is its own reverse graph.

Finally, every directed graph can be viewed as an undirected graph by
forgetting the orientation of its edges, removing loops and merging all mul-
tiple resulting edges (see figure 2.4 for an example). We call this undirected
graph the undirected version of the directed graph.

a

(a) Directed graph (b) Undirected view

Figure 2.4: Undirected view of a directed graph

Here are some important notions about graphs: The order of a graph is
its number of vertices, the size of a graph is its number of edges. In an
undirected graph G = (V| E), the neighbors of a vertex u is the set of all
other vertices forming an edge with u : {v|{u,v} € E}. Such vertices are
said to be adjacent to u. The number of neighbors of a vertex u is called
the degree of u.

In a directed graph, the out-neighbors of a vertex w in a graph G =
(V, E) is the set of vertices to which an arc emerges from u: {v|(u,v) € E}.
Symmetrically, the in-neighbors of a vertex v in the graph G is the set of
vertices from which there is an arc incident to v: {u|(u,v) € E}. Similarly
to the notion of degree of a vertex in an undirected graph, the out-degree and
in-degree of a vertex in a directed graph are the cardinality of the respective
sets of neighbors.

We denote the subgraph relation using the same symbol as the subset
relation: C. Let G; = (Vl,El) and G9 = (VQ,EQ), GL C Gy <— VWV C
Vo A Ey C Ey. Figure 2.5(a) presents a graph and one of its subgraphs.
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(a) A subgraph with nodes () The subgraph induced by

{a,b,c} nodes {a, b, c}

Figure 2.6: Subgraph VS induced subgraph

This simple notion of subgraph should not be confused with the induced
subgraph: G is an induced subgraph of G if all edges of G5 incident to
vertices of G also belong to Gi: V(u,v) € Ey:u ¢ ViVo ¢ V1V (u,v) € Ey.
Figure 2.6 presents the same graph with an induced subgraph corresponding
to the same set of vertices.

The complete graph of order n is a graph with n nodes and every possible
edges connecting these nodes. Complete directed and undirected graphs of
order 3 are presented in figure 2.6.

(a) Directed  complete (b) Undirected complete
graph of order 3 graph of order 3

Figure 2.6: Complete graphs

The complement of a graph G = (V, E) is a graph G = (V, E) which

contains all edges which are not present in £ : E = (V x V) \ E. Figure 2.7
presents a graph and its complement.
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Figure 2.7: The two graphs on the left are complement of each other. They
partition a complete graph.

A graph G = (V, E) is bipartite if its vertices can be partitioned into two
non empty sets V7 and V5, such that no edge belongs to Vi x V; or Vo x V.
A bipartite graph is presented in figure 2.8.

V1 V2

Figure 2.8: A directed bipartite graph and its two sets of nodes V; and V5.

2.2.2 Paths

A walk in a graph is a alternating sequence of vertices and edges starting and
ending in a vertex; a single vertex is an empty walk. In the graph presented
in figure 2.9, (3), (3,¢,4,d,3) and (2,a,2,a,2,b,3) are walks.
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a
@
b
C
O S50
d

Figure 2.9: Walks in a directed graph. (3), (3,¢,4,d,3) and (2,a,2,a,2,b,3)
are walks.

A walk in which there is no repeated vertex is called a path. In figure 2.9,
(2,b,3,¢,4) is the longest path. Some authors allow paths to start and end
in the same vertex, we prefer to call that case a circuit or cycle; (4,d,3,c,4)
is an example. In this thesis, circuit will be preferred when referring to
directed graphs, and cycle used for undirected graphs.

A directed graph with no circuits is called a directed acyclic digraph or
DAG. A dag is presented in figure 2.10. The figure also shows the topological
order of the nodes in a DAG. In a topological order, every vertex n is
associated with a value o(n) and for each arc (u,v), o(u) < o(v).

2 3

Figure 2.10: Directed acyclic graph and topological order

2.2.3 Connectedness in Undirected Graphs

Two nodes of an undirected graph are said to be connected if there exists
at least one path joining the two nodes. An undirected graph is said to be
connected if for every pair of nodes, the nodes are connected.

The connected components of an undirected graph are the maximum
connected subgraphs of this graph (see figure 2.11).
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Figure 2.11: Connected components of an undirected graph.

In a connected component some nodes and arcs are necessary for the

connectedness property to hold:

A cutnode of an undirected graph is a node whose removal disconnects
the graph. Similarly, a bridge is an arc whose removal disconnects the graph.
On figure 2.12, ¢, co and c3 are cutnodes and b is a bridge.

Figure 2.12: Bridge b and cutnodes c1, ¢ and c3.

A biconnected graph is a graph containing no cutnode and a 2-edge-
connected graph is a graph containing no bridge. As with connected compo-
nents, the notions of biconnected components and 2-edge-connected com-
ponents refer to the largest subgraphs having these properties (see fig-
ures 2.13(a) for biconnected components and 2.14(a) for 2-edge-connected

components).
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(a) Biconnected components (b) Cutnode-reduced graph

Figure 2.13: Biconnectivity
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(a) 2-edge-connected components (b) Bridge-reduced graph

Figure 2.14: 2-edge-connectivity

The contraction of an edge (u,v) in a graph results in a graph where ver-
tex v is removed and all edges incident to v are replaced by edges incident to
u. G = (V, E) becomes G' = (V\{v}, EU{(z,u)|(z,v) € E}U{(u,z)|(v,z) €
E}\{(z,y) € E|lx = vV y=wv}). This process is illustrated in figure 2.15.
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(a) Before contraction (b) After contraction

Figure 2.15: Contraction of edge e.

A bridge-reduced forest t of an undirected graph g results from the con-
traction of all edges belonging to a 2-edge-connected component of g. It
is a forest t whose nodes correspond to each 2-edge-connected component
of g and whose edges correspond to bridges linking different components in
g. An example is given in figure 2.14(b) where the two 2-edge-connected
components of figure 2.14(a) are contracted.

A cutnode-reduced forest t of an undirected graph g results from the
contraction of all edges belonging to a biconnected component of g which
are not incident to a cutnode. It is a forest ¢ whose nodes correspond to
each biconnected component and cutnode of g and whose edges link cutn-
odes to the biconnected components they belong to. An example is given
is figure 2.13(b) where every biconnected component of figure 2.13(a) is
contracted into one additional node.

It might not be obvious why the cutnode-reduced graph t is a forest. If
there is a cycle in ¢ then all of the nodes which belong to the cycle are in
the same biconnected component, a contradiction.

2.2.4 Connectedness in Directed Graphs

In a directed graph, we say that u reaches v if there exists a directed path
from u to v in the graph. We can still say that v and v are connected as
there is also an undirected path linking u and v.

A directed graph is said to be weakly connected if its undirected version
obtained by forgetting the orientation of arcs is connected. In other words,
a directed graph is weakly connected if for each pair (u, v) of its nodes there
is a path from u to v regardless of the direction of the arcs along the path.
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A directed graph is said to be strongly connected if every node reaches
every other nodes. In other words, a directed graph is strongly connected if
for each pair (u,v) of its nodes there is a directed path from u to v.

(a) Strongly connected components (b) SCC-reduced graph

Figure 2.16: Strong connectivity

As with other notions these properties allow to define components: weakly
connected components and strongly connected components are the maximum
subgraphs with these properties. Figure 2.16(a) presents the strongly con-
nected components of a weakly connected graph.

If we contract all edges in the strongly connected components, we obtain
a graph with no circuit which we call the SCC-reduced graph. Some authors
just call it the reduced-graph but as we use several different reduced graphs
we use SCC-reduced graph for this one. A SCC-reduced graph of the graph
in figure 2.16(a) is presented in figure 2.16(b).

The following notion is the directed graph counter-part of the notion of
bridges and cutnodes. A node d is said to dominate t from s iff all directed
paths from s to ¢ go through d. Node d is then said to be a dominator of
t from s. This notion also exists for arcs: Arc e is said to dominate ¢ from
s iff all directed paths from s to t go through e. Among the dominators
of a directed graph all bridges and cutnodes of its undirected version are
present. But as illustrated in figure 2.17 there are also other dominators:
from source s, node e, a cutnode, dominates ¢ and d. On the other hand, ¢
which is not a cutnode dominates all other nodes and arc (g,b) dominates
a.
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Figure 2.17: Dominators

The transitive closure of a directed graph G = (V, E) is a graph G* =
(V, E™) such that (u,v) € ET if and only if there is a path from u to v in
G. In figure 2.18 a graph and its transitive closure are presented. Note that
for a undirected graph, the transitive closure would just consist in cliques
for each connected component of the original graph.

Figure 2.18: A graph (left) and its transitive closure (right).

2.2.5 Trees

A forest is an undirected graph with no cycle. A tree is a connected forest.
Therefore each connected component of a forest is a tree. A forest is depicted

in figure 2.19.

Figure 2.19: A forest made of three trees

A spanning tree of a connected undirected graph G = (V| E) is a tree
T = (V,E') with E/ C E (see figure 2.20). When dealing with a non
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connected undirected graph, its spanning forest is composed of a spanning
tree of each of its connected components. When weights are assigned to
each edge of the graph, one might be interested in the minimum spanning
tree, a spanning tree minimizing the sum of its edge weights.

Figure 2.20: A spanning tree of a connected graph (spanning tree with solid
edges, non-tree edges dashed)

A directed tree is a directed graph whose undirected version is a tree.
Specials kinds of directed trees arise when all arcs are directed from a root
vertez or to this root vertex (see figure 2.21).

Figure 2.21: A directed tree and its root (circled)

The shortest path tree of a graph G is a directed spanning tree whose
every edges are oriented from a source vertex s and such that for each node
u in the graph, the unique path s — u from the source to w in the tree is a
shortest path from s to u in G (see figure 2.22).
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Figure 2.22: Shortest path tree from s. The tree edges are black, others are
gray.

2.2.6 Flows, Cuts and Matchings

Let G = (V, E) be a directed graph and s and ¢ be distinct vertices called
the source and the sink. Let cap : F — Ny be a function assigning a positive
capacity to all edges of the graph. A (s,t)-flow (or simply flow) is a function
f : E — Ny assigning a flow value to each edge such that the capacity is
respected and the flow is conserved at each vertex other than s and t:

0 <f(e) < cap(e) for each e € F
Yo fleo= D fle) for each u € V' \ {s,t}
e|3z:e=(u,z) e|3z:e=(z,u)

The value of the flow is the amount of flow leaving the source s and entering
the sink ¢. A capacited graph is presented in figure 2.23(a). In figure 2.23(b)
a maximum flow is presented in the following format: an edge label f/c
where f is the flow value of the edge and c is the capacity.

(a) Capacited graph (b) Maximum flow

Figure 2.23: A capacited graph and a maximum flow

A cut C is a connected subset of the nodes of the flow graph such that
s € C. Edges crossing the cut are edges whose source is in C' and target is
not. The capacity of the cut is the sum of the capacities of the edges crossing
the cut. Figure 2.24 highlights a cut and the corresponding crossing edges.
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Figure 2.24: A cut (white nodes) and crossing edges (dashed)

The Ford-Fulkerson max-flow-min-cut theorem states that the value of a
maximum flow in a graph corresponds to the value of a minimum capacity
cut in the graph. The flow in figure 2.23(b) is a maximum flow and the
cut in 2.24 is a minimum cut. We use a max-flow-min-cut computation in
section 4.5 to compute the minimum weight subgraph of a graph with edge
and vertices weights.

In a graph G = (V, E), a matching is a subset M C E of the edges such
that every vertex v € V' belongs to at most one edge in M. A node incident
to a edge of the matching is said to be covered by the matching, otherwise
it is said to be free (see figure 2.25; the matching is dashed and the circled
node is free). Many constraints such as alldiff use a maximum matching
computation, that is either maximum cardinality matching or maximum
weight matching when a weight is assigned to each edge.

Figure 2.25: A maximum matching (dashed edges). The circled node is free.
The others are covered.



Chapter 3

The CP(Graph) computation
domain

This chapter describes the CP(Graph) computation domain which intro-
duces graph variables, their domain abstraction, and constraints over these
variables in constraint programming. These not only allow a high-level mod-
eling of graph problems as CSPs but are also an useful abstraction when
designing a filtering algorithm based on graphs for any type of constraints.

Section 3.1 describes graph intervals used as the domain abstraction for
graph variables in CP(Graph) and their properties. Section 3.2 covers CSP
models which have been used to express graph problems. These models
are compared with graph intervals. Then section 3.3 describes the variable
types used in the CP(Graph) framework. They include nodes, arcs and
sets of them. Section 3.4 describes three basic constraints which link graph
variables with other types of variables in CP(Graph). These constraints
are sufficient to express graph problems together with the other variables
of CP(Graph) and basic set and finite domain constraints as described in
section 3.5.

A top down approach is used in that section to show how combinatorial
graph problems can be decomposed into high level graph constraints and
how these constraints can be decomposed into kernel graph constraints.
A shortcoming of these decompositions is that graph properties related to
transitive closure such as connectedness require a large number of constraints
in their decomposition.

To conclude this chapter, in section 3.6, we show how CP(Graph) ex-
tends beyond graph variables and also applies to filtering algorithms for
constraints over integers. We first discuss other models for graphs as well as

44
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existing graph constraints defined for these models. Then we show that the
use of graph algorithms in global constraints such as GCC or alldiff amounts
to applying a filtering algorithm for a graph constraint over a graph interval.
Finally, we discuss the generic graph-based filtering algorithm recently pro-
posed in [5] to filter all global constraints of the global constraints catalog [3]
and show that the use of graphs in that algorithm directly corresponds to
graph intervals.

3.1 Preliminaries on Graph Intervals

As graph variables take graphs as values, the domain of such a variable
is a set of graphs. Since an enumeration of all possible graphs for each
variable might take a lot of space, a domain abstraction is used instead.
Graph intervals are suitable as a domain abstraction as the subgraph relation
defines a partial order and a lattice structure. In the rest of this section, we
describe formally the properties of graph intervals.

Definition 3.1. A partially ordered set (poset) is a set S together with a
binary relation < that is

e Reflexive : Ve e S:z <=z
e Antisymmetric : Ve, y € S:x <yAy<z=zx=y
e Transitive : Va,y,z€ S:x <yANy<z=z<z

Definition 3.2. [16] A lattice is a poset P whose any two elements have a
greatest lower bound or “meet” denoted by x Ny and a least upper bound
or “join” denoted by z U y.

These meet and join operators obey the following laws:

e Idempotent: xtNzx=x=xUx

e Commutative: z Uy =y Uz (and dually for N)

e Associative: z U (yUz) = (zUy) Uz (and dually for N)
e Absorption: zU (zNy)=zUyand zN(zUy)=xNy

Definition 3.3. In a lattice L, the null element O is the element such that
each other element is greater than O: O € LAVx € L : O < x. The

universe element I is the element such that all elements are smaller than I:
IleLAVxe L:x<lI.
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Example 3.4. The power set 2° = {S'|S’ C S} is a lattice with set inter-
section as the meet operation and set union as the join operation. It has
the empty set () as the null element, and S itself as the universe element.

Theorem 3.5. [10] The direct product L x M of any two lattices is a lattice
with the following partial order: (I3, m1) < (la,m2) < 11 <lo Amy < ma.

As a result of this theorem, the product N x E of two power set lattices
N = 2V and E = 2P, the sets of all subsets of N and E respectively,
is a lattice. The elements of that lattice are the pairs of sets (N’, E’) with
N’ C NAE' C E. The order relation in this lattice is (N1, E1) C (Na, E2) <
N1 C Ny A Ey C Es.

The set of all subgraphs of a given graph G = (N, FE) which we denote
by the power graph 2 is a subset of the lattice 2V x 2. Tt is the set of all
pairs (N', E') of 2V x 2F satisfying the constraint £/ C N’ x N'.

We now show that the power graph is a lattice by using graph intersection
as the meet operation and graph union as the join operation.

Definition 3.6. Graph union is defined as: Let G; = (V4, Eq) and Gy =
(Va, Es), G1UGo = (V1 U Vs, By U E»)

Definition 3.7. Graph intersection is defined as: Let G; = (V1, E7) and
Gy = (Va, Ep), Gi NGy = (ViNVa, By N Ey)

Proposition 3.8. For graphs, union and intersection are internal relations:
The union of two graphs is a graph and the intersection of two graphs is a
graph.

Proof. The proof consists in seeing that
E, C(VixV;),i€(1,2)= E1UE, C(V1UV,) x (V1 UVs)
and dually for intersection. O

In the power graph 2¢, the null element O is the empty graph (), #) and
the universe element I is the graph G itself.

Definition 3.9. [98] If z > y but > z > y is not satisfied by any z in
the lattice, we say that x covers y. An element which covers O is called an
atom and an element which is covered by [ is called an anti-atom.

In the power graph lattice, atoms are graphs made of a single node while
anti-atoms are the universe graph without one of its edges or without one
of its isolated nodes if it has some.
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Definition 3.10. If G; C Gg, [G1,G2] is a graph interval. It is the set of
all graphs G such that G; C G C G5. A graph interval is a lattice, a lattice
of graphs corresponding to a graph interval is presented in figure 3.1.

Lot

(a) A graph lattice

.
:A__‘o

(b) The corresponding graph interval

Figure 3.1: The graph lattice shows the set of graphs contained in the graph
interval. The graphic codes for the picture of the graph interval is that the
lower bound is composed of solid nodes and edges and the rest of the upper
bound is composed of empty nodes and dashed edges.

We give a few properties of lattices and intervals:
e if Gy Z G5 then [G1,Gs] = 0.

o [G1,Go] ={G}iff G1 =Gy =G.

o 26 =[),G]

In a finite lattice, all sets S of elements admit a greatest lower bound (glb)
NS and a least upper bound (lub) US (by associativity of U and N). Note
that for any .S, NS C US. Hence, a given set S of graphs is bounded by the
interval [NS,US].

S C [NS,US]A AG1,Gs : S C [Gy,Gs] C [NS,US]

Graph intervals will be used to model the domain of graph variables.

3.2 Classical Graph Models

Some graph problems and constraints have been solved with CP, with most
models based on the finite domain (integers). In this section, we present
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common CSP models which were used to express graph CSPs and compare
them with graph intervals.

We show that these models are very similar to graph intervals and that
the most notable difference is the ability to constrain nodes of the graph vari-
able when using graph intervals. We show that the bounds of the smallest
enclosing graph interval can be easily extracted from these models. This has
two consequences: first, the filtering algorithms which have been designed
for these models can be easily adapted to graph intervals by extending them
to also deal with nodes. Second, the filtering algorithms presented in this
thesis for graph intervals can also be used for these models by abstracting
nodes or adding variables to model nodes.

3.2.1 The Models

We call “single successor model” the first graph model which is used for many
existing graph constraints such as the circuit constraint of OPL [120], the
TSP (traveling salesman problem) and TSPTW (TSP with time windows)
in [22, 85, 12], and VRP (vehicle routing problem) in [19]. In [7] this model
is combined with a tree constraint to model phylogenetic tree construction
problems. This model consists in a vector of integer variables. Its graph se-
mantic is that the variable at index ¢ with an assigned value j represents the
presence of the arc (7, j) in the graph. In that model every node has exactly
one out-neighbor (possibly itself). Any assignment of values to the variables
in that model produces a graph composed of cycles and anti-arborescences
(trees directed towards a root). Hence only some specific graphs can be
represented in this model (see figure 3.2 for an example of such a graph). A

o Dig o 48
®

Figure 3.2: An assignment of the single successor model

o—

second model is the Boolean adjacency matrix [36] or edge presence Boolean
model. In that model a Boolean variable is used for each potential arc. For
some path constraints [110, 21] a graph is implicit in the constraint and
only one Boolean variable is used per arc of the original graph (instead of
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one per pair of nodes). This is also the classical integer formulation of the
constrained shortest path problems [38, 12].

This model can also be implemented by using one set variable for each
line of the Boolean adjacency matrix. In that case one set is used for each
node and it models the out-neighbors of this node.

3.2.2 Smallest Enclosing Interval

These models can be interpreted as a representation of a graph interval. An
instantiation of the variables in the models encodes a graph and the set of
instantiations allowed by the domains models a set of graphs. These sets of
graphs are however only subsets of graph intervals.

The Boolean model allows to represent any graph except graphs con-
taining isolated nodes. It suffices to add a vector of Boolean variables to
model the nodes and add adjacency constraints to have a complete graph
model as we did in [36]. On the other hand, the single successor model only
contains graphs made of disjoint cycles and anti-arborescences which cover
a fixed set of nodes.

These models are close to graph intervals and the smallest enclosing
graph interval can be built easily. In the Boolean model, the graph composed
of the arcs assigned to 1 is the greatest lower bound and the graph composed
of all arcs not set to 0 (that is non-fixed or fixed to 1) is the least upper
bound. In that model, both bounds of the graph interval can be represented
by the Boolean model.

On the other hand, with the single successor model, the least upper
bound is the graph composed of all the arcs present in the domain of each
integer variable and the greatest lower bound is the graph composed of all
integers already assigned, each representing a single arc. In this second
model, the lower bound of the graph interval is not representable by the
integer model: the integers cannot model that graph as some nodes have no
outneighbors in that graph.

3.2.3 On Constraining Nodes

In the graph interval model, nodes can be constrained: They can be added
to the lower bound or removed from the upper bound. In many previous
graph models, either the set of nodes is fixed (as in some uses of the single
successor model) or it is defined implicitly by the set of arcs. In any case,
it is not possible to use nodes to adjust the bounds of the model.
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Because of the adjacency constraint inherent to every graph (F C V xV),
the smallest element which can be added to the lower bound is an isolated
node (or an arc if its endnodes are already present). For the upper bound,
the removal of an arc or an isolated node is the finest change that can be
made.

In a generic graph model, it is important to be able to enclose the set of
solutions as closely as possible in order to provide filtering algorithms with
the finest information about the current domains. Therefore, the presence of
nodes in the graph model is important. For instance, in the Connected(G)
constraint filtering algorithm (section 4.3.2), some cutnodes can be included
in the lower bound. Including nodes can result in filtering on the edges: in
a path problem, even if the original problem does not care about nodes and
does not constrain nodes, edges are linked to nodes via a relation (#E =
#V — 1) which can trigger filtering on the edges.

In conclusion, we showed that these two graph models based on finite
domains are close to a graph interval and allow to easily extract the bounds
of the smallest graph interval enclosing them. This allows to easily adapt
filtering algorithms to deal with one of these models or a graph interval. We
also explained why being able to represent nodes in a graph variable domain
is important.

3.3 Variables in CP(Graph)

When modeling a graph CSP, it is necessary to be able to reason about
nodes and edges of the graphs. Hence, CP(Graph) uses variable types not
only for graphs but also for nodes, edges and sets of nodes or edges. As many
graph problems are related to weighted graphs, an additional variable type
for weight functions is introduced too. All these types and their notation are
depicted in table 3.1. The last row of this table describes weight functions. In
that row, N and A are the universal sets of nodes and arcs. Weight functions
are all functions from arcs and nodes to integers. For all CSPs notations in
this thesis, small case letters are used to denote fixed, constant values while
capital letters denote non-fixed variables, variables whose domain is not a
singleton. The type of variables is indicated by the name of the variable
according to table 3.1: for instance SA is a set of arcs while SN is a set of
nodes.
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Type Representation Constraint | Constants | Variables
Intogcr 0,1,2, io,il,... Io,[l,

Node 0,1,2, no, Ny, ... ]\70,]\717
Arc (0,1),(274), ag, Ay ... A(],Al,
Set {071,2}7{375} S0, 51, .- 50,51,
Set of nodes {0,1,2},{3,5} sng, sni,... | SNy, SNy,
Set of arcs {(0,3),(1,2)}, sag, say,... | SAg, SA1,
Graph (SN, 54)" Ay | e | GoGr,
Weight functions | N U A — Z wo, Wi, ... | Wy, Wi

¢ SN a set of nodes and SA a set of arcs

Table 3.1: Variable types of CP(Graph)

3.3.1 Nodes, Arcs and Sets

In table 3.1, nodes are identified with integers. For a given CSP, each node
of the universal graph is numbered and is referred to by its number. When
describing constraints, we still make the distinction between the node type
and the integer type. We assume that nodes are represented by integer
variables with an enumerated domain. As in general there is no natural order
between nodes in a graph, we did not consider the possibility to represent
node domains as intervals but there are probably applications for which this
could be beneficial.

By definition, in a directed graph, arcs are pairs of nodes. Hence we
consider arcs are encoded as pairs of integers. The domain of an arc variable
is a enumerated set of pairs of integers. As constraint solvers might not
support pairs as values, these pairs can also be encoded as integers. But
this is considered an implementation detail and is abstracted here.

Sets of nodes and arcs are also supported and it is assumed that the set
membership constraint can be consistently applied to these variables: the
constraints A € SA and N € SN must be supported. Hence if an integer
encoding of arcs is used, it must be used consistently for the arc type and
the set of arcs type.

3.3.2 Graph Variables

Graph variables are variables which are assigned a graph. Their domain is
approximated using a graph interval.

As the domain of each graph variable is an interval, each graph variable
of a CSP need to have a predetermined initial upper bound.
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Definition 3.11. For a given CSP we define the universe graph of this CSP
as the union of all initial upper bound graphs of its graph variables.

As depicted in table 3.1, graph variables can be viewed as two sets vari-
ables linked by an adjacency constraint: Their set of arcs must be included
in the cross product of their node set with itself.

The choice of graph intervals as the domain approximation for graph
variables seems adequate for the following reasons. First, it is similar to the
interval abstraction for sets. This similarity eases the cooperation between
the two domains and allows to transfer previous knowledge about sets inter-
vals to graphs intervals. The graph interval model has also many similarities
with previous integer and set models for graphs in CP (as detailed in sec-
tion 3.2). This allows to adapt existing graph constraints to graph intervals.
The lattice structure of graph intervals allows the constraint designer to rea-
son about monotonicity properties of the constraint which provide elegant
proofs of algorithms (see e.g. the downgrade lemma in section 5.6). An-
other advantage of this model is its simplicity: it is the simplest abstraction
providing information about possible and mandatory elements in the graph
variable, two notions which are common in practical problems and in graph
theory (see e.g. dominators, bridges or cutnodes).

This simple model seems to be adequate for a general purpose graph
domain abstraction. This does not mean that it is the best model for all
applications: The choice of a domain abstraction determines the available
communication channel between filtering algorithms. For some specific ap-
plications, this communication channel might cause a large gap between the
filtering obtained by the conjunction of constraints and the filtering pos-
sible in theory when considering these constraints globally. Then another
domain abstraction could be considered for those problems if it allows a
better collaboration between filtering algorithms (see for instance the recent
length-lex domain approximation for sets [50]).

3.3.3 Undirected Graphs

We model undirected graphs as directed graphs. Two different models al-
low to view directed graphs as undirected: either the orientation of arcs is
forgotten and opposite arcs are merged (this is the undirected view of di-
rected graphs presented in section 2.2) or each undirected arc is modeled as
two opposite directed arcs (each undirected graph corresponds to a unique
symmetric directed graph).

The latter model is used in CP(Graph) as it provides a simple and unique
directed graph representation of undirected graphs. This model also has the
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advantage that reachability properties in the undirected graph are conserved
in its directed representation: node i is reachable from j in the symmetric
graph iff it is reachable in the undirected graph. Finally, modeling undi-
rected graphs as directed graphs allows to apply directed graph constraints
to these undirected graphs. On the other hand, to apply undirected con-
straints to the undirected version of a directed graph, we provide a constraint
Undirected(G,G,) which states that G,, is a symmetric graph modeling the
undirected version of G (see section 4.3.1).

3.3.4 Weight Function Variables

Many graph problems deal with weighted graphs. Such graphs have weights
associated to their nodes and/or edges. We model such weighted graphs with
a graph variable and a weight function variable which associates weights to
the nodes and arcs of the graph.

For some problems, the weights are part of the problem formulation
and are constant (many path finding problem). In other problems only an
interval is given for weights in the problem formulation. These weights might
be part of the solution such as in some inverse optimization problems or in
sensitivity analysis. Or the weights are intervals simply because it allows to
model uncertainty about these weights (such as in the robust spanning tree
design problem).

We use map variables [30] which underlying implementation relies on a
vector of variables but also provides constraints to represent the set of values
in the source set and in the target set of the total surjective function. These
constraints are very similar to the Range [12], global cardinality [100] and
NValue constraints.

The weights need not be determined for every edge and node of the
universe graph of the CSP but only for the edges and nodes present in the
solution. In that case, the source set (domain) of the weight function is not
determined beforehand. Map variables were described for integer values but
can be extended to real values (float intervals) for the weights if necessary.

3.4 Kernel Graph Constraints

The kernel graph constraints of CP(Graph) define a set of three constraints
which will enable us to express graph CSPs and constraints as conjunctions
of these kernel constraints with set and integer constraints in section 3.5.
These constraints link the graph variables with nodes, arcs, and sets of these.
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e Nodes(G,SN): This constraint holds if the value of the variable SN,
a set of nodes, is equal to the set of nodes of the graph variable G.

o Arcs(G,SA): This constraint holds if the value of the variable SA, a
set of arcs, is equal to the set of arcs of the graph variable G.

e ArcNode(A, N1, N2): This constraint holds if the value of the arc vari-
able A is equal to the arc (N7, N2) where N} and Ny are node variables.

The ArcNode constraint is independent of the graph variables. All graphs
in a CP(Graph) CSP are subgraphs of the universe graph of the CSP. Hence
the mapping between values of node variables and arc variables encoded in
the ArcNode constraint is independent of the graph variables. It needs to
be defined once for the universe graph of the CSP.

3.4.1 Consistency in CP(Graph)

We characterize the consistency level of the filtering algorithms using the
same notions as in section 2.1.2.

When referring to optimal filtering for graph intervals, we use the same
phrase as usually used for set intervals: bounds consistency. It should not
be mixed up with bounds consistency for arithmetic constraints which was
described in section 2.1.2.

Definition 3.12. Let Sol(C, D)[X] denote the projection of Sol(C, D) on
variable X. For a graph or set variable X with domain D(X) = [D(X), D(X)],
we say c is bound consistent on X iff

D(X) = glb (Sol(C, D)[X]), D(X) = lub (Sol(C, D)[X])

Computing bounds consistency for a set or graph constraint amounts to
compute the intersection (glb) and union (lub) of all solutions.

Note that the bounds of the interval must not belong to the set of solu-
tions of the constraint. They do if the set of solutions to the constraint is
closed under intersection and/or union. For instance, the bounds of a bounds
consistent interval of a graph constrained to be symmetric (see section 4.3.1)
are both symmetric. On the other hand, the bounds of a bounds consistent
graph interval for an undirected graph constrained to be connected are not
always connected themselves (see section 4.3.2).

Bounds consistency for set and graph intervals has an interesting rela-
tion with generalized arc consistency: If the graph interval is modeled with
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Boolean variables, generalized arc consistency is equivalent to bounds con-
sistency on the graph interval. The Boolean model is the following: for each
element of the upper bound of the initial interval (each element of the set or
each node and arc of the graph), one Boolean variable states the presence
of this element in the final value of the set or graph variable.

3.4.2 Filtering Rules for the Kernel Constraints

We describe the filtering rules of the three kernel constraints and the ad-
jacency constraint inherent to graphs. We first introduce some additional
notation related to graph intervals and graph variables and constraints.

Notation

For the sets of nodes and arcs of the bounds of the domain of a graph, we use
the following notation: if ¢ is a fixed graph, Nodes(g) denotes its set of nodes
and Arcs(g) its set of arcs. Hence the following equalities hold: D(G) =
(Nodes(D(G)), Ares(D(G))) and D(G) = (Nodes(D(G)), Ares(D(G))). This
notation refers both to the data structure used to store graph domains and
to the value which is stored in it. When used on the left member of an
assignment («+), the expression denotes the data structure, and when used
in the right member, the expression refers to the current value of the set.
Hence, the expression

Nodes(D(G)) < Nodes(D(G)) U {n1}

Adds node n; to the lower bound graph of G. Remember that all domain
updates must be contractant. Hence elements can be added to the lower
bound or removed from the upper bound.

We also use a functional style for some constraints: We remove the last
argument of a constraint and consider that the resulting syntactic expression
denotes a variable (e.g. Nodes(G) where G is a graph variable denotes SN in
Nodes(G,SN)). We also write (N1, Na) € Arcs(G) as a simplified notation
for 3A € Arcs(G) N AreNode(A, N1, Na).

The Adjacency Constraint

Before we proceed with the kernel constraints, we give the propagation rules
of the adjacency constraint of graphs which could be written Arcs(G) C
Nodes(G) x Nodes(G). This constraint must be enforced by a filtering
algorithm or set of simple constraints if the graph variable is encoded using
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set or integer variables. Its consistency properties are naturally derived from
those of a subset constraint:

Ares(D(G)) € Nodes(D(G)) x Nodes(D(G))

Ares(D(G)) € Nodes(D(G)) x Nodes(D(G))

Those properties are translated into the following update operations
which compute the new domains:

Ares(D(G)) « Ares(D(G)) N Nodes(D(G)) x Nodes(D(G))
Nodes(D(G)) < Nodes(D(G))U{n|Fv: {(n,v), (v,n)} N Arcs(D(G)) # 0}

Once these two updates have been applied, the filtering is optimal. Remem-
ber these domain updates can lead to empty domains (D(G) € D(G)) in
which case the CSP fails.

The Arcs Constraint

The Ares(G,SA) constraint is similar to the set equality constraint. The
properties to maintain for the Arcs(G,SA) constraint are the following:

D(5A4) = Ares(D(G))
D(SA) = Ares(D(G))

We derive the filtering rules from these simple properties:

D(SA) «— D(5A) U Ares(D(G))
Ares(D(G)) < D(SA) U Ares(D(G))
D(SA) « D(SA) N Arcs(D(G))

) < D(SA) D(@))

A single application of these rules leads to bound consistent domains:
the properties are clearly respected after the application of these rules. It is
also clear that the filtering rules do not discard solutions.

The Nodes Constraint
The Nodes(G, SN) constraint is similar to the Ares(G, SA) constraint. The

consistency properties are:
(SN) = Nodes(D(QG))
D

D
D(SN) = Nodes(D(@G))
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The filtering rules are:

D(SN) — D(SN) U Nodes(D(G))
Nodes(D(G)) < D(SN) U Nodes(D(G))
D(SN) «+ D(SN)N Nodes(D(G))
Nodes(D(G)) « D(SN) N Nodes(D(G))

We show that a single application of these rules achieves bound consistency.
The rules clearly do not discard solutions and after an application of these
rules, both bounds belong to the set of solutions (if the CSP is not failed).
Hence, the union of all solutions is equal to the upper bound and its inter-
section is equal to the lower bound.

The ArcNode Constraint

The ArcNode(A, N1, N2) constraint links an arc variable to two node vari-
ables. The properties for arc consistency are:

V(u,v) € D(A) : u € D(N1) Av € D(N2)
Vn € D(Ny) : 3(u,v) € D(A) :u=mn
Vn € D(N3) : (u,v) € D(A):v=n

The update of the domains is straightforward: Apply these rules until a
fixed point is reached

dom(A) « dom(A) N (dom(N1) x dom(N3))

A)}
A)}

Proposition 3.13. A single application of the above three rules in the given
order leads to arc consistent domains.

dom(Ny) < {n1 € dom(N1)|3(n1,n2) € dom

(
dom(N3) < {n2 € dom(N2)|3(n1,n2) € dom(

Proof. Figure 3.3 illustrates the different cases of pruning which can arise.

The rules explicitly compute the set of all values which belong to a solu-
tion to the constraint. Hence once a fixed point is attained, arc consistency
is achieved.

Rule one propagates updates of the domains of N1 and N to the domain
of A. On the other hand, rule 2 and 3 propagate the information the other
way around, from A to the node variables. We prove the claim by showing
that an additional application of the first rule never leads to additional
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D(N2) D(N2)
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D(N1)

X
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D(A) D(A)

Figure 3.3: Example of arc consistent pruning for the ArcNode constraint

pruning. Such an additional application would further remove from D(A) all
arcs whose one end node has been removed from N; or N by the application
of rule 2 or 3. But these rules remove nodes only if they have no support
arc in D(A). So the arcs which would be removed are arcs which were not
there in the first place. O

A simple algorithm can be derived from these rules. First store the values
of the domain of the node variables in efficient hash data structures. Then
create two similar empty structures for the endpoints of the arcs (called the
projections data structures). Scan the arcs in the domain of the arc variable.
For each arc, if its endpoints are part of the domains of the node variables,
then add them to the projections, else, remove this arc from the arc domain.
Finally, set the node domains to the computed projections.

Complexity of the filtering

The complexity of an algorithm implementing the listed filtering rules de-
pends on several aspects. We consider here a computation of the new values
from scratch as we assume an execution model similar to AC-3 as pointed
out in section 2.1.

The complexity of a rule such as

D(SA) «— D(SA) N Ares(D(QG))

depends on the cost of the set intersection (N) operation which in turns
depends on the data structure used for the sets of arcs. This complexity can
be assumed to be linear in the number of arcs of the upper bound graph :
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O(m) (when describing the complexity of a graph algorithm n denotes the
number of nodes and m the number of arcs).

The complexity of optimal filtering for the constraints presented in this
section are linear; m and n are respectively the size and order of the upper
bound graph.

o Adjacency(G) : O(m + n)
o Arcs(G,SA): O(m)

o Nodes(G,SN): O(n)

o ArcNodes(A, N1, Ny): O(#D(A) + #D(Ny) + #D(N3))

3.5 Expressiveness of CP(Graph)

In this section we show how the kernel graph constraints described in sec-
tion 3.4 can be used to model more complex constraints and problems. We
present combinatorial graph problems as conjunction of high-level graph
constraints on graph variables. These constraints are then translated to con-
junctions of kernel graph constraints and basic set and integer constraints.
We show that, in general, this decomposition leads to a large number of
constraints for graph constraints dealing with transitive closure properties.
This applies only to the constraint alone: we show that when put in con-
junction with other constraints, such as in the Hamiltonian path problem,
such properties can be expressed into smaller models.

3.5.1 Expressing Classical Graph CSPs and Optimization
Problems

Numerous combinatorial graph problems can be expressed with CP(Graph).
The graph constraints presented in other works [3, , 21] can be imple-
mented in the CP(Graph) framework and used to solve these problems.
To show the expressiveness and conciseness of CP(Graph), we present clas-
sical combinatorial graph problems as graph CSPs. In these expressions,
Subgraph(G, g) is used to declare a new graph domain variable G with initial
upper bound g and empty lower bound. Similarly, InducedSubgraph(G1,Gs)
holds if GG1 is an induced subgraph of G5. Other graph properties are used
as constraints : Tree(G) holds if G is a tree, Cycle(G) holds if G is a cycle,
ete. ..
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Constrained Path Problems

Constrained path problems are an important class of hard problems in
graphs. We give a formulation for the Hamiltonian path, traveling sales-
man problem and resource constrained shortest path problems.

e Hamiltonian path in a graph g:

Subgraph(G, g) A Cycle(G) A Nodes(G) = Nodes(g)

e Traveling Salesman Problem (TSP) in graph g with weights w: mini-
mize Weight(G,w) subject to the same constraints.

e Resource constrained shortest path (with a single resource): Find
the shortest weight constrained (maximum weight k) path of g with
weights w, length function wjy, start node ny, end node no: minimize
Weight(G,w;) subject to

Subgraph(G, g) A Path(G,n1,n2) A Weight(G,w) < k

Steiner Tree Problems

Steiner tree problems are problems arising in network design. The problem
is to find the smallest network which connects a pre-determined set of nodes.
This problem arises for instance when a telecommunication company wants
to build a network to inter-connect a given set of cities. With positive costs,
the solution is a tree. A variation of this problem is the prize collecting
Steiner tree problem where a prize is associated to each node (a cost is
incurred for each non-connected node). The optimization criteria is the sum
of the non-connected node prizes and the cost of connecting arcs.

e Steiner Tree Problem: g is the initial graph, the nodes to connect are
sn and the arc weights are w,: minimize Weight(G,w,) subject to

Subgraph(G, g) A Connected(G) A sn C Nodes(Q)

e Prize Collecting Steiner Tree Problem: ¢ is the initial graph, the arc
weights and node prizes are w, and wy: minimize Weight(G,w,) +
Weight(SN,wy) subject to

Subgraph(G, g) N Tree(G) AN SN = Nodes(g) \ Nodes(G)
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Problems related to Steiner Trees can also be modeled with the M ST and
W BST constraints defined in chapter 5. The M ST constraint links two
graph variables and holds if one is the minimum spanning tree of the other.
The Steiner tree problem can be modeled in the following way using this
constraint: Minimize Weight(T, w,) subject to

InducedSubgraph(G, g) N MST(G,T,w,) A sn C Nodes(G)

Cut Problems

Cut problems arise for instance in circuit and VLSI design or in parallel
computing [60]. These cuts are edge-cuts, sets of edges which once removed
split a connected graph into several connected components (usually two).
They are not the same cuts as in flows.

e Maximum cut: maximize # (Ares(g) \ (Ares(G1) U Ares(Ge))) sub-
ject to:

InducedSubgraph(G1, g) A InducedSubgraph(Ga, g)\
Nodes(G1) N Nodes(G2) = DA Nodes(G1)U Nodes(Gs) = Nodes(g)

e Finding an equicut of a graph g of even order:
minimize # (Ares(g) \ (Ares(G1) U Ares(Ge))) subject to:

Subgraph(G1, g) N Subgraph(Ga, g)A
Nodes(G1) U Nodes(G2) = Nodes(g)A

#Nodes(G1) = #Nodes(Gy) = %#Nodes(g)

3.5.2 Expressing higher level constraints

We proceed by expressing graph property constraints which were used in the
previous section to express graph CSPs. These constraints are decomposed
into a combination of kernel graph constraints and basic set and finite do-
main constraints. We discuss bound consistency for these constraints and
whether their decomposition allows the same level of consistency. We also
discuss the cost of this decomposition in terms of the number of additional
intermediate variables and constraints.

In this section we deal with simple constraints such as Weight, Subgraph
and InNeighbors. Constraints such as Path or Connected are more com-
plex to decompose and are dealt with in the next section.
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The Subgraph Constraint

The Subgraph(G1,Ge) constraint holds if G; C Go, it can naturally be de-
composed by using the definition of graph inclusion presented in section 3.1.

Subgraph(G1,G2) = Nodes(G1) C Nodes(Ga) A Ares(Gr) C Arces(Ga)

This decomposition makes the Subgraph constraint bound consistent since
the propagator of subset (C) reduces domains to bound consistency too.

The Induced Subgraph Constraint

The InducedSubgraph(G1,Gs) constraint holds if Gy is an induced subgraph
of the graph G5 i.e. the largest subgraph of G5 containing the nodes of G
(largest with respect to graph inclusion).

InducedSubgraph(Gy,Gs) = Subgraph(G1, G2)A
SN = Nodes(G2) \ Nodes(G1)A
V(nl,n2) € Arcs(Ga) : (n1 € SN Vna € SN) ¢ (nl,n2) € Arcs(Gh)

The Neighbors Constraints

The InNeighbors(G, N, SN) constraint holds if SN is the set of all nodes
of G from which an inward arc incident to N is present in G. If N is not
in G then SN is empty. This constraint is helpful to express constraints
based on local properties of the graph. For instance, it allows to express
the QuasiPath constraint (see below). This constraint is also a good com-
plement to the set model of the Boolean adjacency matrix. In that model
each set models the set of out-neighbors of each node. With this constraint,
the in-neighbors can be modeled too. It can be expressed as the following
network of constraints:

InNeighbors(G,N,SN) = SN C Nodes(G)A
(#SN >0« N € Nodes(G)) A
Vn € Nodes(G) :n € SN < (n,N) € Arcs(Q)

Note that this decomposition of InNeighbors into basic and kernel con-
straints does not hinder consistency. It achieves an optimal filtering if the
basic constraints achieve it too. The (#SN >0« N € Nodes(G)) con-
straint is redundant but needed to perform optimal filtering. The last im-
plication constraint must be posted for all possible member of SN and for
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all possible in-neighbors of V. A simple solution is to post an implication for
all n in Nodes(D(G)) as SN is constrained to be part of that set. Similar
expressions exist for inward arcs and the ”out” versions of these constraints.
OutDegree and InDegree are the cardinality of these sets.

The Weight Constraint

Many graph problems deal with weighted graphs. In weighted graphs, the
weights can be put on the edges, on the nodes or even on both. The weight
functions in CP(Graph) are used together with a graph variable to model
a weighted graph. The Weight(G, W, I) constraint allows to compute the
total weight of a graph variable. That weight is then typically used in a
branch and bound search procedure to solve these problems.

Weight(G, W, I) holds if I is the total weight associated to the graph vari-
able G according to the weight function W. It can be decomposed using the
weight constraint for sets:

Weight(G,W,I) = I = Weight(Nodes(G), W) + Weight(Arcs(G), W)

The Weight(S,w,I) constraint (with a fixed w) is a reformulation of the
weight constraint of CONJUNTO over weighted sets [51]. In that approach
weighted set variables are set variables whose elements are pairs (value,
weight). In the CP(Graph) design, weights are separated from the objects
they operate on and they can as well be non-fixed. The Weight constraint
is presented in more detail in Chapter 4. In brief, optimal filtering (equiv-
alent to generalized arc consistency [141] on the Boolean model) is NP-Hard
by direct reduction from SUBSET-SUM. In section 4.5, we also propose a
flow-based algorithm to perform a stronger propagation than the set decom-
position in the general case of weights on both nodes and arcs (by taking
the adjacency constraint into account).

3.5.3 Decomposing Transitive Closure Constraints

In this section, we describe constraints which deal with the transitive clo-
sure of the adjacency relation of graphs. Graph properties such as being
connected or being a path, a cycle, a directed acyclic graph or a tree all deal
with the transitive closure of the adjacency relation. We show that these
transitive closure constraints require a large number of basic constraints in
their decomposition; a bottleneck limiting the size of problems which can
be handled by constraint solvers.
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A constraint which illustrates the difficulty of decomposing transitive clo-
sure properties into basic constraints is the Connected(G) constraint which
enforces that a graph variable G is a connected graph. We show that a
decomposition of this constraint requires the computation of all terms of
the matrix product presented below for the transitive closure (see also [20]
for experiments with the connected subgraph problem). We also show that
in certain circumstances this constraint can be decomposed in a much more
compact way. This is illustrated by showing that a decomposition of the
Path constraint into degree constraints and a connected constraint can be
greatly simplified when the path is further constrained to be Hamiltonian.

Finally we conclude with the presentation of a transitive closure con-
straint which allows to concisely express these constraints. The Boolean
model and the connected graph constraint are experimentally compared in
chapter 7.

Preliminaries on transitive closure

Remember from section 2.2 that there is an arc (7, j) in the transitive closure
g of a graph g iff there is a path from i to j in g.

A graph G = (N, E) of order n can be described as an Boolean adjacency
matrix A of size n x n where A, ; is true iff (¢, j) € E. The Boolean matrix
product is defined in a way similar to classical matrix product:

Azj:: \/fhﬂzA44xJ
x

It means that there is an arc from i to j in A? iff there is at least one path
of length 2 between i and j in A. We can then define the transitive closure
of a graph, using Boolean matrix operations:

At = \/ A®

0<z<n

Decomposing the Path Constraint

The Path(G, N1, N2) constraint holds if G is a simple path (a path with no
repeated nodes) from Nj to No. Optimal filtering for the path constraint is
NP-Hard [110] (see also section 4.6).

This constraint can be decomposed using in two simpler constraints: the
QuasiPath(G) constraints which consists in degree constraints enforcing
some kind of flow conservation law (or Kirchoff’s law) and the Connected(G)
constraint which enforces that G is connected.



CHAPTER 3. THE CP(GRAPH) COMPUTATION DOMAIN 65

a. Enforcing degree constraints The QuasiPath predicate is presented
by B. Courcelle in [26] (the G parameter is implicit in that work). This
predicate turns into a constraint in CP(Graph). That constraint states the
graph induced by SN in G contains a path from N; to Na by enforcing a
local degree constraint for each node in SN.

QuasiPath(G,SN,N1,N3) = Ny € SN ANy € SNA
Vn € SN : 31, = #(OutNeighbors(G,n)NSN)AL, < IA(n # Na) = I, = 1A
Vn € SN : 3I; = #(InNeighbors(G,n)NSN)ANL; < 1A(n # Ni) = I; =1

This constraint is not sufficient to express a Path(Ny, N2) constraint.
A graph consisting of a path from N; to Ny plus some additional disjoint
cycles satisfies the QuasiPath constraint (see figure 3.4). To implement the
path constraint one has to force the graph to be connected or acyclic. We
focus on connectedness here but it can be shown that acyclicity is as hard
to decompose as connectedness.

b. Enforcing connectedness In CP(Graph) enforcing connectedness
can be done by posting a Connected(G) constraint. This constraint can be
decomposed using the undirected transitive closure in which the undirected
matrix product T'C,, is used: Let n = #Nodes(D(G)) denote the order of
the upper bound of G,

Connected(G) = Yu,v € Nodes(G) : (u,v) € TC,(G)
TC,(G)= \/ U
1<i<n

U'G,5) =\ U6 k) A UK, §) VUG, E))
1<k<n

Ul(i,7) = UNi, ) = (i, ) € Ares(G) V (j,1) € Ares(G)

This general decomposition of the Connected(G) constraint uses O(n?)
additional constraints and O(n*) variables. This indicates that a dedicated
filtering algorithm could perform better than this constraint decomposition;
This is confirmed by an experiment in chapter 7.

In the next section we show that while this general decomposition of the
Path constraint uses a large number of constraints, decompositions for more
constrained problems such as the Hamiltonian path can be smaller.
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Figure 3.4: A Solution to the QuasiPath(G,n;,n2) constraint. The graph
consists in a path from nq to no and two additional circuits.

The Knight’s Tour Problem

This problem consists in finding a path visiting each square of a chess board
exactly once by using the moves of the knight. It is a instance of the Hamil-
tonian path problem in a special kind of graph: the Knight’s graph. A finite
domain model using the circuit constraint is presented in [120]. A model in
which the circuit constraint is decomposed into basic integer constraints is
provided as an example within Mozart and Gecode; we describe it below.

A simple CP(Graph) model for the Knight’s Tour follows: Let KGgg be
the Knight’s graph for a square board of 8 x 8 squares. This graph consists
of a node for each square of the chess board and arcs connecting each pair
of squares which can be joined by one knight’s move. Let ngo be a corner
square and nj 2 be a square one knight’s move away from this corner, the
problem is:

Subgraph(G, KGgg) A Nodes(KGgg) = Nodes(G) A Path(G,no,0,11,2)

This problem model uses the path constraint and we show that it is pos-
sible to come up with a much more compact model for this problem than the
combination of the QuasiPath(G) and Connected(G) constraint presented
above. We show that the Connected(G) constraint can be enforced by a
much more compact model by capitalizing on the properties of the problem.

In the classical model for the Knight’s tour problem which we present
here, the squares of the chess board are numbered from 0 to 63. For each
square the model contains 3 integer variables: The first one (jump) gives
the index of the square in the path sequence, the second one (succ) gives the
number of the next square in the path and the last one gives the number of
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the preceding square (pred).

(1) Vn € [0,63] : pred,, € Neigh(n, KGgg) A succ, € Neigh(n, KGgg)A
Jjumpy, € [0,63] A pred,, # succy,

(2) Y(u,v) € Ares(KGgg) : succ, = v < pred, = u < jump, = jump, + 1

(3) Vn,n' €1[0,63] : jumpy, # jumpy

(4) jumpo = 0 A jumpir =1

Neigh(n, KGgg) denotes the set of squares which can be reached by one
knight’s move from n. In 2D coordinates n = (i, ) and the neighbors are
(1—2,7—1),(t—2,7+1),(t—1,7—-2), (i —1,7+2),(i+1,7—2),(i+ 1,5+
2),(i4+2,j—1),(i4+2,5+1). Using the raster order encoding of the integer
square positions for the 8,8 board, the neighbors of n are n —17,n—15,n —
10,n — 6,n + 6,n 4+ 10,n + 15,n + 17 as long as these values are in [0, 63].
The variables succ encode the successor of each node in the Hamiltonian
path. pred is constrained to model the predecessor of each node on line (2).
The jump variables encode the position of the node in the path sequence,
the source is 0 and its successor is 1 (line (4)). The alldiff on line (3) is
redundant but provides global pruning of the variables.

a. Enforcing degree constraints Modeling the previous and next square
of each square of the board with an integer domain enforces the
QuasiPath(G,SN, N, n2) constraint: Each square has exactly one in-neigh-
bor and one out-neighbor.

b. Enforcing connectivity The connectivity property is enforced by
modeling the index of each square in the path with an integer and forcing
neighbor squares in the path to have successive indexes. This works fine as
each square must be part of the path. Adding a global alldifferent constraint
on the index variables provides the suitable pruning for solving the Knight’s
tour problem in a reasonable time. This way of enforcing connectivity is
much more compact than by using the transitive closure decomposition pre-
sented above. However it is not generic as it relies on additional properties
of the CSP (the fact that each node is visited only once and they are in
sequence).

The transitive closure global constraint

A conclusion of this decomposition exercise is that computing transitive clo-
sure in a declarative way is expensive in terms of intermediate variables. We
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have indeed shown that in the general case, enforcing connectivity with the
transitive closure decomposition uses O(n?) N-ary disjunction constraints
and O(n*) Boolean variables. A exception is the Hamiltonian path problem
(an instance called the Knight’s tour was presented) for which we presented
a model using only O(n) integers and O(n.d) Booleans where d is the aver-
age degree of nodes in the graph (d can be constant as in the Knight’s tour
problem or up to n in the general case).

This explosion of the number of variables and constraints tends to indi-
cate that using global constraints for properties related to transitive closure
could be beneficial as their propagation can typically takes only O(n?) time
(linear in the number of edges) and O(n) space (when based on a single
application of DFS [114]). Such constraints will be described in chapter 4
and an experimental comparison of the integer approach and the graph plus
global constraint approach for connectedness is presented in chapter 7.

We conclude this section by describing a global transitive closure con-
straint which allows to express many graph properties in a very compact
way. This constraint is described in more depth in section 4.7.

TC(G,GT) holds if GT is the transitive closure of graph G.

Graph properties such as being connected or being a path, a cycle, a directed
acyclic graph or a tree which were introduced in the beginning of this section
can be easily expressed using T'C":

Connected(G) = Vny # na € Nodes(G) : (n1,n2) € TC(G)

Cycle(G) = Connected(G) A ¥n € Nodes(G) : OutDegree(n) =
InDegree(n) =1

DAG(G) =V(ny,n9) € Ares(G) : (ng,ny) € TC(Q)

Tree(G) = DAG(G) A Connected(G)

This constraint is a part of the domReachability constraint introduced
in [92]. Bounds consistency for the T'C' constraint is shown to be NP-Hard
in section 4.7.

3.6 Graph Intervals and Finite Domain Filtering
Algorithms

In this section, we show the relation between graph intervals and various
constraints over integers. We first describe graph constraints which have
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been defined over the single successor integer model and show that even
alldiff can be considered a graph constraint. Then we show that the filtering
algorithm based on graphs of many integer constraints can be interpreted as
filtering algorithms for graph constraints over a graph interval. Finally, we
present a graph-based generic filtering algorithm [5] and show that it can be
viewed as a graph interval CSP.

3.6.1 Finite Domain Graph Constraints

Many graph constraints have been designed since the seminal ALICE sys-
tem [76]. Two graph constraints can be found in ALICE: Hamiltonian path
and circuit. A thesis [19] (in french) was dedicated to the cycle constraint!.
The catalog of global constraints [3] is a list of complex constraints. Among
the “graph partitioning constraints” listed in [3] on page 86, we describe
three such constraints: cycle, tree, and symmetric alldifferent. They all use
the single successor model for graphs, a vector of integer variables in which
an integer variable at index ¢ with value j models the inclusion of arc (i, j)
in the graph (see section 3.2).

The cycle constraints holds if the sequence of integers models a set of
circuits. In addition to the set of integers modeling the graph, the cycle
constraint has a parameter counting the number of cycles in the graph.
In [19], more than 10 additional parameters are presented for this constraint
in order to model various aspects of a wide range of vehicle routing problems.

Apart from these additional parameters, we show that the core of the
cycle constraint is the alldiff constraint which holds if its arguments are
all pairwise distinct. Obviously, any assignment of values to variables is
interpreted as a collection of trees and circuits covering the fixed set of
nodes of the graph (see figure 3.2 for an example). Ensuring that any two
arcs point to distinct nodes results in avoiding trees in this model which
amounts to requiring that the assignments model circuit covers. This shows
that the al1diff constraint can be interpreted as a graph constraint (cycle).
The next section gives another graph interval interpretation of the filtering
algorithm of the al1diff constraint.

The tree constraint covers the graph with trees directed to the root;
they could not be directed the other way around as this type of graph is not
representable with the single successor model. As the cycle constraint, it
has also a parameter counting the number of trees. The core of the filtering
is subtour elimination which avoids the creation of cycles (see section 4.4.1

"However the algorithms are kept confidential until 2010
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for a detailed exposition).

The symmetric alldifferent constraint enforces that the directed graph
represented by its arguments in the single successor model is symmetric
(closed under arc reversal) and that the undirected graph obtained by merg-
ing reverse arcs is a matching (each node is connected to exactly one other
node). It is a particular case of the cycle constraint when the number of
cycles is exactly half of the number of nodes.

This shows that the frontier between graph constraints and finite do-
main constraints is blurry. First because graph constraints have first been
defined in the finite domain. Second, because some constraints which have
an interpretation outside graphs turn out to also have an interpretation as
a graph property. This second argument is further developed when investi-
gating the filtering algorithm behind the a11diff constraint and other global
constraints below.

3.6.2 Graphs in Filtering Algorithms

Graphs are used in filtering algorithms for global constraints. Some con-
sistency properties of these constraints are easily defined using graphs and
graph algorithms enable efficient pruning. For the al1diff(x) constraint [99]
which holds if all its integer variables x have different values, a solution cor-
responds to a maximum matching in a bipartite variable-value graph (if all
nodes corresponding to variables are covered). A necessary and sufficient
condition for an arc to belong to any maximum matching is based on al-
ternating paths and cycles and arc consistent domains can be computed in
O(y/nm) where m is the number of arcs and n the number of nodes of the
graph. See [122] for a survey on this constraint.

If we interpret the sequence X of variables as modeling a graph G, the
variable-value graph, the filtering algorithm of the alidiff constraint per-
forms an optimal pruning for the graph constraint MaximumM atching(QG)
provided all the nodes corresponding to variables are included in D(G). This
algorithm is very easy to extend to the general case or any variant such as
Matching(G) or PerfectMatching(G).

Many variants of this constraint use similar results: The symmetric all

different constraint [101] deals with general graph matching (i.e. not only
bipartite matching). Bound consistency for the Same constraint [9] uses
parity matching. And the weighted partial all different constraint [117] uses

maximum weight matching. All those algorithms can be re-interpreted as
filtering algorithms for graph constraints.
The global cardinality constraint [100] (abbreviated 6cc) is a generaliza-
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tion of al1diff enforcing bounds on the number of occurrences of values in
a set of variables. Its filtering algorithm is based on a flow computation.
It uses the same consistency technique as alldiff: modeling the assign-
ment as an admissible flow and computing all arcs which can and cannot
belong to such a flow. This constraint can be reinterpreted as a graph con-
straint which holds if the variable-value graph models an admissible flow
(AdmissibleFlow(G)). The filtering algorithm of ecc performs optimal fil-
tering for this constraint.

Other results have been based on flow theory, like global cardinality with
costs [102] or arc consistency for the Same constraint [9] or optimization
constraints based on Gcc and al1diff and usable as soft constraints [121].

This shows that many global constraints either presented with a graph
semantic or simply with a filtering algorithm based on a graph property can
be converted to a graph constraint over a graph interval. In the next section,
this affirmation is extended to almost all global constraints.

3.6.3 Networks of Constraints and Graph-Based Filtering
for Global Constraints

As constraints are links between variables, a constraint satisfaction prob-
lem can be directly modeled as a graph or hypergraph. This graph model
has been used in various applications. The graph structure of constraint
satisfaction problems has been used since the beginning of studies on con-
sistency [30] and consistency names like node, arc, path or hyper-arc consis-
tencies come from this graph model. Properties of constraint graphs have
been used to study the hardness of CSPs [112]. These graphs have also been
used to solve systems of geometric constraints [15]. Different types of con-
straint graphs (variable graphs, propagator graphs, ...) were used in [32]
to debug constraint programs.

In the global constraint catalog, this constraint network model is used
to describe the semantics of many global constraints. The global constraint
is decomposed in a graph which nodes are the integer variables of the global
constraints and which arcs model simple binary constraints holding on these
variables.

Recent work [5] has been directed towards the definition of a filtering
scheme based on this constraint network representation of global constraints
(on integers and sets). This algorithm uses the concepts of initial, interme-
diate and final graph. The initial graph is built according to the semantics
of the constraint. The intermediate graph consists in labeling the arcs of
the initial graph as true, undetermined and false arcs depending on the en-
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tailment of the simple binary constraints. The final graph contains all true
arcs when all variables are fixed.

These graphs exactly correspond to a graph interval: The initial graph
defines the upper bound of the graph interval and the final graph corresponds
to a singleton interval, the true arcs constitute the lower bound and the
upper bound is all arcs but the false ones.

Other parameters of the global constraints which are not part of the
graph model are constrained by bounds of graph characteristics. These
graph characteristics which can be interpreted as constraints of the form
C(G,I) where G is a graph interval and [ is a property such as the number
of nodes, edges, strongly or weakly connected components, sources or sinks.
Algorithms which compute these bounds given an intermediate graph (a
graph interval) were given in [1]. These algorithms do a global reasoning
by taking into account the constraint of forbidden isolated nodes. They are
also compared with formulas for the general case where isolated nodes are
allowed.

As an example, we take the constraint Nvalue(X,I), where X is an array
of integer variables and I an integer variable. It holds if 1 is the number
of different values in x. As illustrated in figure 3.5 and example 3.14, each
variable z; of X is mapped to a node n; of the graph domain G. The set of
nodes is fixed, i.e. all nodes are part of the lower bound.

Each arc is linked to the entailment of a basic constraint: (n;,n;) €
Ares(G) < x; = ;. As soon as the domains of the variables x; and z; are
disjoint, we know that (n;,n;) must not be part of G so it is removed from
D(G). As soon as the variables z; and x; are assigned to the same value
we know that this arc must be in the graph so it is included in D(G). The
variable I is constrained to be the number of connected components in G.
Hence a constraint NCC(G, I) is posted on these two variables and filtering
for this constraint includes or removes arcs from G and reduces the domain
of I.

Example 3.14. We consider the constraint NValue(Xg, X1, Xo,C) with
domains Xy € {1,2,3}, X; € {1}, Xy € {2,3}. The graph representation
for this constraint is based on the constraint X; = X;. An undirected
graph interval G is built by creating one node for each integer variable and
considering the presence of an arc {7, j} in G depending on the entailment of
the constraint X; = Xj;. If the constraint is entailed, then the arc is present
(i.e. in the lower bound) if it is disentailed (its negation is entailed), then
the arc is not present (i.e. not in the upper bound). Figure 3.5 presents the
graph for the domains which we considered above. The arc {1,2} is not in
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Figure 3.5: Graph-based model for filtering the NValue constraint. See
example 3.14 for a detailed comment.

the upper bound as the domains are disjoint and the variables cannot be
made equal (the constraint X; = Xy is disentailed). The two other arcs
are in the upper bound but not in the lower bound as the variables are not
equal yet.

The value of C is determined by the constraint NCC(G, C') which holds
if C' is the number of connected components of G. Clearly, the domain of
C'is [1, 3] as there are graphs with 1, 2 and 3 connected components in the
interval. For example, if we set the value of Xg to 1, the graph G gets fixed
to the value depicted in figure 3.5(b). There are 2 connected components
in this graph, hence C' = 2. While the domains of the integer variables
are not all fixed (Xo =1, X1 =1, Xy € {2,3}), the graph G is fixed and
the constraint is entailed: whatever the value assigned to Xs, there are 2
different values among the variables X;.

In conclusion, integer constraints can be interpreted as graph constraints
for graph intervals. Graph intervals can also be used to interpret important
filtering algorithms such as those of a11diff or ¢¢cc and their many derivatives.
Finally, they can be used in a generic filtering algorithm for almost all global
constraints presented in the global constraint catalog [3].

3.7 Summary

In this chapter we first gave a theoretical background for using graph in-
tervals as a graph domain abstraction. We presented three kernel graph
constraints that allow us to express graph CSPs using graph, node, arc
and set variables. These kernel constraints constitute the link with the set
and integer domains and allow the decomposition of higher level graph con-
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straints into CSPs containing kernel graph constraints and set and integer
constraints.

We showed how these higher level constraints allow to formulate very
concise models for classical graph problems arising for instance in Opera-
tions Research. We also showed that while this decomposition is feasible
for constraints related to transitive closure, it however leads to very large
models which makes these constraints amenable to an implementation as
global graph constraints. In the next chapter we show that such constraints
can often be filtered optimally in O(m) time and O(n) space using simple
DFS algorithms [114].

Finally, we showed that the usage of graph intervals and constraints
extend beyond the specification of CSPs using graph variables. They can be
used as a formal framework to describe many filtering algorithms and could
be used in a generic filtering algorithm for global constraints.



Chapter 4

Global Graph Constraints

4.1 Introduction

In the previous chapter of this thesis, we showed that kernel graph con-
straints allow to express CP(Graph) CSPs. We however pointed out that
the decomposition of graph properties such as connectedness can be cum-
bersome and leads to huge CSPs. In this chapter we design a set of graph
constraints which allow to model basic graph properties or relations in a
CP(Graph) CSP.

Constraints for graph properties are not new: back in 1979, Lauriére
already used the Hamiltonian circuit and spanning tree graph properties in
ALICE [76]. More recently, the cycle [6, 19], the path [110, , 49, 21, 36]
or the tree [7] constraints have been studied. As presented in section 3.6.1,
other constraints such as alldiff and its derivatives use a graph as the un-
derlying model for their filtering algorithm which can be interpreted as the
filtering for a graph property on a graph interval. For the alldiff constraint
this graph property is bipartite mazimum matching.

Previous work on filtering algorithms either for graph constraints or
based on graph properties can be reused and extended in the context of
CP(Graph) as most of them fit in the graph interval domain abstraction.

In this chapter we present graph constraints which cover many aspects
of graph theory: reachability and connectedness, structural properties like
bipartiteness, acyclicity and properties which combine those like path or
tree. For each constraint, we provide a filtering algorithm which performs
optimal filtering (bounds consistency) or prove that it is NP-complete. We
examine filtering complexity and detection of fixed point and subsumption.

Section 4.2 presents constraints for graph relations such as subgraph, in-

75
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duced subgraph and complement graph. Section 4.3 describes constraints to
support undirected graphs in CP(Graph) and constraints for connectedness
properties of undirected and directed graphs. Section 4.5 presents the graph
weight constraint. Section 4.6 covers the filtering algorithm for the different
path constraints. Finally, section 4.7 describes the transitive closure con-
straint. Before the presentation of graph constraints, we look at a theorem
which we use to prove NP-hardness of bound consistency (optimal filtering)
for some of these constraints.

4.1.1 Complexity of Consistency

Recall from Section 3.4.1 that computing bound consistent domains for a
graph relation implies that for each variable we look at the union and in-
tersection of all values it can take in the relation; All elements (nodes and
arcs) in the upper bound must belong to at least one solution and the ele-
ments which belong to all solutions must be placed in the lower bound. For
each element in the upper bound but not in the lower bound, there is both
one solution which contains this element and one solution which does not
contain it. Bound consistency for a graph interval amounts a fixed point
computation of optimal filtering functions for this interval.

The following theorem 4.1 from [72] is used to prove NP-hardness of
bound consistency for graph variables. It implies that if it is NP-hard to
determine whether there exists a solution to a constraint defined on graph
variables (and possibly other variables) then it is NP-hard to filter the do-
mains of the variables to bound consistency.

Theorem 4.1. Let C(Gy,...,Gy) be a constraint defined on graph variables
G1, ..., Gy If there is a polynomial-time algorithm that narrows the domains
of all variables to bound consistency then there is a polynomial-time algo-
rithm that finds a single solution to C.

Proof. We show that a bound consistent filtering algorithm allows to find a
solution to the constraint with no backtrack. When the domains are bound
consistent, pick a value (arc or node) of the upper bound of a variable and
include it in the lower bound. As there is at least a solution assuming this
value, including it will not fail. Apply the filtering algorithm again and
loop until all variables are instantiated. The number of iterations is upper
bounded by the sum of the sizes of the upper bounds of variables. O



CHAPTER 4. GLOBAL GRAPH CONSTRAINTS 7

4.2 Graph Binary Relations

In this section we describe three constraints: The Subgraph(G1,G2) con-
straint holds if G is a subgraph of Gy. The Complement(G1,G2) constraint
holds if G; and G2 have the same node set and each arc of the complete
graph built over these nodes belongs to exactly one of the two graphs. The
InducedSubgraph(G1,G2) constraint holds if G is an induced subgraph of
G9: For each pair of nodes of GG if the arc is present in G5 it must be present
in Gl.

We give a complete description of the subgraph constraint as an example
of consistency proof for this kind of simple relation constraints. The other
two constraints are handled more informally.

4.2.1 The Subgraph(G1,G>) constraint

The Subgraph(Gy,G2) constraint holds if G is a subgraph of Gs.

This relation defines the partial order among graphs and gives a lattice
structure to graph intervals. It is used in practice to model several subgraphs
co-existing in a larger graph: The need to model multiple paths in a single
graph lead to the choice of a list of Boolean variables instead of the single
successor model in [21].

Theorem 4.2. The Subgraph(Gi,Gs) constraint is bound consistent iff
D(G1) € D(Gs) and D(G1) € D(Gs).

Proof. We first show that these properties are necessary for bound consis-
tency. Let e € D(G1) \ D(G2), e does not belong to any assignment of G
hence it cannot belong to one of its subgraphs and does not belong to a
solution. Similarly, let e € D(G1), for any value of Gy, e € G hence in
any solution e must belong to Go and it should be included in its lower
bound. We now show that the properties are sufficient. We assume they
hold and show we have bound consistency. We consider two solutions to the
constraint. The first solution (G1 = D(G1) and G2 = D(G2)) is a witness
that every element not in the lower bound can be excluded from a solution.
The second one proves that each element of each upper bound belongs to at
least a solution. O

A filtering algorithm therefore needs to perform the following steps:
1. If D(G1) is not a subgraph of D(G3), the constraint has no solution.

2. If D(G1) is a subgraph of D(G>), the constraint is entailed.
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3. For each node or edge in D(G1) \ D(G2), include it in D(G2).
4. For each node or edge in D(G1) \ D(G3), remove it from D(G).

The running time of this algorithm is linear in the sizes of the bounds of
(1 and G5 as each of these steps takes linear time.

4.2.2 The Complement(G,,Gs) constraint

The Complement(G1,G2) constraint holds if G; and Go have the same
node set and each arc of the complete graph built over these nodes belongs
to exactly one of the two graphs. That is, if an arc is present in (1 it cannot
be present in G2 and symmetrically. See figure 4.1 for a illustration of the
following. The node sets must be equal, hence the node sets of the bounds
must be equal too. The node sets of both upper bounds are set to their
intersection and the node sets of both lower bounds are set to their union.

The constraint is symmetrical, we present the pruning rules for G; based
on G2 but those also apply symmetrically to filter G2 according to G1. As
soon as an arc is present in one graph it cannot be present in the other
graph. Hence we must remove from D(G) all arcs of D(G2).

The lower bound of GG1 must be filtered too: all arcs which will never be
part of G5 and whose endnodes are already part of the node set Nodes(D(G1))
must belong to G: The complement of the subgraph of D(G5) induced by
Nodes(D(G2)) must be added to D(G1).

To prove optimality there remains to show that each arc e in D(Gq) \
D(G1) can either belong or not belong to G in a solution. It suffices to see
that if the endnodes of e are in D(G1) then the arc is also in D(G2). We can
choose a solution by including the arc in one of the graphs and excluding
it from the other. The complexity of this filtering algorithm is linear as all
steps are linear.

4.2.3 The InducedSubgraph(Gy,G2) constraint

The InducedSubgraph(G1,G2) constraint holds if G is an induced subgraph
of G9: For all pairs of nodes of (7 if an arc is present in G5 it must be present
in G1. In other words, if the endnodes of an arc of GG, are present in (G1, then
the arc is present in G too. The consistency properties are the following (see
also figure 4.2). G; must be a subgraph of G, hence the bounds are subject
to the same consistency properties as in the Subgraph constraint. There
remains to deal with the “induced” part of this constraint. It amounts
to enforcing graph equality on the subgraphs induced by the mandatory
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Figure 4.1: Complement(G1,Gz): Original D(G1) and D(G3) and updated do-
mains D(G1)" and D(G2)" after optimal filtering. Bold nodes and arcs denote
elements of the lower bound. Dotted arcs and empty nodes denote other elements
in the upper bound.
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(a) D(G1) (b) D(Ge)

Figure 4.2: Bound consistent domains D(G;) and D(G2) for the
InducedSubgraph(G1, G2) constraint

nodes Nodes(D(G1)) = Nodes(D(Gz2)). This constraint can be written
Yu, v : (u,v) € Ares(Ga) A {u,v} C Nodes(G1) < (u,v) € Ares(G1). Note
that the < reverse implication is already present in the Subgraph relation.
When faced with an implication, two propagation rules arise. If the left
hand side of the implication is true, so must be the right side. If the right
hand side of the implication is false, then so must be the left one.

Hence for each arc incident only to mandatory nodes, if the arc is present
in one graph then it is present in the other too and if it is absent from one
it must be absent from the other.

To prove bound consistency, we build solutions. The first consists in
taking the lower bound of both graphs. It shows that each arc not in the
lower bound can be excluded from at least one solution. For each arc e
of D(G1), we build a solution including e: g1 = D(G1) U {e} and go =
D(G3)U{e}. Finally, we build a solution with each arc e of D(G2) : add the
arc to D(G2) to build gs. If both endnodes of e belong to Nodes(D(G1)),
then take g1 = D(G1) U {e} otherwise simply take g; = D(G1).

All steps of the algorithm are linear in the size of the bounds so the
complete filtering algorithm is linear.

4.3 Connectedness Constraints

The Connected(G) constraint holds if G is an undirected connected graph.
This constraint is important as it illustrates propagation techniques which
are reused in the Tree and Path constraints in this chapter and in the
spanning tree constraints presented in the next chapter.

We first show how we support undirected graphs in CP(Graph). Then



CHAPTER 4. GLOBAL GRAPH CONSTRAINTS 81

an optimal filtering algorithm is presented for the connected constraint and
two connectedness constraints for directed graphs are presented.

4.3.1 Constraints to Support Undirected Graphs

We provide two constraints to deal with undirected graphs: the
Symmetric(G) constraint which holds if the adjacency relation of G is sym-
metric and the Undirected(G, G,,) constraint which holds if G,, is the sym-
metric version of the undirected graph obtained from G by forgetting the
direction of its arcs.

The Symmetric Constraint

The Symmetric(G) constraints holds if the adjacency relation is symmetric:
V(u,v) € Ares(G) : (v,u) € Ares(G)

The pruning rules are the following : whenever (u,v) € D(G), include the
opposite arc : (v,u) € D(G). When a single arc is present in D(G) :
(u,v) € D(G) A (v,u) ¢ D(G), if it is present in D(G) the constraint fails,
otherwise remove (u,v). This constraint is entailed only when the graph is
fixed, when its domain is a singleton. These pruning rules compute bound
consistent domains; they obviously do not remove solutions to the constraint
and once applied, both bounds are solutions.

The filtering algorithm for this constraint has linear O(n+m) complexity:
A traversal of the arcs of the upper bound collects the isolated arcs and the
reverse arc of arcs in the lower bound. Then these arcs are respectively
removed from the upper bound and included in the lower bound.

The Undirected Binary Constraint

The Undirected(G, G,,) constraint holds if G, is the undirected (symmetric)
graph obtained by ignoring the direction of the arcs of G:

V(u,v) € Ares(G) : (u,v) € Arcs(Gy) A (v,u) € Ares(Gy,)

This constraint allows to apply an undirected constraint to an undirected
version of a directed graph. This allows for instance the definition of a weakly
connected directed graph as a directed graph whose undirected version is
connected.
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To prune G, include in D(G,,) every arc of D(G) and its reverse arc.
Remove from D(G,,) every arc which is not in D(G) nor its reverse arc.
To prune G, remove from D(G) all arcs which are not present in D(G,,).
Include arcs in D(G) if there are corresponding arcs in D(G,). For each
arc (u,v) in D(G,), if there is only one corresponding arc in D(G), it is
included, if there are two such arcs, nothing is done and if there is no such
arc, the constraint fails.

Obviously this pruning does bound consistency. It does not lose solutions
and prunes the domains up to a point where both bounds can easily be
extended to belong to a solution, like for the Subgraph and Symmetric
constraints.

The complexity is again linear in the size of the largest bound.

4.3.2 The Undirected Connected Constraint

We presented a filtering algorithm for this constraint in [35]. The filtering
algorithm is based on the following properties:

Lemma 4.3. If two nodes of D(G) belong to different connected components
of D(G), then there is no connected graph in D(G).

Proof. Connected components are maximal connected subgraphs. As each
graph of D(G) contains at least a node in each connected component, it
cannot be connected. O

Proposition 4.4. If D(G) is not empty, the union of all connected graphs
in D(G) (if there are) is a connected graph.

Proof. Assume D(G) contains at least one node n. If D(G) is connected, it
is the union of all connected graphs as it belongs to that set. If D(G) is not
connected, either we fall in the case of lemma 4.3 and there is no solution,
or all connected graphs are subgraphs of one connected component of D(G).
In that case, that component is the union of all connected subgraphs. [

Proposition 4.5. The intersection of all connected graphs in D(G) is D(QG)
plus all bridges and cutnodes on a path between two nodes of D(G).

Proof. We first show that the intersection contains these nodes. Then we
show that it contains no other nodes.

1. By definition, we disconnect D(G) by removing any cutnode or bridge
so there is no connected graph which does not contain them.
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2. We now show that every other element of D(G)\ D(G) is not present in
at least one solution. By proposition 4.4 and without loss of generality,
we assume that D(G) is connected. Consider the graph D(G) \ {e},
it is a solution if and only if it is connected and in D(G). If it is not,
then either it is not connected which makes e a bridge or cutnode, or
it is not in D(G) which means e belongs to D(G).

O

The two propositions can directly be applied to prune the bounds of the
domain: If D(G) # 0 and D(G) contains more than one connected compo-
nent, remove all but the connected component containing D(G). Then all
cutnodes and bridges on a path between two nodes of D(G) are included in
D(G).

Computing connected components can be done with DFS in time O(m +
n). Bridges, cutnodes, their components and condensed trees can be com-
puted in linear time as a byproduct of DFS [1 14, 17].

Directed Connectedness Connectedness is an important notion for undi-
rected graphs as well as for directed graphs. Two notions of connectedness
exist for directed graphs, weak and strong connectedness. A directed graph
is strongly connected if each of the nodes can reach each of the other nodes.
It is weakly connected if the undirected view of the graph is connected.

The strongly connected constraint is listed in the catalog of global con-
straints [3]. Its potential pruning has also been mentioned in [22]. This
notion plays an important role in networks as it models the reciprocal ac-
cessibility of a set of nodes. For instance, when deciding on the direction
of one-way streets the mayor of the city must ensure that all houses stay
accessible from every other.

Bound consistent pruning for this constraint is not easy to achieve. The
pruning of the upper bound is similar to the connected constraint: the up-
per bound must contain only one strongly connected component. Strongly
connected components can be computed in linear O(m) time by a modified
DFS [114]. For the lower bound, a brute force approach consists in taking
each edge e of D(G)\ D(G) and test if its removal breaks the strongly con-
nected component. The edges which should be included in the lower bound
are the edges that are said to “decompose” the strongly connected compo-
nent of the upper bound. The test for strong connection must be made m
times, hence an O(m?) complexity for computing bound consistency with a
brute force approach. By using the best known algorithm for decremental
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strongly connected components (O(mn) time [96]), it is possible to iden-
tify each of these edges by removing the edge, querying the updated data
structure and restoring it to its original state.

A graph is weakly connected iff its undirected counterpart is connected.
By definition, this constraint can be modeled by posting a Connected con-
straint on an undirected version of the directed graph (obtained with the
Undirected constraint). The filtering algorithm for the undirected connected
constraint can also be adapted to work on a directed graph by forgetting
the direction of all arcs in the filtering algorithm.

4.4 No-Cycle Constraints

No-cycle constraints are constraints forbidding cycles. The DAG, forest and
bipartite constraints all belong to this class of constraints.

4.4.1 The Directed Acyclic Graph Constraint

The DAG(G) constraint holds if G is a directed acyclic digraph. It forbids
any circuit in G.

Subtour elimination was presented for the circuit constraint of OPL
in [120], it is later rediscovered in [22] for solving small TSPs with time-
windows. In these works, it is used to avoid forming small cycles as the aim
is to build an Hamiltonian cycle. We show that this rule performs bound
consistent pruning for the DAG constraint. The constraint is monotonic:
all subgraphs of a DAG are DAGs and all supergraphs of a cyclic graph
are cyclic. If there is a circuit in D(G) then the constraint fails; If D(G) is
a DAG then the constraint is entailed. Otherwise, for any partial path in
D(G), remove all edges of D(G) which could create a circuit if they were
included.

Theorem 4.6. The DAG(G) constraint is bound consistent iff D(G) does
not contain arcs which close a circuit with D(G).

Proof. The proof is by construction of solutions containing and excluding
arcs of D(G)\ D(G): D(G) is a DAG or the constraint is inconsistent, D(G)
is a solution which excludes all non-mandatory arcs. Each arc of D(G)
belongs to at least a solution: either it is part of D(G) or adding it to D(G)
yields an acyclic graph. O

A naive algorithm for this constraint computes the transitive closure of
the lower bound graph in O(mn) (with n and m order and size of the lower



CHAPTER 4. GLOBAL GRAPH CONSTRAINTS 85

bound) and performs an O(1) query for each arc of D(G) \ D(G).

4.4.2 The Bipartite Constraint

An undirected graph (N, E) is bipartite iff its node-set can be partitioned
into two sets N1 and Ny such that each edge has its endpoints in both sets:
E C (N1 x N2) U (N3 x Ny). Bipartite graphs are commonly used to model
many interactions or assignment problems. For instance assign a job to a
person, a resource to a task, or a male to a female.

Theorem 4.7. ([57]Bipartite Graph Characterization Theorem)
A graph is bipartite if and only if the length of each of its cycles is even.

This graph property is monotonic, all subgraphs of a bipartite graph are
bipartite and all supergraphs of a non-bipartite graph are non-bipartite. As
for the DAG constraint, we need to check that the lower bound is bipartite
and remove from the upper bound all edges that would make the lower
bound non-bipartite. Then the lower bound is a solution and any edge of
the upper bound participates in at least one solution.

Checking that a graph is bipartite can be done in linear time: build a
spanning forest of the graph by applying DFS until all nodes are spanned.
During that process, color the nodes by alternating between two colors.
Clearly, the two endpoints of each edge of the forest have different colors
(see figure 4.3). We need to check that the two endpoints of each remaining
edge of the graph have different colors, if they do then the graph is bipartite.
If they are not then the graph contains a cycle of odd length: The non-tree
edge which has two endpoints (u,v) of the same color forms a unique cycle
with the tree of the forest it is connected to. As the endpoints of the tree
path from u to v have the same color, the tree path length is even and the
cycle length is odd.

This leads to the following optimal filtering algorithm for pruning the
upper bound: Once we have checked that the lower bound is bipartite, we
keep the spanning forest and check the colors of endnodes of edges in the
subgraph of D(G) induced by the nodes of D(G). Each edge which joins
two nodes of different color is removed as it would create a odd-length cycle.
The complexity of this filtering is linear (O(m + n)).

4.4.3 The Tree(T) Constraint

The tree constraint holds if T" is an undirected tree, i.e. a connected acyclic
undirected graph. ALICE [76] had a spanning tree constraint and other tree
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Figure 4.3: Checking bipartiteness. A 2-coloring of a spanning forest allows
checking whether each non-tree edge belongs to an odd-length cycle. The
solid black edges constitute the spanning forest. The dashed edges are non-
tree edges which respect bipartiteness. The gray edge makes the graph
non-bipartite.

constraints have been proposed: A integer model for building ultrametric
supertrees (phylogenetic trees) was presented in [50]. The tree constraint
of [7] partitions a graph in anti-arborescences, i.e. a forest of trees directed
to their root. It was later extended into a unified tree and path partitioning
constraint in [&].

These tree constraints are useful to model many network problems (e.g.
the Steiner tree problem [(7]). Trees are also central in phylogeny and the
work of [7] was inspired by this application. In the next chapter we design
filtering algorithms for two spanning tree related constraints: the weight
bounded spanning tree and minimum spanning tree constraints.

Theorem 4.8. The pruning obtained by applying the pruning rules of the
DAG (avoiding cycles, undirected in this case) and Connected constraints
18 bound consistent.

The proof is very similar to the proof for the connected constraint as the
acyclic property only deals with the upper bound. Once undirected cycles
have been forbidden, only nodes and edges which are necessary to connect
D(G) need to be included in this bound.

If D(T) is empty, the constraint is bound consistent because any node
or edge in D(T) belongs to a tree in D(T); namely the tree consisting of a
single node or a single edge. However, filtering may be necessary if D(T') is
not empty.

If D(T) is not contained in a connected component of D(T), the con-
straint is inconsistent because T cannot be connected. Otherwise, all nodes
and edges that are not in the same connected component with D(7") should
be removed from D(T). Next, we need to find bridges and articulation
nodes in D(T), i.e. an edge or a node whose removal disconnects the graph.
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If such an element belongs to a path between two nodes of D(7T), then it
must belong to the tree and is inserted into D(T').

Finally, if D(T) contains a cycle the constraint is inconsistent, and an
edge e € D(T)\ D(T) between two nodes that belong to the same connected
component of D(T) must be removed from D(T), because including it in
the tree would introduce a cycle.

All steps above can be computed in linear time with DFS [114].

4.5 The Weight constraint

Many graph problems deal with weighted graphs. Depending on the prob-
lems, the costs/weights can be put on the edges (e.g. roads, communi-
cation lines), on the nodes (e.g. depots, routers) or even on both. In
CP(Graph), weighted graphs are modeled by adjoining a weight function
to a non-weighted graph variable.

The Weight(G, W, I) constraint allows to model the total weight of a
graph variable. We first present a constraint for the set weight then investi-
gate how to adapt its pruning to graph weights. We consider fixed weights
then cope with the adaptation of the algorithms to non-fixed weights. We
show that even in the simple case of fixed weights and set variable, opti-
mal filtering is NP-hard for the weight constraint. We present a bounded
weight constraint both for sets and graphs and show that for the set weight
the consistency which can be obtained by combining optimal filtering for
two bounded weight constraints is equivalent to bound consistency for an
arithmetic sum with a Boolean model of the set.

We show that graph weight is more complex than set weight because
of the adjacency constraint which does not allow to treat graph elements
independently of each other. We show that optimal filtering for the bounded
graph weight is polynomial by presenting a naive O(m*) algorithm based on
maximum flows.

4.5.1 The Weight constraint for sets

Weight(G,W,I) holds if I is the total weight associated to the graph vari-
able G according to the weight function W. This constraint can be refor-
mulated using the set weight constraint of CONJUNTO [54].

Weight(G,W,I) = I = Weight(Nodes(G), W,) + Weight(Arcs(G), W,)

Where W, is the restriction of the weight function to the arcs domain, and
respectively, W,, for nodes. Hence if we only have node weights or arc weights
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we can use a set weight constraint.

In CP(Graph), a weighted set is modeled using a set interval together with
a weight function which can be negative and non-fixed. However, in CON-
JUNTO, the weight constraint is restricted to fixed positive values and it
applies to sets of pairs (value,weight). We show that the pruning rules of
the set weight constraint are similar to those of a sum constraint over finite
domains.

In CONJUNTO, the filtering algorithm for the set weight constraint com-
putes the bounds of D(I) as the weights of the bounds of D(S). It also
assigns the set variable to one of its bounds if its weight corresponds to the
value of the opposite bound of the weight domain. It should be noted that
this is however only valid for positive weights (Z*) since zero-weight subsets
can be removed from or added to any solution.

The Weight(S,w, I') constraint does not perform optimal pruning (bound
consistency for the set variable or generalized arc consistency for its equiv-
alent Boolean model). Arc consistency is known to be NP-hard for sum
constraints by reduction from SUBSET-SUM: According to Theorem 4.1, if
we had a polynomial bound consistent propagator for Weight(S,w, I), we
could use it to determine if a ground set s has a subset which sums to k :
take D(S) = [0, s], D(I) = [k, k], the failure of the bound consistent prop-
agator for Weight(S,w, I) is the decision problem of SUBSET-SUM for s
and k.

The problem of filtering both bounds can be modeled as an arithmetic
sum with Boolean variables in the following way: Y, w[k]Bj, = I where w(k]
is the weight of element k and Bj is a Boolean variable stating the presence
of kin S.

Bounds consistency for this sum constraint can be maintained for the
Weight(S,w,I) constraint by performing optimal filtering independently
for these two constraints:

Weight Lower(S,w, I) N Weight Higher (S, w, I)

Where Weight Lower(S,w, I) holds if the weight of set S is not greater than
I and Weight Higher(S,w, I') holds if it is not lower than I. Optimal filter-
ing for the Weight Lower(S,w, I') constraint amounts to finding all elements
of S which must or cannot be present for the total weight to be lower than
I.

We describe the filtering task for Weight(S,w, I) constraint, but focus
only on the WeightLower component of the constraint, as the other is
symmetrical. Let minW (D(S),w) be the minimum weight among all sets in
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D(S). The minimum weight minW can be computed by adding all negative
weight elements of D(G) to D(G). Then,

D(I) < max(D(I), minW (S, w))

Let Mandatory(S,w) denote the elements which must be added to the
lower bound to make it bound consistent and Forbidden(S,w) those which
must be removed from D(S) for it to become bound consistent. These sets
are:

Mandatory(S, w) = {z|minW ([D(S), D(S) \ {z}],w) > é([)}

Forbidden(S, w) = {z|minW ([D(S) U {z}, D(S)],w) > D(I)}

Example 4.9. Assume D(S) = [{0,1,-2},{0,1,—-2,-3,100}], D(I) =
[—10,10], and w(z) = z. The first rule recomputes the lower bound for
D(I):

minW(D(S),w) = > {0,1,—2,-3} = —4, hence D(I) is set to [—4,10].
The second rule can detect that 100 cannot be part of S: minW ([D(S) U
{100}, D(S)] = 3°{0,1, —2, 3,100} = 96 > D(I)

A simple O(n) algorithm (with n = #D(S)) to perform this filtering
proceeds as follows : First, in an initialization phase, the weights of unde-
termined elements (in D(S) \ D(S)) are sorted once for all further filtering
tasks down the search tree. For each filtering task, the minimum weight
subset is computed by adding the weights of all negative elements with the
weight of the lower bound. Then the minimum weight element is checked
to see if it must be included and the maximum weight element is checked
to see if it must be excluded. If one of them do, then the second element is
checked, and so on. The total complexity is O(n) for computing the mini-
mum weight subset plus amortized O(Sort(n)/n) for the rest of the filtering
task where Sort(n) refers to the cost of sorting n values.

Dealing with non-fixed weights When filtering with non-fixed weight
functions we still need to find minimum and maximum weight subsets. The
major difference is that weights need to be filtered too. The weight func-
tion used in the minW and maxW computations can be transformed into
ground weight functions. Let D(W) denote the minimal weight of each
element in the domain of W and D(W) denote the maximal weight for
each element, then: minW (s, W) = minW (s, D(W)) and maxzW (s, W) =
mazW (s, D(W)). To filter the upper bound of each weight, we consider the
maximum weight D(I) acceptable for the set. For an element e, we look at



CHAPTER 4. GLOBAL GRAPH CONSTRAINTS 90

the best case by assigning each other element of D(S) to its lowest possible
weight. We then compute how much is left for e:

D(W[e]) —
min (D(W[e]), D(I) — minW ((D(S) U {e}, D(S)], DOW)) + D(W[e]))

The analysis to filter the lower bound of each weight is symmetric.

4.5.2 Graph weight

We present an algorithm to compute optimal filtering for the bounded weight
subgraph constraint Weight Lower(G,w, I). As for its set counterpart, this
constraint needs to compute for each arc e, the minimum weight subgraph
in the intervals [D(G) U {e}, D(G)] and [D(G), D(G) \ {e}]. When weights
are all positive the solution is to take the lower bound of the interval. When
nodes can be negative, the problem is similar to the minimum weight set
problem. The solution is to select all negative weight nodes. The problem
is more challenging when the arcs can be negative. Ideally the solution
would simply select all negative arcs but as their endnodes can have positive
weights, the problem consists in finding a set of arcs and their endnodes
such that their sum is minimal. This problem looks combinatorial. We
show that it is equivalent to the minimum induced subgraph problem. The
latter problem was shown to be equivalent to a maximum flow problem [95].
We show that optimal filtering can be performed in polynomial time by
presenting a naive O(m*) algorithm.

Computing the minimum weight subgraph

We first reduce the general minimum weight subgraph in a graph interval
to the minimum weight induced subgraph problem. This problem has been
applied to OR problems such as open-pit mining [66] or investment pro-
grams [95]. We show how this problem can be solved using a minimum cut
maximum flow algorithm.

Definition 4.10. The original problem is the following: Given a graph
interval [g1, g2, and a weight function w (which specifies possibly negative
weights wle] and wn] for each edge e and node n of g9), find the graph g
with g1 C g C g2 which minimizes the total weight of g.

We present a sequence of small results which allow to transform this
problem into a min-cut-max-flow problem.
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Lemma 4.11. The minimum weight subgraph in a graph interval [g1, g2]
e does not contain positive weight edges of g2 \ g1 -

e contains all negative weight nodes of ga \ g1.

Proof. Let g a minimum weight subgraph of [¢g1,¢2] and e € g2 \ g1 one of
its positive weight edges. g\ e has a weight smaller than g, a contradiction.
The case of negative weight nodes is similar. O

From now on we assume without loss of generality that all edges have
negative weight and all nodes of negative weight belong to ¢;.

Lemma 4.12. The minimum weight subgraph in a graph interval [g1, g2]
with only negative weight edges is an induced subgraph of go

Proof. Let g be a solution which is not an induced subgraph of g». By
adding to g all negative weight edges which are needed for it to become an
induced subgraph, we lower its total weight, a contradiction. ]

Definition 4.13. A negative marginal weight element (NMWE) in a graph
interval [g1, g2] with a weight function w is a pair (sn, sa) of a set of nodes
sn and a set of edges sa, both disjoint from the nodes and edges of g1, whose
union with g; is a graph and whose total weight is negative.

Lemma 4.14. In a graph interval [g1, g2] with only negative weight edges,
the problem of finding the minimum weight subgraph can be reduced to the
problem of finding a minimum weight induced subgraph in a graph by con-
tracting all edges of g1 and setting the weight of the resulting nodes to 0.

Proof. By lemma 4.12, the solution ¢ is determined by a set N of nodes
which when added to the nodes of g; form the set of nodes of the solution.
The solution can be partitioned into two sets of elements: the first set sy is
composed of the subgraph of g» induced by the nodes of g;, and the second
set so is the NMWE composed of the nodes N and all other edges in g\ s;.
The s; part is contained in every solution and directly determined by ¢; and
g2. Finding the solution amounts to finding the minimum weight s, part.
By contracting all edges of s; in ¢g; and g2, while adding the weights,
the problem is reduced to a problem where g; is just a set of nodes (one per
connected component of g1). By turning the weight of these nodes to 0, the
so part becomes the minimum weight induced subgraph of the contracted
g2 graph. O
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We now proceed by showing how this minimum induced subgraph prob-
lem in graph G with non-negative weight nodes and negative weight arcs
can be mapped to a min-cut-max-flow problem in a new graph G ;. We call
elements of G nodes and arcs while elements of Gy are called vertices and
edges.

The flow graph Gy is a bipartite graph which vertices correspond to
the nodes and arcs of G. On the top layer of Figure 4.4(c), each vertex
models a node of G; We call them node vertices. On the lower layer, each
vertex of Gy models a negative weight arc of G, we call them arc vertices.
Uncapacited edges link nodes to their incident arcs (solid edges in the center
of Gf). Two vertices, a source s and a sink ¢ are added and capacited edges
link s to the the node vertices and link arc vertices to t. The capacities are
positive and correspond to the positive weight of a node or the opposite of the
negative weight of an arc. As zero weight nodes (arising from the connected
components of the induced subgraph built from g;) have been turned into
zero capacity edges they can be dropped for the flow computation (they are
displayed in gray on Figure 4.4(c)).

We now prove that a minimum cut in this flow graph G corresponds to
a minimum weight induced subgraph of G. Remember from section 2.2 that
a cut is a connected set of nodes of the flow graph containing the source.
The weight of the cut is the sum of the weights of the edges leaving the cut
(displayed dashed in Figure 4.4(d)).

Theorem 4.15. A minimum cut C in the flow graph Gy corresponds to a
minimum weight induced subgraph of the original graph G: The nodes of Gy
not in C' constitute a minimum induced subgraph of G (displayed in gray in

Figure 4.4(d)).

Proof. This proof is illustrated in Figure 4.4; An example is also presented
below. We first show that a minimum cut in the flow graph corresponds to
a subgraph of the original graph, then we show it is an induced subgraph.
Finally, we prove that this subgraph is a minimum induced subgraph.

The first property we prove corresponds to the adjacency constraint of
graphs. As uncapacited edges linking node and arc vertices have infinite
capacity, they cannot leave a minimum cut. If a node is removed from the
solution, it is part of the cut. Then its arcs are also part of the cut since
the uncapacited edges linking the node to the arcs cannot cross the cut.
Therefore the arcs out of the cut have their endnodes out of the cut too,
and the elements out of the cut form a graph.

The second property is the induced subgraph property, it can be ex-
pressed as: If an arc is removed one of its endnodes must be removed; This
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follows from connectedness of the cut.

We now prove minimality, i.e. that the minimum cut corresponds to the
minimum weight subgraph. The weight of the cut is the weight of edges
leaving the cut. As no uncapacited edges belong to these edges, they can be
partitioned into two sets, those incident to the source and those incident to
the sink. The total weight of the edges leaving the cut from the source is
the total weight of the nodes we keep in the subgraph. The total weight of
edges crossing the cut towards the sink is the opposite of the total weight
of arcs which are discarded from the subgraph. Hence by minimizing the
weight of the cut we minimize the weight of the kept induced subgraph. [J

Example 4.16. In figure 4.4, an original graph, its corresponding flow
graph and the minimum cut are illustrated. Note that the central node
which is anyway part of the solution is not present in the flow graph. If it
was included it would have an input edge with zero capacity and would not
change the solution (we showed in lemma 4.14 that negative weight node can
be set to 0). A max flow min cut computation computes the cut, all elements
not in this cut need to be added to the mandatory elements (negative weight
nodes and lower bound) to build a minimum weight subgraph in the graph
interval.

Filtering algorithm

The filtering algorithm for the WeightLower(G,w,I) constraint can be
adapted from the algorithm for this constraint over sets and consists in
the following steps.

Compute the minimum weight of a graph in the interval [D(G), D(G)]
and check that this weight is lower than D(I), if it is not, then the constraint
fails. Then for each element x of D(G) \ D(G) compute a minimum weight
subgraph in the interval [D(G) U {z}, D(G)]. If its weight is greater than
D(I), the element cannot be part of the solution and is excluded from D(G).
Otherwise, compute a minimum weight subgraph of [D(G), D(G) \ {x}] and
check that its weight is not greater than D(I), if it is greater then include
2 in the lower bound.

This brute force algorithm requires O(m) maximum flow computations.
At a cost of O(m?®) per maximum flow, this algorithm is unpractical. (A
max flow computation costs O(nm?) or O(mn?) with n and m the order
and size of the flow graph, both linear in the number of edges of the original
graph). We are investigating an algorithm which would not require O(m)
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Figure 4.4: Successive transformations of the problem. Figure 4.4(a) presents the
minimum weight subgraph problem in a graph interval [g1, g2], g1 is black and the
rest of go is drawn with dashed lines and empty nodes. Figure 4.4(b) presents
the equivalent induced subgraph problem. The arc {B, X} is removed and the
arc {X,Y} is contracted, the equivalent weight is —1 and is set to 0 in 4.4(b).
Figure 4.4(c) presents the flow graph, the upper vertices correspond to the nodes
of 4.4(b) and the bottom vertices to its arcs. The gray part corresponds to the zero
weight node (condensed lower bound) and can be dropped as it cannot carry flow.
Figure 4.4(d) presents a minimum cut (white). The other nodes, which constitute
the solution to the previous problems is grayed. The crossing edges are dashed.
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max flow computations but would try to adjust the flow computed for one
element in order to test the next element.

4.6 The Path Constraints

The simple path constraint Path(G, N1, N2) holds if G is a simple path (i.e.
path without edge repetitions) from N; to No. The shorter path constraint
Path(G, N1, No, W, I) holds if G is a simple path from N; to No which total
weight is no greater than 1.

Constrained path problems are common in constraint programming. Ve-
hicle routing problems or the TSP are example problems from OR directly
modeled as constrained path finding problems. Constrained shortest path
problems are found as sub-problems of many other problems in OR such as

scheduling [58] or planning [59].
As a global constraint, the path constraint is closely related to the cycle
constraint [0, 19] as a cycle is a closed path (i.e. Ny = Ny). ALICE [70]

contains an Hamiltonian path constraint. Optimal pruning for the path
constraint is NP-hard by reduction from the Hamiltonian path problem and
theorem 4.1: An Hamiltonian path can be modeled by including all nodes of
a graph interval in its lower bound. Then detecting failure of the constraint
solves the Hamiltonian path decision problem. A constructive reduction is
given in [ 10] for mandatory edges (for a graph model in which nodes cannot
be placed in the lower bound).

Graph theory tells us a simple path is a DAG and is Connected, it also
tells us the target is reachable from the source (QuasiPath, see chapter 3).
Hence filtering rules for these constraints can be applied to the filtering of
a simple path constraint (see sections 4.4.1 and 4.3.2). The shorter path
constraint which holds for a path of bounded length was introduced in [110)]

and extended in [109, 19]. A global simple path constraint was presented
in our papers [35, 37] for undirected graphs and simultaneously presented
in [21] for directed graphs. In [92], additional filtering rules are proposed for

cases in which additional information is available about reachability, non-
reachability and order of the nodes in the solution.

In this section, we give a structured presentation of the pruning rules
for the simple path and shorter path constraints by showing which rules are
common to the two constraints and which are specific to the shorter path
constraint. We give an alternative algorithm saving one order of magnitude
compared to that of [21] for filtering the lower bound of the graph for the
directed simple path constraint. For the same problem, we also present a
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simpler (but weaker) algorithm by extending the algorithm presented in [19)]
to also deal with mandatory nodes (in [19], it deals only with mandatory
edges). We finally discuss briefly the exact weight path constraint and ex-
tend the two global path constraints to non-fixed source and sink nodes and
to non-fixed (interval) weights.

4.6.1 Cost-Based Filtering for the Shorter Path Constraint

The constraint Path(G,ny,n2, W, I) holds if G is a simple path from n to
ne which total weight is no greater than 1. It is an adaptation of the shorter
path constraint of [110, , 19] which was presented for the Boolean arc
model. We describe this constraint in the context of a graph computation
domain. Adapting it to graph intervals allows to enhance the pruning rules:
In addition to the detection of mandatory arcs, we show the algorithm pre-
sented in [19] can be extended to also detect mandatory nodes at the same
asymptotic cost. We defer the handling of non-fixed source and target nodes
and non-fixed weights to section 4.6.4.

Optimal filtering for this constraint is NP-hard, as the Path(G,n1,ns2)
constraint is a particular case of the shorter path constraint with I = oco.
Hence, a relaxed-consistency is achieved instead.

As in [110], to test if an edge (u,v) is forbidden, the algorithm only
looks at D(G) and computes a single source shortest paths from n; to all
nodes in D(G) yielding a minimum distance d(ny, ) for all nodes x of the
graph. A similar computation in the reverse graph of D(G) using no as
the source yields distances d(x,ng). Then, (u,v) is forbidden if d(ni,u) +
w(u,v) + d(v,ng) > D(I). Hence the relaxed consistency property is: all
arcs of D(G) belong to at least one path in D(G) from n; to ng with cost
no greater than D(I).

The lower bound pruning does not use D(I). Therefore, once D(G) has
been pruned, the pruning done for D(G) for the shorter path constraint is
the same as for the simple path constraint. We present this pruning for the
directed and undirected cases in the next sections about the simple path
constraint.

For fixed-point reasoning, as the filtering of D(G) only considers D(G)
itself, the filtering of D(G) does not impact on D(G) and the computation
has reached a fixed point whatever the pruning done for D(G).

The complexity of the cost-based upper bound pruning is O(m+nlogn)
by using Dijkstra. If negative weight edges are present one application
of Bellman-Ford O(mn) computes reduced costs as in Johnson’s all pair
shortest path to lift the negative weights and make them positive. Practical
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dynamic single source shortest path algorithms [28] such as Ramalingam-
Reps [94] could be used to speed up this computation.

4.6.2 Undirected Path(G,ny,no)

This constraint holds if G is an undirected simple path from n; to ns.

In addition to the pruning of degree constraints provided by the QuasiPath
constraint, we reason on the bridge-reduced and cutnode-reduced trees (see
definition in section 2.2). We identify a set of mandatory and forbidden
nodes and arcs i.e. nodes and arcs which must be part of the solution if
there is one and, respectively, which are part of no solutions.

The filtering rules of the QuasiPath constraint are simple. Each node
of the graph, except ni and ny must have a degree of 2. The nodes n; and
no must have a degree of 1. As soon as this value of degree is reached in
the upper bound, the arcs are included in the lower bound. As soon as it
is reached in the lower bound, the other arcs of the upper bound incident
to that node are removed. By modeling the QuasiPath problem as a cycle
cover problem as in section 3.6.1 (this requires adding an arc (ng,n1) in the
lower bound), a global filtering is possible by using the filtering algorithm
of the alldiff constraint. This global filtering is not necessary in the context
of the path constraint as the other filtering rules of the path constraint take
care of this pruning.

The following pruning rule results from the undirected connected con-
straint of section 4.3.

Theorem 4.17. Bridges and cutnodes of D(G) on a path between two nodes
of D(G) are mandatory (part of all solutions).

Proof. If a bridge (or cutnode) is on a path between two mandatory nodes
then it is mandatory: if we remove it, those nodes are no more in the same
connected component and cannot be joined by a simple path. O

As the path we are looking for must be simple and as the reduced graphs
are trees, we can identify some forbidden nodes and arcs (this is on of the
contributions of our papers [35, 37]).

Theorem 4.18. Bridges of D(G) which are not on the path from ny to na
in the bridge-reduced tree of D(G) are forbidden.

Cutnodes of D(G) which are not on the path from ny to ng in the cutnode-
reduced tree of D(G) are forbidden.
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Proof. Consider the bridge-reduced tree of D(G) (or its cutnode-reduced
tree). In this tree there is only one path between n; and ny. If a simple
path goes through another edge e of the tree, it is not able to reach no unless
it traverses that edge e in the other direction, a contradiction as the path
must be simple. ]

In [114], a linear algorithm based on DFS that computes biconnected
components is presented. The principle of this algorithm can be applied to
compute 2-edge connected components, cutnodes, bridges and reduced trees.
The filtering based on cutnodes and bridges can be performed in linear time.

Using bridges for pruning the lower bound for this constraint is presented
in detail in the undirected shorter path constraint of [110]. Bridge and
cutnode pruning from the upper bound was presented in our papers [35, 37]
and later independently discovered in [19].

4.6.3 Directed Path(G,nq,ns)

As in the undirected case, optimal filtering for this constraint is NP-hard.

Forbidden Arcs

The upper bound pruning obtained by applying the filtering of the undi-
rected approach is subsumed by the approach presented in the global path
constraint of [21] which consists in contracting strongly connected compo-
nents to produce an SCC-reduced DAG. In a DAG, bound consistency for
a path constraint can be done in linear time: Intuitively, in the following
theorem, the forbidden arcs are those which either are not reachable from
the source node or cannot reach the target node or jump over a mandatory
node. This is presented on figure 4.5.

Figure 4.5: Forbidden nodes identified by theorem 4.19. Arc a jumps over
a mandatory node, arc b does is not reachable from n; and arc ¢ does not
reach ns.
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Theorem 4.19. ([21][Property 1-2]) Let TC(D(G)) denote the set of
arcs in the transitive closure of D(G), An arc (u,v) € D(G) is forbidden if

(n1,u) ¢ TC(D(G)) V (v,n2) ¢ TC(D(G))V
In € Nodes(D(QG)) : (n,u) ¢ TC(D(G)) A (v,n) ¢ TC(D(G))

In a DAG, this requires two DFS computations (one from n, and one
from ngy in the reverse graph) for the reachability and a topological sort for
the arcs jumping over nodes of D(G), for a total time of O(m + n) where m
and n are respectively the size and order of D(G).

Mandatory Nodes

In [21], Cambazard and Bourreau also propose to test for mandatory nodes
by removing each node from the graph in turn and checking that all nodes
of D(G) are still reachable from n; and still reach ny. This algorithm has a
total cost of O(nm). We propose a linear O(m) algorithm to perform this
pruning.

In [92], a dominators algorithm is used to detect some of these mandatory
nodes. By applying a dominator computation [51] to the graph and its re-
verse, we can identify all mandatory nodes of [21]: all nodes which dominate

a node of D(G) are mandatory. This lowers the cost of this computation to

O(m).

Mandatory Edges and Forbidden Nodes

Mandatory edges are detected by the the degree constraints: if an edge
(u,v) is a bridge, its endnodes are mandatory and the out-degree of u and
in-degree of v are 1.

Isolated nodes are forbidden in the graph. If a node is forbidden then
all incident edges must be forbidden too and the node will get isolated after
the forbidden edges are removed.

A Simpler but Weaker Algorithm for Mandatory Elements

In [109], an algorithm to detect some mandatory edges in O(m + nlogn) is
presented. In [19] it is simplified and runs in linear time O(m + n). These
algorithms compute the mandatory edges which belong to the shortest path
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Figure 4.6: Detection of mandatory edges along the shortest path from ng
to ny. The edges of F, = {z, 2’} are drawn with dashed arrows, the shortest
path tree is drawn with solid arrows and other edges are not drawn. If 2’ was
not present, then node v would dominate n;. When moving to edge €', the
edge 7/, a replacement for e would be removed as it is incident to v a node
of C, leaving F. empty. But as 2’ and z” are replacement for respectively e
and ¢’ those edges are not mandatory.

from n; to ny and dominate ng (i.e. a subset of those detected with the
dominators but at a lower cost).

We describe this algorithm and show how to adapt it to detect dominat-
ing nodes (see Figure 4.6). The algorithm uses the shortest path tree ¢ from
the source n; in D(G) which is computed to filter the upper bound (see
section 4.6.1). The algorithm inspects each edge e = (u,v) of the shortest
path in turn and computes the set F. of edges which can replace e in a path
from nq to ng. If this set is empty, the edge e is mandatory.

The algorithm maintains two sets of nodes S, and S¢: the nodes of the
two subtrees of ¢\ {e}. It also maintains the set of edges F, from S, to S¢;
These edges can replace e to build a new admissible path. We extend this
definition to F,,, the set of edges which could replace node v in the path.

When going from the edge e to the next edge ¢/ = (v, w), the algorithm
updates its data structures in the following way. The set C' = S,/ \ S, of all
nodes connected to v in t\ {e, ¢’} must be removed from S¢ and added to S,
in order to build Sg and S.. The set F./ is F, minus the edges coming into
C plus the edges going out of C' (to SS, all other edges have been removed
in a previous step).

This is the point where mandatory nodes can be detected: When updat-
ing F, to build F,/, after deleting all incoming edges to C' and before adding
the outgoing ones, we have a state where the set data structure F' is actually
F, the set of all edges which could replace node v if it was removed. If this
set is empty, then node v is mandatory.
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4.6.4 Non-fixed Source, Target and Weights

When dealing with simple paths it might be useful to be able to model some
uncertainty about the origin or destination of the path. By allowing the
source and target nodes of a path constraint to be non-fixed variables, it
is possible to model that uncertainty. The semantic is not changed: The
constraint Path(G, N1, No) still states that G is a path from node Ny to
node Ns.

As the nodes are not fixed, the previous filtering algorithm must be
adapted. It must detect impossible and mandatory nodes and edges for a
path that goes from any node in D(N7) to any nodes in D(N2). The filtering
problem also includes a step to filter the domain of the source and target
node variables.

A simple solution to this problem is presented in figure 4.7: Add a virtual
source s and target ¢ to the upper and lower bound graphs. In D(G), connect
s with all nodes in D(Nj) and connect each node of D(N3) with ¢t. For the
shorter path constraint, the added edges are assigned zero weight. Then the
set of all (possibly empty) simple paths from a node of D(N7) to a node of
D(N3) is the set of all simple paths from s to t. All pruning of G can be
made as in the fixed case. To filter N1 and N9, we add a simple rule to the
filtering algorithm: when it removes an edge connecting one of the virtual
nodes, the adjacent node is removed from the domain of the corresponding
node variable (for instance, if an edge (u,t) is removed, node u is removed
from D(Na)).

D(N1) D(N2)

Figure 4.7: Dealing with non-fixed source and sink in the path constraints.
A virtual source (s) and target (t) are added to the graph (in gray). Arcs
are added to the nodes in the domains of the real source (N7) and target
(N2). This allows to reuse the previous filtering algorithm.

To cope with non-fixed weights in the Path(G,ni,ng, W, I) constraint,
we allow each value We] of the weight function to be an interval which end-
points are denoted D(We]) and D(We]). To filter G, we only need to adapt
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the cost-based filtering: the filtering of D(G) presented in Section 4.6.1. The
shortest path computations are done with the lower bound of the weights in
order to actually measure the shortest possible path. Then, when each edge
(u,v) is checked to see if it can belong to an admissible-weight path from 74
to ns, we again use the lower bound of the edge weight. The difference with
the fixed weight case is the filtering of the weights: a new upper bound is
computed for the weight of each edge (u,v): D(I) — d(n1,u) — d(v,n2)).
The lower bound of edge weights is not filtered. If a shorter path con-
straint holds for fixed weights w then it holds for any w’ such that Ve : w'[e] <
wle]. This pruning would however be necessary for a Shortest Path(G, P, W)
constraint where non-path edges (not in D(P)) would not be allowed to be
too light or they would replace an edge in the shortest path P. This kind
of reasoning is held for the minimum spanning tree constraint which is pre-
sented along with the weight-bounded spanning tree in next chapter.

4.6.5 Negative Cycles and the Exact Weight Path Constraint

In this short section we describe the problem raised by negative cycles for
shortest paths and show that cost-based filtering is probably not practical
to deal with. This leads to the same consideration for the exact weight path
constraint.

If the Path constraint is to be used with graphs which contain negative
cycles, the cost-based filtering algorithm described in the previous sections
does not apply as it computes shortest paths which are infinite in such a
graph.

The problem of finding the shortest simple path in a graph with nega-
tive cycles is equivalent to finding the longest simple path in a graph (take
opposite weights) which is known to be NP-complete [16]. The problem
of the shortest simple paths which allows negative cycles has been tackled
in [38] under the name Elementary Weight Constrained Shortest Path Prob-
lem (EWCSPP) where the cost of a simple path is to be minimized under
some additional non-negative weight bound constraints (negative cost cycles
are allowed).

To build a filtering algorithm for the upper bound of the domain un-
der the presence of negative cycles, an approximation for the point to point
shortest simple path computation could be used to compute the cost of
paths containing or excluding elements of the upper bound. However, un-
less P=NP there is no constant factor approximation for this problem and
probably no O(n®) approximation neither [70]. Only logarithmic approxima-
tions have been proposed. Hence filtering based on such an approximation
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is improbable.

Some models need to use the exact cost of a path. We suggest that
the weight constraint is more appropriate than an exact weight global path
constraint. For such a constraint to use the lower bound of weight for fil-
tering, the propagator would have somehow to compute the total weight of
the longest possible path which could use or avoid a given element. Be-
cause of the above non-approximability results, it is improbable that such
an algorithm would prune values from the graph.

4.7 The Transitive Closure Constraint

The TC(G,G") constraint holds if GV is the transitive closure of G. The
transitive closure constraint TC(G,G™) can be viewed as a generalization of
the path constraint. The propagation uses concepts similar to the concepts
used in the connected and path constraints. The transitive closure constraint
is a part of the reachability constraint of Quesada et al. [92]. We show that
optimal filtering is NP-hard for this constraint and describe optimal filtering
rules for cases where at least one variable is fixed.

Optimal filtering for this constraint is shown to be NP-hard [91] by
Theorem 4.1 and a reduction from the disjoint path problem [16]. This
decision problem concerns the existence in a graph g of two node-disjoint
point to point simple paths from i to j and from k to [. Assume D(G) =
[0, 9] and D(G™) such that D(G™) contains all edges of g except (i,1) and
(k,7) and let D(G™) contain only (i,j) and (k,l). To see that these are
equivalent, observe the two following properties: In an hypothetical graph
g, if (i,7) € TC(g"), then j is reachable from i and that graph contains a
path from ¢ to j. Moreover if any two paths from ¢ to j and from k to [
share at least a node, they contain an X shape, and [ is reachable from i
and j from k.

The case where G is fixed and denoted g is the transitive closure com-
putation. The optimal filtering consists in computing the transitive closure
of g and setting G* to TC(G). The case where only G* is fixed (and de-
noted ¢g*) and where we are looking for a satisfying G is known as transitive
reduction or equivalent digraph [123]; Its computation costs O(n?).

Pruning rules for this constraint are presented for a single source reacha-
bility constraint in [92]. They use the computation of the transitive closure
of the graphs D(G) and D(G) and the computation of dominators from the
source s in D(G). For the transitive closure constraint this computation
can be done from each node and a dominator of a node which should be
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reachable from another must be included in the lower bound.
This reachability constraint is the topic of the thesis of L. Quesada and
the transitive closure constraint will be further described in that thesis.

4.8 Summary

In this chapter we studied filtering algorithms for global constraints modeling
graph properties. While some pruning rules for some of these constraints can
be found in previous works, this study constitutes a corpus of pruning rules
which can be enforced in CSPs using graph properties, regardless of their
implementation. This study provides optimal filtering rules for most of the
constraints or proves NP-hardness. Filtering algorithms are presented and
their complexity and practicality is discussed. For some of the constraints
only naive algorithms are provided, leaving the design of more efficient al-
gorithms as an open problem. We believe that this chapter illustrates that
graph intervals are a practical abstraction for describing and proving filter-
ing algorithms for graph constraints regardless of the underlying model used
for the graph interval (graph, set, integer or Boolean variables).

A summary of our results is presented in table 4.1. In this table, the
first column identifies the constraint. The second column lists some notable
properties of the constraint. We indicate if the lub or glb is a solution once
the graph interval domain is bound consistent. We also list redundant prop-
erties for the Path constraints. The third column indicates the complexity
of computing bound consistency or relaxed consistency if bound consistency
is NP-hard.
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’ Constraint Properties ‘ Bound Consistency
Subgraph(G1, Gs) lub and glb O(m+n)
Symmetric(G) lub and glb O(m+n)
Undirected(G,Gy) lub O(m+n)
Connected(Q) lub O(m +n)
WeaklyConnected(G) | lub O(m +n)
StronglyConnected(G) | lub O(mn)
Forest(G) glb O(m +n)
DAG(G) glb O(nm) in D(G)
Bipartite(Q) glb O(m+n)
Weight(S, W, T) NP-hard
Weight(G, W, I) NP-hard
WeightLower(S,W,I) | W > 0: glb O(n+nlogn)
Weight Lower(G,W,I) | W > 0: glb O(m*)
Tree(G) Connected O(m+n)

Forest

QuasiPath
Path(G, N1, Na) Connected gfmhiri) o

DAG

Weight(G,W) < I

QuasiPath NP-hard or
Path(G, N1, No, W, I) Connected O(m + nlogn)

pAG NP-hard

-har or

TC(G,GY) O(n® + nm)

Table 4.1: Summary of our main results in this chapter
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Chapter 5

Spanning Tree Constraints

5.1 Introduction

The MST problem arose in the context of a network design problem for a
telephone company. The problem is to find the cheapest way of connecting
all the telephone centers in a country.

Finding the MST of a graph takes almost-linear time, but several inter-
esting variants of the MST problem, such as minimum k-spanning tree [17]
(finding a minimum-weight tree that spans any set of k¥ nodes) and Steiner
tree [07] (finding a minimum-weight tree that spans a given set of nodes) are
hard problems which have applications as other network design problems.

In many applications, there is uncertainty in the input. The weight of
edges might not be known precisely. For instance, when installing cables
underground, the cost is mostly related to digging the trenches and this
cost might depend on what is found in the soil (pollution or archaeological
sites might increase the cost).

For instance, the MST sensitivity analysis problem [34, 86] and the ro-
bust spanning tree problem [!] both deal with unknown edge weights. In
the MST sensitivity analysis problem, we are given a fixed graph g with
fixed weights and an MST t of g. We need to determine, for each edge, the
amount by which its weight can be changed without violating t = MST(g).

The robust spanning tree problem addresses uncertainty from a different
point of view. Its input is a graph with an interval of possible edge weights
for every edge. A scenario is a selection of a weight for each of the edges.
For a spanning tree ¢t and a scenario s, the regret of t for s is the difference
between the weight of ¢ and the weight of the MST of the graph under
scenario s. The output is a spanning tree that minimizes that worst-case
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regret.

There might also be uncertainty about the graph in which one has to
compute a minimum spanning tree: you might want to start installing the
network while all contracts with clients have not been signed. In that case
it would be nice if the first installed cables belong to the network regardless
of the success of these contract negotiations.

Finally, there are cases where the tree is known and the question is
what graphs have this tree as a minimum spanning tree. For instance, a
network operator might want to influence the cost evaluation or the set of
sites a potential client wants to connect in order for his own network to be
selected by the client. This is the focus of inverse parametric optimization
problems [11]. In that problem, we are interested in finding parameters
of an optimization problem given its solution. For instance, given a tree,
determine which graphs have this tree as a minimum spanning tree.

In this chapter we present the WBST(G,T,W,I) and MST(G,T,W)
constraints. These constraints are specified on two graph variables G and T,
a weight variable W and an integer variable I. The WBST constraint holds
if T is a spanning tree of G (i.e., a connected acyclic subgraph containing all
nodes of ) such that the total weight of T" is at most I, with the positive
edge weights specified by W. The MST constraint is satisfied if T is a
minimum spanning tree (MST) of G (i.e., the minimum-weight connected
subgraph that contains all nodes of G), where the positive weights of the
edges in G and T are specified by W.

These constraints address the problem of finding small spanning trees in
a novel way: The filtering algorithms need to propagate information from
each parameter to the others in order to reach a fixed point. And these
parameters are graph or weight intervals which allow to model uncertainty
about each of them. A filtering algorithm for the minimum spanning tree
constraint embraces the problems of minimum spanning tree verification,
minimum spanning tree sensitivity and inverse parameter optimization in
one single algorithm.

A large body of research exists on weighted spanning trees of undirected
graphs; in particular on the MST problem: From algorithms that find the
MST [18, 68, 71, 75, 87, 88] to related problems such as MST verification [74],
finding several smallest trees [10] and sensitivity analysis. We reuse some of
these results for the design of our filtering algorithms. In particular, we use
components of Eppstein’s algorithm for computing the k smallest trees [1(0]
and of King’s algorithm for MST verification [74].

In a CP approach to the robust spanning tree [I], an algorithm that
partially solves a special case of the filtering algorithm for MST that we
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Fixed Edge-Weights

Non-Fixed Edge-Weights

Fixed Graph Non-Fixed Graph  Fixed Graph  Non-Fixed Graph
Fixed MST verification O(m+n) O(ma(m,n)) O(ma(m,n))
Tree O(m +mn)
[74] [Section 5.4] [Section 5.7.1] [Section 5.7.2]
Non- O(Sort(m)+ O(Sort(m)+ O(Sort(m)+  O(mn(m + logn))
Fixed ma(m,n)) ma(m,n)) ma(m,n))
Tree [Section 5.5] [Section 5.6] [Section 5.7.3] [Section 5.7.4]

Table 5.1: Our results for the MST constraint

address in this chapter is described. More precisely, for the case in which
the graph is fixed, they show how to detect edges which must be removed
from the upper bound of the tree domain.

Our results. For the WBST constraint, we present an NP-hardness proof
for bound consistent pruning in the general case. We give a similar result
for EWST, the exact weight minimum spanning tree constraint where I
is not an upper bound but the exact weight of the tree. We restrict the
constraint to operate on a graph with fixed nodes and give an almost-linear
O(ma(m,n)) bound consistency filtering algorithm for this special case.
Our results for the MST constraint are summarized in Table 5.1. We look at
various restrictions of the MST constraint, and develop a bound consistency
algorithm for each of them. Let n and m be, respectively, the number of
nodes and edges in the upper bound of the domain of G (and hence also of
T). Let Sort(m) be the time it takes to sort m edge-weights and « the slow-
growing inverse-Ackerman function. As the table indicates, our algorithm
computes bound consistency for the most general case in cubic time but
whenever the domain of one of the variable is fixed, bound consistency can
be computed in almost-linear time. The table indicates in which section of
the chapter each case is handled.

Roadmap. The rest of the chapter is structured as follows. Section 5.2
contains some preliminaries on minimum spanning trees. In section 5.3
we describe a filtering algorithm for the SpanningTree constraint which is
used as a preprocessing step and whose result is maintained as an invariant
during the execution of the algorithms described in subsequent sections. The
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bulk of the chapter starts with sections 5.4 to 5.7, we describe the bound
consistency algorithms for special cases of the MST constraint. Starting
with the case of fixed tree and fixed weights and gradually building up to
the most general case. In section 5.8 we derive the NP-hardness results for
the filtering of the EWST and WBST constraints. Then as for the MST
constraint, we address the filtering problem for the WBST constraint in
sections 5.9 to 5.11.

5.2 Preliminaries on Minimum Spanning Trees

In this section we present a short background of graph theory and algorithms
on spanning trees.

5.2.1 Graph Theory

Two important properties hold for minimum spanning trees: the cut and
the cycle properties.

Definition 5.1. A cut (also called edge cut) in a connected graph G =
(V,E) is a set S of edges such that G’ = (V, E'\ S) is not connected.

Property 5.2 (Cut property). Let T be a minimum spanning tree of G. In
any edge cut S of G, an edge of minimum weight is part of T.

Proof. We show the property holds for a minimum spanning tree by building
a lighter spanning tree if it does not. Assume 7" is an MST of G and there is
a cut s splitting 7" into 77 and T» such that a lightest edge e = {u, v} does
not belong to 7. There must be an edge ¢’ of T' which connects T} and T,
and this edge must be in s. By replacing e with ¢’ in T" we build a lighter
spanning tree. O

Property 5.3 (Cycle property). Let T be a minimum spanning tree of G.
In any cycle C of G, one of the edges of maximum weight is not part of T.

Proof. We build again a lighter spanning tree if the property does not hold.
Assume T is an MST of G and there is a cycle C in G with the heaviest
edge e = {u, v} belonging to T' (without loss of generality we assume there is
only one such edge). The edge e splits 7" into 7 and T. The cut s splitting
G into the node sets of T and 75 contains e and at least one additional
edge €’ of c. By replacing e € T with ¢/, which is lighter, we build a lighter
spanning tree. O
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The following definitions and lemmas cope with multiple minimum span-
ning trees. They are illustrated in figure 5.1.

Definition 5.4. Let T be a minimum spanning tree of G and let e € T
be an edge whose removal from T disconnects 7" into two trees T7 and T5.
Define the replacement edge rg(e) to be a minimum weight edge in G other
than e which connects a node from 73 and a node from 75. The replacement
weight of e is the weight of rg(e) or co if there is no such edge.

Definition 5.5. Let T' be a minimum spanning tree of G and e = {u,v} a
non tree edge (e € T'), we define a replacement edge rg(e) of e as an edge
of maximum weight along the tree path joining v and v. The replacement
weight of e is the weight of a replacement edge.

Figure 5.1: Replacement edges. The replacement edge of the tree edge {a, c}
is {b,c}. The replacement edge of the non-tree edge {c,d} is {a,c}. The
MST is highlighted with bold edges.

Two important lemmas characterize the replacement edges.

Lemma 5.6 ([10], Lemma 3). For any edge e in an MST t of g such that
g\ {e} is connected, (t\ {e}) U{rq(e)} is an MST of g\ {e}.

Proof. Let us consider all cycles in g; the set of cycles in g \ {e} is a subset
thereof. We show by contradiction that the weight of r4(e) cannot be greater
than the maximum weight in a cycle not containing e. Therefore we show
that (¢ \ {e}) U {ry(e)} satisfies the cycle property. We use the fact that
an edge cut must contain at least two edges of a cycle. Let ¢ C g\ {e} be
a cycle and let us assume that Ve’ € ¢\ {ry(e)} : w(ry(e) > w(e’). Let ¢
and ty be the two subtrees of t \ {e} and let s be the edge cut splitting g
in (t1,t2). The edge cut s contains r4(e) and at least one other edge €’ of c.
As w(rg(e)) > w(e'), we have a contradiction with the definition of r4(e), a
minimum weight edge of s\ {e}. O
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Lemma 5.7. For any edge e ¢ t, (tU{e})\ {rq(e)} is a minimum spanning
tree of g that contains the edge e.

Proof. Contract e and find an MST of the remaining graph. By the cycle
property, it will exclude one of the maximum weight edges on the cycle that
was created by the contraction. O

5.2.2 Algorithms

The three most famous algorithms for computing minimum spanning trees
are Boruvka’s [18], Prim’s [38] and Kruskal’s [75]. They are based on the cut
property. As we adapt Kruskal’s algorithm in following sections, we present
the original version here in Algorithm 3. The algorithm builds a minimum
spanning tree by inserting edges in a spanning forest by increasing cost.
It uses the disjoint set [115] data structure to maintain a partition of the
nodes of the graph in the connected components of the spanning forest.
This data structure supports the Union(x,y) operation which merges the
sets containing elements x and y and the operation F'ind(x) which returns
an identifier of the set containing x.

Data: G = (N, E) an edge-weighted graph: We] is the weight of
edge e
Result: T the set of minimum spanning tree edges
begin
P «—— Sort(FE) (increasing order)
UF «— partition with singletons for each n € N
T+ 0
while P #0) A |T| < |N|—1 do
e = {u,v} «—pop minimum value from P
if Find(UF,u) # Find(UF,v) then
Union(UF,u,v)
T — TU{e};
end
end
end
Algorithm 3: Kruskal’s algorithm for minimum spanning trees

Given a graph g and an MST t of g, the replacements r4(e) for all edges in
t can be computed in time O(ma(m,n)). Finding the replacement edge for
every non-tree edge can be done in linear-time on a RAM using a component
of King’s algorithm for MST verification [74]: King described how, in linear
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time, we can determine the weight of the heaviest edge on the path between
every two tree nodes.

Finding the replacement edge for every tree edge can be done in O(ma(m,n))
using the path compression technique of Tarjan [116]. This algorithm was
used by Eppstein in his k minimum spanning tree algorithm [10].

5.3 The Spanning Tree Constraint

Throughout the chapter, we will assume that the following bound consistent
filtering for the SpanningTree(G,T) constraint was performed in a prepro-
cessing step. Bound consistent filtering for this constraint is equivalent to
the conjunction of the bound consistent filtering for Nodes(G) = Nodes(T'),
Subgraph(T, G), Tree(T) and Connected(G). We describe the pruning steps:

First, the algorithm applies the bound consistency algorithms described
in chapter 4 for the constraints Nodes(G) = Nodes(T'), Subgraph(T,QG)
(which specifies that T is a subgraph of G) and Tree(T). Filtering for
the Tree(T) constraint removes from D(T) each arc whose endnodes belong
to the same connected component of D(T'). The inclusion of any of those
arcs in the lower bound would create a cycle as its endnodes are already
connected.

Then it enforces that T is connected: If there are two nodes in D(7") that
do not belong to the same connected component of D(T') then the constraint
has no solution. Otherwise, any bridge or cut-node in D(T) whose removal
disconnects two nodes from D(T) is placed in D(T).

The algorithm applies the filtering for the Connected(G) constraint. As
the conjunction of Tree(T) and Subgraph(T,G) includes in D(G) all the
bridges and cut-nodes in between nodes of Nodes(D(T')) = Nodes(D(QG)),
this filtering step only consists in setting D(G) to its only connected com-
ponent containing D(G).

Finally, since D(T') is contained in the MST in any solution, we reduce
the problem to the case in which D(T') is initially empty, as follows. We
contract all edges of D(T') in g and obtain the graph ¢’. An edge is contracted
by merging its endnodes into a single node. For any MST t’ of ¢/, the edge-
set ¢/ U D(T) is a minimum-weight spanning tree of g that contains D(T').

5.4 MST with Non-Fixed Graph

To simplify the exposition of the algorithm, we begin with a bound consistent
algorithm for the special case MST (G, t, w) in which the variables 7" and W
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Figure 5.2: MST with fixed tree (bold edges: ¢t = {a,b, c,d}) and non-fixed
graph (solid edges {y, 2} = D(G)\t and dashed edges {u, v} = D(G)\D(Q)).

of the constraint are fixed (and are therefore denoted by lowercase letters).
Since we assume that D(7") contains exactly one graph and that D(Wle])
contains exactly one value for all e, we only need to filter the domain of
the variable G. The following sections examine the cases where only 1" then
both T" and G need to be filtered. Non-fixed weights are handled in following
sections.

After applying the filtering described in Section 5.3 for Subgraph(T,G)
and node-set equality, it remains to enforce that t is an MST of the value
assigned to . This means that we need to remove from D(G) any edge
e = {u, v} which is not in ¢ and which is lighter than all edges on the path p
in ¢t between v and v; by the cycle property, the heaviest edge on the cycle
p U {e} (which is in t), cannot belong to any MST, so the cycle must not
be in G. The only way to exclude the cycle is to remove {u, v} from D(G).
This can be done in linear time using King’s algorithm [74], which receives a
weighted tree and, in linear time, constructs a data structure that supports
constant-time queries of the form ”which is the heaviest edge ex on the tree

path between u and v?” If w(e) < w(ex), e may not belong to G, remove it
from D(QG).

Example 5.8. In Figure 5.2, if w(u) < w(a) or w(u) < w(b) then u cannot
be part of the graph or it would not have a,b,c,d as an MST. Similarly
if w(y) < w(c) or w(y) < w(d) the constraint fails as this edge is already
included in D(G).

5.5 MST with Non-Fixed Tree

We turn to the case MST(g,T,w) where the variables G and W of the
constraint are fixed. The tree T is constrained to be a minimum spanning
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tree of the given graph ¢ and the bound-consistency problem consists in
finding the union and the intersection of all MSTs of g.

5.5.1 Amnalysis of g to filter D(T)

We now describe Algorithm 4, a variant of Kruskal’s algorithm [75] that con-
structs an MST of g while partitioning its edge-set into the sets Mandatory(g),
Possible(g) and Forbidden(g), defined as follows.

Definition 5.9. Let g be a connected graph. The sets Mandatory(g),
Possible(g) and Forbidden(g) contain, respectively, the edges that belong
to all, some or none of the MSTs of g.

For an unconnected graph g whose maximal connected components are
gi,-- -, gk, we extend this definition to be the union of the respective set for
each maximal connected component of g. Formally,

Mandatory(g) = U¥_, Mandatory(g;),
Possible(g) = UlePossible(gi),
Forbidden(g) = UleForbidden(gi),

As in Kruskal’s original version, Algorithm 4 begins with a set of n sin-
gleton nodes and grows a forest by repeatedly inserting a minimum weight
edge that does not create a cycle. The difference is that instead of con-
sidering one edge at a time, in each iteration we extract from the queue
all edges of minimal weight, determine which of them are mandatory, pos-
sible or forbidden, and only then attempt to insert them into the forest.
Let ti be the forest constructed by using edges of weight less than k& and
let Ej be the set of edges of weight k. Let {u,v} € Ej and let C(u)
and C(v) be the connected components in ¢, of u and v, respectively. If
C(u) = C(v), then by the cycle property {u,v} does not belong to any MST
of g (i.e., {u,v} € Forbidden(g)). If C(u) # C(v) and {u,v} is a bridge
in t; U Ey, then by the cut property {u,v} belongs to all MSTs of ¢ (i.e.,
{u,v} € Mandatory(g)).

The running time of this algorithm is O(Sort(m) + ma(m,n)) where
Sort(m) is the time required to sort the edges by weight and « is the inverse-
Ackerman upper bound of the union-find disjoint-sets data structure [115]
that represents the sets of nodes of the trees of the forest. When a batch of
edges is extracted from the queue we need to perform a bridge computation
in the graph composed of these edges to distinguish between possible and
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Data: G = (N, E) and D(T) two ground graphs
Result: Forbidden and Mandatory: edges which belong to none and
all of the MSTs of GG
begin
P —— Sort(E)
UF «—partition with N as singletons
foreach e = {u,v} € Arcs(D(T)) do Union(UF,u,v)
Forbidden «— )
Mandatory «— ()
while P # () do
L’ «—pop minimum values from P
B «—— compute bridges in graph (Cc(UF), E’)
foreach e = {u,v} € E' do
if Find(UF,u) == Find(UF,v) then
Forbidden «— Forbidden U {e}

else
Union(UF,u,v)
if e € B then

Mandatory «— Mandatory U {e}

end

end

end
end
end

Algorithm 4: Partition Edges, fixed graph case
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mandatory edges. Bridge detection takes time which is linear in the number
of edges [111] and each edge of g participates in one bridge computation.

Example 5.10. Figure 5.3(a) presents a fixed graph on which we apply
Algorithm 4. In the first step edges of weight 1 are popped. In the sub-
graph induced by nodes {a,d, e}, no edge is a bridge hence all edges are
tagged Possible. The nodes {a,d,e} are merged into node A giving the
graph in Figure 5.3(b). Edges of weight 2 are popped, both are bridges and
are tagged mandatory. Their endnodes are merged leaving only one node
(Figure5.3(c)). All remaining weight 3 edges are loops and are forbidden.

(a) first iteration (b) second iteration (¢) third it-
eration

Figure 5.3: Application of Algorithm 4 to classify the edges of the leftmost
graph into mandatory (weight 2), possible (weight 1) and forbidden (weight
3) edges.

5.5.2 Filtering the Domain of T’

We are now ready to use the results of the analysis of g to filter the do-
main of 7. This entails the following steps: (1) For each mandatory edge
e € Mandatory(g), place e in D(T). (2) For each forbidden edge e €
Forbidden(g), remove e from D(T). Of course, if D(T) ¢ D(T) the con-
straint fails.

Since Mandatory(g) and Forbidden(g) are disjoint, the two steps have
no effect on each other, so they may be applied in any order, and it suffices
to apply each of them only once. But could we achieve more filtering by
repeating the whole algorithm again, from the preprocessing step through
the analysis of g to the filtering steps? We will now show that we cannot.

Let e be an edge that was placed in D(T') in the first filtering step. Then
e € Mandatory(g), which means that it belongs to all MSTs of g. Let t¢;
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and to be the two trees that e merges together when it is inserted into the
forest by our variant of Kruskal’s algorithm on g. Then the edges that were
extracted from the queue before e do not contain an edge between t; and
t2, because in that case e would have been placed in either Possible(g) or
Forbidden(g). This means that if e is in D(7T') from the start, all edges
lighter than e would be classified as before. Clearly, the edges heavier than
e see the same partition of the graph into trees whether e is in D(T') or
not. Since e is mandatory, the edges that have the same weight as e do not
belong to a path between e’s endpoints that uses only edges with weight
at most equal to that of e. Hence, placing e in D(7T') cannot change their
classification.

Now, let e be an edge that was removed from D(T) in the second filtering
step. Then e € Forbidden(g), which means that it does not belong to any
MST of g. Then its removal from D(T) does not have any effect on the
classification of other edges as Forbidden, Possible or M andatory.

We do not need to apply the filtering steps of section 5.3. The nodes of
T are fixed so we cannot detect new cut nodes. Clearly a forbidden edge
does not disconnect D(T) (otherwise it would be mandatory by definition).
We show that the pruning of D(T) cannot creates new bridges as these
bridges are already in Mandatory(g). We consider a forbidden edge e is
removed and creates a bridge in D(T). As it is forbidden, its endpoints
are connected by a path composed of edges lighter than e. Then when the
bridge €’ of weight k was processed, the edge e was not in the graph g, and
¢/ was a bridge in g,. Hence it was classified as mandatory.

In conclusion, if we apply the algorithm again, the analysis of g would
classify all edges in the same way as before. In other words, applying the
algorithm again will not result in more filtering, the algorithm computes a
fixed point and domains are bound consistent.

5.6 MST with Non-Fixed Graph and Tree

We now turn to the case MST (G, T, w), in which both the graph and the tree
are not fixed (but the edge weights are). Recall that we begin by applying
the preprocessing step described in Section 5.3.

5.6.1 Analyzing D(G) to filter D(T)

The main complication compared to the fixed-graph case is in the analysis
of the set of graphs described by D(G) in order to filter D(T'). We extend
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the definition of the sets Mandatory, Possible and Forbidden for a set of
graphs as follows:

Definition 5.11. For a set S of graphs, the set Mandatory(S) contains
the edges that belong to every MST of any connected graph in S, the set
Forbidden(S) contains the edges that do not belong to any MST of a con-
nected graph in S and the set Possible(S) contains all other edges in the
union of the graphs in S.

We need to identify the sets Mandatory(D(G)) and Forbidden(D(QG)).
We will show that it suffices to analyze the two bounds of the graph interval,
namely the graphs D(G) and D(G).

Lemma 5.12 (Downgrade lemma). The addition of an edge to a graph can
only downgrade the state of the other edges of this graph. Here, downgrading
means staying the same or going from “mandatory” to ”possible” to ”for-
bidden”. Formally: Let g* = gU{e = {u,v}} where e ¢ g and let k = w(e).
Then:

Va € g : (a € Mandatory(g*) = a € Mandatory(g)) A
(a € Possible(g*) = a € Mandatory(g) U Possible(g))

Proof. We compare the classification of the edges obtained by running algo-
rithm 4 of section 5.5.1 twice in parallel, one copy called A running on the
graph g and one copy called A* running on g*. Clearly, as long as the edge
e is not popped from the queue, the edges are classified in the same way in
both graphs.

If e is a forbidden edge of ¢*, then the edges popped after it will still be
classified in the same way in both graphs. Otherwise, it can affect the fate
of the edges that are popped at the same time or later:

Case 1: If v and v belong to trees that are also merged by another edge
e/ with weight equal to that of e, then both e and ¢’ are classified in g* as
possible, while in g the edge ¢’ was classified as either possible or mandatory
(depending on whether it was the only path connecting these trees in the
batch). After this, the partition of the nodes of the graphs into trees is the
same for g and ¢*, and the algorithms classify the remaining edges in the
same way.

Case 2: Otherwise, A leaves u and v in different trees while A* merges
the two trees. At some point, both algorithms see a batch whose insertion
connects u and v in g. These edges will be classified by A as either possible
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(if there is more than one) or mandatory (if there is only one). On the other
hand, A* will classify them as forbidden because their endpoints already
belong to the same tree. In all other steps, both algorithms classify the
edges in the same way. O

Example 5.13. We illustrate the previous proof by taking the graph of
Figure 5.3(a) as ¢g*. If e is an edge of weight 1, we have Case 1: in g the
edges are mandatory while in ¢g* they are possible. On the other hand if e
is an edge of weight 2, we have Case 2, and its endpoints are not merged.
An edge of weight 3 merges its endpoints and is mandatory in g while it is
forbidden in g*.

Note that the addition of a node of degree 1 and its incident edge to a
graph does not change the status of the other edges in the graph. This edge
just becomes mandatory.

We now show how to identify the sets Forbidden(D(G)) and
Mandatory(D(G)). The set Possible(D(G)) consists of the remaining edges
in D(G). Recall that the set Forbidden(D(G)) is the union of the forbidden
edges of each maximal connected component of D(G).

Theorem 5.14. The set Forbidden(D(G)) of edges that do not belong to
any MST of a connected graph in D(G) is

Forbidden(D(G)) = Forbidden(D(G)).
Proof. A direct consequence of the downgrade lemma. O

We now turn to computing the Mandatory set. The following lemma states
that the mandatory edges belong to the mandatory set of D(G). Note that
this does not follow from the definition of Mandatory(G), because if D(G)
is not connected, it does not belong to D(G).

Lemma 5.15. The set of edges that belong to all MSTs of all connected
graphs in D(G) is contained in the set of mandatory edges for D(G), i.e.,

Mandatory(D(G)) € Mandatory(D(G)).

Proof. If D(G) is empty, Mandatory(D(G)) = 0. Otherwise, there are
two cases: If D(G) is a connected graph, then it belongs to D(G) and
the lemma holds by definition. Otherwise, we may assume that D(G) is
connected. This follows from the pruning rules of the connected constraint
in the preprocessing step: Otherwise either the constraint has no solution
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or D(G) is empty or we can remove all but one connected component of
D(G). Let D(G)" be the graph obtained from D(G) by contracting every
connected component of D(G).

Let g be a minimal connected graph in D(G), i.e., a graph in D(G)
such that the removal of any node or edge from g results in a graph which
is either not connected or not in D(G). Then g consists of the union of
D(G) with a set ' of additional nodes and edges in D(G) \ D(G). The set
of mandatory edges of g, then, is the union of Mandatory(D(G)) and the
mandatory edges in t'.

Since we assume that the preprocessing step was performed, we know
that every edge in D(G) \ D(G) is excluded from at least one connected
graph in D(G): Otherwise, it is a bridge in D(G) that connects two manda-
tory nodes and was not included into D(G) in the preprocessing step, a
contradiction. We get that the intersection of the mandatory sets over all
minimal connected graphs in D(G) is equal to Mandatory(D(G)).

Since every connected graph in D(G) is a supergraph of at least one
minimal connected graph of D(G), we get by the downgrade lemma that
the mandatory set for any graph is contained in the mandatory set for some
minimal graph. This concludes the proof. O

Theorem 5.16. The set Mandatory(D(G)) of edges that belong to all MSTs
of graphs in D(QG) is:

Mandatory(D(G)) = Mandatory(D(G)) N Mandatory(D(G))

Proof. If an edge is present in all MSTs of all connected graphs in D(G) then
it is present in all MSTs of D(G) and all MSTs of the minimal connected
graphs of D(G). Hence, by lemma 5.15, Mandatory(D(G)) N Mandatory(
D(G)) D Mandatory(D(G)). Assume that there exists an edge e in

Mandatory(D(G)) N Mandatory(D(G)) which is not in Mandatory(D(G)).
Then there is a graph g € D(G) such that e is not in Mandatory(g). Since
g C D(G), we can obtain D(G) by a series of edge insertions. One of these
insertions turned e from a non-mandatory edge into a mandatory one, in

contradiction to the downgrade lemma. O

Example 5.17. Assume that the domain of G is the graph shown in Fig-
ure 5.4, where the solid edges are in D(G) and the dashed edge is in D(G) \
D(G). Then Mandatory(D(G)) contains the edges weighted 1 and 2, while
the edge of weight 3 is forbidden. On the other hand, Mandatory(D(G))
contains the edges weighted 2 and 3, because the edge of weight 1 is not in

D(G). Hence, only the edge of weight 2 is mandatory in all graphs of D(G).
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Figure 5.4: The domain of G in Example 5.17.

5.6.2 Filtering the Domains of G and T’

Using the results of the previous sections, we derive a simple algorithm to
filter the domains of T and G to bound consistency.

As before, we begin by applying the preprocessing step of Section 5.3.
We then proceed as follows.

Step 1: We filter D(T') according to Mandatory(D(G)) and Forbidden(D(G))
as in Section 5.5.2. By Theorems 5.14 and 5.16, we have these two sets if we
know Forbidden(D(G)), Mandatory(D(G)) and Mandatory(D(G)). They
can be computed by applying the algorithm described in section 5.5.1 to
both bounds of D(G). Once these sets have been computed, we use them

as in Section 5.5.2 to filter D(T).

Step 2: To filter D(G), we need to identify edges that cannot be in G
because otherwise T" would not be the minimum spanning tree of G. An
edge {u,v} has this property iff on every path P in D(T) between u and v
there is an edge which is heavier than {u,v}.

Example 5.18. To illustrate this condition, assume that the domain of T’
is as described in Figure 5.5 and that D(G) contains the edge {u,v} with
weight 2. Although u and v are not connected in D(T'), any path from u to
v in a tree in D(T') contains an edge which is heavier than {u, v}, so {u,v}
must not be in G. On the other hand, if the weight of the edge {z,y} is 1,
then {u,v} can be in G if {z,y} € T.

Figure 5.5: The domain of T" in the example. Edges of D(T') and solid and
those of D(T) \ D(T) are dashed.

To find these edges, we apply Algorithm 5, a modified version of Algo-
rithm 4 of Section 5.5.1 to D(G): We reverse the contraction of the edges of
D(T) and create a sorted list of all edges of D(G), including those of D(T).
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As before, we begin with a graph H that contains the nodes of D(G) as
singletons and at each step we extract from the queue the batch B of all
minimum-weight edges. We first insert the edges of B N D(T) into H and
contract each of them by merging the connected components that its end-
points belong to. Then, we remove from D(G) every edge in B\ D(T) that
connects two different connected components of H; If any of these edges are
in G, then at least one of them must belong to the MST of G. But they
cannot be in 7', so we must make sure that they are not in G either.

Data: D(G) = (N, E) a ground graph, D(T) ground graphs
Result: prune: edges which cannot be in G if its MST is a
subgraph of D(T)
begin
P —— Sort(E)
UF «——partition with N as singletons
prune «— ()
while P # () do
E’ «—pop minimum values from P
B «—— compute bridges in graph H = (Ce(UF), E’)
E! «— E'NAres(D(T))
Etljut — E, \ ATCS(E(T))
foreach ¢ = {u,v} € E!, do
if Find(UF,u)! = Find(UF,v) then
Union(UF, u,v)
end
end
foreach e = {u,v} € £/, do
if Find(UF,u) # Find(UF,v) then
prune «— prune U {e}
end
end
end
end

Algorithm 5: Filter D(G), non-fixed graph case, second step

After applying Step 2, we need to apply Step 1 again. However, we
show that after doing so we have reached a fixed point. This is illustrated
in figure 5.6. We first show that the second application of Step 1 does not
change D(T). Since Step 2 depends only on D(T), we are done if we use
the D(G) computed by the second step to update D(T).
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o o Sl

Figure 5.6: Dependency graph for the fixed point computation for the non-
fixed tree and graph case. Fixed point is reached after an application of steps
1,2,1 in that order. The figure is read from left to right. Primes and seconds
indicate which bound can be modified by the pruning step, arrows indicate
the input and output of each pruning step. The dashed box indicates what
needs to be proved: the second application of Step 1 does not change D(T')’.
Therefore a subsequent application of Step 2 would again produce D(G)’,
the fixed point is reached.

Consider the impact of the removal of a non-tree edge e (i.e., an edge
which is not in D(T)) from D(G) during Step 1. The set Forbidden is
not affected because it depends only on D(G). Assume that the removal
of e causes the insertion of an edge ¢’ into D(G). Then €’ was a bridge in
D(G) \ {e}. But since e ¢ D(T), ¢’ is a bridge in D(T) so it already was in
D(T), and hence also in D(G), a contradiction. This proves that we have
reached a fixed-point.

5.7 Handling Non-Fixed Weights

We now turn to the case where the edge weights are not fixed, i.e., the do-
main of each entry in W is an interval of numbers, specified by its endpoints.
Once again, we begin with simple cases where some of the variables are fixed
and gradually build up to the most general case.

5.7.1 Fixed Graph and Tree

When the graph and tree are fixed (MST(g,t,W)), the filtering task is to
compute the minimum and maximum weight that each edge can have such
that ¢ is an MST of g'. A non-tree edge {u,v} must not be lighter than any
edge on the path in ¢t between u and v. We can apply King’s algorithm to

1This problem is tightly related to the MST sensitivity analysis problem, where we are
given a graph with fixed edge weights and its MST and need to determine, for each edge,
the amount by which its weight can be perturbed without changing the property that the
tree is an MST of the graph.
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t, while assuming that each tree edge e has the minimum possible weight
D(Wle]). Then, if the data structure returns the edge ¢’ for the query
e = {u,v}, we filter the domain of the weight of e, denoted We], by setting
D(Wle]) — D(Wle|) N [D(W[e']), o0].

For a tree edge e, let ¢;(e) and ta2(e) be the two trees obtained by re-
moving e from ¢. Then e must not be heavier than any other edge in g that
connects a node from ¢; (e) and a node from t3(e). Let r(e) be the minimum
weight edge between ¢1(e) and t3(e) in the graph ¢\ e. Assuming that every
non-tree edge has the maximal possible weight, we can find the r(e)’s for
all tree edges within a total of O(ma(m,n)) time [10, 116]. Then, for every
e € t we set D(Wle]) « D(W]e]) N [—oo, D(W[r(e)])].

Now, if there is an entry We] in the weights vector with D(We]) = 0,
e should be removed from ¢ and the constraint has no solution.

5.7.2 Fixed Tree and Non-Fixed Graph

When the graph is not fixed but the tree is, the node-set of the graph is
determined by the tree. After filtering D(G) to equate the node-sets and to
contain all edges of ¢, we have that the endpoints of all non-tree edges, i.e.,
edges of D(G) \ t, belong to t.

We apply the filtering step of the previous section to the weights of the
non-tree edges. If this results in D(Wle]) = () for some edge e, we remove e
from D(G) (if e € D(G) then the constraint has no solution).

Next, we filter the weights of tree edges by applying the algorithm of the
previous section on D(G). That is, for each tree edge e we find the weight
of the lightest edge 7(e) in D(G) that connects t1(e) and t2(e), and shrink
D(Wle]) as before. To see why it suffices to consider D(G), note that an
edge ¢’ in D(G)\ D(G) is excluded from at least one graph in D(G), and in
this graph, of course, e may be heavier than ¢’.

5.7.3 Fixed Graph and Non-Fixed Tree

In section 5.5, we handled the same problem with fixed weights by a variant
of Kruskal’s algorithm that required sorting the edges by weight. Since one
weight interval can now overlap another, there is no longer a total order of
the edge weights. In Algorithm 6, we will show how to adapt the Kruskal-
based algorithm to this case.

Phase 1: First, Algorithm 6 considers edges in g. Instead of a list of edge-
weights, we create a list of the endpoints of these edges’ domains. We sort
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them in non-decreasing order, breaking ties in favor of lower bounds. Now,
D(W(e]) or D(W]e]) is between D(W[e']) and D(W[e/]) in the list if and
only if D(W(e]) N D(W[e']) # 0.

We then sweep over this list and examine each domain endpoint in turn.
We say that an edge e is unreached before D(We]) was processed, open
if D(We]) was already processed but D(W|[e]) was not, and closed after
D(Wle]) was processed. We maintain a graph H which is initially a set of
n singleton nodes. In addition, we maintain a union-find disjoint-sets data
structure UF that represents the connected components of the subgraph H’
of H that contains only closed edges. Initially, the union-find data structure
also has n singletons. During the sweep, when processing D(Wle]) where
e = {u,v}, we mark e as open. If Find(UF,u) = Find(UF,v), we place e in
the forbidden set. Otherwise, we insert it into H. When processing D(W[e])
where e = {u,v}, we mark e as closed. If e is a bridge in H, we place it in
the mandatory set Finally, we perform Union(UF, u,v).

After the sweep, all edges of the mandatory set are included in D(T")
and all of the forbidden edges are removed from D(T). Naturally, if this
violates D(T) C D(T), the constraint is inconsistent.

Phase 2: Next, the algorithm filters the weights of all edges. For a non-
tree edge e, i.e., an edge e € g \ D(T), the weight must be high enough so
that e does not belong to any MST of g. In other words, the weight of e must
be higher than the maximum weight of an edge on the tree path connecting
its endpoints. In section 5.4 we mentioned that King’s algorithm can find
the desired threshold when the tree is fixed. But how do we find the MST in
D(T) that minimizes the weight of the heaviest edge on the path between u
and v? Clearly, the desired weight is the lower bound of the domain of this
edge’s weight. The following lemma implies that it suffices to find any MST
in D(T') (while assuming that each edge has the minimum possible weight),
and apply King’s algorithm to this MST.

Lemma 5.19. Let g be a graph with a fized weight w(e) for each edge e and
let t1 and to be two MSTs of g. Let u and v be two nodes in g, let p1 be
the path between u and v in t1 and let py be the path between u and v in to.
Then

max w(e) = maxw(e)
eEpy eep2

Proof. Consider the symmetric difference p; ®po of the two paths. It consists
of a collection of simple cycles, each of which consists of a subpath of p; and



CHAPTER 5. SPANNING TREE CONSTRAINTS 126

Data: G = (N, E) and D(T) two ground graphs, W defines D(W[e])
and D (W e]) for each edge e in
Result: Forbidden and Mandatory: edges which belong to none and
all of the MSTs of D(G)
begin
P «— () foreach e € E do
Insert (D(Wle]),’ <’,e) in P
Insert (D(Wle]), >, e) in P
end
Sort P in non-decreasing lexicographic order
UF «——partition with N as singletons
foreach e = {u,v} € Arcs(D(T)) do Union(UF, u,v)
H «——empty graph for incremental bridges
Forbidden «— ()
Mandatory «— ()
while P # () do
(w, b, e) «—pop minimum value from P
{u,v} — e
if b ='<’ then
if Find(UF,u) = Find(UF,v) then
Forbidden «— Forbidden U {e}

else
Insert e into H
end
else
/x b="> */

if e is a bridge in H then
Mandatory «— Mandatory U {e}

end
Union(UF,u,v)
end
end
end

Algorithm 6: Partition Edges, fixed graph, non-fixed weight case
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Figure 5.7: Illustration of the proof of lemma 5.19. A cycle and its p; and
p2 subpaths, the maximum weight edges excluded from each MST.

a subpath of ps. Let ¢ be one of these cycles. By the cycle property, any
MST of g excludes a maximum weight edge from ¢ (see Figure 5.7). Hence,
there are at least two maximum weight edges in ¢, one in ¢ N p; and one in
c N po. Since this is true for every cycle, we get that the maximum weights
on each of the paths must be equal. O

For an edge e € D(T), i.e., an edge which belongs to all MSTSs, the weight
must not be so high that there is a cycle in g on which this is the heaviest
edge. In other words, we need to find an MST ¢ of g that contains D(7T') and
which maximizes the minimum weight of a non-tree edge r. that together
with ¢ forms a cycle that contains e. In section 5.7.1 we mentioned that the
desired threshold for all tree edges can be found in O(ma(m,n)) time when
the tree is fixed. Once again, we show that it suffices to apply the same
algorithm to one of the MSTs in D(T'). Clearly, the desired weight is the
upper bound of the domain of an edge weight. Furthermore, reducing the
weight of any edge in g can only decrease the value of w(r.). The following
lemma implies that it suffices to find any MST of ¢ that contains D(T)
(while assuming that each edge has the maximum possible weight), and use
this MST to compute the thresholds for all tree edges.

Lemma 5.20. Let g be a graph with a fixred weight w(e) for each edge e
and let t1 and ty be two MSTs of g. Let e be an edge in t1 Nta, let r1 be
the minimum weight edge that together with t1 closes a cycle that contains
e and let ro be the minimum weight edge that together with to closes a cycle
that contains e. Then

w(ry) = w(rz)

Proof. 1t is known (see, e.g., Lemma 3 in [10]) that each of t; U{r1} \ {e}
and to U {ro} \ {e} is an MST of ¢ \ {e}. Since all MSTs of a graph have
equal weight, w(ry) = w(ra). O

The time complexity of the algorithm described in this section is O(Sort(m))
to sort the endpoints of the domains of the edge weights and O(ma(m,n))
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for the modified Kruskal algorithm, the incremental connectivity [115] and
bridge computations [125], two MST computations and the filtering of the
edge weights.

5.7.4 General Case: Non-Fixed Graph and Non-Fixed Tree

We now turn to the most general case, in which all variables are not fixed.
In the case of the WBST constraint, we were able to find efficient bound
consistency algorithms for special cases, but the most general case is NP-
hard. In contrast, we will show that the MST constraint is not NP-hard
in its most general form. The naive bound consistency algorithm that we
sketch in this section has a running time of O(mn(m+logn)), which cannot
be considered practical. We leave it as an open problem to find a more
efficient method to approach the general case.

As before, we apply the filtering steps that follow from equality of the
node-sets, inclusion of 7" in G and the connectedness of G and T'. The main
complication compared to the cases considered in the previous sections is in
filtering the domains of the edge weights, because now the node-sets of the
graph and the tree are not fixed. Again, we need to filter the lower bound
weight of non-tree edges and the upper bound weight of tree edges.

Filtering the weights of non-tree edges. An edge e = {u,v} in D(G)\
D(T) cannot belong to the tree and therefore it must not be lighter than
the maximum weight edge on the tree path from w to v. Let ¢t be a tree and
let ¢(u,v) be the maximum weight edge on the path in ¢ between v and v.
We need to determine the minimum possible value of ¢(u, v) over all trees in
D(T). Clearly, this weight would be a lower bound of the domain of some
edge weight.

We set edge weights of all edge in D(T') to their lower bounds and con-
tract the edges of D(T'). In the remaining graph, we need to find a simple
path from u to v that minimizes the maximum weight of an edge along
it. This is done in O(m + nlogn) time in Algorithm 7 with a dynamic
programming approach that uses a variation of Djikstra’s shortest-paths
algorithm [32], where the sum of edge weights is replaced by a maximum
computation. Since this computation needs to be repeated m times, once
for every non-tree edge, the total time is O(m(m + nlogn)).

Filtering the weights of tree edges. A tree edge e must not be heavier
than any non-tree edge that connects two nodes u and v such that e is on
the tree path between v and v. To find the maximum possible weight of
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Data: G = (N, E) a ground graph, e a (non-tree) edge, w a weight
for each e in

Result: the replacement weight of e

remove e from F

() +— Prio queue with all nodes from N and — inf cost

Threshold[u] =0

while |Q| > 0 do
S «—— ExtractMin(Q)

foreach neighbor T' of S do
Threshold|T] «—

Min(Threshold|T), Max(Threshold[S],w(S,T))) if T € Q
then
DecreasePriority(Q, Threshold[T))

end

end

put e back into

return Threshold[v]

end

Algorithm 7: Non-tree edge weight filtering in the general case

an edge {u,v} € D(T), we will show how to check, for each edge {z,y} €
D(G) \ D(T), whether there is a tree t € D(T) that contains {u,v}, such
that {z,y} is the minimum weight edge connecting the two components of
£\ {{u.0}). -

Let E' = (D(T) \ {{u,v}}) U{ele € D(G) N D(T) ANw(e) < w(z,y)}. If
t exists, then each edge of E’ is either in ¢ or connects nodes that belong
to the same connected component of ¢\ {{u,v}}. So we compute connected
components of G’ = (Nodes(D(Q)), E"). If z and y are in the same compo-
nent, there is no such ¢. Otherwise, contract each connected component and
merge the component of u with the component of v. Let G” be the resulting
graph. For a node w € G’, we will refer to the node of G” that represents
the connected component of w by CC(w). We will say that a node in G”
is mandatory if it represents a component in G’ that contains at least one
node from D(T).

Insert into G” all the edges of D(T') which are not heavier than {z,y}. Tt
remains to determine whether we can make a tree that spans CC(x), CC(y),
CC(u) = CC(v) and all the mandatory nodes of G”, such that CC(u) is on
the path from CC(z) to CC(y). To do this, root G” at the CC(u) and find
its dominators (in linear time) [52]. If CC(x) and CC(y) have a common
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dominator, such a tree does not exist. Otherwise, find two disjoint paths,
one from CC(u) to CC(x) and one from CC(u) to CC(y). Then add edges
to the tree to make it span all mandatory nodes.

This test takes linear time, and needs to be repeated at most m times for
every edge in D(T), i.e., O(mn) times. The total running time is therefore
O(m?n).

To sum up our results, we presented bound-consistent filtering algo-
rithms for all cases of the MST constraint. For the special case where at
least one of G, T or W is fixed, the algorithm is almost linear. In the general
case, the algorithm is O(m(m + nlogn)).

5.8 Limitations of the WBST Constraint

We establish two complexity results to justify our definition of the WBST
constraint as a bounded weight and not an exact weight and its limitation
to graph intervals with a fixed node set. Let EWST be the exact version of
the WBST constraint, i.e., the variant in which [ is the exact weight of the
spanning tree 7.

Lemma 5.21. It is NP-hard to check whether an EWST constraint has a
solution.

Proof. By reduction from SUBSET-SUM, which is the following NP-hard
problem [25]: Given a set S of integers and a target k, determine whether
there is a subset of S that sums to k. We will assume that k& # 0 (SUBSET-
SUM remains NP-hard under this assumption).

Given an instance (S = {z1,...,z,}, k) of SUBSET-SUM, we construct
a graph Gg that has a spanning tree of weight k iff S has a subset that sums
to k (as shown in Figure 5.8). The graph has a node v; for every element
z; € S plus two additional nodes, s and t. For each 1 < i < n, the graph
contains the edge {t,v;} with weight x;. In addition, s is connected to every
other node by an edge of weight 0. Clearly, for any spanning tree of the
graph, the non-zero weight edges correspond to a subset of .S that sums to
the weight of the spanning tree. O

This justifies the definition of the parameter I of WBST as an upper
bound on the weight of the spanning tree. This constraint belongs to the cat-
egory of optimization constraints [13]. Unfortunately, the following lemma
states that WBST is still an NP-hard constraint.

Lemma 5.22. It is NP-hard to check whether a WBST constraint has a
solution.
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Figure 5.8: Graph for the proof of Lemma 5.21. The graph has a spanning
tree of weight k iff the set {z1,...,z;} has a subset of weight k

Proof. By reduction from STEINER TREE, which is the following NP-hard
problem [16]: Given an undirected graph H = (V, F), a subset U C V of
the nodes and a parameter k£ determine whether the graph has a subtree of
weight at most k that contains all nodes of U.

Given an instance of this problem, let D(G) = D(T) = [U, H| and
D(I) = {k} (i.e., T must contain all nodes of U and may or may not contain
the other nodes and edges of G). Then there is a solution to the STEINER
TREE problem iff there is a solution to the constraint WBST (G, T,I). O

Together with Theorem 4.1, this implies that unless P=NP, we cannot
find an efficient bound consistency algorithm for the WBST constraint in its
general form. In the following sections we develop an almost-linear bound
consistency algorithm for the special case of WBST in which the node-sets
of G and T are fixed (but their edge-sets are not).

5.9 WBST with Fixed Graph and Edge Weights

To simplify the exposition of the algorithm, we begin with the special case
WBST(g,T,1,w) in which the variables G and W of the constraint are fixed
(and are therefore denoted by lowercase letters). Since we assume that D(G)
contains exactly one graph and that D(W{e]) contains exactly one value for
all e, we only need to filter the domains of 7" and I.

5.9.1 Analysis of ¢

Recall that we assume that the preprocessing step was performed and that
D(T) is initially empty. Let ¢t be an MST of g and let w(t) be its weight.

We will use ¢ to partition the edges of g into three sets Mandatory(g, D(I)),
Possible(g, D(I)) and Forbidden(g, D(I)), which are defined as follows.
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Definition 5.23. Let g be a connected graph. The sets Mandatory(g,i),
Possible(g,i) and Forbidden(g,i) contain, respectively, the edges that be-
long to all, some or none of the spanning trees of g with weight at most
7.

Clearly, Mandatory(g, D(I)) C t and Forbidden(g, D(I))Nt = (. Thus,
we determine which of the tree edges are mandatory and which of the non-
tree edges are forbidden. For the first task, we can use techniques that
resemble those used in Eppstein’s algorithm for finding the k£ smallest span-
ning trees of a graph [10]. This implies the following O(ma(m,n))-time
algorithm: Find an MST ¢ of g and compute the replacements of every
edge of g with respect to t. An edge e € t is in Mandatory(g, D(I)) iff
w(t) — w(e) + w(ry(e)) > D(I), i.e., g\ {e} has only spanning trees which

are too heavy to be in the solution. An edge e ¢ ¢ is in Forbidden(g, D(I))
iff w(t) + w(e) —w(rg(e)) > D(I). All other edges are in Possible(g, D(I)).

5.9.2 Filtering the Domains of 7" and [

We are now ready to use the results of the analysis of g to filter the domain
of T.

1. For each edge e € Mandatory(g, D(I)), place e € D(T).
2. For each edge e € Forbidden(g, D(I)), remove e from D(T) .

3. Since D(T) and D(T) may have changed, we need to re-apply the
bound consistency algorithm for SpanningTree(G,T) described in
section 4.4.3.

As for D(I), it is filtered by setting D(I) < D(I) N [min(7"), oo, where
min(7") is the minimum weight of a spanning tree of D(T') which contains
D(T). In other words, the upper bound on the weight of the spanning tree
is not changed by this filtering step. Note that repeating the algorithm
again will not result in more filtering: Since D(I) did not change, the sets
Mandatory(g, D(I)) and Forbidden(g, D(I)) are also unchanged.

5.10 WBST With Non-Fixed Tree and Graph

We now consider the case in which both G and T are not fixed (but the edge
weights still are).
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5.10.1 Filtering the Domain of G

In general, filtering the domain of G consists in adding nodes and edges to
its lower bound and removing nodes and edges from its upper bound. In this
case, we show that the filtering relating to nodes is done by our preprocessing
step and that the filtering of edges is done trough the addition of edges in
D(T).

As in the other cases, the filtering of nodes is done through the Nodes(G) =
Nodes(T) constraint. Obviously, adding edges (not nodes) to a graph will
not hinder its capacity to contain a spanning tree of weight smaller than
D(I). Finally, if an edge is mandatory in G for it to have such a spanning
tree, it is obviously included in all such spanning trees.

Note this is true for all cases of the WBST and MST constraints.

5.10.2 Analysis of D(G)

The main complication compared to the fixed-graph case is in the analysis
of the set of graphs described by D(G) in order to filter D(T"). We generalize
the definition of the sets Mandatory, Possible and Forbidden:

Definition 5.24. For a set S of graphs, the set Mandatory(S,i) contains
the edges that belong to every spanning tree of weight at most ¢ of any
connected graph in S, the set Forbidden(S,i) contains the edges that do
not belong to any spanning tree of weight at most 7 of a connected graph in
S and the set Possible(S,i) contains all other edges appearing in at least
one spanning tree of a connected graph in S.

We will show that it suffices to analyze the upper bound of the graph
interval, namely the graph D(G). The following lemmas will be useful.
Intuitively, they state that if an edge is removed from the graph, this can
only decrease the number of weight-bounded spanning trees in the graph.

Lemma 5.25 (Monotony of the Mandatory set). The removal of an edge
from a graph cannot turn a mandatory edge into a possible or forbidden edge.
Formally: Let g be a graph and ¢ = g\ {e} the graph obtained by removing
an edge e = {u,v} from g. Then:

Va € g : (a € Mandatory(g,D(I)) = a € Mandatory(g', D(I)))

Proof. Let t be an MST of g and let ¢’ be an MST of ¢’ such that if e ¢ ¢
then t' =t and otherwise, ¢’ = (¢ \ {e}) U {ry(e)}. Note that w(t') > w(t).

Let a be an edge in ¢’ N Mandatory(g, D(I)). By the results of Sec-
tion 5.9.1, this implies that a € ¢ and w(t) — w(a) + w(rg(a)) > D(I). The
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weight w(rg(a)) of the replacement edge of a in g is not higher than the
weight w(ry (a)) of its replacement edge in ¢’. Hence, we can conclude that
w(t') —w(a) +w(ry(a)) > wt) —w(a)+w(rg(a)) > D(I), which means that

a € Mandatory(g', D(I)). O

Lemma 5.26 (Monotony of the Forbidden set). The removal of an edge
from a graph cannot turn a forbidden edge into a possible or mandatory edge.
Formally: Let g be a graph and ¢ = g\ {e} the graph obtained by removing
an edge e = {u,v} from g. Then:

Vaeg : (a € Forbidden(g,D(I)) = a € Forbidden(q', D(I)))

Proof. Let wyrsr(g) be the weight of an MST of G. By definition of
Forbidden, a € Forbidden(g, D(I)) iff w(a) +wysr(g\ {a}) > D(I). Sim-
ilarly, a € Forbidden(g’, D(I)) iff w(a) + wyst(g \ {a,e}) > D(I). We
show that removing an edge from a graph cannot decrease its MST weight:
warsT(9) < warsT(g \ {e}). If the edge e is not part of the MST of g then
both have the same weight. Otherwise w(ry(e)) > w(e) which means that
the second MST will not be lighter. O

Corollary 5.27. 1. The set Forbidden(D(G), D(I)) of edges that do not
belong to any spanning tree of weight at most D(I) of any connected
graph in D(G) is Forbidden(D(G), D(I)) = Forbidden(D(G), D(I)).

2. The set Mandatory(DLC;),ﬁ(I)) of edges that belong to any spanning
tree of weight at most D(I) of any connected graph in D(G) is

Mandatory(D(G), D(I)) = Mandatory(D(G), D(I)).
3. The set Possible(D(G), D(I)) consists of the remaining edges in D(G).

Proof. A direct consequence of Lemmas 5.25 and 5.26. O

Filtering the Domains of 7" and [

The bound consistent algorithm begins by computing the sets

Mandatory(D(G), D(I)), Possible(D(G), D(I)) and Forbidden(D(G), D(I)).
It then uses them to filter the domains of 7" and I in the same way as in
Section 5.9.2, with a simple addition: Whenever an edge is placed in D(T),
it is also placed in D(G).
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5.11 WBST When All Variables Are Not Fixed

We now turn to the most general case, in which all four variables are not
fixed. The weight of an edge e is now represented by the entry We] of W,
whose domain is an interval [D(We]), D(We])]. All steps that depend only
on the topology of graphs (and do not involve edge weights) are unchanged.
The other steps are modified as follows. Searching for a minimum spanning
tree in a graph with interval edges amounts to finding an minimum spanning
tree using the lower bound of the weights. In the preprocessing step, when
contracting an edge e € D(T'), we subtract D(Wle|) from the bounds of
D(I). When filtering G, we need to compute a minimum spanning tree and
then search for the replacement edge for each MST edge. Here we need
to minimize the weight of the spanning tree for all possible values of the
weights so we assume that the weight of each edge e is D(We]).

In the analysis of D(G), we again find an MST ¢ using the minimum
possible weight for each edge. When finding a replacement edge for a tree
edge e, we search for the non-tree edge €/ with minimal D (W [e/]) and proceed
as before (e is mandatory iff w(t) — D(Wle]) + D(W{e']) > D(I)). When
searching for a replacement edge for a non-tree edge e, we select the tree
edge ¢’ on the path between the endpoints of e with maximal D(W|e']).
Then e is forbidden if w(t) — D(Wle]) + D(W€]) > D(I)).

Finally, we need to consider upper bounds on the weights of the tree
edges (edges in D(T)); the weight selected for them must not be so high
that the total weight of the spanning tree is above D(I). We reverse the
contraction of edges that were in D(T') in the input, and find a minimum
spanning tree ¢t of D(G) that contains D(T). For every edge in e € D(T),
we set D(We]) « D(Wle]) N [~oo, D(I) — w(t) + D(We])].

In conclusion, we have shown the following

Theorem 5.28. Let G and T be graph variables, let W be a weight function
variable. If the node-sets of G and T are not fixed, it is NP-hard to filter
WBST(G,T,W) to bounds consistency. However, if the node-sets are fized,
there exists an algorithm that filters the constraint to bounds consistency in
O(ma(m,n)) time.

5.12 Summary

We have shown that it is possible to compute bounds consistency for the
MST constraint in polynomial time. For the special cases in which at least
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one of the variables is fixed, we found linear or almost-linear time algorithms.
For the most general case, our upper bound is cubic and relies on a brute-
force algorithm. It remains open whether the techniques we used for the
simpler cases can be generalized to an efficient solution for MST in its most
general form.

For the WBST constraint, we have shown that bound consistent filtering
is NP-hard if the node-sets of G and T are not fixed. If they are fixed, we
have shown that bound consistency can be computed in almost-linear time.



Chapter 6

A Gecode Implementation of
CP(Graph)

This chapter presents an implementation of CP(Graph) in Gecode. Graph
domains modeled as graph intervals were presented in chapter 3. Now, we
describe their implementation in a practical framework. An emphasis is
put on the integration of graph domains with the set and integer domains
of Gecode and on the integration of CP(Graph) with the Boost graph li-
brary [17].

We describe the main concepts and features of Gecode in section 6.1.
Then we give a short design rationale in section 6.2. In section 6.3, we de-
scribe the different operations which constitute the API of graph domains in
CP(Graph). Section 6.4 describes the implementation of kernel constraints
as propagators or views in Gecode. Sections 6.5 and 6.6 describe several
implementations of graph domains either as their re-expression as set or in-
teger domains or as a dedicated data structure. Section 6.7 describes features
available in CP(Graph) to ease the implementation of filtering algorithms
and search heuristics.

6.1 The Gecode Environment

Gecode stands for the Generic Constraint Development Environment. It is a
C—++ library for concurrent constraint programming which goal is to be easy
to extend and efficient. The library offers features to ease the development
of new search engines, search heuristics (labeling heuristics), new propaga-
tors and even new variable types. The architecture of Gecode is inspired
from the architecture used for constraint programming in Mozart. Its archi-

137
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tecture has been simplified and extended; it is described in [105, , ]
Before we present the design and implementation of the CP(Graph) exten-
sion to Gecode, this section covers some important aspects of the Gecode
library. This section can also be used as an introduction to the source code
documentation.

6.1.1 Overview

Concurrent constraint programming is a model for solving CSPs where each
constraint is associated to a propagator. Propagators are concurrent software
entities which communicate through variable domains. A domain update
performed by one propagator triggers other propagators which might imply
more filtering. Propagators are run until they reach a fixed point where
no additional execution of any propagator can result in more filtering. A
solution to a CSP is found through the exploration of a search tree by
alternating between phases of propagation and choice. A node of this search
tree is called a space.

In Gecode, spaces, variables, and propagators are objects. The con-
straints are posted by instantiating an object for the propagator. This
propagator knows on which variables it operates and has two main methods,
“propagate” and “cost”. A specific CSP is modeled by inheriting from “space”
and keeping references to the variables which are considered to constitute
the solution.

The search tree is dynamically defined by branching strategies and it
is explored by a search engine. When the propagators have reached a
fixed point in a node of the search tree (the parent node), it is developed
into its child nodes by adding a choice constraint into each child. For the
search tree to be complete, the disjunction of the choice constraints should
not further constrain the parent space. The choice constraint will hope-
fully cause some filtering and trigger other propagators. In Gecode, the
search process is based on copy: On fixed point, the search engine asks
the branching how many children it is going to produce for that space
(Branching: :branch(Space *)), then it can clone the parent space to keep it
to produce the next children. The search engine asks the branching to
post the appropriate constraint to turn the space into a specified child
(Branching: :commit (Space*,int,BranchingDescx*) ) The search engine has a com-
plete control on when, in which order and how many times it asks the
branching to produce these children.

A search engine and one or more branching strategies are instantiated.
The search engine triggers propagation in spaces then makes them branch.
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Branching strategies are registered to the space and one is selected and run
at each branch point in the search tree. The branching strategy queries the
variables of the space to decide how many branches to create and which
constraints to post in them.

Several techniques are used to speed up the search engines. To spare
memory usage, recomputation is used. It consists in storing only some of
the spaces along the path from the root. When a space is needed at a
branching point, it is either already present in memory or can be recom-
puted by applying the appropriate constraints to an ancestor space stored
higher in the tree. The search engine can query the branching strategy for
an object called branching description which records the branching decision
and is used for batch recomputation. Batch recomputation consists in post-
ing all choice constraints on the search path from the stored space to the
needed space at once and then compute only one fixed point. In Mozart,
this batch recomputation is not available and a fixed point is recomputed
at each branching point. If the space is recomputed from a distant par-
ent, batch recomputation can lead to large speedups compared to simple
recomputation [105].

6.1.2 Variables and Views

Views and Variables are object encapsulating a pointer to a variable im-
plementation. They have the advantage that the user does not explicitly
deal with variable pointers. They provide a different interface to the vari-
able implementation: Variables are used when modeling a CSP and posting
constraints. They allow to declare the initial domain, post constraints and
query the state of the domain. On the other hand, views are used internally
by propagators and branching strategies and provide an extended interface
to perform basic tells on variable implementations.

An advantage of inserting a view between propagators and variable im-
plementations is that multiple types of views can be created for the same
variable type. For instance, with integer variables, offset and scaled views
can be used. An offset view X + k over variable X provides the same in-
terface as a normal view over a variable Y which would have been created
along with a propagator for Y = X + k. This feature allows to save propa-
gators and additional variables for trivial constraints such as X + k=Y or
aX =Y.

Example 6.1. Offset views allow to implement the queens problem with
three alldifferent constraints, the classical one for keeping queens on different
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rows, and an additional alldifferent for each diagonal. These constraints are
posted on offset views X; + ¢ and X; —i: X;+1 # X; + AKXy —i #
X;—j (Vi # j). The alldifferent propagator does not need to know whether
it is dealing with offset or normal int views.

A potential pitfall is that a propagator must take care that fixed point
reasoning copes with a potential sharing of variables in views. When sev-
eral views used in a propagator are accessing the same underlying variable
instance, changing the domain of one view affects the other view. This is
described in the example below. If a propagator reports fixed point while it
has not really achieved it, it might not be rescheduled and never detect an
inconsistent partial assignment.

Example 6.2. Assume the constraint X +1 > 2X is implemented by post-
ing the constraint Y > Z on an offset view X + 1 and a scaled view 2X.
A propagator not dealing with sharing reaches a fixed point by pruning the
lower bound of Y: D(Y) « max(D(Y),D(Z)) and the upper bound of Z:
D(Z) «+ min(D(Z),D(Y)). With two different variables, a single appli-
cation of these two rules reaches a fixed point. On the other hand, with
our shared variable X, this is no longer the case. Let D(X) = [1,2,3],
D(X +1) =12,3,4] and D(2X) = [2,4,6]. The first rule does no pruning,
the second one removes the value 6 from D(2X). If those were different
variables, we would be done but as the variable is shared the removal of 6
from 2X removes 4 from X + 1. A fixed point computation instantiates the
value of X to 1.

6.1.3 Iterators

Iterators are used by propagators to inspect a domain and to perform batch
tells. The batch removal of values from an integer domain is one order of
magnitude faster than n removals: In the worst case, a single removal needs
to scan the whole domain. As the domain is a sorted list, removing a sorted
list of values from it can be done in a single pass over the two lists.

Two types of iterators co-exist in Gecode: range and value iterators.
Both of them share this part of their interface:

® bool operator() (void) is used as a “hasvalue” method.
® void operator++(void) is used as a “move to next” method.

Their difference lies in the type of values they iterate on:
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e Range iterators provide int min(void) and int max(void) to access the
current bounds of a range [?].

e Value iterators provide int val(void) to access the current value pointed
by the iterator.

Range iterators are used for all tells and are the basic iterator type used to
inspect domains. They are built with for instance:

LubRanges<SetView>: : LubRanges(SetView& v). Such a range iterator can be con-
verted to a value iterator by using a Iter::Ranges::ToValues<It> iterator
built with: ToValues<Iter>::ToValues(Iter & it) where it is an instance of
LubRanges<SetView> in this example.

Iterators can be combined using iterator composition such as union,
difference or intersection. This provides a nice and efficient interface for
computing the intersection and union of two bounds such as in the subset
propagator. For instance: Inter<Iti,It2>::Inter(Itl &il, It2 &i2)

6.1.4 Scheduling of propagators

One asset of Gecode is the constraint propagator scheduling. The sched-
uler has one scheduling queue per variable type. In this sorted queue, the
propagators are inserted according to their estimated cost. Lowest cost
propagators are popped first, then higher cost propagators are processed
only when no lower cost propagator is waiting to be processed.

This scheduling policy allows to use multiple propagators with different
computational complexities at the same time for a single constraint. Cheap
propagators are scheduled first and perform a rough pruning of the domains.
Once these propagators have reached a fixed point, heavier but more precise
propagators come into play.

Finally, Gecode has staged propagators [?]. These propagators combine
the logic of several filtering algorithms of different complexities for the same
constraint. The propagator chooses to run one of the filtering algorithms
depending on the type of modification event that triggered it. This has
the benefit that the propagator can detect entailment and disappear from
the scheduling queues all at once while with several propagators, the others
would need to be run for each of them to detect entailment.

6.1.5 Flow of information in the Gecode architecture

For the sake of documentation, we precise the flow of data and the respon-
sibility of each entity in three important phases of a search.



CHAPTER 6. A GECODE IMPLEMENTATION OF CP(GRAPH) 142

Subscription When the user instantiates a propagator, this propagator
calls the subscribe method of the views it is posted on. The variable stores
a pointer to the propagator in a list and arranges for it to be scheduled (by
setting its pme attribute). The Propagator: :Propagator(Space*, bool) parent
class constructor has a Boolean argument telling if the destructor of the
propagator needs to be called when it is entailed (for instance if it has to
free a data structure allocated on the heap).

Propagation When the search engine calls Space: :status(), Space: :clone()
or Space::commit() (if no branching description is passed to it), the propa-
gation is performed until a fixed point is reached. The scheduler calls the
propagate method of a scheduled propagator. The propagator makes tells
on variables. The variables notify the Space of any modification (ModEvent)
that has occurred during the tell. The varTypeProcessor is used to combine
the modification events. The variable tell returns a ModEvent which the
propagator takes into account. If this modification event is FAIL, the prop-
agator must call the fail method of the space and exit immediately as the
behavior of a space in this failed state is not guaranteed to be consistent.

Cloning When the search engine calls the clone method, the copy method
of the Space is called (implemented in the user-defined derived class) this
method calls the copy constructor of the derived class which calls the copy
constructor of the base Space. All variables and propagators are copied by
the Space::Space(Space*,bool) copy constructor. The original variables cre-
ate temporary forwarding information: Each variable stores a temporary
pointer to the corresponding new variable in the new space. The propaga-
tors are copied too and they call the View::update method on their views.
That method uses the temporary forwarding information to update its en-
capsulated variable pointer. As the user-defined space derived class stores
solution variables in data members, its copy constructor must also call the
View::update method to point to the right underlying implementation. Fi-
nally, the clone method finishes by deleting the temporary information and
restoring the original variables to their correct state.

6.2 Design of the CP(Graph) extension to Gecode

The main functional goals in the design of the CP(Graph) library consist of
features to allow

e the implementation of graph domains,
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e the implementation of graph constraints,
e the modeling and solving of subgraph extraction CSPs.

Non functional goals comprise extendability, maintainability and efficiency.

Most of the design of CP(Graph) is inherited from Gecode as it is an
extension to that system. While it would have been possible to blend with
Gecode in a minimalistic fashion, only obeying the mandatory rules, we
tried to provide the same kind of tools that are provided in Gecode and to
integrate with the whole framework as much as possible. For instance, we
provide views and iterators in a way similar and interoperable with the rest
of Gecode. The focus was put more on functionality than efficiency. The
goal was to have first a system working with reasonable efficiency and only
then optimize the bottlenecks.

To increase extendability and ease the prototyping of new graph propa-
gators, we chose to also integrate CP(Graph) with a library of graph algo-
rithms and data structures. We chose the Boost Graph library as it is free,
offers a broad range of graph algorithms and is based on modern C++ de-
sign techniques called generic programming [111]. The Boost Graph library
is used for the implementation of propagators and branching strategies. We
also use the Standard Template Library (STL).

6.3 Graph View API

Graph domains were described in the previous chapter from a theoretical
viewpoint. In its practical implementation, CP(Graph) provides several
types of operations over graph domains which are described below. Unlike
in the rest of Gecode, we did not define two different variable implementa-
tion wrappers (variables and views). We use views both for modeling and
propagators. It is the user’s responsibility to check modification events if
basic tells are used when modeling. Note that variable wrappers could be
introduced later ([105] introduces the idea of using views for modeling). Our
implementation of graph views is described in sections 6.5 and 6.6.

6.3.1 Initialization

The graph domains are declared with an initial upper bound and an empty
initial lower bound. One constructor of graph views takes the set of nodes
and set of arcs as input:
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® GraphView::GraphView(Space* home,
pair<vector<int>,vector<pair<int,int> > >& graph)
This method specifies the initial upper bound as a vector of node ids
(graph.first) and a vector of pairs of node ids (graph.second).

® GraphView::GraphView(Space* home, int numNodes)
This method specifies the initial upper bound as a complete graph over
the node ids o,...,numNodes-1.

6.3.2 Domain inspection: Iterators

Graph domains provide iterators over the arcs and the nodes of the lower
and the upper bounds of the graph domain. Two additional iterators on
the unknown arcs and unknown nodes are also available. They traverse the
set of elements which are present in the upper bound but not in the lower
bound. The following methods are available for every graph view:

® GraphView: :LubNodeIterator GraphView::iter_nodes_UB(void)
® GraphView::LubArcIterator GraphView::iter_arcs_UB(void)
® GraphView::GlbNodeIterator GraphView::iter_nodes_LB(void)
® GraphView::GlbArcIterator GraphView::iter_arcs_LB(void)
® GraphView: :UnkNodeIterator GraphView::iter_nodes_Unk(void)
® GraphView::UnkArcIterator GraphView::iter_arcs_Unk(void)

These are Gecode value iterators, they obey the syntactic API of Gecode
value iterators: operator(), operator++ and val(). The latter method returns
a node id (int) for node iterators and a pair of node ids (pair<int,int>) for
arc iterators.

As the Gecode iterator combiners expect range iterators, we provide a
NodeRanges version of the node value iterators (for instance iter_node_ranges_UB).
This is a convenient syntactic sugar which allows to use range iterators
without explicitly instantiating and converting a value iterator into a range
iterator.

While in most cases, propagators dealing with arcs only focus on the
node ids of the endpoints of each arc, some propagators might need the
arc id instead. We provide an ArcId<Iter,ArcNode> iterator adapter which
converts an iterator over node pairs to an iterator over arc ids (using the
ArcNode template parameter to do the conversion, see also section 6.5).
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These iterators have an API similar to the API of other iterators in
Gecode. As we make an extensive use of STL and Boost containers and
iterators in our design, we provide the St1ToGecodeVallterator adapter which
allows to handle STL iterators using the Gecode iterator API. In the STL,
iterators are instantiated by pairs (most often using the begin and end meth-
ods of containers) and compared to test if the iterator is exhausted:
for(it=c.begin(); it!=c.end(); ++it). Our iterator adapter is instantiated in
the following way:

StlToGecodeVallterator<Iter>::StlToGecodeVallterator(Iter begin, Iter end)
A StlToGecodeRangelterator is available too.

As with the integers and sets provided in Gecode, the use of iterators
allows to efficiently perform multiple similar basic tells on the same bound.
These tells are described in the next section.

As with sets, a graph domains carries information about the cardinality
of its bounds. The last domain inspection methods deal with the order
(number of nodes) and size (number of arcs) of the two bounds. It is possible
to query the order and size of the current graph bounds in constant time:

® int GraphView::GlbOrder(void) returns the order of the lower bound graph
of the graph domain.

e Lub and Size versions exist too.

Each graph domain also stores additional integer bounds for its order and
size:

® int GraphView::OrderMin(void) returns the lower bound of the order of
the graph domain.

e Max and Size versions exist too.

Note the following invariant for any graph view g : g.0rderMin() <g.GlbOrder().

For propagators requiring more detailed inspection of graph domains
(such as traversing the neighbors of a node), we provide another mechanism
than iterators: bounds graphs. It is a customizable Boost graph data struc-
ture which reflects the current bounds of a graph domain. It allows to apply
classical graph algorithms to the bounds or perform traversals. This data
structure is documented in section 6.7.1.

6.3.3 Domain update: tells

In Gecode, modification events (ModEvent) are a mean to describe a mod-
ification of a domain. Three mandatory modification events are “none”,
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“assigned” and “failed”. In CP(Graph), the set of modification events has
been kept as simple as possible. In addition to these three mandatory mod-
ification events (ME_GRAPH_NONE, ME_GRAPH_VAL, and ME_GRAPH_FAILED), we have
events for the modification of the upper bound (ME_GRAPH_LUB), of the lower
bound (ME_GRAPH_GLB) and of both bounds (ME_GRAPH_BB).

The propagation conditions (PropCond) have been defined accordingly. A
propagator can be awakened when a graph variable is instantiated (PC_GRAPH_VAL),
when its lower bound changes (PC_GRAPH_GLB), when its upper bound changes
(PC_GRAPH_LUB) or when any modification happens (PC_GRAPH_ANY). These mod-
ification events are used when subscribing a propagator to a variable or
canceling it.

The first basic tells allow to include one arc or node in the lower bound
and exclude one from the upper bound:

® ModEvent GraphView::arcIn(Spacex,int u, int v)
® ModEvent GraphView::arcOut(Space*,int u, int v)
® ModEvent GraphView::nodeIn(Space*, int n)

® ModEvent GraphView::nodeOut(Space*, int n)

They are there for convenience as iterator tells have the same complexity
whenever used with a single value. When doing several similar tells on the
same bound, the iterator tells should be used instead.

Other basic tells allow to update the bounds of cardinality:

® ModEvent GraphView::0rderGq(Space*, int inf)
® ModEvent GraphView::0rderLq(Space*, int sup)
® ModEvent GraphView::SizeGq(Space*, int inf)
® ModEvent GraphView::SizeLq(Space*, int sup)

Finally, as for other Gecode variables, we provide iterator tells which allow
to perform several similar tells at once:

® ModEvent GraphView::arcIn(Space*, Iter& i)
® ModEvent GraphView::arcQOut(Space*, Iter& i)
® ModEvent GraphView::nodeIn(Space*, Iter& i)

® ModEvent GraphView::nodeQOut(Spacex, Iter& i)
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In these expressions, Iter is a template argument which should be instanti-
ated to a Gecode value iterator. For tells on the nodes, the iterator value
must be an integer, while for arc tells it must be a pair of integers.

6.4 Kernel Constraints

The three kernel constraints Nodes, Arcs and ArcNode were described in
the previous chapter as the constraints which allow to link the graph domains
with the sets and integer domains. We showed that using these constraints,
it was possible to express our subgraph extraction problems with set and
integer constraints. We also describe the adjacency constraint of graphs.

6.4.1 Constraint Propagators

The ArcNode(A, N1, N3) constraint is implemented as explained in the pre-
vious chapter. The variables A, N1 and Ny are integer variables. The
constraint is parametrized by an ArcNode mapping to convert pairs of node
ids to arc ids and back: arcnode(a,n1,n2,an).

The rules of the adjacency constraint ArcImpliesNodes were described in
section 3.4. The graph view API provides the necessary methods to enforce
this constraint. It is necessary to post it for some graph view implementa-
tions which do not guarantee that it is an invariant. The static post method
is used by the views to post this constraint.

The Ares(G,SA) constraint is posted with arcs(gv,sv,an); where an
is an ArcNode instance, gv is a graph view and sv is a set variable. The
Nodes(G,SN) constraint is posted with nodes(gv,sv); where gv is a graph
view and sv is a set variable. These constraints are also available as views.

6.4.2 Constraints as Views

Thanks to the similarity of graphs and sets the Nodes(G, SN) and Arcs(G, SA)
constraints are simple enough to also be expressed as set views over graph
domains.

CP(Graph) provides a NodeSetView which is a set view adapter for graph
views. It allows to plug a graph view in any constraint over sets. The
constraint then applies to the set of nodes of the graph view. This is a
cheap implementation of the Node kernel constraint. It does not require an
additional set variable and propagator to maintain the coherence between
these domains. A NodeSetView is simply instantiated by passing it a graph
view: NodeSetView<GraphView>::NodeSetView(GraphView & g).
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Given the similarity between sets and graphs, the tells of the setview
APT are easily translated to tells on the graph view. exclude and include
correspond to nodeOut and nodeIn. cardMin and cardMax correspond to OrderGq
and OrderLq. The last tell, intersect which lists values which can stay in the
upper bound is converted to: nodeOut with a difference iterator between the
nodes of the upper bound and the iterator passed to intersect.

A similar ArcSetView provides a view over the set of arcs of a graph
variable and implements Arcs(G,SA). A computation domain for pairs
or tuples of integers domain is not available yet in Gecode. We chose to
represent the arc type as integers, so sets of arcs are sets of integers. Arcs
are mapped to non-negative integers using a user-defined mapping called the
ArcNode mapping. For efficiency issues, there is however an invariant about
arc ids that is assumed in the whole CP(Graph) system: the order of arc
ids is the same as the lexical order of arcs (arbitrary gaps and offsets are
allowed but shuffling is not). This constraint on the order of arc ids allows
to have sequences of pairs of node ids and sequences of corresponding arc
ids to be sorted accordingly. These sequences can then be used in iterator
tells. CP(Graph) provides two predefined ArcNode mappings, the first one
(DefaultArcNode) uses the index of the arc in the lexicographically ordered
list of the arcs of a complete graph of given order. Example: in a graph
with 12 nodes, arc (1, 8) is numbered 12 x 148 = 20. The second one allows
the user to specify the value of arc ids and stores the mapping in map data
structures. By default, the first one is used.

6.5 Graph domains as views over set domains

We have just seen how a graph domain can be viewed as a set of nodes
or arcs using NodeSetView and ArcSetView. These view adapter classes allow
set propagators to transparently manipulate a graph variable as if it was
the set of its nodes or the set of its arcs. In this section, we deal with
the dual problem: can we model graph domains with sets. The answer is
obviously yes. Three such views are provided in the version 1.0 of Gecode
implementation of CP(Graph). They are described in the two following
sections. The two first views are views for general graph domains. The last
view corresponds to the single successor graph view.

6.5.1 The Arcs and Nodes Graph View

The NodeArcSetsGraphView is a translation of the definition of graphs: G =
(SN,SA). It relies on two set variables: one for the set of nodes and one
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for the set of arcs. The set of arcs is a set of non-negative integral arc ids.
This view is implemented using the following template class parametrized
by an optional ArcNode mapping:

template <class ArcNode=DefaultArcNode>
struct NodeArcSetsGraphViewT ;

Its constructors take an optional ArcNode instance used to translate end-node
ids to/from arc ids. The default mapping is DefaultArcNode which numbers
arcs by there lexical order in a complete graph.
NodeArcSetsGraphViewT (Space *home,
const std::pair<std::vector<int>,
std::vector<std::pair<int,int> > >& graph,

ArcNode *a=NULL);
NodeArcSetsGraphViewT (Space *home, int numNodes, ArcNode #*a=NULL);

A constructor specific to this view allows to specify the sets to be used
as node set and arc set, for this constructor the ArcNode mapping must be
specified explicitly:

NodeArcSetsGraphViewT (Space *home, SetVar nodes, SetVar arcs, ArcNode *a);

The adjacency constraint is enforced by posting the ArcImpliesEndNodes prop-
agator on the graph view. The propagation rules of this propagator were
described in section 3.4. As this graph view is the only templated graph
view, we define NodeArcSetsGraphView as the view using the default ArcNode
mapping:

typedef NodeArcSetsGraphViewT<> NodeArcSetsGraphView;

As in the NodeSetView and ArcSetView, the conversion of tells and iterators
from graph views to set views is straightforward. The size and order counts
and bounds are present in the set domains so queries and tells about those
are also directly translated. The complexity of iterating over the bounds is
proportional to the size of the bound. Including or excluding one arc takes
time linear in the size of the bound affected. When including a set of arcs or
nodes, the overhead for seeking the element in the structure is proportional
to the value of the element, seeking element 50 is on average twice as fast as
seeking element 100. As nodes and arcs are required to be strictly ordered,
this overhead can be spared when doing several modifications at once. Seek
the first element, do the inclusion/exclusion, then from there seek the second
element,. . .

This graph view has the advantage of being very simple by modeling a
graph with only two sets in a way very similar to the mathematical definition
of a graph. As demonstrated in chapter 7, it is however the less efficient
model for a graph view.
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6.5.2 The Out Neighbors Graph View

This second view (OutAdjSetsGraphView) uses one set variable for the set of
nodes and one additional set variable for each node in the upper bound.
Each of these additional sets model the set of “out neighbors” of each node.
The “out neighbors” of a node n is the set of nodes n’ which are the head of
an arc (n,n’) whose tail is n. These sets are stored in members SetVar nodes
and SetVarArray outN.

The tells and iterators for nodes implemented in the same way as for
NodeArcSetsGraphView. The arc iterator maintains the index and value of the
current arc tail and uses an iterator over the set of adjacent nodes to get
the arc heads. For tells and queries about the size of the graph, we add a
integer variable member named Size with the following constraint:

Size = Z #OutNeigh(i)

)

The complexity of iteration over all the arcs is O(m + n) where m and n are
respectively the number of arcs and nodes of the iterated bound. For a batch
tell, the inclusion or exclusion of several elements at once, the complexity is
the same. However the seek time is reduced with respect to the nodes and
arcs graph view: Seeking an arc takes O(n + d) where d is the out-degree
of the tail of the seeked arc. This is compared to O(n + m) for the nodes
and arcs graph view. As shown in section 7.4, in practice, arcs are included
or excluded in small batches and this difference of asymptotic complexity
really pays off.

The adjacency constraint is enforced by posting the ArcImpliesEndNodes
propagator as in the previous view. Note that in this model, this adjacency
constraint can be translated by introducing Boolean variables and posting
a set of integer and set constraints:

Vn : OutNeigh(n) # 0 = n € SN
Vn : OutNeigh(n) C SN

It can be posted for all values n in the upper bound of the set of nodes SN
using the Boolean negation, disjunction, reified constant in set, reified set
cardinality and subset constraints. We show in chapter 7 that this reformu-
lation is slightly less efficient than the ArcImpliesEndNodes generic propagator
using the graph domain API.

This graph view as the advantage of allowing an easy formulation of
some local properties of the graph:
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e A node n is a sink : OQutNeigh(n) =0

e A node n is a source: Vi OutNeigh(i) # {n}

e The out degree of node n is 3: #OutNeigh(v) = 3

e The graph is a matching: Disjoint(OutNeigh)AVi #OutNeigh(i) < 1

The SetVar nodes and SetVarArray outN public data members of the graph
view can be used to model such constraints within Gecode.

In chapter 7, we show that this graph view is nearly as efficient as our
dedicated graph domain implementation described in next section.

6.5.3 The Single Successor Graph View

This model, SingleSuccGraphView, is an integer model used for modeling paths |

], cycles [0, 19] or trees [7]. Its particularity is that every node has a
unique successor. It is a part of the model we presented in section 3.5.3 for
the Knight’s Tour problem, the variables modeling the next square of each
square in the tour.

The tells and iterators are implemented in a way similar to the
OutAdjSetsGraphView, the only difference lies in the underlying types for the
iterators and the underlying methods for tells. The order and size of the
graph are fixed as each node is included in the graph and has exactly one
outgoing arc. The complexity of iterating over all nodes or arcs is linear
in the size of the bound, O(m + n). As each node has exactly one arc in
the solution, it has at most one arc in the lower bound and the iteration
complexity is bounded by O(n) for the arcs of the lower bound. Note that
the upper bound has no particular property an including or excluding one
arc has complexity O(n + d) has in the out neighbor sets view.

The adjacency constraint need not be enforced in this model as the node-
set is constant.

)

6.6 A Dedicated Data Structure for Modeling Graph

Domains

Instead of just translating graph domains into sets, we investigated whether
it would be beneficial to have a dedicated data-structure which would allow
a lower memory footprint and better timings for the operations available on
graph domains.
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Id=Db
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Next=0 >

Figure 6.1: Graph data structure to represent the upper bound of a graph
domain. Each of the nodes point to the list of their outward edges. The
edges point to their head node (the tail is the node which point to the edge
list).

6.6.1 Data Structure

Our data structure is an adjacency list. It is depicted in figure 6.1. Nodes
are stored in a linked list (vertical in the figure). In each element of this list,
we have a struct with an integer field storing the node id, a pointer to the
next struct and a pointer to the out neighbors of that node. The structs in
the out neighbors list have an integral id storing the edge id, a pointer to
the next struct and a pointer to the head node. This structure is used to
model the upper bound. The lower bound is represented by using the sign
bit of the id of nodes and edges to indicate whenever it is also part of the
lower bound.

Iteration over the nodes and arcs consists in following the pointers in the
linked lists. A particularity of this model is that the iteration over the lower
bound has the cost of iterating over the upper-bound. We can however stop
before the end as we know the number of nodes and arcs of the lower bound.
The worst-case complexity to access an arc (u,v) is O(u + v).

The adjacency constraint need not be posted on this graph domain im-
plementation as it is an invariant which is maintained by each tell operation
and thus need not be enforced by a propagator. When nodes are removed
from the upper bound they are marked and a complete pass over the upper
bound is done to remove all incoming arcs to these nodes.

As is done for other variable types in Gecode, the implementation of
the graph domain (GraphvarImp) is not exposed to the user which instead
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uses a graph view (GraphVarView) wrapping a pointer to this graph domain
implementation.

6.6.2 Note about Memory Allocation

Gecode provides a memory allocator used to implement integer and set
variable domains. These variables are implemented using linked lists of cells
containing a range (pair of integers). The set domains use one such list for
its upper bound and an other list for its lower bound. The cells are released
by the variables when a domain modification results in less cells in the linked
list (less gaps, when two intervals are merged into one). Those cells are then
stored in a pool for later reuse. When a variable update needs to insert a
cell into its linked list, it requests a free cell from the pool. If free cells are
available, the operation does not need to perform a call to the underlying
heap memory allocator. If not, then a large size of heap memory is requested
at once. The allocator uses some strategy to dynamically determine the size
of memory blocks allocated in the heap. The cell size of integer and set
variables is computed for two integers and a pointer. That is 12 bytes on
32-bit machines and 16 on 64-bit machines. Our data structure uses cells
of one integer and two pointers. That is 12 bytes on 32-bit machines and
20 bytes on 64 bits machines. On 32-bit architectures, our data-structure
uses the same cell size as integer and set variables and can share memory
cells with all the other variables in the CSP. The advantage of this sharing
between graph and other domains could not be assessed by experiments. It
seems that not calling the dispose method to give back the cells to the pool
does not impede the running time or memory usage.

6.7 Additional support for branchings and propa-
gators

This section covers three features of CP(Graph) which allow to ease the
development of graph constraint propagators and search heuristics. The
bounds graphs is the interface between graph domains and the Boost graph
library. The second feature is a generic branching strategy which delegates
the choice to a method of a bounds graph. Finally, we present scanners, a
concise and efficient way to compare bounds of graph variables in propaga-
tors.
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6.7.1 Bounds Graphs

One of the goals of CP(Graph) is to allow for the rapid development of new
graph propagators. The BoundsGraphs class models both bounds of the graph
domain and has a Boost Graph library compatible API. This API allows
to apply the graph algorithms defined in Boost on the bounds of our graph
views. They are the point where Gecode and Boost meet in our design. A
BoundsGraphs instance has four data members: UB and LB are Boost graphs
modeling the upper and lower bounds and UB_v and LB_v are mappings from
node ids to Boost vertex descriptors used to access vertices of both Boost
graphs. These mappings are currently implemented by vectors as node ids
are kept consecutive in the universe graph of the CSP.

To suit the needs of all graph algorithms in the Boost library, we use
bundled index properties in the vertex and edge objects implementing the
Boost graph. These indexes allow to use vectors to implement additional
properties of vertices and edges (such as a vertex color in DFS or a weight
in Dijkstra’s algorithm). The API provides members to reset node and arc
indexes in each bound graph (e.g. resetVertexIndexLB).

The update member allows to keep the graphs synchronized with the
graph view it operates on. The type of the underlying graph can be spec-
ified as a template parameter of the BoundsGraphs class. For instance, when
information about incoming edges is as important as the information about
outgoing edges, a bidirectional graph can be used. The latter is the default.
If incoming edges and neighbors are not used, an unidirectional graph can
be used. A undirected graph can also be used for non directed constraints.

This class also allows to modify the bound graphs during the propagation
(contract edges, add temporary edges in the upper bound, ...). It allows to
perform some modifications on the graphs and on the domain at the same
time when these modifications are monotonic with respect to the domain.
For instance, adding arcs to the upper bound cannot be performed on the
domain, it can only be done in the Boost data structure.

The maintainability is increased as this class introduces one level of
indirection between the propagator and the variable (like the views do)
with an interface adapted to graph algorithms. The genericity of the Boost
graph library allows to change the underlying graph implementation without
changing the code using it. Given the broad range of algorithms available
as part of this library, it is also much easier to prototype a propagator using
the library than to write it from scratch.
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6.7.2 Simple mechanism for branching strategies

CP(Graph) provides a simple schema to implement binary branching strate-
gies based on one graph variable, the UnaryGraphBranching class. Two branch-
ing descriptions are provided: GraphBDSingle and GraphBDMultiple. The lat-
ter stores whether we branch on a node or edge, which node or edge we
branch on and whether we should include or exclude this element in the
graph domain on the left branch. The former is parametrized by the type
(node or edge) about which we branch: GraphBDSingle<int> for nodes and
GraphBDSingle<pair<int,int> > for edges. It uses slightly less space and should
be preferred if the branching strategy only deals with one type of element
of the graph. They are instantiated using:

® GraphBDSingle<T>::GraphBDSingle (Branching*,T,bool)
® GraphBDMultiple: :GraphBDMultiple (Branching#,pair<int,int>,bool)

When instantiating a GraphBDMultiple for a node, the node id is passed in the
first element of the pair.

A UnaryGraphBranching is used by deﬁning a class deriving from BoundsGraphs
and defining a branch method. This method uses the graphs stored in its
members UB and LB to decide on which node or arc to branch next, allocates
one branching description and returns a pointer to it. The branching is
registered to the space by calling the following function from the space:

branch<GView, HeurBoundsGraph<GView> >(this,g);

If the user wants to develop other types of search strategies such as a
strategy taking two graph variables into account or splitting the search space
into more than two branches, it is possible to mimic the schema used in the
UnaryGraphBranching or to fall back on the underlying mechanism in Gecode
(the class Bra.nching). One example is the TernaryGraphBranching developed by
L. Quesada for his work on domReachability [92].

6.7.3 Scanners

Some constraint propagators for simple graph properties or relations simply
need to compute the intersection, union and/or difference of two bounds of
graph variables. To compute one of these, it is necessary to iterate over the
two bounds. If several such combinations of bounds are needed they can be
computed in a single pass instead of traversing the bounds several times.
CP(Graph) provides a simple and efficient construct to scan all arcs of both
graphs in one pass and collect the arcs which should be removed or added
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in the domains. We call that construct a scanner. The different scanners
are used by instantiating a visitor which defines a method for each possible
combination of status of the value with respect to both domains.

The “status” of an arc is a pair (s1,S2) where s; is the status of the
arc in the first graph domain and sy the status of the arc in the second
graph domain. As each arc might be (1) in (€ D(G)), (2) out (¢ D(G)) or
(3) unknown (€ D(G) \ D(G)) in a domain, this gives nine possible status
when dealing with two variables. The principle is then to collect in these
methods the arcs (and/or nodes) which must be included or excluded from
each graph domain. When the graph bounds are scanned, that info is used
to prune the variables with iterator tells.

The first scanner has the following signature:
void scanTwoGraphsArcs(GV1 &gl, GV2 &g2, Visitor &visit)

It iterates on the union of the upper bounds of the two variables and calls
one of eight methods for each arc according to the “status” of the arc in
both domains. As we scan the union of the two upper bounds, the (out,out)
status is never observed. In practice, for set based graph views, we need to
instantiate an iterator for each of the four bounds and interleave the call to
their “next” method. For the dedicated graph implementation it is simpler
and more efficient to simply iterate on the upper bound and ask if the value
is also in the lower bound as this information can be obtained in constant
time. This scanner is used for the implementation of the induced subgraph
constraint which was presented in chapter 3 and is detailed in chapter 4.

A second scanner is

void scanTwoGraphsCompleteNodeArcs (GV1 &gl, GV2 &g2,
NodeVallter nVals, Visitor &visit);

It iterates on the Cartesian product of a set of nodes (nvals) with itself. In
this scanner the nine methods of the visitor must be implemented as an arc
can be absent from both domains. That scanner is used in the complement
constraint.

Finally we also provide two simple scanners with only one graph view.
void scanGraphArcs(GV &g, Visitor &visit) traverses the arcs of the upper bound
of g and void scanCompleteGraphNodeArcs(GV &g, Visitor &visit) traverses the
complete graph built over the set of nodes of the upper bound of g.

This technique has the advantage of providing a propagator implemen-
tation which is both efficient and declarative as the visitor only states the
fate of elements based on their presence in the involved domains.
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6.8 Conclusion

In this chapter we described the architecture of the Gecode library and its
main features. We showed how graph domains can be implemented as an
extension of this library, either by using set or integer variables as the under-
lying implementation or by using a dedicated data structure for the graph
variables. We described how the kernel constraints are implemented as views
and propagators. We also described some features such as several views and
iterators which broaden the potential interactions between CP(Graph) and
the rest of the Gecode library. Finally, we described some features to aid
the development of new graph constraint propagators using the CP(Graph)
extension to Gecode.



Chapter 7

Applications and Evaluation
of the CP(Graph)
Implementation

In this chapter, we present the application of CP(Graph) to a problem in
biochemical networks analysis, the problem which triggered our research for
a graph domain in CP. Then we present the combination of graph variables
with map variables to model and solve graph pattern matching problems
(published in [30]).

Then, we perform experiments to answer the following three questions.
The first question asks whether graph-based CSPs should be translated to
kernel graph constraints and other basic constraints or should we use global
graph constraints. This question is answered for the Connected constraint
presented in chapter 3. We show that the implementation of the global
Connected constraint leads to faster and much more memory efficient pro-
grams. As in chapter 3, we also use this constraint in the context of the
Knight’s tour problem. We show that in that particular case a FD model
using a stripped down FD model for connectedness is more running-time
efficient than using the global path propagator. However, the memory us-
age is up to 20 times lower with the global constraint approach, allowing to
solve larger problems if the memory is limited.

A second question concerns the relative efficiency of the proposed mod-
els for graph intervals. Memory and running times of different constraint
programs are compared. The conclusion is that the graph variable type is
slightly faster than the out-neighbors set model and can lead to a two-fold
decrease of memory consumption. On the other hand, for some problems

158
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involving lots of small constraints, using a set model is more efficient. This
limitation is addressed in the next question.

The last question asks for possible enhancements addressing the limita-
tions of the graph variable type implementation: the practical running time
incurred when accessing the first undetermined arc in the domain and the
inadequacy of the chosen execution model with variables containing a large
part of the CSP (we call it granularity of the variable). We show how arc de-
scriptors allow to speed up some graph operations and discuss the addition
of an update log to the graph variable implementation which would allow
to apply sub-linear filtering algorithms for some constraints (almost linear
in the number of changes instead of linear in the total size of the graph).
This would adapt the execution model used for graph variables to a model
similar to AC-2001 [15].

Appendix B, presents additional detailed information about each exper-
iment.

7.1 A Metabolic Pathway Recovery Application

7.1.1 Metabolic Networks

The recent break-through of Systems Biology, the branch of Biology dedi-
cated to the study of the molecular functioning of the organism as a whole,
incurs a need for graph analysis methods and dedicated algorithms for Sys-
tems Biology.

Biochemical networks — networks composed of the building blocks of the
cell and their interactions — are qualitative descriptions of the working of
the cell. Such networks can be modeled as graphs. Metabolic networks
are typical examples of such networks. They are composed of biochemical
entities participating in reactions as substrates or products. Such a network
can be modeled as a bipartite digraph whose nodes are the biochemical
entities and reactions and whose edges link entities and reactions.

7.1.2 Pathways

Pathways are specific subsets of a metabolic network which are identified
as functional processes of cells [31]. They can be used to study metabolic
networks. As most pathways have a linear structure, one type of metabolic
network analysis consists in finding simple paths in a metabolic graph [69,

I I I ]‘
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The study of metabolic networks is constantly evolving and most of the
problems are solved with dedicated algorithms. This dedicated approach
has the benefit of yielding very efficient programs to solve network analysis
problems. However its drawback is the difficulty of adapting a program
to solve other problems or of combining programs to solve combinations of
various analyses.

7.1.3 Applying CP(Graph) to Pathway Recovery

In [37, 35], we proposed to use constraint programming to solve constrained
path finding problems in metabolic networks. The general kind of analysis
we wish to perform with CP(Graph) is pathway recovery by constrained
subgraph finding.

One potential application of this type of analysis lies in assisted expla-
nation of DNA chip experiments. In such experiments, the behavior of a
sane cell and a mutant are compared in a given context (the environment in
which they live). This comparison is done at different times by extracting
and amplifying the expressed RNA in the nucleus of the cells (this kills the
cell). This RNA is then put on a DNA chip: an array of representative
sequences of bases for a set of genes. The different RNA strands present in
the cell bind to the chip in the locations which are specific to each of them.
The micro array is scanned to measure the level of expression of each RNA
strand which encodes for a given enzyme which in turn catalyzes a given
set of reactions. The level of expression of RNA can be thresholded and
interpreted in a binary decision as which reactions were active in the cell
when its RNA was extracted. Given this set of reactions, biologists would
like to know which processes were active in the cell.

If a program allows to recover known processes from subsets of their re-
actions, it could be adequate to discover the real processes given another set
of reactions. Hence, such a program could approximate the real processes
at work in a cell from DNA chip results. These computational results could
then focus wet-lab experiments which are more expensive than in-silico ex-
periments.

7.1.4 Previous work

Our current experiments focus on linear pathways by doing constrained
shortest path finding.

In his thesis [27], Croes uses diverse constrained shortest path finding
algorithm to find these linear pathways. Different problem formulations of
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point to point shortest path problems are compared and increasingly com-
plex algorithms are used to solve them. A first setting consists in finding the
point to point shortest path in a graph modeling the biochemical network;
This can be done using breadth first search. A problem in this approach
is that many shortest paths shortcut the real pathway by traversing pool
metabolites, molecules like ATP or HoO which are ubiquitous and are linked
to many reactions. A proposed solution is to remove these nodes from the
graph before performing the path finding.

A new problem is then that some pathways, such as glycolysis, use some
of these metabolites as intermediates. In order to decrease the likelihood of
selecting these nodes while still allowing to select them, each node is assigned
a weight proportional to its degree. As pool metabolites have a very high
degree, they are much less likely to be selected in the shortest paths. This
problem requires a positive cost shortest path algorithm such as Dijkstra’s.
The rate of correct pathway recovery could be further increased: Some paths
go through a reaction and its reverse reaction. This pair of reverse reactions
models the reaction from substrates to products and from products to sub-
strates. Most of the time, these reactions are observed in a single direction
in each species. Hence paths containing both reactions should be excluded
from the result set. The problem is extended to contain pairs of mutually
exclusive reactions, and the algorithm needs to use backtracking to find the
solution.

7.1.5 Our setting

The problems solved in [27] are point to point shortest path problems. We
further extend this model by adding intermediate mandatory nodes in the
path. The aim of this extension is to take DNA chip expression data into
account. Remember this data is a level of expression for each gene at a
given time in a complete cell and by thresholding this level, the data can be
interpreted in terms of activated and inactivated genes. The genes encode
for proteins which catalyze or inhibit reactions so the data can be interpreted
in terms of mandatory reactions. If an information about forbidden nodes
was extracted from the chip this would just reduce the size of the graph
problem.

Let ny,...,ny, the mandatory included reactions and (r;1,7i2),1 <@ <t
the mutually exclusive pairs of reactions, the CSP is: Minimize Weight(G, w)
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s.t.

SubGraph(G, g) A Path(G,n1,nm) AVi € [1,m] : n; € Nodes(G)A
Vi€ [1,t] : i1 € Nodes(G) V ria ¢ Nodes(G) (7.1)

Experiment 7.1. In our first experimental setting we run the path find-
ing algorithm in metabolic graphs of increasing sizes. These graphs are
computed by extracting a subgraph of the original metabolic bipartite di-
graph by incrementally growing a fringe starting by the included nodes while
trying to respect the degree distribution. Then, we solve the constraint op-
timization problem presented above (7.1) using a first fail heuristic for path
finding from [22]. This heuristic consists in selecting the node with lowest
out-degree and choosing an outgoing arc which maximizes the in-degree of
the target node. This problem is solved for the three longest linear metabolic
pathways from [27]: lysine, glycolysis and heme. . All reaction nodes are
selected as mandatory nodes. The weight is assigned to the nodes of the
path: the weight of each node is its degree. Each reaction is doubled and
its reverse reaction is mutually exclusive.

We performed this experiment with the cost-based filtering algorithm
presented in section 4.6. The lower bounding works as follow: for each node
n in D(G), compute the weight of the shortest path from n; to n,, going
through n. The weight of each of these path is a lower bound of the weight
of the solution, hence we constrain the solution to have a weight higher than
the maximum computed weight.

The results are presented in Table 7.1, where the search is terminated
after 10 minutes of computation. The growth of running time only allows
to perform this experiment on small graphs. We are far from handling the
metabolic graphs studied by bioinformaticians.

The problems with this heuristic are that it lacks a consideration for the
costs and that the running time is greatly dependent on permutations of
the node ids of the graph. This seems to indicate that the heuristic is not
adapted to this problem.

We investigated the use of another heuristic, which would find shorter
satisfying paths first and allow the lower bounding procedure to better prune
to search tree. The very idea on which this shortest path metabolic anal-
ysis is based is that these pathways are close to shortest paths. Hence we
developed a heuristic which explores that part of the network first. It uses
the shortest path tree computed in the shorter path constraint propagator
to select the edge extending the current path from the source towards the
closest mandatory node along a shortest path.
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Time [ms] Memory [KB]
Order || Glyco | Heme | Lysine || Glyco | Heme | Lysine
50 0 50 - 6 10 -
100 80 | 1580 - 19 20 -
150 2500 | 4240 - 38 40 -
200 23520 - - 64 - -
250 - - - - - -
300 - - - - - -
Table 7.1: Use of a first fail TSPTW heuristic on the metabolic extraction
problem
Pathway | Time [ms] | Mem [kB| | Commits | Failures
Glyco. 353230 53386 928 256
Lysine 82000 35655 201 54
Heme 97390 43849 253 66

Table 7.2: Results of experiment on the complete metabolic graph of the
aMaze database. The running time, memory usage, size of the search tree
and number of failures are presented.

Experiment 7.2. The shortest path tree based heuristic is used to solve
the same problems as in experiment 7.1.

This heuristic has a tremendous impact on the computation time. The
experiment results are presented in figure 7.1. This heuristic allows to find
the constrained path in much larger graphs than the first fail heuristic. We
present results for graphs up to 2000 nodes in that figure. The number of
explored admissible solutions for these problems is very low (1 to 4). The
number of failures is very low except for one small graph (order 150) and
it corresponds to a peak in memory usage. In table 7.2, the running time,
memory, number of explored spaces and number of failures are presented
for the complete graph of 16316 nodes and 58114 edges. The running times
begin to rise but the problem is solved in a reasonable time and amount of
memory.

Experiment 7.3. The shortest path tree based heuristic is used to solve
the same problems as in experiment 7.1 except that instead of selecting all
reactions we alternatively select one reaction out of two consecutive reac-
tions. Hence, the number of mandatory nodes is approximately half of that
of experiment 7.2.
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The running times for experiment 7.3 are presented in figure 7.2. The
running times are slightly higher for glycolysis and heme but slightly lower
for lysine. These results can be considered of the same order except for one
instance of glycolysis in the graph of order 150 which cannot be solved in
less than 10 minutes in experiment 7.3.

7.1.6 Conclusion

We note that the Gecode + CP(Graph) approach allows to handle reason-
ably large graphs (15946 nodes and 46430 edges) provided an appropriate
heuristic and lower bounding procedure is used. Another important point is
that the open-source nature of Gecode and CP(Graph) allows to easily share
information between propagators and heuristics, something which would not
be that easy when using a commercial solver in which propagators are black
boxes.

Future work comprise two main aspects. The first aspect consists in
finding which additional constraints are needed to recover known pathways
as it was shown in [27] that non-constrained shortest paths are not able to
recover all of them. A second aspect is an extension of this approach for
discovering pathways containing branchings or cycles. A first formulation
which would be interesting to test is the following: find the smallest graph
containing all the seeds such that there is a seed from which all other nodes
are reachable.

Given sns a set of nodes (seeds), minimize Weight(G,w) subject to:

N € sng A sns C Nodes(G) A Reachable(G, N, Nodes(QG))

A second formulation in an undirected version of the metabolic graph
could be the Steiner tree problem: find the lightest tree connecting the nodes
of sng. Finally, the minimum weight induced subgraph (with mandatory
nodes) has also an interest if edges are assigned a meaningful weight.

7.2 Modeling Graph Pattern Matching Problems

Graph pattern matching is a general term for problems where a graph p
called the pattern and a graph ¢ called the target are to be aligned or com-
pared. These problems can be classified along three axes: monomorphism
versus isomorphism, graph versus subgraph and exact versus approximate.
Graph monomorphism is a problem where one wants to find a bijection m
from the nodes of p to the nodes of ¢ such that (u,v) € p = (m(u),m(v)) € t.
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Figure 7.2: Use of a shortest path heuristic for pathway extraction in

metabolic graphs. Using half of the mandatory nodes of figure 7.1.
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In graph isomorphism, m must satisfy (u,v) € p < (m(u), m(v)) € t where
the implication of monomorphism is replaced by an equivalence. In graph
(iso/mono)-morphism each node of p must be associated with exactly one
node of ¢ and reciprocally. In subgraph (iso/mono)-morphism only a sub-
graph of £ must be matched, i.e. some nodes of ¢ might be unmatched, m
is an injective function. The previous problems are exact pattern matching
problems. The approach taken for approximate pattern matching in [120]
was to specify optional parts in the pattern graph p, these parts need not
be matched to the target graph t. In [30], Deville et al. introduced map
variables and modeled these problems using the Mono(P,T, M) constraint
which holds if the map variable M is a bijection modeling a monomorphism
from P to T.

One elegant feature of the modeling of these pattern matching problems
with graph variables is that the opposition exact/approximate can be mod-
eled by switching from fixed graph to non-fixed graph for the pattern graph
variable:

e Mono(p,t, M) models exact monomorphism of p to t.

e Mono(P,t, M) models approrimate monomorphism of D(P) to t (with
optional part D(P) \ D(P)).

Similarly, the opposition graph/subgraph in these problems can be modeled
by using a fixed or non-fixed graph variable for the target graph.

e Mono(p,t, M) models exact graph monomorphism of p to t.
e Mono(p, T, M) models exact subgraph monomorphism of p to D(T).

Additionally, Mono(p,t, M) A Mono(Compl(p), Compl(t), M) — where
Compl(G) is the complement graph of G — models an isomorphism from p
to t.

Propagators for these problems and constraints have been implemented
by S. Zampelli for his doctoral research. In [126], these models allow to
solve more graph and subgraph pattern matching problems in a limit of 5
min per instance than when solved with a state of the art solver (vflib).

Future work includes breaking symmetries using automorphisms and an
approach to the modeling of the maximum common subgraph problem us-
ing Mono(P,T,M). This problem can be solved with two non-fixed graph
variables by searching for a solution maximizing the size of the graphs. Also,
richer patterns can be expressed in approximate pattern matching by im-
posing more constraints on the pattern. In the current definition of the
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approximation, P is constrained to be an induced subgraph of the initial
pattern. Other constraints such as connected or tree could be investigated.

7.3 Comparison of Connected(G) Implementations

In this section we compare an approach based on graph variables and global
constraints with an approach based on integer variables and finite domain
constraints for two problems: the connected subgraph and knight’s tour
problems presented first in section 3.5.3.

We show that in both cases, the global constraint approach is obviously
much simpler to model than with basic constraints. We also show that the
FD models produced by a generic constraint decomposition are by far out-
performed by the global constraint approach (especially regarding memory
consumption). Then we show that for larger problems such as the Knight’s
tour, while the global constraint approach performs better than a generic
decomposition, a hand crafted model leads to a faster program. However
this faster model still consumes about 20 times more memory which limits
the size of problems which can be modeled.

7.3.1 The Generic Connected(G) Decomposition

In chapter 3, we showed how the connected constraint can be modeled by
computing the transitive closure of the graph using Boolean variables and
constraints. The purpose of this section is to give an experimental compari-
son of that model with the Connected constraint we presented in Chapter 4.

Experiment 7.4. The first model compared in this experiment is the
Boolean CSP presented in section 3.5.3 which uses Boolean variables and
constraints. The second model uses a graph variable and a relaxed global
connected constraint which performs only upper bound pruning in order to
obtain the same level of consistency hence the same search trees.

The results are presented in Table 7.3. We use an adaptive recompu-
tation distance of 2 and no fixed recomputation with a naive heuristic (in-
clude/exclude first unknown arc).

The running times obtained in both models are comparable for small
graphs. The memory used by the Boolean model grows in O(n*logn) while
it grows in O(n?logn) with the graph model. As soon as the graphs hit a
certain size, the CP(Graph) model is much faster (graphs of order 20 lead
to a two-fold speed-up). Moreover, the memory explosion strictly limits the
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Time [ms] Memory [KB]

n Graph ‘ Bool || Graph ‘ Bool
All solutions

3 0 0 5 30
4 0 0 6 98
5 60 90 7 267
6 2630 3790 11 771
7 219740 | 300850 15 1732
1000 solutions

5 60 80 7 267
10 220 280 37 4420
15 470 990 98 | 39948
20 860 3140 215 | 207076
25 1350 | 10030 438 | 763629
30 1980 - 852 -
40 3940 - 2905 -
50 7100 - 5787 -
100 || 52960 - || 85289 -

Table 7.3: Experiment 7.4: Comparison of the connected global constraint
with the Boolean model for this constraint. “-” means the FD model ran
out of memory.

use of the Boolean model to graphs of order less than 50: With a complete
graph of fifty nodes, a single computation space takes up 1.4 GB of memory
for enforcing connectedness using a Boolean model. Compared with the 120
KB used by the CP(Graph) model, this amounts to a 10* ratio.

7.3.2 A Specific Decomposition for the Knight’s Tour

We already mentioned the knight’s tour in chapter 3. The knight’s tour
can be viewed as a graph problem and has been efficiently modeled using
finite domains [120]. A knight’s tour of a chess board is an Hamiltonian
path in the graph of knight’s moves, the tour is said to be reentrant if the
end position is one knight’s move away from the start position. In this case,
both ends of the Hamiltonian path can be joined by an additional arc to
form a cycle. This problem can be solved in linear time [24] and a finite
model for solving it with constraints is part of the examples of Gecode.
We showed in chapter 3 that a path constraint can be decomposed into
some constraints related to the degree of each node and a constraint to
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Figure 7.3: Experiment 7.4: Plot of the data in table 7.3, search for 1000

solutions.



CHAPTER 7. APPLICATIONS AND EXPERIMENTS 171

avoid cycles or ensure that the graph is connected (these are equivalent in
this case). We showed that in the case of the Hamiltonian path it was
easy to use the structure of the problem to come up with a very compact
model for connectedness (line 3 of the FD model in experiment 7.5. In this
section we show experimentally that this FD model for the Knight’s tour
leads faster to a first solution than the CP(Graph) model using a global path
constraint. However, the former model uses about 20 times more memory

than the CP(Graph) model.
Experiment 7.5. We compare two models for the Knight’s tour problem:

e the CP(Graph) model:

Subgraph(G, KGs s)ANodes(KGs ) = Nodes(G)APath(G,ngp,n12)

e the FD model:

w Vn €[0,58* — 1] : pred,, € Neigh(n, KG¢)A
succy, € Neigh(n, KGss) A jumpy, € [0, 52 — 1] A pred,, # succ,
@ Y(u,v) € Arcs(KGy ) @ suce, = v < pred, =u &
Jump, = jumpy + 1
@ Vn,n' €[0,s% — 1] : jump, # jumpy,
@ jumpo = 0 A jumpasy1 =1

These models are run with values of s in {10,20,30,40}. One solution is
sought with a naive heuristic. The recomputation distances are fixed:25 and
adaptive:5.

The running times for the programs using a graph variable and a path
constraint as well as for the FD model are given in table 7.4 and figure 7.4.
We note that the very simple CP(Graph) model is able to solve the problem
using no particular heuristic (the first available arc is included on the left
branch and excluded otherwise).

The results obtained for the FD model with the same heuristic and search
parameters as the graph model are also presented in table 7.4 (columns FD-
AC and FD-FC). They show that this model uses much more memory but
is much faster than the graph model when forward checking (FC) is used.
Forward checking is a relaxed version of arc consistency where each value of
each domain must be consistent with the variables already assigned (instead
of all variables). When arc consistency is used in this model, it performs
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Order | Time [ms]

GV NS 2S | FD-AC | FD-FC
100 90 100 110 10 10
400 1,850 | 2,260 | 2,390 2,180 90
900 13,410 | 16,460 | 16,950 | 33,380 580

1600 50,590 | 60,090 | 61,570 | 199,390 1,500
Order || Memory [KB]

GV NS 2S | FD-AC | FD-FC
100 o8 144 58 996 996
400 o945 | 1,410 649 | 10,193 | 10,193
900 3,626 | 9,739 | 4,618 | 68,974 | 68,974

1600 10,451 | 25,157 | 11,347 | 188,947 | 188,947

Table 7.4: Comparison of the graph variable model and the FD model for the
closed knight’s tour. The first column, Order, is the number of squares on the
board, the length of the board to the square. The three next columns are the three
graph views: graph variable type (GV), out neighbors sets (NS), two sets (2S), the
column FD-AC is the finite domain model with arc-consistency and the FD-AC
column is with forward checking. Search parameters: defaults of the FD model,
fixed recomputation distance: 25, adaptive recomputation distance: 8.

much worse than the graph model. The memory penalty comes from the
large number of variables and propagators used in the FD model: O(n?)
versus one in the graph model.

The first cause for the higher speed of the FD-FC model is the density
of the search space: The path constraint as well as the arc consistency
propagators of the FD model spend too much time on propagation. A
second cause is the execution model: when dealing with a large graph, the
CP(Graph) program traverses the whole graph for each constraint filtering
algorithm even though the degree constraints operate very locally. The FD
model is able to make good use of this locality as each degree constraint
is only scheduled if an incident edge has been included or removed. This
problem is dealt with in the next section.

We conclude that the CP(Graph) approach to the Knight’s tour problem
leads to a program using much less memory but spending much more time
than the FD-FC approach. Hence the CP(Graph) approach allows to solve
larger problems than the FD model as memory is often a more limiting
factor than computation time.
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Figure 7.4: Knight’s tour problem: Plot of the data in table 7.4, search for
1 solution.

7.4 Comparing Implementations of Graph Inter-
vals

In this section, we compare the efficiency of several graph interval implemen-
tations: In Chapter 6, four models for graph intervals are presented with a
common API. We show that the graph domain API allows to make graph
models interoperate in any constraint using this API. We give an example
and use it for a first comparison of efficiency. Then we also look at CSPs
using other constraints such as Connected or Path to compare the efficiency
of the graph interval implementations on other problems.

7.4.1 The Complement(G,,G2) constraint

The objective for designing and implementing a common graph domain API
is to allow the interoperability of the models of this API: In this experiment
we show that a single propagator implementation can be used independently
of the implementation of the graph intervals it operates on. Moreover, we
show that CP(Graph) allows to use different implementations of graph do-
mains as different parameters of a single graph constraint.

The CSP consists of two graph variable and a complement constraint
linking them. The graphs are initialized with complete upper bounds of
order s (graph Kj).

Subgraph(Gy, Ks) A Subgraph(Gsa, Ks) A Complement(G1, G3)

Experiment 7.6. We solve this CSP for different values of s: from 20 to
100 by steps of 20. The nine possible combinations of the three generic
graph models (graph variable type, adjacency sets and 2-sets) are tested.
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The DFS search engine is used with a fixed recomputation distance of 8
and an adaptive recomputation distance of 2. A naive lexicographical order
heuristic which includes the first available arc in the left branch of the search
tree is used to search for 1000 solutions of the CSP.

The figures in table 7.5 and figure 7.5 tell that the N-sets model performs
better for this constraint closely followed by the graph implementation and
way behind, the 2-sets. This big difference comes from the use of the itera-
tion based adjacency propagator on the 2-sets model as removing this con-
straint leads to a much quicker program. The time curves on figure 7.5(a)
are divided in 3 beams: the slowest is when the two sets are used for the
branching (2S-*), the second is when that model is used with a graph or N
sets. Finally the fastest group of combinations is composed of the graph and
N sets mixed. Regarding memory, the heuristic we used favors the models
using sets: as only 1000 solutions are searched, there are long sequences
of consecutive arcs included or excluded from the variables and the list of
interval data structure used by set variables represent these consecutive arcs
as one interval.

7.4.2 The Path constraint.

Looking back at the results in table 7.4 and figure 7.4, we can see that on
that problem, the graph variable type is up to 13% faster and uses up to 60%
less memory than the adjacency sets model. On the other hand, the 2-sets
model features the same low memory consumtion as the graph variable type
but with a lower speed comparable to that of the adjacency model.

To summarize, we can say that the graph variable have slightly better
performances than the adjacency model which in turn is more efficient than
the 2-sets model.

7.5 Speeding Up Graph Variables

In section 7.3, we saw that the graph based model for the Knight’s tour
problem uses as much as 20x less memory than the FD model, but the latter
is faster. The problem lies in the granularity of the variable types. While
a coarser granularity results in less memory overhead (less variables and
propagators to deal with), it results in a slower program given our execution
model. There are two factors at play in this granularity problem: the time
penalty for each operation on a variable’s domain and the mechanics of
propagator scheduling. In a nutshell, a graph propagator needs to traverse
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Time [ms]

s: 20[ 40] 60 | 80 100
GV-GV [ 100 [ 490 [ 1650 4240 T 9200
GV-NS || 100 [ 450 | 1420 3660 | 7970
GV-2S || 290 [ 1430 | 4660 | 11910 | 26410
NS-GV [ 70| 340 | 1190 3100 [ 6730
NS-NS [ 70 | 300 | 1030 2710 [ 6080

NS-2S || 210 | 1100 [ 3830 | 10180 | 23060

25-GV || 960 [ 5690 | 19330 | 51580 | 128750

2S-NS [| 1040 [ 5770 | 19780 | 52970 | 126210

25-2S [| 1090 [ 6160 | 20700 | 54120 | 126050
Memory [K B]

s: 20 40 60| 80 100
GV-GV [ 841 [ 9820 | 47399 | 1525202 | 311258
GV-NS || 962 [ 8382 | 36873 | 1292299 | 269411
GV-2S || 410 [ 5829 [ 23875 | 68166 | 171390
NS-GV || 595 | 5758 | 25056 | 78240 | 156055
NS-NS || 608 | 4216 | 14611 | 31801 | 60458

NS-2S || 332 | 2272 | 7715 | 16887 | 34952
2S-GV || 246 [ 3387 | 13176 | 36783 | 93197
2S-NS || 326 [ 2171 | 7394 | 15990 | 30124
25-2S || 80 [ 291 | 645 1168 [ 1813

Table 7.5: Results for experiment 7.6 about Complement(Gy, Ga):

175

comparison of

the running times and memory usage of all possible pairs of variable type among:
the graph variable type (GV), the adjacency sets (NS) and the 2-sets (2S).
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Figure 7.5: Results for experiment 7.6 about Complement(G1,G2): comparison
of the running times and memory usage of all possible pairs of variable type among:
the graph variable type (GV), the adjacency sets (NS) and the 2-sets (2S).
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the complete graph bound to handle even a small change in its bound while
an FD propagator can focus on a couple of nodes.

In this section, we present two potential solutions for overcoming this
efficiency problems. The first, node and edge descriptors, aims at allowing
a propagator to focus on a smaller part of a graph bound and to speed up
some operations. The second solution consists in adapting the execution
model to support and use update logs (called A in AC-2001 [15]). In this
new setting, a propagator does not traverse the two bounds of the interval
but only an update log which reflects the differences in the domain since the
last invocation of the propagator.

7.5.1 Node and Edge Descriptors

The Graph domain API presented in chapter 6 is based on value iterators.
The value iteration is more natural than a range iteration from the point of
view of graph algorithms and data structures. However, range iteration and
the implementation of set bounds as lists of ranges have a benefit over value
iteration when graph algorithms are not involved: sequence compression.
That is all consecutive arc values in a graph bound are represented in a
O(1) data structure: a range, an interval of numbers. In this section, we
perform experiments which exhibit the benefit of sequence compression and
develop a competitive feature, node and edges descriptors for the graph
variable type.

Experiment 7.7. We enumerate 100,000 subgraphs of a complete graph of
given order by using a CSP with one graph model and no constraint. The
search heuristic is the naive lexicographical heuristic.

On figure 7.6, three curves present the running times of experiment 7.7.
As in the previous experiment with the complement constraint, the graph
variable implementation and the N sets model have comparable running
times while the two sets model stays behind because of its implementation
of the adjacency constraint which consumes lots of time in a CSP with few
pruning.

The heuristic used in experiment 7.7 is to branch on the first arc of
D(G) \ D(G) in lexicographic order. The complexity to access the first
value of D(G) \ D(G) by using iterator difference is O(m + n). This leads
to an overhead of O(m(m + n)) worst case along a path of the search tree
for using this heuristic.

This large overhead is easily decreased when using the set based model
for graph domains. The unknown values iterator can use the cardinality of
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Figure 7.6: Compute 100000 subgraphs of a graph by using a branching
based on bound iteration. The graph variable, N sets model, and 2 sets
models are compared.

the sets to test if they are assigned in O(1), leading to an access cost of
O(n) to get the right source node then O(n) again to get to the right edge.
The O(n) search for the right node can be reduced to O(1) thanks to the
contractant property of filtering. As soon as the first sets are assigned the
search strategy never needs to look at them again, so it can start the search
beyond them. The total cost to access the next unknown arc is reduced to
O(n) worst case. That is O(mn) worst case along a branch of the search
tree.

This optimization can be applied to the graph domain data structure
by using node and edge descriptors. If the branching strategy is allowed
to start the search for the next unknown edge at the end of the glb prefix,
then its amortized complexity drops to O(m) along a path of the search
tree: each edge is scanned only once. In order for them to be usable in this
search heuristic, care must be taken to allow them to include or exclude an
edge from the domain. For this, the edge descriptor points to the last glb
element preceding the edge they refer to.

The copy mechanism of Gecode has to be taken into account as edge
descriptors can be used across a copy of a space. We did not instrument
the variable implementation to keep forwarding information for the edge
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descriptors. Instead we recompute the value of the edge descriptors the first
time they are used after each copy.

Experiment 7.8. We experimentally compare the edge-descriptor-based
lexicographical search heuristic with the built-in branching available in Gecode
for arrays of sets. Experiment 7.7 is done again but instead of using the
generic iteration based heuristic, the graph variable and set-based model
use their own specialized heuristic.

The results of experiment 7.8 are presented in figure 7.7(a) in which the
new results are plotted along with the results of experiment 7.7. The old
results are plotted with points and labeled V1 while the new results are
plotted with lines and labeled V2. The running time for both models is
clearly reduced. They still cross at the same point around order 22. The
position of this crossing point depends on the number of solutions we search
for. If only one solution is searched, the graph variable is always faster than
the sets. On figure 7.8, we show the crossing point for 1000 nodes and one
million edges, at 160 solutions. Two figures are presented: one with time
against number of solutions and one with time against size of the graph.
This shows that the graph variable type is faster than the set model for
smaller graphs or smaller search tree.

This is explained by the cost of copy for the graph model: the more
copy, the fastest the set model in this problem: The range list data structure
of sets makes the graph representation more compact with the set model.
Hence it is faster to copy; This effect is even stronger with large graphs and
at the beginning of the search tree (we search for relatively few solutions).
Moreover, the edge descriptor is recomputed at each copy hence the speedup
due to edge descriptors is partially lost when copying the variable. We show
in figure 7.7(b) that when using full recomputation the graph variable is
always faster.

These experiments have shown that the use of edge descriptors can en-
hance the speed of seeking an edge in the graph variable type implementa-
tion. The edge descriptors even allow the coarse graph variables to perform
better than finer grained set variables in this problem.

7.5.2 Breaking Granularity for Propagation: Update Logs

We have described how to speed up the traversal of the graph domain in
order to perform a query or update in the graph variable implementation. In
this section, we tackle another technical limitation related to the granularity
of graph domains when used by constraint propagators.
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Figure 7.9: Illustration of iteration and granularity on a simple example.
The ArcInGraph constraint links a fixed arc a of a graph G with a Boolean
variable B

Consider the reified constraint ArcInGraph(G,a, B) which holds if the
Boolean variable B denotes the presence of the fixed arc a in the graph G.
This constraint is illustrated in figure 7.9(a). It is equivalent to Arcs(G, SN)A
(B < a € SN). The propagation rules of this constraint are very simple:
if B = 1 then include a in G, if B = 0 then exclude a from G, if a
belongs to D(G) then set B = 1 if it does not belong to D(G) then set
B = 0. If there are conflicts, the constraint fails (e.g. B =0Aa € D(G) or
B=1Aa¢ D(G)).

The edge descriptors can be used to speed up the query and tells related
to the arc a in the graph but accessing arc a remains O(n + d) in the worst
case. This constraint is expected to be reasonably efficient as reified “isin”
for sets has the same complexity, but we will see how to upgrade its query
and update time to O(1) by the end of this section.

Now consider that the user needs several such Boolean variables and
posts several (O(m)) such constraints. The following situation is depicted in
figure 7.9(b). When a Boolean variable is changed, its associated propagator
is re-scheduled and eventually performs the update of the graph at a cost of
O(n+ d). Then comes the granularity problem: All constraints subscribed



CHAPTER 7. APPLICATIONS AND EXPERIMENTS 183

to the graph variable are re-scheduled. Each of the ArcInGraph constraint
is triggered and consumes O(n + d) to check if it must propagate. The
total cost associated to this update of one Boolean variable is O(m(n +d)).
Even if the propagator can examine and update the graph variable in O(1)
this incurs an O(m) cost for one update of a Boolean variable (plus the
scheduling time).

We performed an experiment to show this effect with O(1) update time
compared to a case where there is no such global triggering effect. In fig-
ure 7.10(a), the first CSP is simply two matrices of Booleans linked by indi-
vidual equality constraints. In the second CSP presented in figure 7.10(b),
each constraint is subscribed to all the Booleans of the matrix on the left.
Each constraint only consults one precise Boolean variable which it can ac-
cess in O(1) but it is subscribed to all of them.

Experiment 7.9. The CSPs consist in two vectors of Booleans B and B’
and a set of constraints B; = B/ equating the Booleans in the vectors.
Solutions are searched with a naive heuristic which operates on vector B.
The CSP differ in the implementation of the Boolean equality constraint.
In one CSP, the normal equality constraint is used, in the other one, the
constraint B; = B} is subscribed to every variable in B’.

The experimental results are expected: the coarse model incurs an ex-
plosion of running time (see figure 7.10(c¢) where 100 solutions are searched).

One potential solution to avoid rescheduling O(m) propagators is to use
a unique global constraint as illustrated on figure 7.9(b). When the graph
is modified it only re-schedules one propagator which must deal with all
arcs and Boolean variables. It can do it in linear O(m) time whatever the
number of updates. When the Booleans are modified, Gecode does not
provide the information of which variable has changed hence it also costs
O(m) to update the graph from the Booleans. Those two steps can be done
in one pass over the two structures and we can use an edge descriptor and
the count of unknown arcs in the graph to avoid scanning the prefix and
postfix sequence of glb arcs. The update time stays O(m) for k changes
versus a theoretical O(k) total cost.

One solution to the problem of detecting which Boolean variable has
changed is the use of daemons which are currently being integrated into
Gecode by M. Lagerkvist at KTH. These daemons are entities which are
not scheduled but directly triggered on the modification of a variable, such a
daemon could be attached to each Boolean variable to inform the propagator
of its modification.
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On the graph side, to avoid scanning the whole upper bound, it is pos-
sible to add a list of modifications, an update log, to the variable. Each
propagator using this log would have a pointer to a position in this log and
all modifications since it was last run would be available in the rest of the
log. When a propagator is run it asks the variable to scan the rest of the
log and obtains the k& modification in O(k). If the propagator is the oldest
propagator subscribed to the variable, the beginning of the log can be freed.

To implement this for the upper bound a technical solution is to not
release the memory cell which was occupied by the arc but append it to the
update log. The target pointer of the TargetEdge struct can be used to mark
this edge as deleted. Remember that edge descriptors cannot point to an arc
of D(G)\ D(G) as once deleted and released, this information is garbage.

The update log allows edge descriptors to point to the actual arc they
want to query instead of on the last D(G) element before them. The
query/update time then changes from O(n + d) to O(1). On copying the
space, the update log would be emptied and the descriptors pointing to
deleted arcs would be reset in the new space to their initial zero state.

To implement the update log of the lower bound, memory would need
to be allocated to add new elements in the update log. Hence while the
complexity for each query based on edge descriptors changes from O(n + d)
to O(1) and while propagators which are interested in the whole list of
changes see their complexity change from O(m) to O(k) (amortized O(1)
per change), the speed-up might only occur for large graphs because we need
to allocate memory. Since this feature seems implementable and as it could
speedup the incremental Mono propagator for graph pattern matching, it
will be further examined and implemented.

We showed that the edge descriptors allow to speed up the cost of some
operations on graph variables but that the update log allows a complete
shift of the propagators complexity. While the current execution model
performs filtering from scratch every time a variable changed, this shift
should allow an efficient use of randomized filtering (perform filtering from
scratch only when it might be necessary) or incremental graph algorithms
(perform filtering incrementally only when it is necessary). We believe that
further research on the graph variable data structure could turn the current
naive implementation into an very efficient model for graph domains.
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7.6 Summary

In this chapter, we first applied the CP(Graph) implementation to a metabolic
pathway recovery problem. This application suggests that the graph vari-
able type is able to deal with large graphs (a graph of nore than 16000
nodes and 45000 arcs was used). Then we showed how the concept of non-
fixed graph variables allows the modeling of a large class of graph pattern
matching problems with a unique constraint.

We also performed experiments to assess the relative efficiency of the
different graph interval models we proposed in chapters 3 and 6. These
experiments suggest that the two most efficient models are the graph variable
type and the adjacency sets model. The former is slightly more efficient but
the latter is more convenient as it allows a direct access to the underlying
out-neighbors sets.

Global constraints for graph properties have been compared with FD
models in two CSPs: the connected subgraph problem and the Hamiltonian
path problem. In both problems, the FD models consume several orders of
magnitude more memory than the graph variable and global constraint ap-
proach. In the connected subgraph problem, the global constraint approach
is up to twice as fast. In the Hamiltonian path problem, the finite domain
model is faster. We suggested several explanations for this difference of ef-
ficiency among which the notion of granularity of large variable types like
graphs and, to a smaller extent, sets.

We proposed two mechanisms to break the granularity barrier: node and
edge descriptors allow to refer to precise elements of a graph bound and an
update log allows a propagator to fetch the individual elements which were
removed from the variable domain in constant time per change. This update
log could allow the implementation of much faster filtering algorithms for
very local constraints such as the degree constraints used in the Hamiltonian
problem.



Chapter 8

Conclusion and Future Work

The objective of this thesis was the design, study and implementation of a
computation domain in constraint programming. The main contributions of
this thesis and perspectives on future work are presented below.

After the introduction and background chapters, in chapter 3 we have
presented the graph interval domain abstraction used for graphs in this
thesis. Three kernel graph constraints have been presented and used to
decompose combinatorial graph problems into set and finite domain con-
straints. We also showed how graph intervals extend beyond graph CSPs
and can be used in filtering algorithms of many finite domain constraints.
This could lead to an implementation of the generic filtering algorithm of [7]
using graph intervals and constraints. Also, other domain approximations
could be investigated depending on the targeted type of applications (such
as in [50] for sets). Such applications could for instance be in computational
geometry or about finite state automatons.

In chapter 4, we presented and studied a list of constraints enforcing vari-
ous graph properties. For each constraint we presented optimal filtering rules
and their implementation as a filtering algorithm. We contributed several
new constraints, new filtering rules for existing constraints and extensions or
improvements of filtering algorithms. This list of filtering algorithms could
lead to the design of incremental algorithms as suggested by the inclusion
of an update log in the implementation of the graph variable type.

In chapter 5, we introduced two novel constraints on weighted spanning
trees: the weight bounded spanning tree optimization constraint and the
minimum spanning tree constraint. This work was mostly theoretic and
could lead to further application to network design problems as suggested
by the previous application of a small part of the filtering of M ST to robust
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spanning tree design by Aron et al. in [I]. This extensive study of two
complex graph constraints could also lead to the systematization or even
automatization of graph constraint design and implementation.

In chapter 6, we presented a proof of concept implementation of the
CP(Graph) computation domain over the Gecode constraint programming
library. It provides several implementations of graph intervals either as set
or integer based models or as a new variable type of Gecode, all gathered
under a unified interface for propagators dealing with them. This proof of
concept could be extended to better support incremental computations. It
could also provide specialized implementations for some types of graphs.

Finally, in chapter 7, we applied our implementation of CP(Graph) to
biochemical pathway analysis. We showed that this implementation sup-
ports graphs of sixteen thousands nodes and forty thousand arcs and is able
to find constrained shortest paths in these graphs. We also conducted ex-
periments to compare a finite domain model and a global graph constraint
model for the connected subgraph enumeration problem. It showed the
CP(Graph) model saves several order of magnitude of memory and is faster,
allowing to deal with much larger graphs using graph variables instead of
finite domain models. Comparing the global path constraint and finite do-
main model for the Hamiltonian path suggested that some enhancements
could be made to the CP(Graph) implementation. Two such enhancements
have been proposed including the use of an update log which changes the
execution model of propagators to a model closer to that of AC-2001. These
enhancements could lead to an efficient support for randomized and incre-
mental filtering for graph constraints. This could in turn lead to a support
of even larger graphs using the graph variable approach.

A broader perspective on future work would consist in an improved au-
tomatic exploitation of some structural properties of the CSPs. Additional
properties arising from the combination of constraints can be exploited by
adding implied constraints or using specialized filtering algorithms. The
automatic identification of useful implied constraints or even the automatic
generation of efficient specialized global filtering algorithms could be consid-
ered to automate the tuning of constraint programs. Some graph properties
have many similarities and filtering algorithms for these properties use sim-
ilar algorithmic components. Further work on filtering algorithms for these
properties could lead to the identification of ways to systematize or even
automatize the design of filtering algorithms.
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Appendix A

Filtering Rules of Graph
Constraints

In this appendix, we list formal pruning rules for each of the constraints in
chapter 4. The format is the same as introduced in section 2.1.3.

Subgraph(G1, G2)

(G1)

- D(G2) «+— D(G2) 1
(G2)

UuD
- ﬁ(Gl) — E(Gl) NnD

Nodes(G1) = Nodes(G3)

- Nodes(D(Gy)) < Nodes(D(G2)) U Nodes(D(G1))
- Nodes(D(G1)) < Nodes(D(G1)) N Nodes(D(G3))

- Symmetrical rules for pruning Go

Complement(G1, G2)
We abuse notation by denoting the bounds of Ares(D(G)) as D(G) to sim-
plify the notation.

- Rules of Nodes(G1) = Nodes(G2)

- Filtering of the arcs:

- D(G1) «+ D(G1) U (Nodes(D(G5)) x Nodes(D(G2))) \ D(G2)
- D(G1) « D(G1) \ D(G>)

- Symmetrical rules for pruning Ga
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Symmetric(G)
- Ares(D(G)) « {(u, v)[{(u,v), (v,u)} N Ares(D(G)) # 0}
- Ares(D(G)) < D(G1) \ {(u,v)[1 = # ({(u,v), (v,u)} N Ares(D(G)))}
- Symmetrical rules for pruning Ga

Undirected(G,G,)
- Rules of Nodes(G1) = Nodes(G2)

Filtering for the arcs:

- Ares(D(Gu)) < {(u v){(u,v), (v, u)} N D(Gu) # 0}
- Ares(D(Gy)) « D(Gy) \ {(u,v)|{(u,v), (v,u)} N D(Gy) =0}
- Ares(D(Q)) « ( )ﬂD(G )
- Ares(D(G)) < D(G) U {(u,v)|(u,v) € D(G) N D(Gu)A
(v,u) € D(Gy) \ D(G)}
Connected(G)

The graph G is an undirected graph: Symmetric(G) holds (it can be en-
forced or can just hold as an invariant of the CSP).

- If D(G) = 0 then no filtering. Else:
- D(G) + 1 connected component of D(G) which contains D(G)

- D(G) «+ D(G)U all bridges and cutnodes of D(G) on a path between
nodes of D(G).

StronglyConnected(Q)

- If D(G) = 0 then no filtering. Else:

« 1 strongly connected component of D(G) which contains

G) « D(G)U{z|D(G) \ {z}is not strongly connected} where z de-
notes either a node or an arc.

DAG(G)
- Ares(D(G)) « Ares(D(G)) \ {(u,v)|(v,u) € TC(D(G))}
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Bipartite(Q)
Let ¢ be a spanning forest of D(G). Let C' : Nodes(t) — {b, w} be a arbitrary
2-coloring of ¢t (V(u,v) € Ares(t) : C(u) # C(v)).

- Ares(D(G)) « Ares(D(G)) \ {(u,v)|u € Nodes(D(G))A
v € Nodes(D(G)) ANC(u) = C(v)}

Weight(G, W, I)

Let minW ([g1, g2]) be the weight of the minimum weight graph in the in-
terval. Similarly maxW denotes the weight of the maximum weight graph
in the interval. See section 4.5 for an algorithm to compute these.

- D(G) < D(G)\ {z|minW ([D(G) U {z}, D(G)]) > D(I)
\ {m|mamW ([Q(G) U {x},E(G)]) <

- D(G) « D(G) U {z|minW (ID(G), D(G) \ {=}]) > D(1)}
U {zlmazW (D(G), D(G)\ {=}]) < D(D)}

QuasiPath(G,ny,n2)
- First, n; and ny are added to D(G)
- All edges (x,n1) and (ng,x) are removed from D(G). Then,

- All edges of D(G) which are the only edge incident to a node of D(G)
are added to D(G)

- For each edge (u,v) of D(G), all other edges (u,z) and (z,v) are
removed from D(G)

Path(G,ni,n2) (Undirected)
The graph G is an undirected graph: Symmetric(G) holds (it can be en-
forced or can just hold as an invariant of the CSP).

- All bridges and cutnodes of D(G) not on a path from n; to ng are
removed from D(G)
- 5(G) is set to its connected components containing n; and ng

- All bridges and cutnodes of D(G) on a path from n; to ny are added
to D(G)
- The rules of the QuasiPath(G,n1,ny) constraint
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Path(G,n1,n2) (Directed) -
Let TC(D(G)) denote the set of arcs in the transitive closure of D(G),

- Remove from D(G) each edge (u,v) € D(G) such that (nq,u) ¢
TC(D(G))V (v,n2) ¢ TC(D(Q)) -
To do this, you can add a temporary arc (ng,n;) to D(G) and keep
only the strongly connected component containing n; and ns. Remove
the arc (ng,np).

- Remove from D(G) each edge (u,v) € D(G) such that
In € Nodes(D(G)) : (n,u) ¢ TC(D(G)) A (v,n) ¢ TC(D(Q))
To do this, in the SCC-reduced graph of D(G), remove all arcs which
jump over a node of D(G).

- Include all nodes and edges which dominate a node of D(G) from n;
in D(G).

- Include all nodes and edges which dominate a node of D(G) from nq
in the reverse of D(G).

Path(G,ni,n9,w,1)
Let d(z,y) denote the length of the shortest path from z to y according to
lengths in w.

- Remove from D(G) all arcs (u, v) such that d(nq, u)+w(u, v)+d(v, ng) >
1

- Perform the filtering of Path(G,nq,ns9).



Appendix B

Experimental Setting

The experiments were performed on a computer equipped with an Intel Xeon
2.66GHz processor and 2Go of RAM (durer.info.ucl.ac.be as of Aug. 2006).
Gecode version 1.0.1 and CP(Graph) version 0.9.1 were used.

Gecode version 1.0.1 can be obtained via SVN at https://svn.gecode.
org/svn/gecode/tags/release-1.0.1.

CP(Graph) version 0.9.1 can be obtained via SVN at https://savane.
info.ucl.ac.be/svn/cp_graph map/branches/0.9.1/graph.

The details of all experiments are listed below.

Experiment 7.1 The script for the experiment is available at
examples/experiments/cpgraph-path_metab.cc.

The graphs are available in examples/experiments/graphs.zip.

The program is run as ./cpgraph-path_metab g200_croes_ecoli_glyco [options].
This loads the graph in g200_croes_ecoli_glyco_graph.txt with mandatory
nodes in g200_croes_ecoli_glyco_seeds.txt and pairs of reverse reactions in
g200_croes_ecoli_glyco_revs.txt. For info, the actual pathway is present in
g200_croes_ecoli_glyco_sol.txt. The program is built on the Example class so
any option can be specified (such as recomputation distances). The default
recomputation distances of c_d=8 and a_d=2 have been used to produce the
result presented in table 7.1.

Experiment 7.2 The script for the experiment is available at
examples/experiments/cpgraph-path_metab_node_SPT.cc.
It is run in the same fashion as for experiment 7.1.
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Experiment 7.3 The script for the experiment is available at
examples/experiments/cpgraph-path_metab_node_SPT.cc.

This experiment consists in removing one node out of two (except the first
and the last) in the files *_seeds.txt. A script split_seeds.py is provided that
does it (it saves the original files with a .orig extension).

Experiment 7.4 The script for the Boolean model of the connected con-
straint iS examples/experiments/connected.cc. The script for the CP(Graph)
model of the connected constraint is examples/experiments/cpgraph-connected. cc.
Both scripts are run with the order of the graph as first argument and
Example options after that. The CP(Graph) model also compares two dif-
ferent implementations of the connected constraint: CheckConnected rebuilds
the bounds graphs at each propagator invocation while IncrCheckConnected
keeps the bounds graphs and update it at each invocation.

Experiment 7.5 The script for the integer model of the Knight’s tour is
examples/knights.cc in the Gecode tree. The script for the CP(Graph) model
of the Knight’s tour is examples/experiments/cpgraph-knights.cc.

Both scripts are run with the order of the graph as first argument. For
the CP(Graph) script, the two last arguments must be the view to use
(GraphVarView, OutAdjSetsGraphView, NodeArcSetsGraphView) and for the graph
variable implementation, 1 to use the classic iterator based branching and 2
to use the node descriptor based branching.

Experiment 7.6 The script for the complement experiment is
examples/experiments/cpgraph-complement.cc.

The script is run with the order of the graph as first argument. The two last
arguments must be the views to use for the two graph intervals (GraphvarvView,
OutAdjSetsGraphView, NodeArcSetsGraphView).

Experiment 7.7 and 7.8 The script for the subgraph enumeration ex-
periment is examples/experiments/cpgraph-gen.cc.

The script is run with the order of the graph as first argument. The next
argument must be the view to use for the graph interval (GraphvVarView,
OutAdjSetsGraphView, NodeArcSetsGraphView). Finally a number 1, 2 or 3 spec-
ifies which branching or implementation to use. 1 is the iterator based
branching. 2 and 3 use the specialized branching and 3 runs the test with
adjacency graphs twice: once with a set based adjacency constraint and once
with an iterator based adjacency constraint.
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Experiment 7.9 The script for the subgraph enumeration experiment is
examples/experiments/cpgraph-granularity.cc.

The script is run with the order of the graph as first argument. It compares
the normal Boolean model with simple equality propagators and the same
CSP but with a modified ArcInGraph propagator which subscribes to the
whole vector.



Appendix C

CP(Graph) Code Examples

C.1 Modeling a Graph Problem

The following program illustrates the definition of a new search heuristic
using the Gecode Branching class and the definition of a CP(Graph) CSP.

C.1.1 A search heuristic

On line 7, a branching description ArcBD is defined for describing a choice
made on an arc

On line 11, a new branching — a class implementing a search strategy
— is implemented. This branching does no fancy computations. It simply
includes the first available arc in the left branch and excludes it in the
right branch. Its particularity is that it is defined for undirected graphs:
it includes or excludes two arcs at the same time: the chosen arc and its
reverse. The branching maintains the invariant that the graph is symmetric.
As the connected constraint maintains this invariant too, the Symmetric
constraint need not be posted.

Lines 18 to 30 define constructors for space copy (cloning) and for posting
the branching. These are not really specific to this branching.

On line 31, the branch method is defined. This method call is triggered
by the search engine when a space has reached a fixed point and new al-
ternatives for this space have to be defined. This method is responsible for
deciding how many alternatives are present for this choice point. In this
case the number is 2 if the graph variable is not fixed and 0 otherwise. On
line 32, the iter_arc_Unk() method is called on the graph view to produce a
UnkArcIterator, an iterator on the unknown arcs of the graph interval (the
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arcs in D(G) \ D(G)). If there is such an arc, a choice is made to include it
in the left branch on line 34.

On line 45, the description method returns the branching description
computed for the current choice point.

On line 47, the commit method actually performs the choice by posting the
appropriate constraint to turn this space into a child space corresponding
to the alternative numbered a. On lines 50-55, the branching description
is recomputed if it was not passed as an argument. On lines 57-64, the
inclusion of the two arcs is performed for the left branch (1bd->action was
set to true on constructing the ArcBD and the left alternative is a==0). The
two arcs are included in the lower bound and the result of this inclusion is
tested to check if it lead to a CSP failure on line 62.

On line 85, the copy method calls the cloning constructor. This method
is used by the Gecode kernel during space cloning.

C.1.2 The CSP

The CSP is defined as a class extending the class Example which extends Space.
The graph view type and the propagator type are template parameters of
this class. On line 88, the constructor initializes the upper bound of the
graph variable g1 as a complete directed graph. Then all loops are removed
to make it a model for a complete undirected graph (lines 90-94). On line
95 the connectedness constraint is posted on the graph view and on line 96,
the search strategy is specified.

The rest of the class is typical of a Gecode space, in the constructor for
cloning the space, the update method must be called on the graph variable as
on any other type of variable. The copy method calls the copy constructor,
and the print method is called by the search engine for each solution. This
last method is necessary only for the predefined search engines of Gecode; If
a new search engine is implemented it could call other methods of the space
to use the solution.

Finally, in the main function, an Option object is constructed, the com-
mand line arguments are parsed and two calls to the search engine are made
with two different propagators for the connectedness constraint. Both calls
are done with the GraphvarvView, the view over the graph variable type, but
other views, implementing different graph interval models could be substi-
tuted (such as OutAdjSetsGraphView Or NodeArcSetsGraphView for instance).

#include "examples/support.hh"
#include "graphutils.icc"
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#include "graph.hh"

using namespace Gecode::Graph; 5
// branching descriptor for arcs

typedef GraphBDSingle<std::pair<int,int> > ArcBD;

// This branching uses the naive strategy and posts the constraint for the arc
// and its reverse 10
template<class GView>
class UndirectedBranching: public Branching {
GView g;
ArcBD * bd;
15
public:
/// Constructor for cloning \a b
UndirectedBranching(Space* home, bool share, UndirectedBranching& b):
Branching(home,share,b),bd(NULL){
g.update(home,share,b.g); 20

void static post(Space* home, const GView& g){
(void) new (home) UndirectedBranching<GView>(home,g);
} 25
/// Constructor for creation
UndirectedBranching(Space* home, const GView& g):
Branching(home),g(g),bd(NULL){}
/// Perform branching
virtual unsigned int branch(void){ 30
typename GView::UnkArclterator i=g.iter_arcs_Unk();
it (0)
bd = new ArcBD(this, i.val(), true);
return 2;
} 35
return 0;

}

/// Return branching descriptor (of type Gecode::Graph::GraphBDSingle)
virtual BranchingDesc* description(void) {return bd;} 40
/// Perform commit for alternative \a a and branching description \a d

virtual ExecStatus commit(Space* home, unsigned int a,
BranchingDesc* d){

ArcBD¥* 1bd ;

if (d){ 45
Ibd = static_cast<ArcBD*>(d);

} else {

branch();
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Ibd = bd;
}

int u,v;
boost::tie(u,v) = lbd—>elem;
if (a==1"1bd—>action) {
ModEvent el = g._arcIn(home,u,v);
ModEvent e2 = g._arcIn(home,v,u);
if (me_failed(el)| | me_failed(e2)){
return ES_FAILED;
} else {return ES_OK;}
} else {
ModEvent el = g._arcOut(home,u,v);
ModEvent e2 = g._arcOut(home,v,u);
if (me_failed(el)||me_failed(e2)){
return ES_FAILED;
} else {return ES_OK;}
}

return ES_FAILED;
}
/// Perform cloning
virtual Actor* copy(Space* home, bool share) {
return new (home) UndirectedBranching(home,share,*this);
}

+

/** \brief Example to test a connectedness constraint
* \ingroup Examples
* %/

// counts number of solutions.

// Used in CPGraphConnected::print

int sol=0;

template <class GraphView, template <class> class ConnPropag>
class CPGraphConnected: public Example {
private:
GraphView gl;
public:
// Constructor
CPGraphConnected(const Options& opt): gl(this,opt.size){
// remove loops
pair<int,int> loops[opt.size];
for (unsigned int i = 0; i<opt.size; i++)
loops[i] = make_pair(i,i);
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StlToGecodeVallterator<pair<int,int>*> rem (loops,loops+opt.size);
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GECODE_ME_FAIL(this,gl._arcsOut(this,rem));
GECODE_ES_FAIL(this, ConnPropag<GraphView>::post(this, gl)); 95
UndirectedBranching< GraphView>::post(this,gl);

/// Constructor for cloning \a s
CPGraphConnected(bool share, CPGraphConnected& s) :
Example(share,s){ 100
gl.update(this, share, s.gl);

/// Copying during cloning
virtual Space*
copy(bool share) { 105
return new CPGraphConnected(share,*this);

/// Print the solution
virtual void

print(void) { 110
std::cout << "Solution " << +4sol<< 7’ <<
std::endl<< gl << std::endl;
}
}
115
int
main(int arge, char** argv) {
Options opt("CPGraphConnected");
opt.icl = ICL_DOM,;
opt.solutions = 0; 120

opt.parse(arge,argv);
if (opt.size == 0) {opt.size =1;}
Example:run<

CPGraphConnected<GraphVarView, CheckConnected>,DFS>(opt);
sol = 0; 125
Example::run<

CPGraphConnected<GraphVarView, IncrUBConnected>,DFS>(opt);
return O;

C.2 Implementing a Constraint Propagator

We present a propagator which prunes the upper bound of the graph for
the Connected(G) constraint. This propagator uses the bounds graphs and
calls a simple DF'S from the Boost library to mark nodes of the upper bound
in the same connected component as a node of the lower bound.
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The class UBConnected is a propagator for the connectedness constraint.
The propagate method is where the filtering algorithm is implemented. The
post method is called to add the constraint to a CSP. The cost and copy meth-
ods are called by the Gecode kernel during scheduling and space cloning.

Lines 33-60 contains various predicates and helper functions which are
used later.

On line 65, the UBConnectedBoundsGraphs class is defined. This class inherits
from BoundsGraphs and implements the filtering algorithm in its filter_upper_bound
method. That method spans lines 81 to 136. First, on lines 88-91, the order
of the upper bound is checked and the propagator is stopped with failure of
the CSP if the graph is empty.

On lines 92-98, a node of the lower bound is sought and if it is not found,
the propagator stops with no modification. Otherwise an empty visitor (1.
100), and a color map associating a color to each vertex (1. 101-102) are
instantiated. The color map is initialized (1. 104-107) and depth-first search
is performed in the upper bound (uB) from the start vertex s (1. 105).

On lines 110-120, iterator adapters are instantiated in order to iterate on
every remaining white vertex in the upper bound. On line 123, the actual
filtering is done by calling the _nodesout method of the graph view. The
result of this filtering is passed to the caller to be dealt with.

On lines 132-155, the classical methods of every propagator are imple-
mented. They consist in calling update, cancel and subscribe on each variable
of the scope of the propagator. The cost method defines a scheduling priority

between propagators on the same variable type.

In the propagate method, updating of the bounds graphs is done on lines
157-161. For the call to the filtering algorithm on line 162, the macro
GECODE_ME_CHECK returns immediately if the returned value is a failure. Fi-
nally, if the graph is fixed (assigned) then subsumption of the propagator
is signaled and otherwise, fixed point is signaled. Note that here we have a
fixed point, otherwise we would return ES_NOFIX.

#include "boost/iterator/filter_iterator.hpp"

#include "boost/iterator/transform_iterator.hpp"

#include "boost/graph/depth_first_search.hpp"

#include "boost/graph/connected_components.hpp" 5
#include "boost/property_map.hpp"

namespace Gecode { namespace Graph {
10
template <class> class UBConnectedBoundsGraphs;
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/s

* Upper bound pruning for connected with incremental boundsGraphs
*

*
/
template <class GView>
class UBConnected : public Propagator {
protected:
GView g;
UBConnectedBoundsGraphs<GView> *bg;
public :
UBConnected(Space* home, bool share, UBConnected& p);
“UBConnected(void);
UBConnected(Space* home, GView &g);
virtual Actor* copy(Space*,bool);
virtual PropCost  cost(void) const;
virtual ExecStatus propagate(Space*);
static ExecStatus post(Space* home, GView &g) ;

};

typedef Gecode::Graph::Graph::vertex_descriptor Vdesc ;
typedef std::map<Vdesc,boost::default_color_type> CMT,
/// used as internal of UBConnectedBoundsGraphs::filter_upper_bound
/// iswhite : unary predicate
struct is_white: public unary_function<Vdesc,bool> {
boost::associative_property_map<CMT> & map;
is_white(boost::associative_property_map<CMT> & m):map(m) {}
bool operator()(Vdesc v)const {
return get(map,v) == boost::white_color;}
¥
/// used as internal of UBConnectedBoundsGraphs::filter_upper_bound
/// returns id of vertex v in graph UB
int _get_id_(Vdesc v, const Gecode::Graph::Graph & UB ){
return UBJ[v].id;

/// used as internal of UBConnectedBoundsGraphs::filter_upper_bound
/// returns id from some object Desc
template <class Desc>
struct get_id: public unary_function<Desc,int> {
Gecode::Graph::Graph & UB;
get_id(Gecode::Graph::Graph & UB):UB(UB) {}
int operator()(Desc v)const;

typedef pair<Vdesc,boost::default_color_type> CMapDesc;
template<>
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205

int get_id<CMapDesc>::operator()(CMapDesc v) const {

return _get_id_(v.first,UB);}
template<>

60

int get_id<Vdesc>::operator()(Vdesc v) const { return _get_id_(v,UB);}

/// The class for the bounds graphs
template <class GView>

struct UBConnectedBoundsGraphs: public BoundsGraphs<GView> {

GView g;
using
using
using
using
using
using
using
using
using
using

assert(check_consistent());

}

BoundsGraphs<GView>::
BoundsGraphs<GView>::
BoundsGraphs<GView>::
BoundsGraphs<GView>::
BoundsGraphs<GView>::
BoundsGraphs<GView>::
BoundsGraphs<GView>::
BoundsGraphs<GView>::
BoundsGraphs<GView>::
BoundsGraphs<GView>::
UBConnectedBoundsGraphs(GView &g):BoundsGraphs<GView>(g),

ModEvent filter_upper_bound(Space *home){
typedef Gecode::Graph::Graph::vertex_descriptor Vdesc ;
typedef Gecode::Graph::Graph::vertex_iterator Viter ;
typedef std::map<Vdesc,boost::default_color_type> CMT;

Vdesc s;

Viter vi, vi_end;

if (g.lubOrder()==0){

// fails on empty graph

return ME_GRAPH_FAILED:;

}

typename GView::GlbNodelterator it = g.iter_nodes_LB();
// search for a starting point;

if (1it(){

return ME_GRAPH_NONE;

} else {
s = UB_v[it.val()];

}// we have a starting point , do dfs

boost::dfs_visitor<boost::null_visitor> t;// empty visitor

65

UB;

LB;

UB_v;

LB_v; 70

numNodes;

arcOut;

nodeOut;

safe_add_nodeLB;

update_bounds; 75

check_consistent;

g(e){

80
85
90
95
100

CMT v2c;// one color per node
boost::associative_property_map<CMT> cmap(v2c);
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// set all nodes white
boost::tie(vi,vi_end) = vertices(UB);
for (jvil=vi_end; ++vi){

put(cmap,*vi,boost::white_color);
}

boost::depth_first_visit(UB,s,t, cmap);

// depth first done; do the pruning

boost::tie(vi,vi_end) = vertices(UB);

is_white iw(cmap);

typedef boost:: filter_iterator<is_white, Viter> Whitelter;
Whitelter beginW (iw,vi,vi_end);

Whitelter endW (iw,vi_end,vi_end);

get_id<Vdesc> gid(UB);

typedef boost::transform_iterator<get_id<Vdesc>, Whitelter>

Removelter;
Removelter begin(beginW,gid);
Removelter end(endW,gid);
StlToGecodeVallterator<Removelter> rem(begin,end);
// remove nodes
return g._nodesOut(home,rem);

/s

* Upper bound pruning for connected with incremental boundsGraphs
*

*
/
template <class GView>
UBConnected<GView>::UBConnected(Space* home, bool share,
UBConnected& p): Propagator(home,share,p), bg(NULL){
g.update(home,share,p.g);

template <class GView>
UBConnected<GView>::"UBConnected(void){
if (bg) { delete bg; }
g.cancel(this, Gecode::Graph::PC_GRAPH_ANY);

template <class GView>
UBConnected<GView>::UBConnected(Space* home, GView &g):
Propagator(home,true), g(g), bg(NULL){
g.subscribe(home,this, Gecode::Graph:PC_GRAPH_ANY);

template <class GView>
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Actor* UBConnected<GView>::copy(Space* home,bool share){
return new (home) UBConnected(home,share,*this);

template <class GView>
PropCost ~ UBConnected<GView>::cost(void) const{
return Gecode:PC_QUADRATIC_LO;
¥

template <class GView>
ExecStatus UBConnected<GView>::propagate(Space* home){
if (bg == NULL){
bg = new UBConnectedBoundsGraphs<GView>(g);
} else {
bg—>update_bounds();

GECODE_ME_CHECK (bg—>filter_upper_bound(home));
if (g.assigned())
return ES_SUBSUMED;
else {
return ES_FIX;
}

template <class GView>
ExecStatus UBConnected<GView>::post(Space* home, GView &g) {
(void) new (home) UBConnected(home,g);
return ES_OK;

template<class GView>
void connected(Space *home, GView g, IntConLevel){
GECODE_ES_FAIL(home, UBConnected<GView>::post(home, g));
}

1
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Appendix D

Status of the Implementation

In version 0.9.1 of CP(Graph), available at https://savane.info.ucl.ac.
be/svn/cp_graph map/branches/0.9.1/graph, the following models and
constraint propagators are implemented.

D.1 Models and Views

The following graph models and views are implemented:

e The out-adjacency model (also called N-sets) for graph intervals is im-
plemented as the OutAdjSetsGraphView in file view/outadjsets.icc.

e The nodes and arcs set model (also called 2-sets) for graph intervals
is implemented as the NodeArcSetsGraphView in file
view/nodearcsets.icc.

e The single successor graph model for graph intervals is implemented
as the SingleSuccGraphView in file view/intsucc.icc.

e The graph variable data structure is implemented as GraphVarImpl in
file var/imp.icc and var/imp.cc. A graph view for dealing with this
variable type is implement as GraphVarView in file view/graphvar. icc.

e Specializations of the node set view over graph domains are imple-
mented in files nodeset.icc and nodesetgraph.icc.
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D.2 Propagators and Support

The following support for propagators and constraint propagators are im-
plemented:

e Scanners and iterator converters between STL iterators and Gecode
iterators are available in file view/iter.icc.

e Bounds graphs are implemented in file view/boundsgraphs.icc.

e A base class for binary graph propagators is available in file
binarysimple.hh.

e The propagator for the Complement(G1,G2) constraint is
ComplementPropag. It is declared in binarysimple.hh and imple-
mented in binarysimple.icc. This constraint can be posted by us-
ing the templated function complement(Space * home, GDV1 &gl,
GDV2 &g2).

e The propagator for the InducedSubgraph(Gi,G2) constraint is
InducedSubGraphPropag. It is declared in binarysimple.hh and im-
plemented in binarysimple.icc. This constraint can be posted by us-
ing the templated function inducedSubgraph(Space * home, GDV1
&gl, GDV2 &g2).

e The propagator for the Subgraph(G,G2) constraint is
SubgraphPropag. It is declared in binarysimple.hh and implemented
in binarysimple.icc. This constraint can be posted by using the tem-
plated function subgraph(Space * home, GDV1 &gl, GDV2 &g2).

e The propagator for the QuasiPath(G,ny,ng) constraint is
PathDegreePropag. It is declared and implemented in
path/pathdegree.icc. This constraint can be posted by using the
templated function pathdegree (Space *home, GView &g, int start,
int end) of path.hh .

e The propagator for the Path(G,ni,ng, W, I) constraint for the edge-
weight case is PathCostPropag. It is declared and implemented in
path/path.icc. This constraint can be posted by using the templated
function path(Space* home, GView &g, int start, int end, const
map <pair<int,int>,int> &edgecosts, IntVar w) of path.hh.
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e The propagator for the Path(G,ny,ng, W, I) constraint for the node-
weight case is PathCostPropagNodes. It is declared and implemented
in path/path.icc. This constraint can be posted by using the tem-
plated function path(Space* home, GView &g, int start, int end,
const vector<int> &nodecosts, IntVar w, pair<int,int> *
hint=NULL) of path.hh. If hint is not null, the value it points is set
to the first undetermined arc in the shortest path tree. This hint was
used to implement the shortest path heuristic of experiment 7.2.

e The propagator for the Path(G,n1,ng) constraint is PathPropag. It is
declared and implemented in path/path.icc. This constraint can be
posted by using the templated function path(Space* home, GView
&g, int start, int end) of path.hh.

e The propagator for the Connected(G) constraint is
IncrCheckconnected. It is declared and implemented in
path/connected.icc. This constraint can be posted by using the
templated function connected(Space* home, GView &g) of
path/connected.icc.

e The propagator for the Tree(G) constraint is UndirectedTree. It is
declared and implemented in path/connected.icc.
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