








Abstract
In the context of logic programming-in-the-small, we propose logic specifications by exam-
ples and properties, the latter being disambiguating generalizations of the examples. Such
specifications are easy to elaborate, but are also usually incomplete, in the sense that the in-
tentions need not (or cannot) be fully described. Algorithm synthesis then consists of semi-
automatically extrapolating these intentions, and of designing a (recursive) algorithm imple-
menting them. We develop a very disciplined approach to algorithm synthesis, namely step-
wise instantiation of the place-holders of a divide-and-conquer algorithm schema. Moreover,
rather than using a uniform method for these instantiations, we deploy for each place-holder
the best-suited method from a generic tool-box of (deductive, inductive, …) methods. Spe-
cial care is taken to handle the correctness and progression aspects of the synthesis.

Keywords

Automatic programming, program synthesis, logic programming, intentions, specification,
algorithm, algorithm design, algorithm schema, algorithm correctness, algorithm compari-
son, stepwise design, inductive logic programming, machine learning, inductive inference,
generalization, deductive inference, automated theorem proving.



ii Abstract



Acknowledgments iii

Acknowledgments
I hereby express my deepest gratitude to my advisor, Prof. Yves Deville. His patience and
encouraging comments were music in my ears whenever I thought I had painted myself into
a corner, and his expertise and assistance were invaluable during the development of some
theoretical aspects. When deadlines were close, his availability beyond the call of duty was
priceless. Moreover, his relentless pursuit of excellence drove me to improvements and gen-
eralizations I would never have dreamt of, and his insightful overall perception of my re-
search area guided me to a better understanding of my results and contributions. Finally, he
tempered my exuberant and provocative writing style into a cautious, diplomatic language.
Thank you, Yves!

My warmest thanks to Prof. Alan W. Biermann (Duke University, Durham, NC, USA),
who accepted my application for a leave-of-absence at his department, and who later agreed
on extending this research stay and on adding other, shorter stays. His faith in my approach
kept my spirit alive during many months of darkness. As my mentor on program synthesis
research, he distilled a lot of wisdom during our numerous discussions.

I acknowledge extraordinary assistance by Prof. Baudouin Le Charlier (FUNDP, Namur,
Belgium). His spiritual patronage on this thesis is unmistakable, and the fruit of many inter-
esting discussions. My gratefulness further goes to Prof. Axel van Lamsweerde (UCL), who
awakened my passion for research as my MS advisor, and who provided many constructive
comments on earlier versions of this dissertation. Prof. Michel Sintzoff and Prof. Elie Mil-
grom (both at UCL) also offered useful feedback during the writing process.

Many thanks to Prof. Norbert Fuchs (Universität Zürich, Switzerland) and Prof. Klaus-
Peter Jantke (TH Leipzig, Germany) for their interest in my research, and for inviting me
abroad to give seminars on it. Prof. Laurent Fribourg (ENS, Paris, France) kindly assisted me
during the development of some aspects that are based on his own research. Moreover, I’m
indebted to my fellow PhD-student veterans Lubos̆ Popelinský  (Masaryk University of
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Background, Terminology, and Conventions
This research is set within the framework of logic programming. We assume the reader is fa-
miliar with this background (see, for instance, [Lloyd 87], of which we adopt the terminolo-
gy, unless otherwise noted). Here follows a list of the most used typographic conventions,
abbreviations, and predefined symbols. Others will be introduced as necessary, and the entire
list can be found in the Appendix.

Typographic conventions

Function symbols (functors) and predicate symbols start with a lower-case letter. We often
write them out followed by a slash “/” and their arity. Examples are a/0, f/2, and p/3. Excep-
tions are some primitive symbols, such as =/2, </2, and •/2. Functors of arity 0 are called con-
stants. By abuse of language, we often say “predicate” instead of “predicate symbol”.
Variable symbols, function variable symbols, and predicate variable symbols start with an
upper case letter. Examples are X, F, and P. An anonymous variable is denoted by an under-
score “_”. Schema variable symbols and notation variable symbols consist of a lower-case
letter. Examples are i, j, k, m, and n. The distinction with one-letter constants should always
be obvious from context. By abuse of language, we often say “variable” instead of “variable
symbol”.

Terms and atoms are usually written in prefix notation. If no ambiguity arises, unary terms
and atoms are sometimes written without parentheses, while binary terms and atoms are
sometimes written in infix notation.

A constructed list with head H and tail T is denoted H•T, whereas nil denotes the empty
list. Another notation for a constructed list with head H and tail T is [H|T], whereas [] is an-
other notation for the empty list. These alternative notations allow shorthands such as
[H1,H2,…,Hn] for •(H1,•(H2,•(…,•(Hn,nil)…))), and [H1,H2,…,Hn|T] for
•(H1,•(H2,•(…,•(Hn,T)…))), where n>0.

Non-negative integers are successors of the constant zero, which is denoted 0. The se-
quence of integers is 0, s(0), s(s(0)), …, sn(0), …, where s/1 is called the successor functor.
Shorthands are 0, 1, 2, …, n, …, respectively.

Variable symbols, predicate variable symbols, functors, and predicate symbols within text
paragraphs are written in Times-italics. However, entirely formalized paragraphs, such as
specifications, (logic) algorithms, and (logic) programs, are written in Courier.

Term vectors and variable vectors of indeterminate, but finite, length are denoted by bold-
face symbols. Examples are t and X. Vectors of vectors of indeterminate, but finite, length
are denoted by underlined boldface symbols. Examples are t and X. Given an integer n, an
n-tuple of length n is written using angled brackets. An example is <t1,t2,…,tn>. Note that an
n-tuple is a term, whereas a vector is not a term.

Names of sets or relations start with an upper-case letter, and are written in Zapf. An ex-
ample is R. Exceptions are some primitive symbols, such as =/2, </2, and ∈/2. The predicate
symbol corresponding to a relation is the name of the relation, but it then starts with a lower-
case letter, and is written in Times-italics. For instance, r is the predicate symbol for relation
R. The complement of a relation has the same name as the relation itself, but crossed out by
a slash “/”, if the name is a primitive symbol, and overlined, otherwise.

The binding of a term t to a variable X is denoted X/t. Substitutions are denoted by Greek
lower-case letters. Examples are σ, ρ, and θ.

The construct F[X] denotes a well-formed formula F whose free variables are X. The con-
struct F[t] then denotes F[X] where the free occurrences of X are replaced by the terms t. The
boldface construct r(s,t) denotes a finite conjunction r(s1,t1) ∧ r(s2,t2) ∧ … ∧ r(sn,tn).
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The end of a multi-paragraph example is indicated by a black diamond: ♦.
The end of a proof is indicated by a quad: ❏.
Emphasized words are underlined. Defined words are in italics.

Abbreviations

General abbreviations
iff if and only if
wrt with respect to

Scientific abbreviations
BNF Backus-Naur Form
gci greatest common instance
glb greatest lower bound
lub least upper bound
mgu most general unifier
msg most specific generalization
NF Negation-as-Failure
SL resolution Linear resolution with Selection Function
SLD resolution SL resolution for Definite clauses
SLDNF resolution SLD resolution with the NF rule
wff well-formed formula
wfr well-founded relation

Glossary of Symbols

Sets
A the set of atoms constructed from Q and T
B the Herbrand base (that is the set of ground atoms constructed

from Q and U); B ⊆ A
C the set of predefined base case constants of inductively defined

data types; C ⊆ F; C is here assumed to be {0, nil}
F the set of functors
ℑ the intended interpretation
Q the set of predicate symbols
R the intended relation
T the set of terms constructed from F and V
U the Herbrand universe (that is the set of ground terms constructed

from F); U ⊆ T
V the set of variable symbols
W the set of wff constructed from A and V

Constants
nil or [] the empty list
ω infinity
0 the integer zero
∅ or {} the empty set

Functors of arity n, where n>0
cons(E) the set of constants occurring in expression E
dom(σ) the domain of substitution σ: dom(σ) ⊆ V
funct(E) the set of functors occurring in expression E
msg(s,t) the most specific generalization of terms s and t
range(σ) the range of a substitution σ: range(σ) ⊆ T
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s(i) the successor of integer i
vars(E) the set of variables occurring in expression E
#S the number of elements of set S, or of vector S
H•T the list constructed of head H and tail T
S1 ∪ S2 the union of the sets S1 and S2
S1 ∩ S2 the intersection of the sets S1 and S2
S1 \ S2 the difference of the sets S1 and S2

Primitive predicates
false/0 never holds
true/0 always holds
s = t term s is unifiable with term t
s ≤ t term s is less general than term t, or integer s is less than or equal

to integer t (according to context)
e ∈ S term e is an element of set S
S1 ⊆ S2 set S1 is a subset of set S2

Connectives for well-formed formulas
∀ for all (universal quantification)
∃ there is (existential quantification)
¬ not (negation)
∨ inclusive or
∨⋅ exclusive or
∧ and
⇒ implies
⇐ if
⇔ if-and-only-if
∨a≤i≤b Fi Fa ∨ Fa+1 ∨ … ∨ Fb, if b ≥ a, and false otherwise
∧a≤i≤b Fi Fa ∧ Fa+1 ∧ … ∧ Fb, if b ≥ a, and true otherwise

Connectives for logic programs
, and
← if

Meta-logical connectives
|== Herbrand-logical consequence
|— derivability

Precedence hierarchy (highest-to-lowest) of the wff connectives

 ¬, ∀, ∃
∨, ∨⋅
∧
⇐, ⇒, ⇔
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Introduction
Automatic programming (also called program synthesis) is an often suggested solution to the
software crisis, which has been haunting commercial software production for over two de-
cades now. Indeed, if we could write a program that develops correct programs from speci-
fications, with as much (or as little) interaction as the specifier wants, then the dreaded
program testing and program maintenance stages would disappear from the software life-cy-
cle, and one could instead focus on the more creative tasks of specification elaboration, test-
ing, and maintenance, because replay of program development would become less costly.

Understanding the Title of this Thesis

The framework of this thesis is algorithm synthesis from “incomplete” specifications. More
precisely, we tackle the problem of “logic algorithm synthesis from specifications by exam-
ples and properties”. This formulation implies several things. First, the chosen programming
paradigm is logic programming. Second, we are here only interested in synthesizing recur-
sive logic programs, which we call logic algorithms. Moreover, the focus is on the actual al-
gorithm synthesis, and on the declarative semantics of such logic algorithms, but not on their
transformation, optimization, or implementation. Third, synthesis starts from incomplete
specifications, in the sense that one deliberately admits a lack of information in the specifi-
cation with respect to the intentions: synthesis is meant to extrapolate these intentions. The
chosen specification formalism is a compromise between specifications by examples and ax-
iomatic specifications: examples of the intended relation are given, as well as properties,
which are a specialized form of axioms, but also a generalized form of examples. Properties
are meant to disambiguate examples. This approach should allow faster and more reliable
synthesis than from examples alone, but also more natural and understandable specifications
than first-order logic axiomatizations.

The Claim of this Thesis

These specification and programming paradigms have been chosen to illustrate our claim that
“program synthesis can be effectively performed by successively filling in the place-holders
of some algorithm schema, each such instantiation being done by deploying the best-suited
method of a generic tool-box of (inductive, deductive, …) methods”. Again, this formulation
implies several things. First, we require a firm theoretical grip on the effectiveness of the syn-
thesis: the development and application of suitable correctness criteria is a central theme in
this thesis. Second, we want to decompose synthesis into a succession of well-defined soft-
ware engineering tasks: this is where the notion of algorithm schema comes in. We here ex-
clusively focus on the divide-and-conquer schema and define its place-holders. Schema-
guidance is a very powerful way to inject algorithm knowledge into synthesis, and thus re-
duce search spaces. Third, we suggest that synthesis need not be done by a unique mecha-
nism in one fell swoop, nor by a decomposition into sub-tasks that are performed using a
single kind of reasoning: indeed, a generic tool-box of methods can be developed, each meth-
od being able to instantiate place-holders of schemas. We develop such a tool-box: some
methods perform inductive reasoning, other methods perform deductive reasoning, yet other
methods simply retrieve instances from databases.



2

Organization of this Thesis

This thesis is divided into three parts: Part I is about the state-of-the-art in automatic pro-
gramming, Part II provides some building blocks for a synthesis mechanism, and Part III de-
scribes our synthesis mechanism in terms of these building blocks.

Part I: State of the Art

In Part I, we present the state-of-the-art of the topics underlying this thesis, and introduce the
relevant terminology along the way. The idea is to gradually introduce the objectives of this
research by narrowing in from more general aims. Note, however, that Chapters 2 to 4 may
be read in any order. This state-of-the-art is unusually long, because this thesis is at the in-
tersection of numerous domains, such as software engineering, deductive inference and au-
tomated theorem proving, inductive inference and machine learning, and algorithm design
methodologies.

In Chapter 1, we give a general introduction to the field of automatic programming. After
a presentation of the grand aim of program synthesis research, we discuss the languages used
for expressing specifications, algorithms, and programs. We then propose a classification
scheme for synthesis mechanisms, and conclude with our personal viewpoint on the require-
ments and promises of automatic programming research.

In Chapter 2, we survey the use of deductive inference in automatic programming. Axi-
omatic specifications are expected to be complete and non-ambiguous, but are usually also
quite lengthy and artificial. Deductive synthesis from axiomatic specifications can be classi-
fied into transformational synthesis, proofs-as-programs synthesis (or constructive synthe-
sis), and schema-guided synthesis. We survey the achievements of deductive synthesis of
LISP functions and of Prolog predicates.

In Chapter 3, we survey the use of inductive inference in automatic programming. Speci-
fications by examples are concise and natural, but are usually also incomplete and ambigu-
ous, due to the insufficient expressive power of examples. As inductive inference is much less
known than deductive inference, we first survey this field. Inductive synthesis from specifi-
cations by examples can be classified into trace-based synthesis and model-based synthesis.
We survey the achievements of inductive synthesis of LISP functions and of Prolog predi-
cates.

In Chapter 4, we summarize a methodology of logic program development. The original
promise of programming in first-order logic when using Prolog is indeed impaired by Pro-
log’s incomplete and unsound inference engine, and by the availability of non-logical pred-
icates. But these features were deliberately chosen so as to make Prolog a practical
programming language. Hence there is a need for a language-independent logic program-
ming methodology that assists in reconciling the gap between the declarative and the proce-
dural semantics. Such a methodology has been formulated by [Deville 87, 90]. It aims at
programming-in-the-small, and is meant for algorithmic problems. It is divided into three
stages: (1) elaboration of an informal specification; (2) design of a “logic algorithm” (an al-
gorithm expressed in logic), and possibly its transformation; and (3) derivation of a logic pro-
gram, and possibly its transformation. The most creative second stage is based only on the
declarative semantics of logic, and is independent of the target logic programming language
used at the third stage.

In Chapter 5, we formulate the objective of this thesis in more detail, namely logic algo-
rithm synthesis from specifications by examples and properties. A series of motivating sam-
ple scenarios allows us to identify the challenges of this objective.
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Part II: Building Blocks

In Part II, we provide the building blocks that are used later for the development of a logic
algorithm synthesis mechanism. These building blocks are a new language for expressing in-
complete specifications (Chapter 6), a complete theoretical framework for the formulation of
stepwise synthesis strategies (Chapter 7), an introduction to the notion of algorithm schemas
and their usage in algorithm synthesis (Chapter 8), a method for deductively synthesizing
parts of logic algorithms (Chapter 9), and another method for inductively synthesizing parts
of logic algorithms (Chapter 10). Note that Chapters 7 to 10 may be read in any order.

In Chapter 6, we define a specification approach that is based on the notions of examples
and properties. It requires examples that are chosen in a consistent way by a specifier who
knows the intended relation. The presence of properties (whose actual language is applica-
tion-specific, and thus left unspecified for a while) is meant to overcome the problems of am-
biguity and limited expressive power of examples, while still preserving their virtues of
naturalness and conciseness. Such specification languages are quite expressive and readable.
Specifications by examples and properties are usually incomplete, and hence ambiguous, but
minimal. This specification approach holds the promise of faster and more reliable synthesis
than from examples alone.

In Chapter 7, we develop a complete theoretical framework for stepwise synthesis of logic
algorithms from specifications by examples and properties. Three layers of new correctness
criteria relating the intentions, specifications, and logic algorithms are introduced. Compar-
ison criteria relating logic algorithms in terms of semantic or syntactic generality are then
proposed. All these criteria provide an adequate structure for the formulation of stepwise
synthesis strategies, be they incremental (examples and properties are presented one-by-one)
or non-incremental (examples and properties are presented all-at-once). A particular non-in-
cremental strategy is developed in greater detail for use in the sequel.

In Chapter 8, we discuss algorithm schemas as an important support for algorithm design.
One of the major ideas of this thesis is that schema-independent methods can be developed
for the synthesis of instances of the place-holders of schemas. We thus advocate a very dis-
ciplined approach to algorithm synthesis: rather than using a uniform method for instantiat-
ing all place-holders of a given schema (possibly without any awareness of such a schema),
one should deploy the best-suited method for each place-holder. In other words, we propose
to view research on automatic programming as: (1) the search for adequate schemas; (2) the
development of useful methods of place-holder instantiation; and (3) the discovery of inter-
esting mappings between these methods and the place-holders of these schemas. Our grand
view of algorithm synthesis systems is thus one of a large workbench with a generic tool-box
of specialized methods and a set of schemas that covers (as much as possible of) the space
of all possible algorithms.

In Chapter 9, we develop the Proofs-as-Programs Method, which deductively adds atoms
to a logic algorithm so that it satisfies a given set of properties. The added literals are extract-
ed from the proof that the given algorithm is complete with respect to these properties. This
method is part of our tool-box for instantiating place-holders of an algorithm schema.

In Chapter 10, we develop the Most-Specific-Generalization Method, which inductively
synthesizes a logic algorithm from a set of examples. The intended relation, though unknown
as a whole, is however known to feature a given data-flow pattern between its parameters.
The synthesized logic algorithm is correct with respect to a “natural extension” of the given
examples. Note that this method is also part of our tool-box for instantiating place-holders of
an algorithm schema, but not a solution to the overall problem of synthesis from specifica-
tions by examples and properties.
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Part III: A Logic Algorithm Synthesis Mechanism

In Part III, we develop an actual logic algorithm synthesis mechanism from specifications by
examples and properties, as seen in Chapter 6. It fits the particular non-incremental synthesis
strategy presented in Chapter 7, is guided by the divide-and-conquer algorithm schema seen
in Chapter 8, and uses the tool-box of methods developed in Chapter 9 and Chapter 10.

In Chapter 11, we motivate the desired features of the mechanism (such as the actual lan-
guage for the properties), and argue for a series of preliminary restrictions, so as to keep the
presentation simple until the discussion of its extensions. We also give an intuitive overview
of the entire synthesis mechanism by illustrating it on a sample execution, so as to give the
reader the feel for its working.

In Chapter 12, we give full detail about the expansion phase of synthesis, that is the first
four steps of the mechanism. These steps are rather straightforward, and do not require any
sophisticated methods.

In Chapter 13, we give full detail about the reduction phase of synthesis, that is the re-
maining three steps of the mechanism. These steps are the truly creative ones, and require the
sophisticated methods of the tool-box developed in Chapter 9 and Chapter 10.

In Chapter 14, we provide a detailed evaluation of the obtained synthesis mechanism with
respect to the identified challenges. We also discuss some extensions to the synthesis mech-
anism. Then, we outline a methodology for choosing “good” examples and properties,
which, when followed, increases reliability and speed of synthesis, and decreases the need
for interaction with the specifier. A prototype implementation of this synthesis mechanism is
being developed. It is called SYNAPSE (SYNthesis of logic Algorithms from PropertieS and
Examples), and is written in portable Prolog. We briefly discuss its architecture, and list a few
target scenarios of interaction between the specifier and the synthesizer. Finally, we give an
evaluation of the power of the proposed synthesis mechanism, and compare it to related
work.
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I STATE OF THE ART
In this first part, the state of the art of the topics underlying this dissertation is presented, and
a lot of relevant terminology is introduced along the way. The idea is to gradually introduce
the objective of this research by narrowing in from more general aims. Thus, in Chapter 1, a
general introduction to the field of automatic programming (program synthesis) is given.
Chapter 2 contains a survey of the use of deductive inference in automatic programming,
while Chapter 3 surveys the use of inductive inference in automatic programming. In
Chapter 4, we summarize the methodology of systematic logic program development of
[Deville 87, 90]. Chapters 2 to 4 may be read in any order. Finally, in Chapter 5, we formulate
the objectives of this thesis.
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1 Automatic Programming
There will certainly be many differences between the input to
future automatic programming systems and what is currently

called a program. However, programming is best typified not by
what programs are but by what programming tasks are like.

Undoubtedly these inputs will still have to be carefully crafted,
debugged, and maintained according to changing needs.

Whether or not one chooses to call these inputs programs,
the tasks associated with them will be strongly reminiscent of programming.

— Charles Rich and Richard C. Waters.

In this chapter, a general introduction to the field of automatic programming (program syn-
thesis) is given. In Section 1.1, the grand aim of automatic programming is presented, togeth-
er with the major issues. Then, in Section 1.2, we discuss some topics around the languages
used in program synthesis, while in Section 1.3, we classify the different synthesis mecha-
nisms that have appeared so far. Finally, in Section 1.4, we outline our viewpoint on the re-
quirements and promises of automatic programming.

1.1 The Grand Aim of Automatic Programming
Programming is hard! Indeed, programs are highly complex mathematical objects reflecting
many inter-dependent decisions. For instance, in the imperative programming paradigm, ini-
tializing operations, loops and their invariants, and terminating operations have to be care-
fully crafted; convenient data structures have to be selected; operational correctness with
respect to the specification and suitable time or space efficiency have to be achieved. It turns
out that human beings are often inept at managing these difficulties. Even after intensive
training and practice, errors such as one-too-many iteration still occur.

This contributes to the so-called software crisis, which has been haunting commercial
software production for over two decades now. A common symptom is the inability to deliver
correct programs on time and to budget. Growing needs for more and more complex software
have made the crisis outpace the academic results for dealing with it.

Note that, at this level of the discourse, we are not interested in the languages used for
writing specifications and programs. The main issue is that there should be criteria for assess-
ing the correctness of a specification with respect to the informal intentions, and criteria for
assessing the operational correctness of a program with respect to its specification. Sample
criteria are partial correctness, completeness, and termination (the latter being meaningless
for specifications).

Actually, a classification of problems is needed for further clarification. On the one hand,
there are data-processing problems, where the specification is almost tantamount to an actual
algorithm. On the other hand, there are algorithmic problems, where the specification is at
best some kind of a naive (inefficient) program. Although this was implicit so far, the focus
in this thesis is exclusively on the more challenging algorithmic problems. Moreover, this im-
plies that we are here only concerned with programming-in-the-small.

Let’s perceive, in a first approximation, the actual programming task of the software life-
cycle as being divided into two stages:

(1) elaboration of a specification from informal intentions;
(2) development of a program that is operationally correct with respect to the specifica-

tion.



8 Automatic Programming

However, this view assumes that stage (2) is “easy”. In practice, the phrase “is correct” of
that stage is often replaced by “seems correct”, and a third stage is added:

(3) testing of the program to determine whether it is operationally correct with respect
to the specification.

There are basically two approaches to testing. A first approach is retrospective verification,
where one checks the correctness of a given program with respect to its specification. This
turns out to be extremely hard by hand, not to mention automation. The other approach is
validation, where the program is debugged so that it no longer fails on some test-data. How-
ever, and despite the still wide-spread usage of this approach, this is not satisfactory because
debugging often amounts to patchwork, and because validation amounts to verification only
in the limit.

Finally, specifications are sometimes perceived to be incorrect, and they need thus to be
changed. And specifications sometimes evolve over time, as the intentions change. A fourth
stage is then added:

(4) maintenance of the specification and of the program so that it is correct with respect
to the new specification.

Figure 1-1 summarizes this perception of the programming task of the software life-cycle.
However, maintenance sometimes operates directly on the old program, and is thus tanta-
mount to a validation process. While justifiable for some minor changes to the specification,
this approach is dangerous in general. A replay of stage (2) is definitely a better approach,
even in case of inability to guarantee correctness.

So, how can the ideal formulation of stage (2) be achieved? A first solution is constructive
verification, where the program is developed in a way that guarantees its correctness with re-
spect to the specification. This makes sense as program development actually requires the
same kind of formal thinking as program verification. The methodologies proposed by Dijk-
stra, Floyd, Hoare, Naur, Wirth,… since the late 1960s belong to this category. However,
there was little concern about automating these methodologies.

The second solution is the dream of automatic programming (program synthesis), where
some program develops correct programs from specifications, with as much (or as little) in-
teraction as the specifier wants. This dream is as old as computer science itself, but often dis-
missed as the automa-g-ic programming dream. A more general approach than program
verification is however to prove that some program synthesis mechanism is sound, and that
it thus always synthesizes correct programs. The benefits of such a solution would be the dis-
appearance of the program testing and program maintenance stages from the programming
task, and instead a focus on specification elaboration, testing (via prototyping, paraphrasing,
symbolic execution,…), and maintenance, because replay of program development becomes

Figure 1-1: The traditional software life-cycle

Intentions Specification Program
elaboration development

testing

maintenancemaintenance
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less costly. Figure 1-2 shows the resulting paradigm shift and its new perception of the pro-
gramming task of the software life-cycle.

Let’s for a while still keep from actually surveying the achievements of program synthesis
research. Instead, we first aim at restricting the scope of such research. Indeed, many people
believe it is beneficial to decompose the program development stage into two sub-stages (see
Figure 1-3):

(1) design of an abstract algorithm, with prime concern about its logical correctness
with respect to the specification, but not so much concern about its time or space
efficiency;

(2) implementation of the algorithm as a concrete program written in some program-
ming language, with concern about achieving operational correctness with respect
to the specification and about maximizing time or space efficiency.

The advantages of this approach are twofold. First, the algorithm is not subjected to the com-
putational model of the target programming language, nor to its deficiencies or even to its
intended underlying machine architecture. Note that, at this level of the discourse, we are not
interested in the language used for writing algorithms. The main issue is that there should be
criteria for assessing the logical correctness of an algorithm with respect to its specification.
Second, the implementation stage, now that it is clearly separated, may explicitly re-use the
huge body of existing and ongoing research in algorithm transformation, algorithm imple-
mentation, and program transformation. The disadvantage of this approach is however that
algorithm efficiency considerations cannot always be clearly dissociated from the algorithm
design process: sometimes, at the transformation time, it is “too late” to improve an algo-

Figure 1-2: A new software life-cycle

Intentions Specification Program
elaboration development

testing

maintenance

Figure 1-3: A practical view of program development

Specification Program
development

Algorithm
design implementation
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rithm. Special attention needs thus to be paid to make the synthesis of efficient algorithms
possible, if not likely, rather than a mere pot-shot.

There is a growing awareness since the early 1980s (see [Kant 85] or [Bauer et al. 89], for
instance) of the necessity to separate these concerns, but such hasn’t always been the case.
At best, some projects focussed on the so-called “pure” aspects of programming languages
such as LISP and Prolog. In this thesis, except for the surveys in Chapter 2 and Chapter 3,
we thus prefer algorithm design over program development. We also adopt the following ter-
minology for distinguishing design approaches: algorithm construction stands for (com-
pletely) manual algorithm design (usually from informal specifications), whereas algorithm
synthesis stands for (partly) automatic algorithm design (usually from formal specifications).

Even if the original scope of automatic programming is stripped down to sub-stage (1)
only, we may still paraphrase our initial statement: Algorithm design is hard! Indeed, algo-
rithms are highly complex mathematical objects reflecting many inter-dependent design de-
cisions: initializing operations, loops and their invariants, and terminating operations have to
be carefully crafted; logical correctness with respect to the specification has to be achieved.
It turns out that human beings are often inept at managing these difficulties. Even after inten-
sive training and practice, design errors such as one-too-many iteration still occur.

The root of the difficulty resides in the huge gap in content and formality between the in-
tentions (informal description of what problem is to be solved) and the program (formal de-
scription of how that problem is solved). Even though algorithm synthesis research restricts
its focus to bridging the smaller gap between the specification (description of what a program
does) and the algorithm (description of how the program does it), this is still quite a formi-
dable task.

1.2 Specification Languages, Algorithm Languages,
and Programming Languages

In this section, we first briefly discuss issues related to the choice of specification languages,
algorithm languages, and programming languages in automatic programming research. We
then take a cynical look at the history of automatic programming, and draw some conclusions
about formal languages.

Specification Languages

Ideally, a specification is only a description of what a program does, and an explanation of
how to use the resulting program. A specification should faithfully capture the informal in-
tentions, namely in that the problem at hand may be solved by the specified program.

Desirable qualities of a specification language are expressiveness (provision of constructs
that are natural to human thinking within the targeted application domain) and readability.

A crucial aspect of a specification is its total correctness with respect to the informal in-
tentions. Total correctness is often divided into partial correctness (absence of contradictions
with the intentions) and completeness (absence of under-specification). While partial correct-
ness of a specification with respect to the intentions is usually assumed (even if this is often
far from obvious), such is not the case with completeness, and hence with total correctness.

Other desirable qualities of a specification are minimality (absence of over-specification),
internal consistency (absence of internal contradictions), non-ambiguity (existence of a sin-
gle interpretation), and non-redundancy (absence of synonymy, homonymy, and so on).

Sometimes, the notion of expansion factor (ratio between the size of an algorithm or pro-
gram and the size of the corresponding specification) is proposed as a goodness measure for
assessing a specification, or a specification language, or even a synthesis mechanism. This,
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however, is a worthless measure, as everything depends on the specifier and on the verbose-
ness and availability of libraries of the involved languages.

A specification language should offer abstract data-structures, so that specifications do not
bias the design or implementation processes. However, abstract data-structures and the issue
of their reification are not addressed anywhere in this thesis, and are considered future work.

Specifications may be written in a formal language or in a non-formal language. A formal
specification language has a well-defined syntax and semantics. A non-formal specification
language is not to be confused with pure natural language: just like proofs in mathematics
textbooks, non-formal specifications use natural language constructs, but jointly with formal
constructs that are introduced as the need arises. There are thus no predefined syntax and se-
mantics. See [Le Charlier 85] for a complete treatment of this issue.

There seems to be no doubt that automated algorithm synthesis can only start from formal
specifications, but we’ll get back to this issue later in this section. A host of formal specifi-
cation languages has been proposed, some especially for synthesis purposes. The best-known
formal specification languages are very-high-level languages such as GIST, Refine, SETL, Z,
and so on. Other formal specification languages are first-order logic (sometimes in the guise
of frames or semantic nets), algebraic formalisms, examples, execution traces, state transi-
tion diagrams, and so on.

Programming Languages and Algorithm Languages

The most popular programming languages used as target languages of synthesis systems are,
by far, LISP and Prolog. These languages are, by the way, also the most-used languages for
implementing the synthesis mechanisms themselves, though Mathematica and expert system
shells such as OPS-5 are also used. This is not surprising, due to the ease of reasoning about
programs in these languages. However, due to the recent trend to synthesize algorithms rather
than programs, the first aspect of this “domination” seems over, as the algorithm implemen-
tation stage may target virtually any programming language.

So what algorithm languages can possibly be used? The so-called pseudo-code languages
used in many algorithms textbooks are certainly candidates, but they have received little at-
tention so far, and probably won’t ever. Indeed, the bulk of the algorithm language definition
effort goes to the pure foundations of functional and logic programming, again because of
the ease of reasoning about algorithms written in such languages.

A Cynical View on Formal Languages

Let’s now lean back and take a look at the language aspect of the history of automatic pro-
gramming. In computer science, description languages are traditionally classified as being
more or less “high-level”. At the “high” end of the continuum is natural language, as we use
it everyday. At the “low” end of the continuum are the most basic machine languages, as they
are actually directly interpreted by computers. Low-level languages are very informative in
describing how a problem is actually solved, whereas high-level languages only allow a de-
scription of what the problem is all about.

Every new generation of programming languages makes a quantum leap towards the high
end of the language continuum. For instance, assembly languages relieved programmers
from tedious on/off switching. Fortran provided evaluation of formulas. Algol supplied ab-
stractions of control structures. Structured programming languages such as Pascal brought
some discipline into Algol-like programming, as well as abstractions of data-structures.
Functional and logic programming languages such as LISP and Prolog introduced declara-
tive programming. And so on. Simultaneously, formal specification languages have also been
moving towards the high end of the language continuum.
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So, whenever a program written in some new language looks like what is at that moment
called a formal specification, and whenever compilation (or interpretation) of such a new pro-
gramming language achieves what seems then akin to programming, there is a period of con-
fusion about what formal specifications and programs actually are. One speaks of automatic
programming for a while, at least until the new programming paradigm has soaked in. Pro-
gram synthesis research is thus constantly trying to keep pace with formal specification lan-
guages (or, equivalently, to be one step ahead of the state-of-the-art in programming), but, in
retrospect, it is nothing else but the quest for new programming paradigms. To paraphrase
Tesler’s theorem (though probably from a different mind-set): automatic programming is
whatever hasn’t been compiled yet! Of course, as our notion of programs evolves, our under-
standing of compilation has to evolve as well: it is not because today’s compilers are largely
deterministic and automatic that tomorrow’s compilers (today’s synthesizers) are not allowed
to have search spaces or to be semi-automatic.

Now, considering that programming languages and formal specification languages are
moving over time to the high end on the language continuum, it is easy to see that, in the lim-
it, they will both converge to natural language. In other words, programming and specifying-
in-a-formal-language are the same processes in the limit! The very fact that there are occa-
sionally periods of confusion about what formal specifications and programs actually are, al-
ready hints at this. So programming actually amounts, in the limit, to a formalization process.

Most of the early program synthesis projects actually did aim at starting from natural lan-
guage specifications. A survey on very early projects was made by [Heidorn 76]. The SAFE
project [Balzer 85] at the Information Sciences Institute of the University of Southern Cali-
fornia initially went to great efforts to start from natural language specifications [Balzer et
al. 77], but then eventually switched to defining GIST, a very-high-level specification lan-
guage. The PSI project at Stanford University [Green 77] included a strand of research on
synthesis from natural language specifications. At MIT, the Protosystem I project [Ruth 78]
aimed at generating programs for data-processing problems. At Duke University, there was
the Natural Language Computer project [Biermann 83].

The aim of these projects is called natural language programming, and it still constitutes
the ultimate goal of automatic programming research. Because of the limited success of these
early projects, this strand of research seems more or less dormant nowadays.

1.3 A Classification of Synthesis Mechanisms
A huge variety of synthesis mechanisms have been developed, reflecting at least the variety
of specification languages. These mechanisms could be classified according to whether they
start from formal or informal specifications, or according to whether they start from complete
or incomplete specifications, or according to whether they are completely automatic or only
semi-automatic, or according to whether they perform algorithmic synthesis (no usage at all
of heuristics) or heuristic synthesis (at least partial usage of heuristics). But such classifica-
tions tend to be very lopsided, and thus uninformative. Instead, we classify the mechanisms
according to the predominant kind of reasoning:

• inductive synthesis:
– trace-based synthesis;
– model-based synthesis;

• deductive synthesis:
– transformational synthesis;
– proofs-as-programs synthesis;
– schema-guided synthesis;

• abductive synthesis;
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• analogical synthesis;
• knowledge-based synthesis:

– empirical synthesis;
– synthesis by inspection;
– synthesis from natural language.

Actually, knowledge-based reasoning is not really a separate kind of reasoning to the same
degree as inductive, deductive, abductive, or analogical inference. And synthesis mecha-
nisms of the first four categories never perform their kind of inference in an entirely pure way,
to the exclusion of all possible sources of knowledge. But it certainly helps to view knowl-
edge-based synthesis, with a predominant usage of knowledge, as a separate category, even
if other kinds of reasoning are used as well. Of course, this classification is not strict: many
mechanisms would actually fit into more than one category.

A graph confronting the specification languages with the synthesis mechanisms would be
very sparse, because some mechanisms are unique to specification languages. Achievements
of inductive and deductive synthesis are surveyed in Chapter 2 and Chapter 3, respectively.

The history of research in automatic programming has pretty much followed the pattern
set by problem solving research in artificial intelligence. Indeed, the original quest for a com-
pletely general, fully automatic, end-user-oriented automatic programming system has grad-
ually been replaced by more realistic objectives. Following [Rich and Waters 88a], there are
three major trends, each sacrificing one of these objectives in order to attain the other two:

• the expert specifier trend sacrifices end-user orientation in view of attaining domain-
generality and full automation; in vogue until the late 1960s due to the good results in
compiler design for high-level languages, this trend has reappeared in the early 1980s
when the technology for handling very-high-level languages became available;

• the narrow domain trend sacrifices domain generality in view of attaining end-user ori-
entation and full automation; this trend was mainly a fallback during the 1970s while
progress in the expert specifier trend was stalled; however, this trend is slowly emerg-
ing again, as the idea of collections of narrow-domain synthesizers arises;

• the software assistant trend sacrifices full automation in view of attaining domain gen-
erality and end-user orientation; this trend has been very popular since the 1980s, al-
though the focus is sometimes more on having a calculus of algorithm design, than on
actually using it for synthesis.

Of course, these trends are not as clear-cut as their descriptions might suggest. Indeed, many
systems sacrifice a little bit of every objective.

1.4 Requirements and Promises of Automatic Programming
In this last introductory section to automatic programming, we list a few requirements for
research in program synthesis, and outline the promises of this research. Finally, pointers to
introductory literature are given.

There first is a great need for incorporating knowledge into automatic programming sys-
tems, in order to overcome the old “sins” of general problem solving. There are essentially
three classes of useful synthesis knowledge:

• algorithms knowledge is needed [Soloway and Ehrlich 84] for re-using human exper-
tise in algorithm design, and thus for making synthesis a “disciplined” search process;
such knowledge can be codified in various ways: as transformation rules (see the PE-
COS sub-system [Barstow 77, 79a, 79b, 84a] of PSI), as algorithm schemas (see the
systems of [Smith 81, 85, 88]), as clichés (see the Programmer’s Apprentice project at
MIT [Rich 81] [Waters 85] [Rich and Waters 87, 88b, 89]), and so on;
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• domain knowledge (application knowledge) is equally crucial, for the same reasons
(see the PHINIX system of [Barstow 84b, 85]);

• meta-knowledge is knowledge about how and when to use the previous two knowledge
sources (see the Designer project at CMU [Kant 85] [Steier and Kant 85]).

Furthermore, there is a need for efficiency knowledge (useful for algorithm transformation
and implementation), but this carries us beyond our focus on actual synthesis. As usual, there
is the dreaded knowledge acquisition bottleneck, but current machine learning techniques
(see Chapter 3) seem a promising step towards overcoming this.

Next, there is a need for evolutionary specifications, where one deliberately omits some
functionalities in a first specification, and then relies on re-play facilities [Wile 83] when add-
ing the missing functionalities in subsequent versions of the specification. This form of ex-
ploratory programming promises an answer to the endemic difficulty of providing correct
and complete formal specifications.

A synthesis system should be able to design a large family of algorithms from a single
specification. The different design decisions taken at the choice-points during synthesis then
document interesting algorithm classifications. A popular idea is to benchmark the ability of
a synthesis system on the sorting problem, whose specification is deceptively simple, and yet
gives rise to a tremendous variety of different algorithms. Classification through synthesis of
sorting algorithms has indeed been done by [Green and Barstow 78], [Clark and
Darlington 80], [Broy 83], [Follet 84], [Smith 85], [Lau 89], and [Lau and Prestwich 91].
Moreover, the ability to find new algorithms might be considered another benchmark of the
ability of a program synthesis system.

Following [Kant 90], the “economics” of automated program synthesis are as follows.
The potential benefits are an increased productivity of software engineers (focus on creative
aspects, automation of tedious routine, replay facilities) and an increased quality of the de-
veloped software (correctness, efficiency, re-usability). The costs are the necessary acquisi-
tion of programming and domain knowledge, the development of the synthesis system and
its maintenance across various platforms, and the training of expert users. From this cost-
benefit analysis, it appears that the use of a program synthesis system is worthwhile if either
many similar programs need to be written, or a given program is changed sufficiently often,
and if the application domain lends itself to natural and concise specifications, features well-
understood problem solving techniques, and is complex enough for promising a payoff. The
break-even point is thus attained when the usage of a program synthesis system is more eco-
nomical than manual program development by an expert.

Regarding the promises, there is general optimism that program synthesis systems will
eventually scale up to realistic tasks, especially now that some systems are already in com-
mercial or pre-commercial use. Due to its very focus on programming-in-the-small, it is ob-
vious that automatic programming will not supplant the need for programming-in-the-large,
nor will it assist in project management issues. Also, the essentially evolutive nature of soft-
ware development cannot be prevented by program synthesis systems, though they will cer-
tainly help in coping with changing specifications. Programming jobs will not disappear, but
our understanding of what the task of programming is will definitely change. There will al-
ways be a need for validation and maintenance, but the promise is to do this on texts that are
at today’s specification level.
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Pointers to the Literature

A thought experiment by [Green et al. 83] has led to the definition of the ideal architecture
and functionalities of the software engineering environment of the future, namely the so-
called KBSA (Knowledge-Based Software Assistant). General introductions to program syn-
thesis have been published by [Rich and Waters 86b, 88a] and [Kant 90].

A growing number of surveys of existing synthesis mechanisms and systems is being pub-
lished: let’s just mention those of [Barr and Feigenbaum 82], [Biermann et al. 84b], [Partsch
and Steinbrüggen 83], [Smith 84], [Goldberg 86], [Feather 87], [Lowry and Duran 89], [Stei-
er and Anderson 89], [Biermann 92], and [Deville and Lau 94].

Compilations of landmark papers on program synthesis have been edited by [Biermann
and Guiho 83], [Biermann et al. 84a], [IEEE-TSE 85], [Rich and Waters 86a], and [Bibel and
Biermann 93]. A journal entirely dedicated to program synthesis will (finally) exist in the
near future: the first issue of the Journal on Automated Software Engineering (Kluwer Aca-
demic Publishers) will be released in early 1994.

Artificial intelligence conferences typically have sessions or workshops on program syn-
thesis. Especially in the logic programming area, there are specialized publications, such as
[Jacquet 93] and the proceedings of the LOPSTR (LOgic Program Synthesis and TRansfor-
mation) workshops [Clement and Lau 92] [Lau and Clement 93] [Deville 94].
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2 Deductive Inference in Automatic Programming
Deductive inference is omnipresent in automatic programming. We first define, in
Section 2.1, the underlying specification formalism, namely axiomatizations. In Section 2.2,
we classify the various approaches to using deductive inference in automatic programming.
Then, in Section 2.3 and Section 2.4, we survey synthesis of functional programs from axi-
oms, and synthesis of logic programs from axioms, respectively. Finally, in Section 2.5, we
draw some conclusions on the use of inductive inference in automatic programming.

2.1 Specifications by Axioms
We first define a possible language for specifications by axioms, and this in the logic pro-
gramming framework. Later in this section, we list alternative approaches.
Definition 2-1: An axiomatic specification of a procedure for predicate r/n consists of the
union of a set of first-order axioms about r/n and the axiomatic specifications of all the non-
primitive predicates used in these axioms.

We consider at least =/2, ≠/2, and ≤/2 to be primitives. Others are added whenever the need
for simplification arises. Let’s illustrate this on a few sample specifications.
Example 2-1: The member(E,L) relation holds iff term E is an element of list L. Given a
ground value of L, this is a non-deterministic relation. A possible axiomatic specification is:

∀E ∀L member(E,L) ⇔
append(_,[E|_],L)

with append/3 considered to be a primitive that holds iff its third parameter is the concatena-
tion of its first two parameters, which must be lists. ♦

For the next two sample specifications, we need two new notions. Informally speaking, a
plateau is a non-empty list of identical elements. A compact list is a list of couples, where
the first term of a couple, called the value of the couple, is different in two consecutive cou-
ples, and the second term of a couple, called the counter of the couple, is a positive integer.
Example 2-2: The firstPlateau(L,P,S) relation holds iff P is the maximal plateau at the
beginning of the non-empty list L, and list S is the corresponding suffix of L. Given a ground
value of L, this is a fully deterministic relation. A possible axiomatic specification is:

∀L ∀P ∀S firstPlateau(L,P,S) ⇔
plateau(P) ∧ ¬sameFirst(P,S) ∧ append(P,S,L)

∀P plateau(P) ⇔ ∃U ∀E
member(E,P) ⇒ E=U

∀P ∀L sameFirst(P,L) ⇔ ∃E ∃F
P=[E|_] ∧ L=[F|_] ∧ E=F

with append/3 and member/2 as in the previous example. ♦

Example 2-3: The compress(L,C) relation holds iff C is a compact list of <vi,ci> couples,
such that the ith plateau of list L has ci elements equal to vi. Given a ground value of either
parameter, this is a fully deterministic relation. A possible axiomatic specification is:

∀L ∀C compress(L,C) ⇔ ∃E ∃P ∃S ∃T ∃N
L=[] ∧ C=[]

∨ L=[E|_] ∧ firstPlateau(L,P,S)
∧ compress(S,T)
∧ length(P,N)
∧ C=[<E,N>|T]
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∀L ∀N length(L,N) ⇔ ∃T ∃M
L=[] ∧ N=0

∨ L=[_|T] ∧ length(T,M)
∧ N=s(M)

with firstPlateau/3 as in the previous example. ♦

Example 2-4: The sum(L,S) relation holds iff S is the sum of the elements of integer list L.
Given a ground value of L, this is a fully deterministic relation. A possible axiomatic
specification is:

∀L ∀S sum(L,S) ⇔ ∃H ∃T ∃N
L=[] ∧ S=0

∨ L=[H|T] ∧ sum(T,N)
∧ add(H,N,S)

with add/3 considered to be a primitive that holds iff its third parameter is the sum of the first
two parameters, which must be integers. ♦

Example 2-5: The sort(L,S) relation holds iff S is an ascendingly ordered permutation of
integer list L. Given a ground value of L, this is a fully deterministic relation. A possible
axiomatic specification is:

∀L ∀S sort(L,S) ⇔
permutation(L,S) ∧ ordered(S)

∀L ∀P permutation(L,P) ⇔ ∀U
member(U,L) ⇒ ∃N count(L,U,N) ∧ count(P,U,N)

∀L ordered(L) ⇔ ∀U ∀V ∀A ∀B
append(A,B,L) ∧ member(U,A) ∧ member(V,B) ⇒ U≤V

∀L ∀E ∀N count(L,E,N) ⇔ ∃H ∃T ∃M
L=[] ∧ N=0

∨ L=[E|T] ∧ count(T,E,M)
∧ N=s(M)

∨ L=[H|T] ∧ H≠E
∧ count(T,E,M)

with append/3 and member/2 as in the previous examples. ♦

It should be noted that the sample specifications above do not reflect the only possible way
of expressing axioms. Specification approaches vary according to the following criteria:

• language: axioms may be given as statements in (some subset of) first-order logic (with
or without equality), or as algebraic statements, and so on;

• directionality: axioms may be in relational form (where there is no bias about whether
parameters are input parameters or output parameters), or in functional form; for in-
stance, in the case of logic as specification language, relational axioms take form (1)
below, whereas functional axioms take form (2) hereafter:

∀Parameters Pre(Parameters) ⇒ ( pred(Parameters) ⇔ Post(Parameters) ) (1)
∀Inputs ∃Outputs Pre(Inputs) ⇒ Post(Inputs, Outputs) (2)

where Pre is an optional pre-condition (constraints on the parameters), Post is a post-
condition (relation between the parameters), and pred is the specified predicate;

• recursion: axioms are sometimes constrained to be non-recursive, but most often, re-
cursion is allowed in axioms;

• connectives: axioms are sometimes constrained to be implication statements, or equiv-
alence statements; sometimes, even both kinds of statements are allowed.
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The specifier is usually assumed to be a human being, who is in turn assumed to know—even
if only informally—the functionality of the intended program. Moreover, it is usually as-
sumed that the given axioms are consistent with these intentions.

Anyway, whatever the actual setting, the major potential advantage of axiomatic specifi-
cations is the following:

+ completeness and non-ambiguity: a correct axiomatic specification completely and
unambiguously defines the intended relation, which is thus equal to the specified re-
lation;

The disadvantages of axiomatic specifications are:
– artificiality: human beings rarely resort to axioms in order to explain some concept;

moreover, reading such axioms is very difficult, even to experts; finally, elaborating
such axioms is also tough, and potentially as error-prone as directly writing the de-
sired program; especially the satisfaction of the completeness requirement is very
hard to ensure;

– length: axioms are a quite lengthy way of intensionally specifying some concept,
even if a large set of powerful primitives is available, because the axiomatic speci-
fications of these primitives are technically part of the specification of the top-level
predicate.

Approaches for tackling these drawbacks include evolutionary specifications, where one de-
liberately omits some functionalities in a first specification, and then relies on re-play facili-
ties when adding these functionalities in subsequent specifications.

Since the inception of logic programming, the line between logic specifications and pro-
grams has somewhat disappeared, if one considers that specifications ought to be formal, that
is. See [Le Charlier 85] for an argumentation that specifications should be non-formal. We
also adhere to that point of view. The placement of this line is historically controversial any-
way.

For instance, the sample specifications above of compress/2, length/2, sum/2, and count/3
are actually already some kind of first-order logic programs, and are easily transformable in-
to, say, Prolog programs. Indeed, these specifications are recursive and exhibit induction over
some parameter; avoiding this leads to clumsy specifications. These specifications thus seem
to bias the actual programming process because they already show a way of how to solve the
problem, rather than stating what the problem is.

Sometimes, the line between “what” and “how” is non-existent: for instance, the specifi-
cation of sameFirst/2 is non-recursive, but it nevertheless also incorporates the way of how
to solve the problem.

The other sample specifications above seem more descriptive, because they are non-recur-
sive, and thus only seem to state what the problem is. We write “seem” twice in the previous
sentence, because one tends to look at such specifications through glasses tainted by the cur-
rent state-of-the-art of (logic) programming. Indeed, it is not because we don’t (yet) consider
implications and universal quantifiers in the right-hand sides of equivalence statements to
have some computational contents that they do not do so. In a sense, even such specifications
are actually logic programs, though they (usually) embody very inefficient ways of how to
solve the problems.

The objective of deductive synthesis research is to find mechanisms of translating such
possibly inefficient “programs-of-tomorrow” into efficient “programs-of-today”, and this un-
biased by any possibly existing recursion in the specification. This amounts to changing our
current understanding of what formal specifications and programs are, and to viewing syn-
thesis as a translation (compilation, transformation) process.
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2.2 Deductive Inference
Deductive inference is the process of obtaining new sentences (called theorems) from a set
(called theory) of given sentences (called axioms), by application of rules of deductive infer-
ence. Theorems are also called logical consequences of the theory. We assume that the reader
is familiar with deductive inference, and thus just repeat the basic definition.
Definition 2-2: Given a theory A, a sentence G is a logical consequence of A if every
model of A is a model of G. This is denoted A |== G.

Note that deductive inference is always sound. Typical rules of deductive inference are
modus ponens, universal instantiation, resolution, mathematical induction, and so on. The
branch of artificial intelligence research that is bent on automating deductive inference is
called automated theorem proving.

Again, since deductive inference is generally a familiar notion, we do not actually survey
it. We rather directly propose a taxonomy of the different ways of applying deductive infer-
ence to program synthesis from axiomatic specifications. Thus, Section 2.2.1 to
Section 2.2.3 respectively contain general introductions to transformational synthesis,
proofs-as-programs synthesis, and schema-guided synthesis.

2.2.1 Transformational Synthesis

In transformational synthesis, a sequence of meaning-preserving transformation rules is ap-
plied directly to a specification, until a program is obtained. This kind of stepwise forward
reasoning is akin to constructing a derivation tree, and is feasible with axiomatic specifica-
tions that link their parameters in a relational way:

∀Parameters Pre(Parameters) ⇒ ( pred(Parameters) ⇔ Post(Parameters) )
where Pre is an optional pre-condition (constraints on the parameters), Post is a post-condi-
tion (the specified relation between the parameters), and pred is the specified predicate.

Applicability conditions are often attached to the transformation rules. Transformational
synthesis is obviously an outgrowth of program transformation (optimization) research. And,
as hinted in the previous section, there is only a fine line—if any—between program synthe-
sis and program transformation.

There are atomic transformation rules, such as unfolding (which mimics the execution
mechanism of the target language), folding (which performs the reverse transformation of
unfolding), universal instantiation, abstraction, predicate definition, and various (possibly
conditional) rewrite rules for the target language and lemmas of the application domain.

The objective of applying transformations is to filter out a re-formulation of the specifica-
tion, so that recursion (or a loop) may be introduced by a folding step. This usually involves
a sequence of unfolding steps, then some rewriting, and finally the folding step.

These atomic transformation rules constitute a sound and complete set for exploring the
search space. However, they lead to very tedious and lengthy syntheses. They are myopic in
the sense that there is no real plan about where to go, except for the above-mentioned objec-
tive of introducing recursion. The “eureka” about when and how to define a new predicate is
difficult to find automatically. It is also hard to decide when to stop unfolding. There is a need
for loop-detection techniques to avoid infinite synthesis through symmetric transformations.

The idea for overcoming these drawbacks is of course to define macroscopic transforma-
tion rules that are higher-level in the sense that they are closer to actual programming deci-
sions, such as adding an accumulator parameter. Such macroscopic rules could be inferred
by learning from sample syntheses based on the atomic rules. The major problem is of course
to provide such a set of macroscopic rules that is still sound and complete. In view of facili-
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tating the understanding of a synthesis, and allowing its replay in case a specification chang-
es, the usage of transformation rules should be recorded.

Note that transformational synthesis (and program transformation) is closely related to
EBL (Explanation-Based Learning), an analytic branch of machine learning (see Chapter 3).
Indeed, the sequence of transformations from a specification (seen as a non-operational de-
scription) to a program (seen as an operational description) amounts to an explanation of the
specification. Cross-fertilization between these two areas has led to EBPT (Explanation-
Based Program Transformation) [Bruynooghe and De Schreye 89], where sample concrete
transformations are used to guide the overall abstract transformation process.

2.2.2 Proofs-as-Programs Synthesis

The proofs-as-programs approach to program synthesis—also classified as constructive syn-
thesis—is based on the Curry-Howard isomorphism [Howard 80], which states that there is
a one-to-one relationship between a (constructive) proof of an existence theorem and a pro-
gram that actually computes witnesses of the existentially quantified variables of the theo-
rem. Given a specification in the functional form:

∀Inputs ∃Outputs Pre(Inputs) ⇒ Post(Inputs, Outputs)
the idea is to proceed in two steps:

(1) (constructively) prove the satisfiability of a statement expressing that a realization
of this specification exists;

(2) obtain the method, embodied in the proof, of realizing the specification.
For the second step, one distinguishes between two approaches:

• the interpretative approach directly interprets the proof as a program, namely by
means of an operational semantics defined on proofs;

• the extractive approach mechanically extracts (“compiles”) a program, in a given tar-
get language, from the proof.

Both approaches have complementary advantages and drawbacks: interpretation is not as ef-
ficient as execution of a compiled version, but the choice of a target language might obscure
computational properties of proofs.

In any case, the crux is of course the state-of-the-art in theorem proving: the key issues
are soundness of the synthesis (entailing correctness, completeness, and possibly termination
of the resulting programs), deductive power (provability for an entire class of statements, ex-
tractability of whole families of programs for the same specification), and efficiency (need
for proof planning in order to control the huge search space). Traditional theorem provers,
such as the one of [Boyer and Moore 79], are inadequate due to their inability to reason con-
structively about existential quantifiers. A common grudge is that the used specification form
naturally leads only to the synthesis of total functions, but not of full-fledged relations (par-
tial, multi-valued, possibly non-terminating predicates, that is). Solutions to this problem are
currently being worked out (see Section 2.4.2).

The idea of exploiting (constructive) proofs as programs is actually way older than its
naming as the Curry-Howard isomorphism in 1980: the idea is inherent to intuitionistic logic
(see the work of Kleene in the 1940s), and the oldest synthesis systems that we could defi-
nitely identify as being part of this paradigm are those developed in the late 1960s by
[Green 69] and [Waldinger and Lee 69]. The terminology itself seems to have been coined
by Robert Constable in the early 1970s [Bates and Constable 85].

There is an obvious interest in proofs-by-induction, because these allow the synthesis of
recursive programs. Note that there often is a similar “proof” content in transformational syn-
thesis and proofs-as-programs synthesis, and it seems that the same proof construction tech-
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niques should be applicable to both. This may suggest that these approaches are probably two
facets of the same process. For instance, the work of [Neugebauer 92] shows how the speci-
fication forms of these approaches may be reconciled.

Just as there is a need for higher-level transformation rules in transformational synthesis,
there here is a need for proof planning in order to incorporate expert knowledge. This meta-
synthesis issue is usually tackled by the use of tactics. Following [Bundy 88], a tactic is a
meta-program within a theorem prover that guides the application of the inference rules. For
instance, a tactic could set up a proof-by-induction. Tactics should operate at the level of
proof ideas such as those that are typically used by human provers. For synthesis, there
should be tactics that embody actual programming knowledge (design strategies, efficiency
considerations, and so on), and not just tactics that embody proof knowledge. Since tactics
are programs, they can probably also be synthesized, and the correctness of tactics must be
proven. In view of facilitating the understanding of a proof, and allowing its replay in case a
specification changes, the usage of tactics should be recorded. Tactics may be bundled to-
gether to form strategies. A proof method is then a meta-level specification of a tactic, and a
proof plan is a meta-level specification of a strategy.

Compared to transformational synthesis, there is no problem here about when to stop:
synthesis halts when the proof is completed. Transformational synthesis seems more appro-
priate for synthesis from specifications that are almost programs (in which case synthesis is
more like an optimizing transformation), whereas proofs-as-programs synthesis seems more
appropriate for synthesis from highly descriptive specifications. Note that program transfor-
mation may actually be performed by the transformation of synthesis proofs.

However, there seems [Sintzoff 93] to be some pessimism of late regarding the wellfound-
edness of pursuing this strand of research: it appears indeed that obtaining constructive
proofs is an order of magnitude harder than writing programs. It would thus be preferable to
write programs directly, rather than going through the tedium of proving their specifications
first and then extracting programs therefrom. Moreover, if the conjectured isomorphism be-
tween the proofs-as-programs approach and the transformational approach holds, then the
latter seems “doomed” as well.

2.2.3 Schema-Guided Synthesis

Programs can be classified according to their design strategies, such as divide-and-conquer,
generate-and-test, top-down decomposition, and so on. Informally, a program schema is a
template program with a fixed control flow, but without specific indications about the param-
eters or the actual computations. A program schema thus represents a whole family of par-
ticular programs that can be obtained by instantiating the place-holders to particular
parameters or code. It is therefore interesting to guide program design by a schema that cap-
tures the essence of some strategy. Schemas are discussed in more detail in Chapter 8.

Schema-guided synthesis is likely to involve deductive inference, hence its classification
in this category. Moreover, it is actually an answer to the complexity and size problems of
both proofs-as-programs synthesis and transformational synthesis. Indeed, the application of
a schema may be seen as the application of a macroscopic transformation rule that embodies
very-high-level design decisions. And the application of a schema may also be seen as a tac-
tic that embodies very-high-level design knowledge, rather than proof knowledge. However,
we consider that schema-guided synthesis deserves its own sub-category, especially because,
as hinted above, the previous two sub-categories might be similar anyway.
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2.3 Functional Program Synthesis from Axioms
The synthesis of functional programs (LISP programs, say) has received wide-spread atten-
tion since the late 1960s, due to the ease of reasoning about functional programs. The surveys
of [Barr and Feigenbaum 82], [Biermann et al. 84b], [Partsch and Steinbrüggen 83], [Gold-
berg 86], [Feather 87], [Lowry and Duran 89], [Steier and Anderson 89], and [Biermann 92]
include discussions of the landmark systems. Similarly for the compilations edited by [Bier-
mann and Guiho 83], [Biermann et al. 84a], [IEEE-TSE 85], [Rich and Waters 86a], and [Bi-
bel and Biermann 93].

This present survey is organized as follows: Section 2.3.1 to Section 2.3.3 respectively
survey the achievements of transformational synthesis, proofs-as-programs synthesis, and
schema-guided synthesis of functional programs from axiomatic specifications.

2.3.1 Transformational Synthesis of LISP Programs

The pioneering work in LISP program transformation is the research of [Burstall and
Darlington 77], who present a strategy and a semi-automated system for transforming (opti-
mizing) recursive equations into tail-recursive ones, using folding, unfolding, instantiation,
abstraction, and eureka-guided predicate definitions. The developed system was also used for
LISP program synthesis [Darlington 81, 83].

The same results, though directly aimed at program synthesis, were obtained simulta-
neously, but independently, by [Manna and Waldinger 79]. However, their DEDALUS sys-
tem (the DEDuctive ALgorithm Ur-Synthesizer, which is the successor of SYNSYS [Manna
and Waldinger 77]) is automated. Moreover, particular care is taken to check input and ter-
mination conditions before introducing recursion by folding. Heuristics are used, but at the
expense of possibly missing a better algorithm.

The field of transformational implementation is about synthesis of programs from speci-
fications in very-high-level languages. This requires very large sets of transformation rules
that redefine the very-high-level constructs of the specification language in terms of the pro-
gramming language.

The 15-year SAFE project [Balzer 85] at the Information Sciences Institute of the Univer-
sity of Southern California aimed at transformational synthesis from specifications written
in the GIST language. Some of the used transformation rules are explained by [London and
Feather 82]. Ways of mechanizing the application of transformation rules are embodied by
the GLITTER sub-system of [Fickas 85].

The PSI project at Stanford University [Green 77] [Green et al. 79] was built around such
a transformational engine, called PECOS [Barstow 77, 79a, 79b, 84a]. The incorporated pro-
gramming knowledge is further discussed by [Green and Barstow 78]. Tight heuristic-based
interaction [Kant and Barstow 81] of PECOS with the efficiency expert LIBRA [Kant 77, 83]
ensures efficient synthesis of efficient programs. A successor system, called CHI [Smith et
al. 85], was partly developed at Kestrel Institute. The system was shown to be able to syn-
thesize its own rule-compiler [Green and Westfold 82].

The role of domain knowledge codified as transformation rules has been advocated in the
context of the PHINIX system [Barstow 84b, 85] at Schlumberger-Doll Research.

2.3.2 Proofs-as-Programs Synthesis of LISP Programs

As mentioned above, the probably first proofs-as-programs synthesis systems are QA3
(Question-Answering system) of [Green 69], and the PROgram Writer (PROW) of
[Waldinger and Lee 69]. In the latter, a post-proof processor extracts LISP programs from
constructive existence proofs.
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The theoretical foundations have then been laid out by numerous people, such as [Martin-
Löf 79], [de Bruijn 80], [Howard 80], [Beeson 85], [Constable et al. 86], [Coquand and
Huet 86], [Hayashi 86], and so on, the last three also proposing implementations of actual
program synthesis systems, such as the one of [Mohring 86], which is based on Coquand and
Huet’s calculus of construction. More recent achievements can be found in [Nordström et
al. 90] and in [Huet and Plotkin 91].

The DEDALUS mechanism (see the previous section) has been rephrased in the proofs-
as-programs paradigm [Manna and Waldinger 80, 91]. The so-called deductive tableau meth-
od is used for the proofs. There is no loss of synthesis power, but the mechanism is expressed
in a considerably more elegant manner. An interesting insight is that constructive logics are
not necessarily required for proofs-as-programs synthesis: indeed, many derivation steps
during synthesis actually are only verification steps, and thus need thus not be constructive
at all. Classical logic seems thus sufficient, provided it is “sufficiently” constructive when
needed. The main focus seems to be on having a calculus of program synthesis, showing the
derivability of many (hopefully all, that is) algorithms, including very intricate ones such as
unification [Manna and Waldinger 81], and interesting new ones that haven’t been hand-con-
structed yet [Manna and Waldinger 87]. But there is no mention yet of proof planning.

2.3.3 Schema-Guided Synthesis of LISP Programs

The use of deduction in the schema-guided synthesis paradigm is pretty much the brainchild
of Douglas R. Smith. A first system was called NAPS (Navy Automatic Programming Sys-
tem) [Smith 81]. A technique for the derivation of pre-conditions (which is a generalization
of theorem proving and of formula simplification) constitutes the deductive corner-stone of
this system and of all its successors [Smith 82]. Indeed, schema-guided synthesis often re-
quires deriving pre-conditions of a formula constructed by instantiation of a schema with in-
formation extracted from the specification and the partially designed algorithm. Such pre-
conditions are used to either strengthen or instantiate some part of the algorithm.

Next came the Cypress system [Smith 85], which is based on a divide-and-conquer sche-
ma. Specifications of sub-problems are derived from the adaptation of a schema to the top-
level specification, and recursively so on, until primitive problems are reached. This top-
down problem reduction is then followed by a bottom-up composition of the synthesized
sub-algorithms into the top-level algorithm, according to the schema. The system is interac-
tive, yields totally correct algorithms, and is even able to cope with partial specifications.

The successor system, called KIDS (Kestrel Interactive Development System)
[Smith 88, 90], handles schemas for design strategies such as divide-and-conquer, local
search, and global-search (an enumerative search strategy that generalizes many known
search strategies, such as binary search, backtracking, branch-and-bound, constraint satisfac-
tion, and so on). Much effort has been put into transformation techniques for optimizing the
synthesized algorithms: this subsequent transformation process gives this system the flavor
of transformational synthesis. KIDS is believed to be very close to the break-even point
where its usage is more economical than manual algorithm construction by an expert.

2.4 Logic Program Synthesis from Axioms
The synthesis of logic programs (Prolog programs, say) is an area of intense research since
the late 1970s. Since the synthesized program is a logic program, the axioms are presented
in the relational from. A detailed survey is being prepared by [Deville and Lau 94], and com-
pilations of papers are available [Jacquet 93]. Specialized workshops are held annually with-
in the LOPSTR (LOgic Program Synthesis and TRansformation) series [Clement and
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Lau 92] [Lau and Clement 93] [Deville 94]. More general meeting grounds are the biannual
META (Meta-programming in logic programming) workshops, and (workshops at) the vari-
ous logic programming conferences. Correctness issues of logic programming are addressed
by [Clark and Tärnlund 77], [Clark 79], [Hogger 81, 84], and [Deville 90], among others.
This present survey is organized as follows: Section 2.4.1 to Section 2.4.3 respectively sur-
vey the achievements of transformational synthesis, proofs-as-programs synthesis, and sche-
ma-guided synthesis of logic programs from axiomatic specifications.

2.4.1 Transformational Synthesis of Prolog Programs

In order to give a rough feel for transformational synthesis of logic programs, we first present
the pioneering mechanism in some detail. Then, we cite the achievements of some of the
more recent mechanisms.

Synthesis by Symbolic Execution

Some of the early efforts were conducted at Imperial College of Science and Technology in
London (UK). The developed synthesis mechanisms, called “symbolic execution”, were in-
spired by the foundational work on LISP program transformation of [Burstall and
Darlington 77].

Under the first approach [Clark and Sickel 77] [Clark 79, 81], the specification is “execut-
ed” with symbolic values that cover all possible forms of the type of some chosen induction
parameter. For instance, if that parameter is a list, then the specification is “executed” with
the symbolic values [] and [H|T]. “Execution” is a transformational process, based on a pre-
defined set of transformation rules, whose aim it is to obtain a re-formulation of the specifi-
cation that is (1) recursive, and (2) under the form of a definite Horn clause procedure. The
transformation rules include folding (replacing a sub-formula by an atom), unfolding (replac-
ing an atom by its definition; this mimics the execution mechanism of Prolog), logical rewrite
and simplification rules, domain-specific rewrite and simplification rules, specification intro-
duction, and many others. Recursion is thus obtained by folding a variant of the body of the
specifying axiom into a recursive call.

A similar approach was taken by [Hogger 78, 81, 84], though with slight differences. Un-
folding is referred to as “resolution”, which is perfectly valid and underlines the operational
flavor of “symbolic execution”. More importantly, the induction on some parameter is only
introduced as the need arises, and this by strengthening an implicant with a form-identifying
atom, such as L=[H |T].

We now illustrate all this on a sample synthesis.
Example 2-6: The synthesis of a logic program for member/2 goes as follows. As a
reminder, the top-level specification is (for convenience, we omit quantifiers):

member(E,L) ⇔ append(P,[E |S],L) (1)
Suppose that append/3 is defined as follows:

append(A,B,C) ⇔
A=[] ∧ C=B

∨ A=[H|T] ∧ append(T,B,V)
∧ C=[H|V]

Suppose now that parameter L is chosen as the induction parameter. It is a list, so let’s per-
form a symbolic execution for the mutually exclusive symbolic values [] and [H |T]. Let’s
start with the base case, and apply the substitution {L/[]} to (1):

member(E,[]) ⇔ append(P,[E |S],[])
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Unfolding the append/3 atom yields, after some logical simplifications:
member(E,[]) ⇔ (false) ∨ (false) (2)

Let’s now pursue with the structure case, and apply the substitution {L/[H |T]} to (1):
member(E,[H |T]) ⇔ append(P,[E |S],[H |T])

Unfolding the append/3 atom yields:
member(E,[H |T]) ⇔ (P=[] ∧ [H |T]=[E |S]) ∨
(P=[Q |U] ∧ append(U,[E |S],V) ∧ [H |T]=[Q |V])

Folding the append/3 atom according to (1) introduces the wanted recursion:
member(E,[H |T]) ⇔ (H=E) ∨ (P=[Q |U] ∧ member(E,V) ∧ [H |T]=[Q |V])

Some logical simplifications yield:
member(E,[H |T]) ⇔ H=E ∨ member(E,T) (3)

The obtained statements (2) and (3) are easily transformed into definite clause form:
member(E,[H|T]) ← H=E

member(E,[H|T]) ← member(E,T)

This completes the synthesis. It is admittedly a little bit contrived because its linearity skips
the issues of transformation rule selection and backtracking, but the point is here to get a feel
for this kind of synthesis mechanism. ♦

Synthesis by symbolic execution obviously features the usual advantages and drawbacks
of transformational synthesis.

Other Approaches

Folding/unfolding transformations were the object of a first formal study in logic program-
ming by [Tamaki and Sato 84], although these transformations were already present in the
above-mentioned symbolic execution synthesis approaches.

A highly structured top-down strategy for applying folding and unfolding, guided by a re-
cursion schema provided by the specifier, is proposed by [Lau 89] [Lau and
Prestwich 90, 91]. A semi-automated system was developed for assisting such syntheses.

The research of [Kraan et al. 92] takes a novel approach: a logic program is synthesized
as a by-product of the planning of a verification proof of the specification. This proof is per-
formed, at the object level, in a sorted, first-order logic with equality. The proof is planned,
at the meta-level, while initially having the actual body of the extracted program represented
by a second-order variable (this is called middle-out reasoning). As the planning proceeds by
applying tactics to a conjecture (which is tantamount to applying transformation rules), the
program becomes gradually instantiated. This requires an extension of the used Clam proof
planner (see Section 2.4.2). This technique may obviously also be classified into the proofs-
as-programs paradigm.

The LOPS (LOgical Program Synthesis) system of [Bibel 80] [Bibel and Hörnig 84]
[Neugebauer 92], though originally described within the proofs-as-programs synthesis para-
digm, actually performs transformational synthesis. A very small set of hardwired heuristics
(which could be seen as design tactics) leads to the uniform synthesis of a recursive re-for-
mulation of the specification. Another main originality of this system is that, guided by the
syntax of the specification, it tries to discover itself the crucial knowledge about how to solve
the base case of a proof-by-induction, and about how to compose partial results in the struc-
ture case of such a proof.
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Several researchers have tried to make synthesis a deterministic process, akin to compila-
tion. For instance, implication formulas with arbitrary bodies may be normalized into Horn
clauses with negation by the so-called Lloyd-Topor translation process (see [Lloyd 87]). This
is, however, a non-deterministic translation. Moreover, it does not always yield executable
logic programs, due to the deficiencies of SLDNF resolution, such as floundering. Some-
times, the obtained programs are hopelessly inefficient. The work of [Sato and Tamaki 84]
shows how to combine the folding/unfolding rules [Tamaki and Sato 84] with their so-called
negation technique in order to perform an almost deterministic synthesis of definite logic
programs from non-recursive specifications. However, the search space is way too large due
to the generate-and-test flavor of the mechanism. The same team eventually did come up
with a completely deterministic and automatic synthesizer [Sato and Tamaki 89], which is
based this time on the notion of universal continuation forms, as well as the folding/unfold-
ing rules. This “compiler” starts from a specification written as a set of clauses whose bodies
are conjunctions of atoms or universally quantified implications. Either it finitely produces a
definite clause program that is guaranteed to be partially correct wrt the specification, or it
aborts for lack of logical power.

The work of [Waldau 91] is a first step towards proving the soundness of transformation
rules for logic programs.

2.4.2 Proofs-as-Programs Synthesis of Prolog Programs

Various systems exist for doing constructive synthesis of logic programs. We simply enumer-
ate them here, but give no insights into their underlying mechanisms, nor do we illustrate
them on sample syntheses.

First, a large-scale effort was conducted by the UPMAIL group at the University of Upp-
sala (Sweden). The development of a logic programming calculus [Clark and Tärnlund 77]
[Tärnlund 78, 81] [Hansson and Tärnlund 79] [Hansson et al. 82], which is based on Prawitz’
natural deduction system for intuitionistic logic, led to a nice unified framework for logic
program synthesis, verification, transformation, and execution. [Hansson 80] shows how to
extract logic programs from constructive proofs-by-induction performed within this system.
[Eriksson 84] used this mechanism for one of the first syntheses of a unification algorithm,
which is considered one of the ultimate benchmarks of automatic programming. A proof ed-
itor, NatDed [Eriksson and Johansson 81, 82] [Eriksson et al. 83], was developed for assist-
ing in a proof process. This editor was subsequently optimized to successfully recognize
symmetry [Johansson 84, 85] and transitivity in proofs.

Then, there is Nuprl [Constable et al. 86], a proof development system that is based on the
intuitionistic second-order type theory of [Martin-Löf 79], and that has been used for the syn-
thesis of deterministic logic programs by [Bundy 88]. A first-order subset of the Oyster proof
development system—a re-implementation of Nuprl in Prolog—was used for logic program
synthesis by [Bundy et al. 90], with special focus on the synthesis of logic programs that
compute full-fledged relations, and not just total functions. In view of automating proofs, a
proof-planner called Clam was adjoined to Oyster. That overall effort was further pursued by
the same group from Edinburgh, and resulted in the Whelk proof development system [Wig-
gins et al. 91] [Wiggins 92], which is based on a first-order constructive logic with equality,
performs proofs in the Gentzen sequent calculus, and extracts logic programs written in Pro-
log or Gödel [Hill and Lloyd 91], a logic programming language that is much closer to the
true ideals of logic programming than Prolog.

The system described by [Fribourg 90, 91a] synthesizes deterministic logic programs by
coupling program extraction rules to a subset of the inference rules of extended Prolog exe-
cution [Kanamori and Fujita 86] [Kanamori and Seki 86]. The synthesized program is de-
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fined in a primitive recursive way; moreover, it is guaranteed to be correct wrt the
specification, and to terminate. Tail-recursive programs may be synthesized at the expense of
the termination guarantee. Little knowledge seems required for the proofs, and the search
space seems of manageable size. The automatic generation of simplification lemmas [Fri-
bourg 91b] for syntheses involving proofs-by-induction seems a promising step towards full
automation of the mechanism.

Another approach is proposed by [Takayama 87], namely doing the constructive proofs in
the typed logical system QJ, and then extracting programs in some intermediate code that is
then compiled into Prolog.

2.4.3 Schema-Guided Synthesis of Prolog Programs

As of now, we are not aware of any schema-guided synthesis system for logic programs. We
thus quickly enumerate here a few approaches to using schemas for assisting the manual con-
struction of logic programs.

In the field of logic programming tutors (for beginners), [Gegg-Harrison 89, 93] proposes
a hierarchy of fourteen logic program schemas. These are set in a second-order logic frame-
work. They reflect a divide-and-conquer design strategy, but are already partly instantiated
for certain classes of programs.

In the area of manual or computer-aided program construction (for experts), [Deville and
Burnay 89] and [Deville 87, 90] suggest a divide-and-conquer schema. They also discuss in-
teresting transformation schemas, based on (structural or computational) generalizations.

A similar study is made by [O’Keefe 90], who uses algebraic specifications. The predi-
cates of such specifications can be directly plugged into given logic program schemas. Sev-
eral schemas may be applicable according to the properties (associativity, commutativity,
existence of left identities, and so on) of the identified predicates.

Alternatively, [Lakhotia 89] experiments with what he calls “incorporating programming
techniques into Prolog programs”. Similarly, [Barker-Plummer 90] discusses a system based
on clichés that assists experienced programmers in the construction of Prolog programs.
These approaches could be seen as transformation rather than design approaches.

2.5 Conclusions on Program Synthesis from Axiomatizations
The use of deductive inference in program synthesis from axiomatic specifications has given
rise to two major approaches: transformational synthesis and proofs-as-programs synthesis.
As suggested several times above, these approaches are probably only two facets of the same
process. This claim can be substantiated by the ability of several researchers to classify their
systems in both sub-categories [Manna and Waldinger 79, 80] [Smith 85] [Kraan et al. 92].
Moreover, we have felt the need to create a third sub-category, namely schema-guided syn-
thesis, which is probably yet another facet.

The major problem of deductive approaches to program synthesis is the enormous size of
the search spaces, and the lack of power of current theorem provers. For the proving aspects,
the use of rippling [Bundy et al. 93] and automatic lemma generation [Fribourg 91b] has
been suggested for speeding up and further automating proofs-by-induction. For the search
space aspects, macroscopic transformation rules, proof-planning via tactics [Bundy 88], and
program schemas [Smith 81, 85, 88] have been proposed.

Another problem is, as already said in Chapter 1, that too much emphasis is often put on
the synthesis of actual programs in some programming language, which entails taking into
account the execution mechanism (and its known deficiencies) and other extra-algorithmic
issues. Sometimes, too much emphasis is even put on the synthesis of efficient programs. A
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clear separation of correct-algorithm synthesis, algorithm transformation, algorithm imple-
mentation (into programs), and program transformation (optimization) helps in overcoming
the ensuing problems. Fortunately, more and more researchers focus on algorithm synthesis,
leaving transformation and implementations issues to separate research. For instance, the
LOPS system of [Bibel 80], the systems of [Smith 81, 85, 88], and the CIP system of [Bauer
et al. 89] clearly mention algorithms. The notion of logic algorithm (an algorithm expressed
in logic) was introduced by [Deville 87, 90] in the context of a methodology for logic pro-
gram development. This idea has also been advocated and used later for the Oyster/Clam
synthesis system of [Bundy et al. 90] and the Whelk system of [Wiggins et al. 91]
[Wiggins 92].
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3 Inductive Inference in Automatic Programming
Inductive inference1 is not so common in automatic programming. We first define, in
Section 3.1, the underlying specification formalism, namely examples. In Section 3.2, we
present the major results about inductive inference. Then, in Section 3.3 and Section 3.4, we
survey the synthesis of functional programs from examples, and the synthesis of logic pro-
grams from examples, respectively. Finally, in Section 3.5, we draw some conclusions on the
use of inductive inference in automatic programming.

3.1 Specifications by Examples
We first define a possible language for specifications by examples. Later in this section, we
list alternative approaches.
Definition 3-1: A specification by examples of a procedure for predicate r/n consists of a
finite set E(r) of ground examples of r/n, split into:

• a set E +(r) of positive examples of r/n (that is, ground atoms whose n-tuples are sup-
posed to belong to R);

• a set E –(r) of negative examples of r/n (that is, ground negated atoms whose n-tuples
are supposed not to belong to R).

Negative examples are also called counter-examples. The phrase “an example” stands for “a
positive example or a negative example”.

We illustrate2 all this on a few sample specifications.
Example 3-1: The member(E,L) relation holds iff term E is an element of list L. Given a
ground value of L, this is a non-deterministic relation. A possible specification by positive
and negative examples is:

E+(member) = { member(a,[a]) (E1)
member(b,[b,c]) (E2)
member(c,[b,c]) (E3)
member(d,[d,e,f]) (E4)
member(e,[d,e,f]) (E5)
member(f,[d,e,f]) } (E6)

E–(member) = { ¬member(a,[]) (C1)
¬member(d,[b,c]) } (C2)

Counter-example C1 suggests that empty lists have no members. C2 suggests that members
must belong to L. ♦

In the next two sample specifications, we need two notions. Informally speaking, a pla-
teau is a non-empty list of identical elements. A compact list is a list of couples, where the
first term of a couple, called the value of the couple, is different in two consecutive couples,
and the second term of a couple, called the counter of the couple, is a positive integer.
Example 3-2: The firstPlateau(L,P,S) relation holds iff P is the maximal plateau at the
beginning of the non-empty list L, and list S is the corresponding suffix of L. Given a ground
value of L, this is a fully deterministic relation. A possible specification by positive and
negative examples is:
1. Attention! Inductive inference is not to be confused with deductive proofs-by-induction.
2. Attention! There is a potential ambiguity between “examples of a relation” and “examples that illustrate our

purpose”. For announcing examples of the latter category, we often use the verb “to illustrate” and the ad-
jective “sample”. However, the intended category of examples should always be clear from context
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E+(firstPlateau)= { firstPlateau([a],[a],[]) (E1)
firstPlateau([b,b],[b,b],[]) (E2)
firstPlateau([c,d],[c],[d]) (E3)
firstPlateau([e,f,g],[e],[f,g]) (E4)
firstPlateau([h,i,i],[h],[i,i]) (E5)
firstPlateau([j,j,k],[j,j],[k]) (E6)
firstPlateau([m,m,m],[m,m,m],[]) } (E7)

E–(firstPlateau)= { ¬firstPlateau([a],[],[a]) (C1)
¬firstPlateau([b,b],[b],[b]) (C2)
¬firstPlateau([c,d],[c,d],[]) (C3)
¬firstPlateau([e,f,e],[e,e],[f]) (C4)
¬firstPlateau([h,i,i],[i,i],[h]) } (C5)

Counter-example C1 suggests that plateaus are non-empty. C2 suggests that maximal pla-
teaus need to be extracted. C3 suggests that plateaus are lists of identical elements. C4 sug-
gests that the first plateau of L is not the list of all occurrences of its first element. C5 suggests
that the first plateau of L is not its maximal plateau. ♦

Example 3-3: The compress(L,C) relation holds iff C is a compact list of <vi,ci> couples,
such that the ith plateau of list L has ci elements equal to vi. Given a ground value of either
parameter, this is a fully deterministic relation. A possible specification by positive and
negative examples is:

E+(compress)= { compress([],[]) (E1)
compress([a],[a,1]) (E2)
compress([b,b],[b,2]) (E3)
compress([c,d],[c,1,d,1]) (E4)
compress([e,e,e],[e,3]) (E5)
compress([f,f,g],[f,2,g,1]) (E6)
compress([h,i,i],[h,1,i,2]) (E7)
compress([j,k,m],[j,1,k,1,m,1]) } (E8)

E–(compress)= { ¬compress([b,b],[b,1,b,1]) (C1)
¬compress([d,c],[c,1,d,1]) (C2)
¬compress([j,k,j],[j,2,k,1]) } (C3)

Counter-example C1 suggests that plateaus need to be maximally compressed. C2 suggests
that the left-to-right order of appearance of the plateaus in L determines the order of appear-
ance of the couples in C, and not, say, the alphabetical order. C3 suggests that non-adjacent
plateaus of the same value are compressed separately. ♦

Example 3-4: The sum(L,S) relation holds iff S is the sum of the elements of integer list L.
Given a ground value of L, this is a fully deterministic relation. A possible specification by
positive and negative examples is:

E+(sum) = { sum([],0) (E1)
sum([7],7) (E2)
sum([4,5],9) (E3)
sum([2,3,1],6) } (E4)

E–(sum) = { ¬sum([],32767) (C1)
¬sum([7],9) (C2)
¬sum([4,5],4) } (C3)
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Counter-example C1 suggests that the sum of the empty list is not different from 0. C2 sug-
gests that the sum of a singleton list is not different from the first element of that list. C3 sug-
gests that the sum of a list of at least 2 elements is not the first element of that list. ♦

Example 3-5: The sort(L,S) relation holds iff S is an ascendingly ordered permutation of
integer list L. Given a ground value of L, this is a fully deterministic relation. A possible
specification by positive and negative examples is:

E+(sort)= { sort([],[]) (E1)
sort([1],[1]) (E2)
sort([3,2],[2,3]) (E3)
sort([6,4,5],[4,5,6]) } (E4)

E–(sort)= { ¬sort([3,2],[3,2]) (C1)
¬sort([6,4,5],[4,6,5]) (C2)
¬sort([6,4,5],[5,6]) (C3)
¬sort([6,4,5],[4,5,6,7]) } (C4)

Counter-example C1 suggests that a sorted list is not always equal to the unsorted list. C2 sug-
gests it doesn’t always suffice to permute the first two elements. C3 and C4 suggest that the
elements of a sorted list are exactly the same than those of the unsorted list. ♦

It should be noted that Definition 3-1 is not the only possible definition for specifications
by examples. It is too much geared towards the synthesis of algorithms. So let’s generalize it
to the larger framework of empirical machine learning from examples. Specification ap-
proaches vary according to the following criteria:

• multiplicity of examples: sometimes, only one example is required, but most often,
more than one example is expected;

• language of examples:
– groundness: examples are mostly ground literals, but one could also consider any

kinds of literals; for instance, sum([X],X) would be a useful example;
– number of predicates: often, a single literal with predicate r/n constitutes an exam-

ple; another approach is a conjunction of literals with predicates other than r/n that
describe the attributes of an example (then called an instance description) of a rela-
tion r/n (then called a concept, where usually n=1); for example, the positive in-
stance tweety of the concept bird/1 could be described as follows:

mouth(tweety,beak) ∧ legs(tweety,2) ∧ skin(tweety,feathers) ∧
utterance(tweety,sings) ∧ color(tweety,yellow)

– directionality: examples are often given in a relational form, but the functional form
(which lists input/output examples) is also very common; for
instance, compress([c,d]) = [c,1,d,1] is an input/output example leading to a func-
tion that can only compress lists, but not decompress compact lists;

• kinds of examples: the presence of positive and negative examples is commonly expect-
ed, but sometimes, only one of these two kinds of examples is required.

Other criteria depend on the learning mechanism, but do not define specifications:
• moment of choice of examples: the two extreme approaches are choosing all the exam-

ples before the learning, respectively choosing all the examples on-the-fly during the
learning, as the need for more examples arises;

• formulation of examples: examples are formulated either directly as examples by the
specifier, or indirectly as classification queries by the learning mechanism; in the latter
case, the specifier has to classify an example as a positive or negative example.

Finally, some criteria depend on the circumstances under which examples are chosen:
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• specifying agent: the specifier is either a human being, or some automated device, such
as a robot, a sonde, a catheter, and so on;

• status of intended concept: at the moment of choosing the examples, the intended con-
cept is either known (even if only informally), or unknown; for instance, the com-
press/2 relation was known for the elaboration of the specification in Example 3-3, but
the protein structure of a molecule is unknown during the choice of examples;

• consistency of examples: either examples are known or assumed to be consistent with
the intended concept, or examples are known or assumed to be possibly inconsistent
with the intended concept.

All these criteria allow a precise classification of settings for learning from examples.
Anyway, whatever the actual setting, the advantages of specifications by examples are the

following:
+ naturalness: human beings often resort to examples in order to explain some con-

cept; moreover, examples are easy to elaborate and easy to understand;
+ conciseness: examples are a concise3 way of intensionally specifying some concept,

because the actual computations are abstracted by a black-box model.
The major disadvantage of specifications by examples is:

– incompleteness and ambiguity: a finite set of examples cannot completely and un-
ambiguously specify an infinite relation; in practice, one even expects the number
of given examples to be orders of magnitude less than the number of all possible ex-
amples; for instance, the total ordering underlying the sort/2 relation is mentioned
nowhere; the same holds for the summation operator underlying the sum/2 relation;
the kind of determinism of a relation is notoriously hard to convey by examples; in
Example 3-2, the sub-concept of plateau is not entirely clear from the examples, as
nothing explicitly says that plateaus have to be maximal, or that it is only the differ-
ence between two successive elements of L that determines where the break into P
and S occurs, and not some other strange criterion that is based, say, on the notions
of vowels, consonants, or positions within the alphabet.

From this drawback, it is obvious that, given a specific learning mechanism and a human
specifier, there is a definite need for a methodology for choosing “good” examples.

3.2 Inductive Inference
Inductive inference is the process of formulating a general rule from incomplete information,
such as examples. This ability is a fundamental component of human intelligence. Learning
is the process of increasing one’s knowledge or skill. This is a broader problem than inductive
inference, though techniques of the latter are often used in learning. The branch of artificial
intelligence research that is about learning is called machine learning. In this section, we
only concentrate on the sub-branch of machine learning that focuses on the so-called empir-
ical learning from examples, which relies heavily on inductive inference.

In Section 3.2.1, we suggest a terminology for the components of an empirical learning
system. Then, in Section 3.2.2, we define rules of inductive inference, and survey the usage
of these rules in empirical learning from examples in Section 3.2.3. Finally, in Section 3.2.4,
we define the niche of algorithm synthesis from examples within empirical learning from ex-
amples, and give pointers to the literature in Section 3.2.5.
3. This needs to be relativized, though. First, large-size data-structures go against conciseness. For instance,

specifying 3D-matrix-multiplication by examples is not really concise, not to mention the tediousness of
doing so (assuming a human specifier). Second, large numbers of examples also go against conciseness. Ex-
pansion factors are very small in such cases, but one should not forget that such large and/or numerous ex-
amples are sometimes all that is available for learning.
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3.2.1 Components of a Learning System

We first propose a terminology for the components of an empirical learning system.
A teacher (trainer, instructor) chooses instance descriptions (examples) of instances of

the intended concept, and presents them to the learner. There are basically two ways of pre-
senting examples: all-at-once, and chunk-wise (for instance, one-by-one).

Sometimes, the learner asks an oracle (informant) for classification of examples it invents
itself. The oracle is usually the teacher, but is sometimes automated via reliance on other in-
formation, such as background knowledge.

The learner periodically produces a hypothesis (conjecture, guess, concept description).
This terminology is sufficient for our purpose. But note that a complete and general learn-

ing system would have many more components, such as a blackboard, an example selector,
a critic, and so on. An ideal architecture is described by [van Lamsweerde 91].

3.2.2 Rules of Inductive Inference

Logical formulations of inductive inference rules were developed by [Genesereth and Nils-
son 88] and by [van Lamsweerde 91]. This chapter is loosely based on these papers.
Definition 3-2: Given background knowledge B and a set of examples E, a hypothesis H
is an inductive conclusion of B and E iff the following four conditions hold:

(1) B ∪ {H} |== E (the hypothesis “explains” the examples);
(2) B ∪ E |=/= ¬H (the hypothesis is consistent with the given data);
(3) B |=/= H (the hypothesis is not a consequence of the background knowledge);
(4) B |=/= E (the examples are not redundant with the background knowledge).
Note that inductive inference is not necessarily sound: B ∪ E |== H does not hold in

general. But, on the other hand, not every induction is unsound.
A list of atomic inductive inference rules includes standard generalization, deleting-a-

conjunct, adding-a-disjunct, replacing-a-constant-by-a-variable, splitting-a-variable-into-
several-variables, weakening-an-implicant, extending-the-domain-of-a-variable, closing-
an-interval, and climbing-a-specialization-tree. More elaborate inductive inference rules for
complex formulas are based on the fundamental notions of generalization and msg (most-
specific-generalization): these are surveyed in detail in Chapter 7 and Chapter 10.

Also, since there are many possible inductive conclusions for any background knowledge
and example set, it is necessary to prune the generalization search space so as to get “useful”
inductive conclusions. Interesting approaches are based on induction biases:

• semantic bias restricts the vocabulary available for hypotheses; for instance, the model
maximization technique prefers hypotheses that have a maximal number of models,
and conceptual bias restricts the vocabulary to a predefined set of predicates, called the
basis set; in this context, a selective rule of inductive inference only refers to the pred-
icates appearing in the given examples, whereas a constructive rule yields generaliza-
tions that “invent” predicates not appearing in the given examples;

• syntactic bias restricts the language of hypotheses; for instance, (existential) conjunc-
tive hypotheses and disjunctive normal form hypotheses represent very common
search spaces, both in propositional calculus and in first-order logic.

Other approaches are based on preference criteria for utility or efficiency measures.
We here only focus on instance-to-class generalization. Other kinds of generalization are

class-to-class generalization and part-to-whole generalization.
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3.2.3 Empirical Learning from Examples

The aim of empirical learning (concept formation) from examples is the elaboration of a con-
cept description from multiple positive and negative examples, when little—or no—back-
ground knowledge is available. The inferred hypothesis must be satisfied by all the positive
examples, but by none of the negative examples. In the sequel, “learning” stands for “empir-
ical learning”. In this section, we discuss concept classes, examples, presentations, hypothe-
ses, possible identification criteria, a classification of learning mechanisms, and actual
learning mechanisms. We actually simultaneously summarize both the more theoretical con-
cerns (such as learnability) of the inductive inference community, and the more practical con-
cerns (such as actual mechanisms) of the machine learning community. Hence, “learning”
also stands for “identification”.

Concept Classes, Examples, and Presentations

There are many classes of concepts: functions, relations, sequences, (stochastic) languages,
and so on. The kinds of examples used for illustrating these concept classes, as well as the
nature of admissible presentations of these examples, vary accordingly. Moreover, the kinds
of hypotheses for describing elements of these concept classes also vary accordingly.
Example 3-6: The concept class aimed at by Definition 3-1 is the set of relations over any
domain. Examples of a relation are elements of its graph, and any (possibly infinite) sequence
of such examples constitutes an admissible presentation iff this sequence lists all and only
the elements of the graph of the relation. Hypotheses could be expressed as algorithms,
programs, Turing machines, automata, and so on.
Example 3-7: In grammatical inference, the concept class aimed at is the set of languages
over some alphabet. Examples of a language are sentences of that language. Hypotheses
could be expressed as grammars, acceptors, regular expressions, and so on.

Restrictions on admissible presentations may have to be imposed, such as computability
(below some complexity threshold), or ordering according to some total order. A positive
presentation lists all and only the positive examples, whereas a complete presentation lists
all the positive and negative examples. A presentation by informant queries an oracle for
classification of examples as positive or negative examples. A mixed presentation combines
complete presentation and presentation by informant. Repetition is usually allowed in admis-
sible presentations.

Hypotheses

Learning can be abstracted as the search through a state space, where states correspond to
hypotheses, and operators correspond to the application of rules of inductive inference.

Various constraints may be imposed on the hypothesis space.
Example 3-8: The hypothesis space is often supposed to be constrained by a conceptual
bias and a syntactic bias: an acceptable hypothesis satisfies both biases. A hypothesis is
characteristic for a set E of examples iff it is satisfied by all the positive examples of E. A
hypothesis is discriminant for E iff its negation is satisfied by all the negative examples of
E. An acceptable hypothesis is admissible (consistent) for E iff it is characteristic for E and
discriminant for E. The version space for a set of examples E is the set of all admissible
hypotheses (versions) for E.

Moreover, goodness orderings may be defined for comparing hypotheses. Such orderings
usually are partial orders, and are often required to be computable. A goodness ordering is
sample-independent iff the order between two hypotheses is preserved for any example set.
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Example 3-9: For instance, a version space is usually organized according to a partial
order under which hypothesis H1 is less general than H2 iff H1 logically implies H2. This is
a sample-independent ordering, but decidable only in specific settings. The set of minimal
(maximally specific) hypotheses (no hypothesis in V is less general than these) of V is
called the lower boundary set of V, and the set of maximal hypotheses (every hypothesis in
V is less general than these) of V is called the upper boundary set of V. A version space V
is well-formed iff every ascending chain of maximal length in V starts from a hypothesis that
is minimal in V and ends in a hypothesis that is maximal in V.

Other goodness orderings are based on some measure of the size of hypotheses, or on
some measure of the simplicity of hypotheses, or on probabilistic measures, and so on.

The size of the hypothesis space is typically exponential, even when constrained and par-
tially ordered. However, the size of a search space never prejudices the existence of efficient
learning mechanisms for that space. Of course, the most efficient mechanism is usually very
specific to its search space, and hence difficult to adapt into a more general mechanism.
Example 3-10: Version spaces are of a size exponential in the size of the basis set, not to
mention the syntactic bias. Fortunately, well-formed version spaces (for instance, when the
basis set is finite) have the interesting property that they are indeed bound by their boundary
sets, which provides for an admissibility check that is independent of the examples. See
below for an application of this property.

Identification Criteria

An identification criterion is a criterion that defines under what circumstances learning is
successful in identifying the intended concept (that is, in producing a hypothesis that is cor-
rect wrt the intended concept). There are two main identification criteria.

First, the seminal work by [Gold 67] has introduced the criterion of identification-in-the-
limit. Learning is viewed as an infinite process of example presentations and hypothesis pro-
ductions whose limiting behavior is used as a criterion of success.
Definition 3-3: A learner L correctly identifies an intended concept C in the limit iff the
infinite sequence of hypotheses produced by L, say H1, H2, …, is such that there exists some
number n such that Hn = Hm for every m>n, and such that Hn is “correct” wrt C.

Note that there is no way that L can tell that it actually has identified C, because the next
example might or not provoke a revision of the last hypothesis. An important limiting result
is that the class of total recursive functions is not identifiable-in-the-limit: this means that
there can’t be a universal mechanism of program synthesis from incomplete information.
However, the class of primitive recursive functions is identifiable-in-the-limit. Moreover,
given positive examples only, the class of finite languages is identifiable-in-the-limit, but no
class containing all finite languages and at least one infinite language is identifiable-in-the-
limit [Gold 67].

A possible way of achieving identification-in-the-limit is the identification-by-enumera-
tion learning mechanism: after each presentation of a new example, one systematically
traverses the entire search space until a hypothesis is found that is satisfied by all the exam-
ples presented so far. This requires computability of the enumeration and of the satisfiability
of hypotheses wrt examples. This is however an extremely impractical mechanism because
of the (typically exponential) size of the search space. Improvements usually consist in de-
fining a partial order on the search space, which then allows pruning of uninteresting branch-
es, and sometimes even suggesting plausible replacements for rejected hypotheses. Other
improvements are based on heuristic measures of the goodness of hypotheses.
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Years later, Leslie G. Valiant has introduced PAC (probably-approximately-correct) iden-
tification [Valiant 84, 85] [Pitt and Valiant 88], which is today’s most-used learning model.
The idea is to weaken the tight constraints of identification-in-the-limit by allowing the final
hypothesis to be “nearly correct” wrt the intended concept. Moreover, the actual learning
process is usually based on a finite presentation, whereas admissible presentations are mostly
infinite. Other motivations are the need for polynomial-time learning, and the need for toler-
ance to erroneous examples: hence a probabilistic specification approach.
Definition 3-4: A learner PAC-identifies an intended concept iff an arbitrary hypothesis
that is consistent with the examples presented so far can be guaranteed with high probability
to be consistent with most of the examples that are to be presented in the sequel.

The main result is that whatever the probability distributions from which the examples are
drawn, a hypothesis distinguishing the positive examples from the negative examples with
controllable error can be inferred easily, except if the hypothesis language is too expressive.

Many other identification criteria have been defined. An identification type is the class of
all the sets of hypotheses that are identifiable according to some given identification criterion.
A wealth of learnability results order the identification types by set-inclusion into an inter-
esting partially-ordered set. Data presentation has a major impact on these results. Positive
presentation seems to be afflicted with negative results for identification-in-the-limit.

Finally, note that identification is not the only inductive inference problem. Another prob-
lem is prediction (extrapolation), where the nth value of a sequence is to be predicted from
the n–1 first values of that sequence. Criteria of successful prediction have been defined, but
we do not discuss this topic here.

Classification of Learning Mechanisms

We here focus on stepwise learning, whose purpose is to have monitoring points between
steps so that the learning process can be assessed in terms of correctness and progression.
Definition 3-5: Stepwise learning is performed by a sequence of steps, each producing a
hypothesis that is designed from the previous hypothesis and from (some of) the examples
presented so far.

Note that this definition does not preclude the sequence of steps to be (partly) defined by
a loop over the same step. This definition also does not mention how and when examples are
presented. Stepwise learning can be divided into two complementary sub-categories:
Definition 3-6: Incremental learning is stepwise learning where each hypothesis may be
the final one. Non-incremental learning is stepwise learning where only the last hypothesis
is supposed to be the final one, the other hypotheses being temporary.

Incremental learning is often used in conjunction with a one-by-one presentation of the
examples (prior to each step, a single example is presented), and a single step that is iterated
over after each presentation. In the sequel, we equate incremental learning with this particu-
lar case. Non-incremental learning is often used in conjunction with an all-at-once presenta-
tion of the examples (prior to the first step, all the examples are presented), and multiple steps
that are each executed only once. In the sequel, we equate non-incremental learning with this
particular case. These two approaches have complementary pros and cons:

• considering that an example embodies several kinds of information, incremental learn-
ing has to extract all these kinds of information from the examples presented so far,
whereas non-incremental learning may extract only one kind of information from ev-
ery example at each step;
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• incremental learning is prone to be sensitive to the order of presentation of the exam-
ples, in the sense that different final hypotheses may emerge from different orders of
presentation, whereas non-incremental learning is usually insensitive to the order of
presentation of the examples, thus turning the latter into a fully declarative specifica-
tion; non-incremental learning usually first performs some example ordering;

• incremental learning only consumes as many examples as are needed, because it relies
on an example stream, whereas non-incremental learning requires all the examples to
be ready prior to learning, which may result in a useless computational overhead, or in
teacher inflexibility.

Choosing one of these strategies is obviously a very delicate design decision.
Other useful characterizations of learning mechanisms are as follows:

Definition 3-7: Algorithmic learning is performed by the sole execution of a learning
algorithm. Heuristic learning is at least partially based on heuristics.
Definition 3-8: Interactive learning involves experiment generation and queries to an
oracle. Passive learning is non-interactive learning.

We now establish a list of useful classification criteria for stepwise learning mechanisms.
They amount to restricting identification types, but the reward is a tight knowledge about, and
control over, the evolution of the learning process:

• iterative learning is incremental learning where every new hypothesis is designed sole-
ly from the most recently presented example and from the previous hypothesis;

• monotonic learning is stepwise learning where every new hypothesis covers no less
conclusions than the previous hypothesis;

• consistent learning is stepwise learning where every new hypothesis is consistent with
all examples presented so far;

• conservative learning is incremental learning where a hypothesis is different from its
predecessor only if the latter is inconsistent with the last presented example;

• reliable learning is stepwise learning that converges to the correct hypothesis, when-
ever it does converge;

• finite learning is stepwise learning that stops (has converged) iff two successive hy-
potheses are the same (this removes the uncertainty about the convergence of identifi-
cation-in-the-limit);

Combinations of these criteria are of course possible.
Some concepts are learnable only via non-monotonic learning [Jantke 91]. Other concepts

are learnable only via inconsistent learning [Lange and Wiehagen 91]. A host of learnability
results inserts the corresponding refined identification types into the partially-ordered set of
identification types [Jantke 88, 91].

Learning mechanisms may be compared in terms of various criteria. Possible comparison
criteria are as follows:

• given an identification criterion I and an example presentation method P, a learning
mechanism is more powerful than another one wrt I and P iff its class of hypotheses
that can be correctly identified wrt I and P properly contains the corresponding class
of the other mechanism;

• a learning mechanism is (strictly) more data-efficient than another one iff it converges
(strictly) “faster” than the other one, whenever that one converges; a learning mecha-
nism is optimally data-efficient iff no mechanism is strictly more data-efficient than it;

• the overall number of distinct hypotheses and the number of mind changes (whenever
two successive hypotheses are distinct) are other measures for comparing learning
mechanisms;
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and so on.
Example 3-11: Identification-by-enumeration is an incremental, consistent, conservative,
and optimally data-efficient learning mechanism [Gold 67].

Learning Mechanisms

Empirical learning research has basically taken two approaches [van Lamsweerde 91]:
• the data-driven approach starts from examples only; the examples are assumed consis-

tent wrt the intended concept;
• the approximation-driven approach (also called the model-driven approach) starts

from examples and a set of approximate hypotheses about the intended concept; ap-
proximate hypotheses are incorrect, or incomplete, or both;

Let’s briefly discuss these approaches.
The data-driven approach features incremental learning, with (by definition) an iteration

over the set E of given examples, where each presentation of an example leads to an update
of the current hypothesis (set) wrt that example. There are three main strategies for reducing
the version space to a hypothesis (set) that is admissible for E:

• depth-first search: at each presentation of an example, the search for an admissible hy-
pothesis considers only one hypothesis, which is adapted according to the presented
example. The drawbacks are the need for managing backtracking, and the need for re-
checking the admissibility of the new hypothesis wrt all examples presented so far that
are of a sign opposite to the one of the last-presented example;

• breadth-first search: at each presentation of an example, the search for an admissible
hypothesis considers several hypotheses in parallel, which are adapted according to the
presented example. The considered hypotheses are those of the lower boundary set.
The successive hypotheses are monotonically increasing in generality, so there is no
need for re-checking whether the new hypothesis is characteristic wrt all positive ex-
amples presented so far. The drawback is the need for re-checking whether the new hy-
pothesis is discriminant wrt all negative examples presented so far. A variant of this
strategy, for well-formed version spaces only, achieves symmetry between the han-
dling of positive and negative examples by simultaneously considering the lower and
upper boundary sets at each presentation: this leads to the candidate-elimination mech-
anism of [Mitchell 81]. Convergence of the ascending and descending hypothesis se-
ries to the same unique limit is guaranteed, and admissibility re-checking is useless;

• heuristic search: in order to cope with extremely large version spaces, heuristic pref-
erence functions may be introduced; Michalski’s star algorithm is a sample application
of this idea, but we do not develop this here.

These three strategies differ by the representative subset of the version space they build. Ul-
timately, the minimal hypotheses of the inferred hypothesis (set) are retained, because they
are satisfied by the potentially smallest possible set of examples unrelated to the intended
concept. The data-driven approach has a low tolerance to erroneous examples.

The approximation-driven approach features non-incremental learning, with an iteration
over the given approximations. There are two strategies for doing so:

• bottom-up search: if the given approximations are not general enough, then use any of
the data-driven learning algorithms for generalizing an approximation into a set of
maximally specific hypotheses that are admissible wrt all the given examples;

• top-down search: if the given approximations are too general, then use the dual of any
of the data-driven learning algorithms for specializing an approximation into a set of
maximally specific hypotheses that are admissible wrt all the given examples.



3.2 Inductive Inference 41

The inferred hypotheses are collected into a hopefully representative subset of the version
space. The approximation-driven approach has some tolerance to erroneous examples. The
non-incrementality is often seen as a disadvantage of the approximation-driven approach.

Empirical learning from examples usually requires a sufficient number of examples for
successful learning of the intended concept. Moreover, the shown approaches are very sen-
sitive to the quality and ordering of examples. Investigated optimization techniques include
the localization and pruning of forbidden features, hill-climbing for searching locally opti-
mal hypotheses, jumping-to-conclusions based on plausible features, and so on.

3.2.4 Algorithm Synthesis from Examples as a Niche of Machine Learning

The synthesis of algorithms from examples is a machine learning task as it falls into the cat-
egory of empirical learning from examples. Indeed, let’s state the objectives of both fields:

• the aim of empirical learning from examples is the elaboration of a concept description
from multiple positive and negative examples of the intended concept;

• the aim of synthesis from examples is the design of an algorithm from multiple positive
and negative examples of its intended functionality.

The renaming substitutions to pass from one objective to the other one are obvious.
But algorithm synthesis from examples is a highly specialized niche within empirical

learning from examples. Table 3-1 summarizes the differences between the concerns of al-
gorithm synthesis (as we view it) and the mainstream concerns (so far) of empirical learning.

Indeed, for algorithm synthesis, we are here only interested in recursive algorithms for rela-
tions, whereas most concept descriptions are non-recursive. Moreover, we are here mostly
interested in human specifiers who know—even if only informally—the intended relation,
and who are assumed to choose only examples that are consistent with the intended relation.
But this setting constitutes only a particular case of empirical learning. Then, as in
Definition 3-1, examples of an intended relation only involve one predicate, whereas instance
descriptions usually involve several predicates. Algorithm synthesis from examples thus nec-
essarily has to focus on constructive rules of inductive inference, whereas empirical learning
can explore vast research areas by just using selective rules. Also, a synthesized algorithm is

Table 3-1: Our view of algorithm synthesis from examples as a niche of empirical learning

Empirical learning Algorithm synthesis

Intentions any relations

Class of hypotheses any recursive algorithms

Specifying agent any agent often a human being

Status of intended concept sometimes unknown always known

Consistency of examples any attitude assumed consistent

Number of predicates in examples ≥ 1 1

Rules of inductive inference mostly selective necessarily constructive

Correctness of hypotheses any attitude always crucial

Existence of hypothesis schemas hardly yes, many

Number of correct hypotheses usually only a few always many
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only useful if it is totally correct wrt its intended relation, whereas a learned concept descrip-
tion may be useful despite some deficiencies. Finally, algorithms are highly structured, com-
plex entities that are designed according to some strategy (such as divide-and-conquer,
generate-and-test, …), whereas concept descriptions can have virtually any format (unless
constrained by some induction bias): algorithm synthesis can thus be effectively guided by a
schema (see Chapter 8) reflecting some design strategy. The existence of many such sche-
mas, and the existence of many choices within the corresponding design strategies, entail the
existence of many correct algorithms (even if they have vastly different complexities) for a
given intended relation. For instance, the sorting problem may be solved by algorithms such
as Insertion-Sort, Merge-Sort, Quick-Sort, and so on. Such a multiplicity of correct solutions
is unusual elsewhere.

In other words, algorithms are a highly specialized kind of concept descriptions. We be-
lieve that algorithm synthesis thus deserves a highly specialized set of mechanisms, rather
than off-the-shelf ones from empirical learning. For algorithm synthesis, we thus adopt the
following terminology: we say “specifier” instead of “teacher”, “synthesizer” instead of
“learner”, “example” instead of “instance description”, “relation” instead of “concept”, “al-
gorithm” instead of “concept description”, and “synthesis” instead of “learning”.

3.2.5 Pointers to the Literature

An excellent historical overview of the role of inductive inference in scientific discovery is
given by [Muggleton 91]. Comprehensive introductions to, and surveys of, inductive infer-
ence research are those of [Angluin and Smith 83], [Angluin 84], [Biermann 86], and
[Jantke 89]. In this theoretical field, there are highly specialized workshops such as AII (An-
alogical and Inductive Inference), ALT (Algorithmic Learning Theory), and COLT (COmpu-
tational Learning Theory). Publications for inductive inference results are New Generation
Computing and Machine Learning.

A comprehensive survey of machine learning techniques is proposed by [van Lamsweerde
91]. In this more practical field, there are conferences such as ICML (International Confer-
ence on Machine Learning), ECML (European Conference on Machine Learning, formerly
EWSL: European Working Session on Learning), and the various artificial intelligence con-
ferences. Publications for machine learning results are basically the same as above.

Unfortunately, there seems to be little cross-fertilization between these two communities:
“abstract results proliferate uselessly, while the concrete results produce little or nothing of
significance beyond their very narrow domains” [Angluin and Smith 83]. Moreover, termi-
nologies often diverge. Closer collaboration and unification of the frameworks seem thus
highly desirable. Especially the incorporation of domain knowledge into the theoretical re-
sults of inductive inference seems a must, because the exponential complexities of the learn-
ing mechanisms suggested by these results make them unusable in practice, and because
such knowledge is after all available to human learners.

Applications of inductive inference and machine learning are numerous. A most promis-
ing application of the technology is the accelerated bootstrapping of expert systems by auto-
mated acquisition of rules from example sets, rather than by interviewing human experts.
Also, advanced user-interfaces allow non-expert computer users to specify by examples what
they want the computer to do. For instance, the Query-by-Example system of [Zloof 77] al-
lows easy database querying. Or the EP systems of [Waterman et al. 84] assist at the operat-
ing system level. Finally, as shown in Section 3.2.4, algorithm (or program) synthesis is an
application, too. The next two sections survey the synthesis of functional programs from ex-
amples, and the synthesis of logic programs from examples, respectively.
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3.3 Functional Program Synthesis from Examples

The synthesis of functional programs (LISP programs, say) was an area of intense research
during the 1970s. Since the inferred concept description is a functional program, it suffices
to present the examples in the functional form: examples are then called input/output-exam-
ples, and abbreviated I/O-examples, or simply examples for the purpose of this section. Re-
call the important limiting result of [Gold 67], which says that the class of total recursive
functions is not identifiable-in-the-limit: this means that there can’t be any universal mecha-
nism of program synthesis from incomplete information. However, [Gold 67] also shows that
a function can be inferred from examples if it belongs to a class of enumerable functions with
a decidable halting problem. A detailed and insightful survey was made by [Smith 84]. The
general synthesis surveys of [Biermann et al. 84b] [Biermann 92] also include sections on
synthesis from examples. This present survey is organized as follows. First, Section 3.3.1
surveys synthesis from traces, which appears later to be a useful component of synthesis
from examples. Then, we survey algorithmic and heuristic approaches to synthesis from ex-
amples in Section 3.3.2 and Section 3.3.3, respectively.

3.3.1 Synthesis from Traces

A trace is a sequence of instructions executed by a program on some given input data. Traces
are often used by human beings to explain an existing algorithm. For instance, the protocol
of using a telephone is easily described by sample traces.

Biermann has developed a general algorithmic mechanism of learning-from-traces (the
Trainable Turing Machine) [Biermann 72], and has applied it to program synthesis, such as
the trainable desk calculator of [Biermann and Krishnaswamy 76], which identifies the in-
tended program in the limit. The given traces are equal to the traces the synthesized program
produces on the same input data. A sample synthesis appears in Example 3-12 below. Other
research on synthesis from traces includes the work of [Bauer 79] on extending Biermann
and Krishnaswamy’s results.

Traces are however a very tedious and error-prone specification formalism. Worse, traces
oblige the specifier to already know the desired algorithm, which often goes counter the set-
ting of algorithm synthesis. All this somewhat discredits synthesis-from-traces as an ap-
proach to automatic programming.

3.3.2 Algorithmic Synthesis from Examples

Algorithmic synthesis from examples is devoid of heuristics. All the surveyed mechanisms
proceed in two steps:

(1) trace generation: trace(s) are generated from the input/output example(s);
(2) synthesis from traces: the trace(s) are generalized into a recursive program.

This approach gives new value to synthesis-from-traces. This idea of decomposition seems
to stem from [Siklóssy and Sykes 75]. A problem solver, called LAWALY, generates traces
from multiple examples, in a heuristic way. The synthesizer proper, called SYN, fully auto-
matically generalizes the traces into LISP-like recursive programs. There is however no con-
cern about correctness, nor about the targeted class of programs.

We here discuss the two best-developed approaches to this idea, namely Biermann’s func-
tion merging mechanism, and Summers’ recurrence relation detection mechanism. Both re-
flect passive, non-incremental, two-step, consistent synthesis from positive, ground, pre-
synthesis I/O-example(s) that are selected by an agent who knows the intended function.
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Biermann’s Function Merging Mechanism

Biermann has also applied this approach, but he used his own synthesis-from-traces mecha-
nism [Biermann 72] for the second step. The resulting synthesis mechanism for so-called
regular LISP programs (with only one parameter, and where the only predicate, if any, is at-
om) is described by [Biermann 78, 84a]. Let’s first illustrate it on a simple synthesis (taken
from [Biermann 92]).
Example 3-12: Suppose we want a LISP function for reversing S-expressions. The
following example specifies this:

reverse(((a•b)•c)) = (c•(b•a))
The synthesis goes as follows.

First, the output Y is uniquely decomposed—in an algorithmic way—by applying the ba-
sic functors car, cdr, and cons on the input X:

Y = cons(cdr(X),cons(cdr(car(X)),car(car(X))))
This decomposition can be re-expressed as the following trace:

Y = f1(X)
f1(X) = cons(f2(X),f3(X))
f2(X) = f4(cdr(X))
f3(X) = f5(car(X))
f4(X) = X
f5(X) = cons(f6(X),f7(X))
f6(X) = f8(cdr(X))
f7(X) = f9(car(X))
f8(X) = X
f9(X) = X

Second, the synthesis-from-traces mechanism proceeds by merging the obtained func-
tions into a minimal number of functions that preserve the original computations. If a merged
function is multiply defined, then a predicate generator searches for discriminants. This
works here as follows. The functions f1, f4, f5, f8, and f9 may be merged into a unique function
reverse. The predicate generator infers that the body of f4, f8, and f9 is applicable iff the pa-
rameter is an atom. Hence the following definition of reverse:

reverse(X) = cond( (atom(X) X) (T cons(f2(X),f3(X))) )
Similarly, function f6 may be merged (unconditionally) into f2, and function f7 may be
merged (unconditionally) into f3:

f2(X) = reverse(cdr(X))
f3(X) = reverse(car(X))

The functions reverse, f2, and f3 constitute the synthesized program. ♦

This function merging mechanism usually works from any single “significant” positive
example. It is however very costly in computations (namely of a complexity that is exponen-
tial on the size of the target program), because of its identification-by-enumeration approach.
It finitely identifies the intended program in the limit. It thus performs consistent, conserva-
tive, and optimally data-efficient synthesis. Moreover, it can synthesize any program in the
class of regular LISP programs (a strict sub-set of LISP programs).

As [van Lamsweerde 91] observes, this kind of synthesis from examples actually is a pre-
cursor to EBL (Explanation-Based Learning), another branch of machine learning. Indeed,
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the goal of EBL in general [DeJong and Mooney 86], and EBG (Explanation-Based Gener-
alization) in particular [Mitchell et al. 86], is the elaboration of a concept description from a
very small number of examples (typically a single one), in the presence of much background
knowledge. EBL proceeds by first seeking an explanation of why the example describes an
instance of the intended concept (using the background knowledge), and then generalizing
that explanation. Rules of deductive, abductive, and analogical inference are typically used
in EBL, in contrast to the rules of inductive inference used in empirical learning: EBL reflects
thus analytic learning.

Summers’ Recurrence Detection Mechanism

The THESYS system of [Summers 77] reflects another solution to the two-step approach that
is based on traces. Let’s first illustrate it on a simple synthesis.
Example 3-13: Suppose we want a LISP function for reversing S-expressions. This may
be specified as follows:

reverse(a) = a (E1)
reverse((b•c)) = (c•b) (E2)
reverse(((d•e)•f)) = (f•(e•d)) (E3)
reverse((((g•h)•i)•j) = (j•(i•(h•g))) (E4)

The synthesis goes as follows.
First, each sample output is uniquely decomposed—in an algorithmic way—by applying

the basic functors car, cdr, and cons on the corresponding input: 4

f1(X) = X
f2(X) = cons(cdr(X),car(X))
f3(X) = cons(cdr(X),cons(cdar(X),ca

2r(X)))
f4(X) = cons(cdr(X),cons(cdar(X),cons(cda

2r(X),ca3r(X))))
where function fi corresponds to example Ei. Similarly, predicates are generated to recognize
terms of the same structure than each sample input:

p1(X) = atom(X)
p2(X) = atom(car(X))
p3(X) = atom(ca

2r(X))
p4(X) = atom(ca

3r(X))
where predicate pi recognizes terms of the same structure than the input term of example Ei.

Second, recurrence relations are sought among the decompositions:
f1(X) = X
fi(X) = cons(cdr(X),fi–1(car(X))) (i>1)

Similarly, recurrence relations are sought among the structure recognition predicates:
p1(X) = atom(X)
pi(X) = pi–1(car(X)) (i>1)

These recurrence relations are then plugged by the so-called Basic Synthesis Theorem into a
LISP program schema that reflects a divide-and-conquer design strategy. This yields the fol-
lowing LISP program:
4. The function cdnr denotes the composition of n applications of the function cdr. The function cdnamr de-

notes the composition of n applications of the function cdr composed to the composition of m applications
of the function car.
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reverse(X) = cond( (atom(X) X)
(T cons(cdr(X),reverse(car(X)))) )

This completes the synthesis. Note that this program is not doubly recursive like the one syn-
thesized in Example 3-12: the reasons are (i) that the examples given here incorrectly suggest
that the input S-expressions are always left-linear trees, and (ii) that Biermann’s mechanism
looks for the smallest possible merger of the decomposition trace. Indeed, Biermann’s mech-
anism would find the above program by merging f4 and f8 not into reverse, but into each other,
which however doesn’t yield the smallest merger. ♦

This recurrence detection mechanism requires multiple positive examples, which over-
comes the potential ambiguity problems of single-example approaches. It is more efficient
than Biermann’s, but less robust as the examples must be carefully chosen. A striking differ-
ence with Biermann’s approach is that recursion is here detected by folding parts of several
traces obtained from different examples, whereas Biermann’s mechanism detects recursion
by folding a single trace onto itself.

The mentioned Basic Synthesis Theorem constitutes a major breakthrough, as it provides
a firm theoretical foundation to synthesis from examples. Summers also describes a tech-
nique that automatically introduces accumulator parameters when no recurrence relations
can be found: this amounts to descending generalization [Deville 90]. The results of Sum-
mers have spawned considerable efforts for generalization and improvement, especially by
[Jouannaud and Kodratoff 83] [Kodratoff and Jouannaud 84]. Their achievements are very
encouraging as the developed sequence matching algorithms are very efficient.

3.3.3 Heuristic Synthesis from Examples

Heuristic synthesis from examples involves more or less heavy use of heuristics in order to
prune the search space.

Heuristic synthesis from examples is performed by the systems of [Hardy 75], [Shaw et
al. 75], and [Siklóssy and Sykes 75], in the sense that they fill in the place-holders of a LISP
divide-and-conquer program schema (see Chapter 8) in a plausible way according to the giv-
en examples.

A more disciplined usage of heuristics is advocated by [Biermann 84a]: astronomical
search-spaces and poorly-understood pruning techniques can be avoided by developing syn-
thesis mechanisms for restricted program classes that are well-understood. Such synthesis
mechanisms are very efficient and reliable, and could be components of a large synthesis
tool-box. A hierarchical decomposition schema and a production rule mechanism are used
by [Biermann and Smith 79] to speed-up the algorithmic synthesis mechanism of
[Biermann 78], and this for the so-called “scanning” LISP programs. The resulting mecha-
nism is fairly algorithmic, except for the selection of the used production rules. This ap-
proach achieves a neat separation of the synthesis control structure from the programming
knowledge that is encoded in the production rules. Efficiency is thus gained at the expense
of generality.

Another heuristic schema-based synthesis system from examples is described by [Bigger-
staff 84].

3.4 Logic Program Synthesis from Examples
The synthesis of logic programs (Prolog programs, say) is an area of intense research since
the early 1980s. Since the inferred concept description is described by a logic program, the
examples are presented in the relational form. Stephen Muggleton has recently named this
field ILP (Inductive Logic Programming) [Muggleton 91], because it is at the intersection of
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empirical (inductive) learning and logic programming. The main objectives are (i) to upgrade
the results of empirical learning (which are largely restricted to the propositional calculus) to
the computational (first-order) logic framework of logic programming, and (ii) to inject
(more) background knowledge into empirical learning from examples.

Unfortunately, there is a potential confusion due to the designation “inductive logic pro-
gramming”. Indeed, one could partition the class of (logic) programs into algorithms (which
usually involve some iterating mechanism, such as loops or recursion) and concept descrip-
tions (which do not involve some iterating mechanism). But ILP research seems to focus
mostly on concept descriptions, with the hope that the developed learning mechanisms also
work for algorithms. However, we believe that the class of all possible logic programs, re-
cursive or non-recursive, is way too large to be efficiently synthesizable by a uniform mech-
anism. For the purpose of this surveying section, we have to accept this broad view of ILP
regarding logic programs, but the remainder of this thesis is only concerned with the synthe-
sis of recursive logic programs.

An introduction to ILP is in preparation [Muggleton 94], and a compilation of the land-
mark papers is available [Muggleton 92]. Moreover, special ILP workshops exist. This
present survey is organized as follows. First, in Section 3.4.1, we present Shapiro’s Model
Inference System, the pioneering learner of ILP. Then, in Section 3.4.2, we briefly discuss
other relevant systems.

3.4.1 Shapiro’s Model Inference System

The foundational work for ILP was laid by the research on subsumption and generalization
in the early 1970s by [Plotkin 70, 71] and [Reynolds 70]. Their results, as well as the efforts
on extending them, are surveyed in Chapter 7. Then, in the early 1980s, Ehud Y. Shapiro
started experimenting with his MIS (Model Inference System) as a mechanism for synthesiz-
ing Prolog programs from ground (positive and negative) Prolog facts [Shapiro 81]. He later
discovered that program synthesis from examples is a particular case of program debugging
from test-cases (namely when the initial program is empty), and subsequently called his the-
sis Algorithmic Program Debugging [Shapiro 82]. However, in this discussion, we only fo-
cus on the synthesis aspects of MIS. This section is organized as follows. After presenting
the synthesis mechanism, we list research on extensions, and finally evaluate MIS.

The Synthesis Mechanism

The (positive and negative) examples are presented one-by-one, and the synthesis mecha-
nism “debugs” its current program accordingly. MIS thus features incremental synthesis.

A program (hypothesis) is a finite set of Horn clauses. The program search space is or-
dered by a Horn-clause subsumption relation, a particular case of generalization and an ex-
tension of Plotkin’s subsumption. This allows intelligent pruning of the search space, and
thus an improvement over basic identification-by-enumeration:

• incompleteness: if a program P fails on some positive example, then no program more
specific than P need be considered;

• incorrectness: dually, if a program P succeeds on some negative example, then no pro-
gram more general than P need be considered.

The resulting synthesis mechanism is then as follows (we here omit aspects related to the de-
tection of potential non-termination, which may arise due to the semi-decidability of sub-
sumption checking).
Algorithm 3-1: Incremental synthesis of logic programs from examples.
Input: a (possibly infinite) sequence of positive and negative examples.
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Output: a sequence of logic programs covering all the presented positive examples, but none
of the presented negative examples.
Algorithm:
set the program P to the empty set of clauses;
repeat

read the next example;
repeat

if P finitely fails on a known positive example {P is incomplete}
then find an atom A that is not covered by P and add to P a new clause that covers A;

if P succeeds on a known negative example {P is incorrect}
then remove from P a clause found to be wrong;

until P is complete wrt all positive examples and correct wrt all negative examples;
write P

forever or until no examples are left.
A key feature is the clause generator used in case of incompleteness (“bug” correction).

It is parameterized on a specialization operator, and thus easily adaptable to different clause
languages. We here focus on the operator that enumerates definite Horn clauses, and which
is thus used for logic program synthesis. Other operators would enumerate definite clause
grammars, and so on. The enumeration of Horn clauses may be carefully designed so as to
achieve the objective of intelligent pruning of the search space. The clauses are partially or-
dered by the subsumption relation into a specialization graph. Thus, if a clause is found to be
wrong, then it need never be considered again, and its immediate descendants in the special-
ization graph are considered plausible replacements. This is an accurate technique for locat-
ing and avoiding forbidden features, and definitely a better technique than backtracking. In
order to be realistic, this operator however needs a declaration of the basis-set of all the pred-
icates that may appear in clauses. The specialization graph is searched breadth-first.
Example 3-14: Part of the specialization graph for the predicate member/2 is as follows
(where the vertical arrows denote subsumption):

For convenience, the specialization operator is also given the type information that the first
parameter of member/2 is a simple term, and that its second parameter is a list. ♦

The “bug” location diagnoses in case of incompleteness and incorrectness are performed
by experiment generation and queries to an oracle. Shapiro has experimented with three dif-
ferent search strategies to find a clause that covers a given atom (in case of incompleteness):

• the eager strategy is the most powerful as it always succeeds, but this is at the expense
of many (often superfluous) queries to the oracle;

member(X,Y)

member(X,[X|T])

member(X,[Y|T])

member(X,[Y|T]) ← member(X,T)

❏
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• the lazy strategy is less powerful, but formulates no queries at all, because it relies on
the already presented positive examples;

• the adaptive strategy is a compromise in power between the first two strategies; it for-
mulates no queries at all, because it relies on the already presented positive examples
and on the currently hypothesized program.

The classes of programs that can be obtained via these strategies are different. Identification-
in-the-limit is guaranteed by all three strategies under some well-defined pre-conditions. See
the evaluation section below for further comments of these strategies.

Let’s illustrate all this on a simple synthesis.
Example 3-15: Informally speaking, the member(E,L) relation holds iff term E is a
member of list L. During the synthesis of a logic program for the member/2 predicate, the
(here heavily annotated) dialog between MIS and the user goes basically as follows:

MIS: Declare the predicate to be synthesized.
User: member/2.
MIS: What are the predicates used by member/2?
User: member/2. (The user here anticipates that the target logic program is recursive, and

that no other predicates will be useful.)
MIS: The initial program P0 is {}. First example?
User: member(a,[a]).
MIS: P0 is incomplete, because member(a,[a]) is not covered. After a call to the clause

generator, the revised program P1 is {member(X,Y)}, which is correct wrt the ex-
amples presented so far. Next example?

User: ¬member(a,[b]).
MIS: P1 is incorrect, because member(a,[b]) is covered. The first (and only) clause of P1

is removed. The resulting empty program is incomplete, because member (a,[a])
is not covered. After a call to the clause generator, the revised program is {mem-
ber(X,[Y|T])}. This program is incorrect, because member(a,[b]) is covered. Its
first (and only) clause is removed. The resulting empty program is incomplete, be-
cause member(a,[a]) is not covered. After another call to the clause generator, the
revised program P2 is {member(X,[X|T])}, which is correct wrt the examples pre-
sented so far. Next example?

User: member(a,[b,a]).
MIS: P2 is incomplete, because member(a,[b,a]) is not covered. After a call to the clause

generator, the revised program P3 is {member(X,[X|T]); member(X,[Y|T]) ←
member(X,T)}, which is correct wrt the examples presented so far. Next example?

Suppose the user stops presenting examples. MIS has synthesized a correct logic program for
the member/2 predicate. This sample synthesis is admittedly a little bit contrived (and actu-
ally devoid of queries to the oracle), but the point is here to get a feel for this synthesis
mechanism. ♦

Let’s summarize: MIS starts from a mixed presentation of multiple, ground, single-pred-
icate, relational, positive and negative examples that are selected by an agent (usually a hu-
man specifier) who knows the intended relation, and who is assumed to select only examples
that are consistent with the intended relation. The hypotheses are definite Horn clause logic
programs. A conceptual bias on the program language is achieved by the declaration of a ba-
sis-set of predicates that may appear in the bodies of clauses. The background knowledge
consists of logic programs for some of the basis-set predicates. The program space is ordered
by the sample-independent subsumption relation, which is however undecidable in general:
hence the need for resource-bounded subsumption checking. The used identification criteri-
on is identification-in-the-limit. MIS however doesn’t proceed by enumeration, because of
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its intelligent organization of the search space. Type, mode, and determinism information
about the specified predicate is used for further restriction of the search space. MIS performs
incremental (actually even iterative) synthesis, which is moreover breadth-first data-driven,
algorithmic, interactive, non-monotonic, consistent, and conservative. Multiple related con-
cepts are learned simultaneously.

Extensions

MIS has spawned a huge variety of efforts for improvement. Some immediate optimizations
are proposed by [Huntbach 86].

Other researchers have tackled Shapiro’s remarks on oracle mechanization [Shapiro 82,
Section 3.7] via the incorporation of “constraints and partial specifications”. The solutions
by [Lichtenstein and Shapiro 88], [Drabent et al. 88], and [De Raedt and Bruynooghe 92] are
surveyed in Chapter 6. The solution by [Dershowitz and Lee 87] seems unrealistic in general,
because it relies on a complete specification, which could thus rather be used to perform de-
ductive synthesis.

The search for clauses goes from general to specific, using a most general specialization
operator to descend a subsumption hierarchy. But subsumption is a weak model of general-
ization: it is insufficient because many “wanted” generalizations are not obtained, due to the
lack of background knowledge, and inadequate because many “unwanted” generalizations
are obtained. Background knowledge should thus be used for inferring more “interesting”
generalizations. In Chapter 7, we survey the efforts of [Buntine 88] and [Muggleton 91] for
introducing stronger models of generalization. The MARKUS system of [Bratko and Gro-
belnik 93] introduces other improvements of the clause generator.

Finally, the notion of program schema (see Chapter 8) allows a further organization of the
search space. The system of [Tinkham 90] is based on the insight that synthesis need not start
from the empty program, but could actually start from the most-specific schema that is be-
lieved to be applicable. The search space is thus extended to a second-order search space, at
the bottom of which are logic programs, and at the top of which are logic program schemas.
If synthesis starts from a “good” schema, then the improvement is exponential. A similar ap-
proach is taken by the MISST system of [Sterling and Kirschenbaum 91], who develop a new
specialization operator, based upon a view of logic programs as skeletons (schemas) to which
techniques (standard programming practices) are applied.

Evaluation

The complexity and power of MIS compare favorably with the algorithmic synthesis mech-
anisms of Biermann and Summers (see Section 3.3.2). Since it is parameterized on a special-
ization operator, it is much more adaptable than these other mechanisms. However, MIS is
much less data-efficient than the latter.

The eager search strategy is independent of the order of presentation of the examples.
However, the lazy search strategy is order-dependent. [Shapiro 82, page 110] shows how an
(inadvertent) adversary user might con MIS (equipped with the lazy strategy) into synthesiz-
ing an arbitrarily large program: the example sequence member(a,[a]), member(b,[a,b]),
member(c,[a,b,c]),…, generates the logic program {member(X,[X|T]); member(X,[Y,X|T]);
member(X,[Z,Y,X|T]); …}. This is clearly not a desirable behavior. But the research of [Jan-
tke 89] [Jantke and Goldammer 91] seems a possible solution to this situation, as their syn-
thesis mechanism starts from precisely such clause sequences.

The adaptive strategy is less order-dependent, and said to be the most useful one in prac-
tice. However, it may result in “dead code” (clauses that always lead to failure), namely when
it relies on a clause yet unknown to be incorrect. Again, this is not a desirable behavior.
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Another consequence of order-dependence arises because MIS synthesizes Prolog pro-
grams, rather than some form of logic algorithms: an (inadvertent) adversary user might con
MIS into synthesizing the base-case clause after the recursive clause. While declaratively
correct, such a program goes into infinite loops for certain modes.

Moreover, as reported by [Sterling and Kirschenbaum 91], MIS is likely to generate re-
dundant clauses. Removing these seems too computationally expensive to be practical,
though the work of [Buntine 88] gives promising ideas towards this.

All the predicates used by the clause generator must be declared prior to synthesis, and an
oracle is assumed to be willing to answer questions about them. Multiple related concepts
may thus be learned simultaneously, but this nice feature doesn’t prevent MIS from being un-
able to invent its own predicates, not to mention implementing them.

Other weak spots are those addressed by the above-mentioned extensions. However, MIS
should not be discredited, because it is after all a pioneering, ground-breaking system.

3.4.2 Other Systems

The other ancestor system of ILP, though much less influential, is CONFUCIUS (see [Cohen
and Sammut 84]), which has been very much inspired by Banerji’s research (see
[Banerji 84]). From positive and negative examples, this system incrementally synthesizes a
program by oscillating between over- and under-generalization. The mechanism is however
largely heuristic-based. It has no background knowledge and no oracle. Recursion is discov-
ered in a way similar to the trace-folding of [Biermann 78]. A successor system is MARVIN
[Sammut and Banerji 86], which also uses only a single generalization rule in its specific-to-
general search. But it uses background knowledge, and asks questions to an oracle in order
to test its hypotheses. It is unable to invent its own predicates, but rather expects to be taught
simple concepts before complex ones.

The INDUCE systems (see [Michalski 84]) were among the first to address the issues of
using constructive rules of inductive inference. The learning mechanism is a bottom-up ap-
proximation-driven one, though heavily based on heuristics.

The CIGOL (“logic” backwards) system of [Muggleton and Buntine 88] performs inter-
active, incremental synthesis from a mixed presentation of multiple, ground, relational, pos-
itive and negative examples, in the presence of background knowledge. It also addresses
constructive induction. The technique is based on the ingenious insight that if resolution of
clauses (by unification of two literals of the same predicate p, but of opposite signs) may
make disappear predicate p in the resolvent clause (namely if there are no other occurrences
of p in the two resolved clauses), then inverse resolution (using anti-unification) may make
appear some predicate, and its clausal definition. The system is restricted to generating unit
clauses for the invented predicate, and the teacher is then asked to name the latter from these
unit clauses (which are nothing else but non-ground examples). If the identified name is un-
known to the system, then synthesis occurs from these unit clauses. The successor system,
GOLEM [Muggleton and Feng 90], extends these ideas. Another descendant system is ITOU
[Rouveirol 91], which is based on the inversion of logical entailment, rather than on the in-
version of resolution.

The CLINT (Concept Learning in an INTeractive way) system of [De Raedt and Bruy-
nooghe 88, 89, 90, 92] incrementally learns multiple related concepts simultaneously, from
a mixed presentation of multiple, ground, relational, positive and negative examples, in the
presence of background knowledge and integrity constraints. The “bug” correction compo-
nent is an adaptation of MIS. Identification-in-the-limit is guaranteed. The system automat-
ically shifts its syntactic bias when needed. It generates itself almost all the examples it
needs, and interacts with an oracle for the classification of these examples as positive or neg-
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ative ones. It assimilates newly learned concept by adding them to its knowledge base. Pred-
icate invention is tackled by analogical inference wrt assimilated concepts.

The FOIL (First-Order Inductive Learner) system of [Quinlan 90] extends the proposi-
tional attribute-value learners to the first-order formalism of relations and Horn clauses, in
view of benefitting from the additional expressive power. The system is very different from
all others described here, in that it performs passive, non-incremental learning from positive
and negative examples. Compared to MIS, it constructs clauses literal-by-literal, rather than
using a clause-generator; the notions of proof, oracle, and background knowledge are absent;
and the hypothesized program is the maximally-general one, rather than the maximally-spe-
cific one, as in MIS. On the negative side, its greedy, heuristic-based search for suitable lit-
erals to expand a clause prevents all backtracking. Recursive programs are considered,
though at the expense of potential non-termination. There is no predicate invention. More-
over, extremely large example sets are needed for successful synthesis: for instance, 10,261
examples are needed for append/3, and 4,761 examples are needed for reverse/2. All this
shows that FOIL seems inadequate for recursive program synthesis.

The LINUS system of [Lavrac̆ and Dz̆eroski 92]  learns relational concept descriptions,
but works by first transforming the examples into propositional form, and then using propo-
sitional attribute-value learners (which may handle noisy examples).

A completely different school of thought is advocated by [Hagiya 90]. He re-formulates
Summers’ recurrence relation detection mechanism in a logic framework, using higher-order
unification in a type theory with a recursion operator. The method is extended to synthesizing
a deductive proof-by-induction from a concrete sample proof.

3.5 Conclusions on Program Synthesis from Examples

In Section 3.2.4, we have defined algorithm synthesis from examples as a niche of empirical
learning from examples. As a reminder, for algorithm synthesis, we are here only interested
in the setting with human specifiers who know (even if only informally) the intended relation,
and who are assumed to choose only consistent examples. Moreover, the intended relation is
assumed to have a recursive algorithm. There is a general consensus that synthesis from ex-
amples would be a useful component of any larger synthesis system. So we now draw some
conclusions about the approaches surveyed in the previous two sections.

The surveyed mechanisms of LISP program synthesis actually turn out to be pretty much
orthogonal to those of Prolog program synthesis. They were developed in different time-pe-
riods (until the late 1970s, and since the early 1980s, respectively), and the latter seem to have
completely supplanted the former. This supersession is largely due to the “declaration of de-
feat” by the former (because of the mechanisms, not because of the target language), and to
the ensuing hunger for new approaches. The growing awareness of the early 1980s that con-
cept descriptions and logic programs may share the same formalism has even provoked a
gradual absorption of program synthesis from examples by the field of empirical learning.
This culminates in the designation “Inductive Logic Programming”, which is unfortunately
a misleading name because it gives too much tribute to “programming”, compared at least to
the current trends of ILP research. The logic programming paradigm has blurred the distinc-
tion between learning-from-examples and programming-from-examples. While academical-
ly rewarding, this new perception seems very dangerous to us in practice: as Section 3.2.4
shows, the superclass relation between both fields is sufficiently “strict” to justify highly spe-
cialized mechanisms for the latter. At least now, where both fields are still young, though ma-
turing. The future will tell whether there effectively is a unique and efficient learning
mechanism for all classes of concepts. However, we strongly doubt this!
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All the surveyed mechanisms perform pretty well on predicates that involve only structur-
al manipulations of their parameters, such as list concatenation or list reversal. But as soon
as the actual values of the parameters are relevant (such as for list sorting), problems arise
due to the inherent incompleteness and ambiguity of specifications by examples. There is
thus an important need for making more knowledge available to synthesis, because such
knowledge is after all available to human algorithm designers. Knowledge may be given un-
der the form of extended incomplete specifications, of background knowledge (domain
knowledge), and of algorithm design knowledge. Whereas (some of) the 1970s approaches
were pretty much on the analytic (EBL) side of machine learning (though without back-
ground knowledge, and thus necessarily enumerative), most of the 1980s-and-beyond ap-
proaches are definitely on the empirical side of machine learning. Today’s trend seems
fortunately to be towards an integration of analytic (knowledge-reliant) and empirical (user-
reliant) learning, and this in view of cross-fertilization for overcoming drawbacks.

Although human learning is naturally incremental and non-monotonic, we believe that au-
tomated algorithm synthesis from examples should be non-incremental and monotonic. In-
deed, incremental synthesizers tend to be very “undisciplined” due to their non-monotonic
debugging (patchwork) approach. This need not always be the case, for instance if the exam-
ples are “well-chosen”. But one should bear in mind that the specifier is not always supervis-
ing the synthesis. And even if s/he were, putting the synthesizer (back) on the right track with
a carefully crafted example goes counter the most frequent setting where the specifier doesn’t
know how to best define the intended relation by an algorithm, and is possibly even unable
to understand an algorithm. The risks of infinite, redundant, or dead code due to the potential
dependence on the order of the presented examples are symptomatic for some incremental
mechanisms that have no understanding of what they are synthesizing. Considering that an
example embodies several kinds of information, incremental synthesis has to extract all these
kinds of information from the examples presented so far, whereas non-incremental synthesis
may extract only one kind of information from every example at each step. The latter seems
to be a much more reasonable approach. We thus believe that a synthesis mechanism should
carefully design, just like an expert human designer (and unlike an inexpert human learner),
a correct algorithm in a monotonic way from a fixed set of given examples.

The current trend of ILP research seems [Muggleton 91] to be towards handling noisy ex-
amples, and to PAC-learning, whose probabilistic approach to correctness is however inher-
ently incompatible with the goals of algorithm synthesis. The most promising applications
of ILP research seem [Muggleton 91] to be when the intended concept is unknown, which
also goes counter our algorithm synthesis setting. There is general skepticism about the use-
fulness of schemas, because these tend either to spell out the entire search space (which is
fruitless), or to be too domain-specific (and hence difficult to obtain), if they exist at all. All
this clearly indicates a desire to do empirical learning in general, rather than “only” algorithm
synthesis. The achievements of ILP are already very impressive [Muggleton 91]. But this
quest for a general mechanism is inevitably at the cost of a poor synthesis of recursive algo-
rithms, because the developed learners often merely perform some kind of example-analysis
in a pre-enumerated search space, whereas algorithm synthesis requires more complex oper-
ations such as generating logic quantifiers. We are here not interested in learning to recognize
Michalski’s trains, or Winston’s arches.
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4 A Logic Program Development Methodology
This research is set in the framework of the logic program development methodology de-
scribed in [Deville 90]. In order to keep this thesis self-sufficient, we summarize that meth-
odology, and put special focus on aspects directly related to our research. This summary
mainly states results, and not always their motivations or proofs: refer to [Deville 90] when
in need of further explanations.

The original promise of programming in (first-order) logic when using Prolog is impaired
by the following facts: 5

• the Prolog inference engine is incomplete, unfair, and unsound;
• the Prolog inference engine approximates logical negation by negation-as-failure;
• the Prolog language embodies predicates such as:

– control predicates (cut/0, fail/0,…),
– extra-logical predicates (input/output predicates, clause/2, assert/1, retract/1,…),
– meta-logical predicates (ground/1, var/1, call/1, ==/2,…),
– second-order predicates (setof/3, bagof/3,…),
which allow programming outside first-order logic;

• Prolog programs are rarely multi-directional.
But all these features have been deliberately chosen so as to make Prolog a practical pro-
gramming language.

So there is a need for a maximally language-independent logic programming methodolo-
gy that reconciles this gap between the declarative and the procedural semantics. Alternative
approaches would have been either to forget about declarative logic programming, or to de-
sign a new language not suffering from that gap, or to design a new logic filling that gap. But
these approaches have been judged not to be very attractive.

Such a methodology has been formulated. It aims at programming-in-the-small, and is
(mainly) meant for algorithmic problems. It is sub-divided into three stages: 6

• Stage A: Elaboration of a specification;
• Stage B: Design of a logic algorithm (and possibly its transformation);
• Stage C: Derivation of a logic program (and possibly its transformation).

Stage B is based only on the declarative semantics of logic, and is independent of the target
logic programming language used at Stage C.

An integrated logic programming environment, called Folon,7 is being developed to sup-
port the entire methodology [Henrard and Le Charlier 92].

Note however that this thesis is independent of that methodology. We just use its frame-
work because of its useful notations and its focus on the logical aspect of logic program de-
velopment.

This chapter is organized as follows. In Section 4.1, we discuss the elaboration of speci-
fications. Section 4.2 is about the design of logic algorithms, whereas Section 4.3 is about
their transformation. Section 4.4 describes the derivation of logic programs, whereas
Section 4.5 describes their transformation.
5. This chapter is written as if there (already) were a standard Prolog.
6. Note that we say “logic algorithm” where [Deville 90] says “logic description”. This terminology was al-

ready used in [Deville 87], which was the starting point for [Deville 90].
7. The environment is named after Jean-Michel Folon, a famous contemporary Belgian painter.
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4.1 Elaboration of a Specification

The first stage of the methodology is the elaboration of a specification. Informally, a specifi-
cation of a procedure is a statement describing the problem that is to be implemented, as well
as how to correctly use the resulting procedure. We here restrict the focus to side-effect-free
problems.

Definition 4-1: A specification of a procedure for predicate r/n, denoted Spec(r), is
composed of a procedure declaration, a type declaration for each parameter, a set of
restrictions on parameters, a set of directionalities, and a relation definition.

We present the involved components only by means of a few sample specifications.

Example 4-1: The compress(L,C) procedure succeeds iff C is a compact list of <vi,ci>
couples, such that the ith plateau of list L has ci elements equal to vi. Hence the sample
specification of Figure 4-1. Note that the first four entries are here written in a formal
language, while the relation entry is non-formal. The first three entries are assumed to be self-
explanatory. The first directionality says that given L ground and C a non-variable, there is at
most one ground instance of C such that compress(L,C) succeeds. The second directionality
says that given L ground and C a variable, there is exactly one ground instance of C such that
compress(L,C) succeeds. Other directionalities could have been given (for instance for L
non-ground), but we only want a procedure satisfying the two given ones.

Example 4-2: The firstPlateau(L,P,S) procedure succeeds iff P is the first maximal plateau
of the non-empty list L, and list S is the corresponding suffix of L. A sample specification is
given in Figure 4-2.

The different entries of a specification act as pre-conditions, or as post-conditions, or as
both.

Definition 4-2: The domain of a procedure for predicate r, denoted dom(r), is the
intersection of the Cartesian product of the types of its parameters and the relation defined
by the restrictions on the parameters.

Definition 4-3: The specified relation is the intersection of the domain and the relation
defined in the specification.

The specified relation is assumed to be identical to the intended relation, which is
denoted R. Intuitively speaking, a procedure that correctly implements a problem computes
the intersection of its domain and its specified relation, and “satisfies” its directionalities.

Procedure
compress(L,C)

Types
L: list of Term
C: list of <Term,Integer>

Restrictions on Parameters
compactList(C)

Directionalities
in(ground,novar)::out(ground,ground) <0-1>
in(ground, var )::out(ground,ground) <1-1>

Relation
C is the compression of L

Figure 4-1: Spec(compress)



4.2 Design of a Logic Algorithm 57

4.2 Design of a Logic Algorithm
The second stage of the methodology is the design of an algorithm, independently of any log-
ic programming language, starting from the specification of a procedure. Such an algorithm
is expressed in first-order logic, and called a logic algorithm. The design is based solely on
the declarative semantics of first-order logic. This implies that the directionality information
from the specification is not used at this stage.
Definition 4-4: A logic algorithm defining a predicate r/n, denoted LA(r), is a closed well-
formed formula of the form:

∀X1…∀Xn r(X1,…,Xn) ⇔ F
where the Xi are distinct variables, and F is a well-formed formula. The atom r(X1,…,Xn) is
called the head, and F is called the body of the logic algorithm.

In the sequel, we drop the universal quantifications in front of the heads, as well as any
existential quantifications at the beginnings of bodies of logic algorithms.
Example 4-3: A sample version of LA(compress) is Logic Algorithm 4-1.
Example 4-4: A sample version of LA(firstPlateau) is Logic Algorithm 4-2.

Note that logic algorithms take the “natural” form of what one would expect to be a logic
program (that implements a “programming problem”). Indeed, the equivalence symbol is
necessary to state when r/n is true, as well as when r/n is false. Logic algorithms correspond
in fact to the notion of completed logic programs [Clark 78]. Hence, reasoning on logic al-
gorithms is equivalent to using logic programs, but reasoning on their completions.

Deville introduces the following important differences with “classical” approaches to log-
ic programming:

Procedure
firstPlateau(L,P,S)

Types
L,P,S: list of Term

Restrictions on Parameters
L≠[] ∧ P≠[]

Directionalities
in(ground,novar,novar)::out(ground,ground,ground) <0-1>
in(ground, var , var )::out(ground,ground,ground) <1-1>

Relation
P is the first maximal plateau of L,
 and S is the corresponding suffix of L

Figure 4-2: Spec(firstPlateau)

compress(L,C) ⇔
L=[] ∧ C=[]

∨ L=[HL] ∧ C=[<HL,1>]
∨ L=[HL1,HL2|TL] ∧ HL1≠HL2

∧ compress([HL2|TL],TC)
∧ C=[<HL1,1>|TC]

∨ L=[HL1,HL2|TL] ∧ HL1=HL2
∧ compress([HL2|TL],TC)
∧ C=[<V,s(N)>|TTC] ∧ TC=[<V,N>|TTC]

Logic Algorithm 4-1: LA(compress)
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• a first-order language is defined independently of any first-order theories: let F and Q
be disjoint sets of functors and predicate symbols, respectively, and V be the set of
variable symbols; T is the set of all terms that can be formed from F and V; the Her-
brand universe U is the set of all ground terms that can be formed from F; A is the set
of all atoms that can be formed from Q and T; the Herbrand base B is the set of all
ground atoms that can be formed from Q and U; W is the first-order language, that is
the set of all well-formed formulas that can be formed from A, V, and the quantifiers;

• the focus is restricted to Herbrand interpretations, Herbrand models, Herbrand-logical
consequences, and Herbrand-satisfiability.

The correctness of a logic algorithm wrt its specification is an important issue. All the
predicates used in a logic algorithm are considered as primitives, and the existence of correct
logic algorithms is thus assumed for all of them. Throughout this thesis, we adopt at least the
following set of primitives: {=/2, ≠/2, </2, >/2, ≤/2, ≥/2, list/1, odd/1, true/0, false/0}.

This allows a definition of logic algorithm correctness that is only in terms of the specifi-
cations of the used predicates. The definition establishes an equivalence between the speci-
fied relation and the set of Herbrand-logical consequences of the logic algorithm.
Definition 4-5: Let Spec(r) be a specification, LA(r) be a logic algorithm, and A be a finite
set of logic algorithms containing LA(r). Then LA(r) is (totally) correct in A wrt Spec(r) iff,
for any ground n-tuple t, the following two conditions hold:

A |== r(t) iff t∈R and t∈dom(r)
A |== ¬r(t) iff t∉R or t∉dom(r)

The second condition is necessary because negation can be used in logic algorithms. Note
that this definition is restricted to ground terms: this simplifies proofs, and does not affect the
existence of correct witnesses to existential queries. Also note that this definition implies that
a logic algorithm has to verify whether its parameters belong to the domain of the procedure.
The opposite approach is taken at the logic program level.

A correct logic algorithm is Herbrand-satisfiable. The truth value of a ground atom r(t) is
the same in every Herbrand model of a correct logic algorithm LA(r). A correct logic algo-
rithm remains correct if a new logic algorithm is added.

There are of course many methodologies of logic algorithm design. Deville discusses
three of them, namely:

• construction by structural induction;
• top-down decomposition;
• iteration through universal quantification.

Let’s have a look at these methodologies, in Section 4.2.1 to Section 4.2.3, respectively.

4.2.1 Construction by Structural Induction

The most important logic algorithm design methodology is based on structural induction.
The principle of well-founded induction suggests constructing a logic algorithm by induction

firstPlateau(L,P,S) ⇔
L=[HL] ∧ P=L ∧ S=[]

∨ L=[HL1,HL2|TL] ∧ HL1≠HL2
∧ P=[HL1] ∧ S=[HL2|TL] ∧ list(TL)

∨ L=[HL1,HL2|TL] ∧ HL1=HL2
∧ firstPlateau([HL2|TL],TP,TS)
∧ P=[HL1|TP] ∧ S=TS

Logic Algorithm 4-2: LA(firstPlateau)
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over the structure of some parameter. The value of that induction parameter is reduced to
something smaller according to some well-founded relation, and a partial result is recursively
computed. If no reduction is possible, then the problem is solved directly. There are four
steps to this design methodology:

• Step 1: Selection of an induction parameter;
• Step 2: Selection of a well-founded relation;
• Step 3: Selection of the structural forms of the induction parameter;
• Step 4: Construction of the structural cases.

Let’s explain these four steps one by one. Note that this method is proven to yield correct
logic algorithms. A tool, called Logist, is being developed for the Folon environment to assist
a designer in following these steps [Burnay and Deville 89].

Step 1: Selection of an Induction Parameter

The first step is the selection of an induction parameter. Only parameters of inductive types
(such as integers, lists, trees, sets, strings,…) are eligible as induction parameters. For sim-
plicity, throughout this thesis, we assume that no parameters are tuples.
Definition 4-6: A simple induction parameter is composed of one parameter.
A compound induction parameter is composed of at least two parameters.

Most problems can be implemented by logic algorithms with induction over a simple in-
duction parameter.

The selection of a suitable induction parameter is straightforward, but two useful heuris-
tics have been identified:
Heuristic 4-1: Functionality Heuristic
Select an induction parameter such that, given a ground instance of it, the specified relation
holds for at most one ground instance of the other parameters.

This heuristic usually simplifies the remainder of the design process.
Heuristic 4-2: Directionality Heuristic
Select an induction parameter that is ground in all the in-parts of the given directionalities.

This heuristic only reveals its advantages when one looks ahead: at the logic program der-
ivation stage (Section 4.4), domain checking and termination proofs are simplified, and the
derived logic programs usually are more efficient. One could thus argue that this heuristic is
the best.
Example 4-5: For the compress predicate, both heuristics guide towards selecting L as
induction parameter.

In the sequel, when talking about a logic algorithm LA(r), we sometimes write LA(r-X) to
show that X was selected as induction parameter. Note however that the predicate defined by
LA(r-X) still is r, and not r-X.

Step 2: Selection of a Well-Founded Relation

The second step is the selection of a well-founded relation over the type of the induction pa-
rameter. Two heuristics for the selection of a well-founded relation have been identified:
Heuristic 4-3: Intrinsic Heuristic
Select a well-founded relation reflecting the definition of the type of the induction parameter.

This heuristic is easy to apply, since the definition itself of an inductive type already sug-
gests a well-founded relation.
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Example 4-6: For the compress predicate, the intrinsic heuristic guides towards selecting
“is the tail of” as well-founded relation over the type of L. Weaker variants such as “has less
elements than” or “is a suffix of” are also suitable, but it is best to start with strong relations,
and relax them as needed.
Heuristic 4-4: Extrinsic Heuristic
Select a well-founded relation that reflects the definition of the type of some other parameter,
or that reflects the structure of the specified relation.

Applying this heuristic is often more complicated, but the ensuing construction steps can
often be simplified.
Example 4-7: For the compress predicate, the extrinsic heuristic guides towards selecting
“has one plateau less than” as well-founded relation over the type of L, because it reflects the
structure of the C parameter. But we retain the well-founded relation suggested by the
Intrinsic Heuristic for the remainder of this section, and come back to this decision in
Section 5.2.2.

None of these two heuristics is superior to the other. In the sequel, when talking about a
logic algorithm LA(r), we sometimes write LA(r-int-X), or LA(r-ext-X), to show that X was
selected as induction parameter, and that the intrinsic (respectively extrinsic) heuristic was
applied. Again, the predicate defined by LA(r-int-X) still is r, and not r-int-X.

An interesting exercise is to compare logic algorithms designed by induction on different
parameters, or using different well-founded relations. Considering the heuristics above, it is
no surprise that, for a binary predicate r having X and Y as parameters, LA(r-int-X) and LA(r-
ext-Y) are structurally similar, or that LA(r-int-Y) and LA(r-ext-X) are structurally similar.

Step 3: Selection of the Structural Forms of the Induction Parameter

The third step is the selection of the structural forms of the induction parameter. Structural
forms are terms. This step consists of finding at least one minimal form and at least one non-
minimal form for the induction parameter, such that they are all mutually exclusive over the
domain of the induction parameter. A non-minimal form is a structure case of the domain of
the induction parameter. A minimal form is a base case of the domain of the induction pa-
rameter, that is a form to which at least one sample computation starting from a non-minimal
form eventually reduces the induction parameter.
Example 4-8: For the compress predicate, we select [] as the minimal form, and [HL1|TL]
as the non-minimal form of the induction parameter L.

Step 4: Construction of the Structural Cases

The fourth and last step is the construction of the structural cases. This amounts to formaliz-
ing how the other parameters relate to the induction parameter, for each of its structural
forms. The results are structural cases. A structural case is a minimal case if the induction
parameter is of a minimal form, and a non-minimal case if the induction parameter is of a
non-minimal form. This step is the most creative one, and requires a lot of skill. It is actually
divided into two sub-steps:

• Step 4-1: Construction of the structural cases, independently of domain membership;
• Step 4-2: Introduction of domain-checking literals.

The second sub-step is important in view of achieving correctness of the designed logic al-
gorithm. Indeed, the logic algorithm must evaluate to false in case the parameters do not be-
long to the domain. With a domains-as-preconditions approach, domain checking literals
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would have to be added to ensure that the used predicates are correctly used. Note however
that in most situations, Step 4-2 reduces to doing nothing at all.
Example 4-9: For the compress predicate, we proceed as follows:

• if L is of the selected minimal form (L=[]), then C must be empty, too (C=[]);
• if L is of the selected non-minimal form (L=[HL1|TL]), then:

– either TL is empty, and C must then be [<HL1,1>];
– or TL is non-empty and starts with a term identical to HL1, and C must then be

[<HL1,s(N)>|TC], where compress(TL,[<HL1,N>|TC]) holds;
– or TL is non-empty and starts with a term different from HL1, and C must then be

[<HL1,1>|TC], where compress(TL,TC) holds.
No domain-checking literals need to be added. We obtain Logic Algorithm 4-3, which is
equivalent to Logic Algorithm 4-1. ♦

Generalization of a Problem

Sometimes, it turns out to be difficult—if not impossible—at Step 4 to reduce a problem into
a sub-problem that can be solved with a recursive use of the logic algorithm under design.
Besides questioning earlier decisions made at Steps 1 to 3, one can also generalize the prob-
lem, so that the sub-problem and the original problem are both special cases of the general
one. Paradoxically, such a general problem often turns out to be easier to implement. A logic
algorithm is designed for the generalized problem, and a logic algorithm for the original
problem is expressed using the general one. Generalized specifications often lead to more ef-
ficient logic programs, because the underlying logic algorithms incorporate some form of
loop merging. Two interesting generalization strategies are:

• structural generalization: generalization of the type of a parameter;
• computational generalization: generalization of a state of computation.

But we do not discuss them here.

4.2.2 Top-Down Decomposition

A logic algorithm can also be designed by decomposition of the original problem into a con-
junction of simpler sub-problems. This is a top-down methodology if the sub-problems have
not yet been implemented. Otherwise, it’s a bottom-up methodology, because of the re-use
of previously implemented sub-problems. The resulting logic algorithms are usually non-re-
cursive.
Example 4-10: The append3(A,B,C,ABC) procedure succeeds iff list ABC is the
concatenation of lists A, B, and C. This problem can be decomposed into concatenating B to
the end of A, yielding AB, and then concatenating C to the end of AB, yielding ABC. Hence:

compress(L,C) ⇔
L=[] ∧ C=[]

∨ L=[HL1|TL]∧ TL=[]
∧ C=[<HL1,1>]

∨ L=[HL1|TL]∧ TL=[HL2|TTL] ∧ HL1=HL2
∧ compress(TL,[<HL1,N>|TC])
∧ C=[<HL1,s(N)>|TC]

∨ L=[HL1|TL]∧ TL=[HL2|TTL] ∧ HL1≠HL2
∧ compress(TL,TC)
∧ C=[<HL1,1>|TC]

Logic Algorithm 4-3: LA(compress-int-L)
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append3(A,B,C,ABC) ⇔ append(A,B,AB) ∧ append(AB,C,ABC)

where append(X,Y,Z) holds iff list Z is the concatenation of list Y to the end of list X. ♦

4.2.3 Iteration through Universal Quantification

A logic algorithm can also be designed by iteration through universal quantification. This re-
quires full first-order logic in the bodies of logic algorithms. The methodology is also known
as iteration through negation, because the derived logic program performs an iteration by
means of negation-as-failure and backtracking.
Example 4-11: The minimum(L,M) procedure succeeds iff integer M is the minimum
element of non-empty integer list L. This problem can be implemented as follows:

minimum(L,M) ⇔ member(M,L) ∧ ∀E (member(E,L) ⇒ M≤E)

where member(E,L) holds iff E is an element of list L. ♦

4.3 Transformation of a Logic Algorithm
Correctness-preserving transformations of logic algorithms aim at allowing the derivation of
a more efficient logic program at Stage C. This approach favors the design of a correct logic
algorithm, and subsequent transformation thereof into an equivalent logic algorithm. The tru-
ly creative effort thus goes into the design of a first, correct logic algorithm, without any con-
cern for its form and complexity. Moreover, the ensuing transformation is often easier to
perform than the design from scratch of an optimized logic algorithm.

A set of correctness-preserving transformation rules (such as folding, unfolding,…) has
been developed, but we don’t list them here. These rules allow:

• the syntactic simplification of logic algorithms;
• the transformation of a logic algorithm into another one that reflects induction on a dif-

ferent parameter;
• the transformation of a logic algorithm designed without induction into another one

that does reflect induction on some parameter;
• the transformation of a logic algorithm into another one that reflects a computational

generalization of the original problem;
• the merging of several predicates sharing some parameter(s) into a single predicate;

and so on. These transformations only deal with the declarative semantics of logic.

4.4 Derivation of a Logic Program
The third and last stage of the methodology is the derivation of a logic program, starting from
the designed logic algorithm. This is a language-specific task, and has thus to take into ac-
count all aspects that make logic programming different from programming in a specific lan-
guage (Prolog, say). These aspects are the features of the underlying inference engine (such
as incompleteness, unsoundness, and unfairness due to the search rule, the computation rule,
the negation-as-failure rule, and the absence of occur-check), as well as some primitives of
the programming language (extra-logical, meta-logical, second-order, and control predi-
cates). In other words, the procedural semantics of logic is now considered, and the direc-
tionality information of specifications is thus used.
Definition 4-7: A pure logic procedure of a predicate r/n is a finite sequence of program
clauses of predicate r/n, each with the same n distinct variables in its head.

Pure logic procedures are also known as normalized logic procedures.
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Definition 4-8: A (pure) logic program of a predicate r/n, denoted LP(r), is a finite set of
(pure) logic procedures of predicate r/n.
Definition 4-9: A (pure) Prolog program of a predicate r/n, also denoted LP(r), is a (pure)
logic program of predicate r/n, possibly augmented with Prolog control predicates.

The correctness of a logic procedure wrt its specification is an important issue. All the
predicates used in a logic procedure are considered as primitives, and the existence of correct
logic procedures is assumed for them. This allows a definition of logic procedure correctness
that is only in terms of the specifications of the used predicates. 8

Definition 4-10: Let Spec(r) be a specification, LP(r) be a logic procedure, and P be a finite
logic program containing LP(r). Then LP(r) is correct in P wrt Spec(r) iff, for any n-tuple t
such that:

• t is “compatible” with dom(r);
• t “satisfies” the in-part of a directionality in(m1,…,mn)::out(M1,…,Mn) <min-max>;
• Subst is the sequence of answer substitutions for P∪{←r(t)} (using some SLDNF ref-

utation procedure);
the following four conditions hold:

• Subst is “partially correct”, “complete”, and “minimal” for r(t);
• if Subst is finite, then P∪{←r(t)} terminates;
• ∀σ∈Subst: tσ “satisfies” out(M1,…,Mn);
• Subst “satisfies” the multiplicity <min-max>.
Note that this definition implies that a logic procedure need not verify whether its param-

eters are compatible with the domain, because this is actually a pre-condition now. The op-
posite approach is taken at the logic algorithm level.

Any SLDNF refutation procedure is complete for correct logic procedures. A correct logic
program remains correct if a new logic procedure is added.

A straightforward syntactic translation of a logic algorithm into a pure logic program al-
ready achieves partial correctness and completeness wrt the specification, whatever the used
SLDNF refutation procedure. This translation amounts to a “de-completion” process, as the
completion of the pure logic program resulting from the syntactic translation of a logic algo-
rithm is logically equivalent to that logic algorithm.

The remaining, rather technical correctness criteria are specific to every SLDNF refuta-
tion procedure. Some aspects to be verified are:

• is the computation rule safe for every goal?
• are the domain and directionality pre/post-conditions satisfied for each subgoal?
• if required, is termination achieved?
• is the sequence of answer substitutions minimal?, and does it satisfy the multiplicity?
• does the absence of occur-check affect soundness?

These aspects are usually a simple manual task. They can also be handled by data-flow anal-
ysis or abstract interpretation techniques that reveal, for each directionality, a correct permu-
tation of the program clauses, and a correct permutation of the literals in the body of each
clause, and sometimes the addition or deletion of literals. Multi-directionality is usually dif-
ficult to achieve. The corresponding tool of the Folon environment is described in [De Boeck
and Le Charlier 90].
Example 4-12: For the compress predicate, the pure logic program derived from Logic
Algorithm 4-3 is given in Figure 4-3.
8. This definition involves here undefined concepts: we assume the reader intuitively grasps their meanings,

which are of course defined in [Deville 90].
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4.5 Transformation of a Logic Program
Correctness-preserving transformations of logic programs aim at optimizing the derived pure
logic program into a time/space-efficient Prolog program. They are based on the procedural
semantics (equivalence of SLDNF trees, the computation rule, the search rule), the available
control predicates (cut, fail,…), and the implementation features (anonymous variables, tail
recursion optimization, clause indexing, global parameters,…) of Prolog systems, as well as
on partial evaluation, the properties of equality, and so on. These transformation rules are ir-
relevant in our context.
Example 4-13: For the compress predicate, Figure 4-4 gives a transformed version of the
logic program in Figure 4-3.

compress(L,C) ← L=[],
C=[]

compress(L,C) ← L=[HL1|TL],TL=[],
C=[<HL1,1>]

compress(L,C) ← L=[HL1|TL],TL=[HL2|TTL],
HL1=HL2,
compress(TL,[<HL1,N>|TC]),
C=[<HL1,s(N)>|TC]

compress(L,C) ← L=[HL1|TL],TL=[HL2|TTL],
not(HL1=HL2),
compress(TL,TC),
C=[<HL1,1>|TC]

Figure 4-3: LP(compress-int-L)

compress([],[])
compress([HL1],[<HL1,1>])
compress([HL1,HL2|TTL],[<HL1,s(N)>|TC]) ←

HL1=HL2,!,
compress([HL2|TTL],[<HL1,N>|TC])

compress([HL1,HL2|TTL],[<HL1,1>|TC]) ←
compress([HL2|TTL],TC)

Figure 4-4: A transformed version of LP(compress-int-L)
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5 Thesis
The objective of this thesis is (semi-)automatic logic algorithm synthesis. First, in
Section 5.1, we define this objective in more detail and clearly state its boundaries. In order
to motivate this research, we develop a series of sample problems in Section 5.2 and show
that non-trivial issues have to be solved. This allows us to identify, in Section 5.3, the chal-
lenges of logic algorithm synthesis. Finally, in Section 5.4, we list our contributions towards
attaining this objective, and outline the remainder of this thesis.

5.1 Objective
The objective of this thesis is (semi-)automatic logic algorithm synthesis. This means that
our research is set in a logic programming framework, and that there is exclusive concern
about the synthesis of correct logic algorithms, but no concern at all about algorithm efficien-
cy, algorithm transformation, algorithm implementation, program transformation, or data
structure reification. This modular approach achieves re-use of existing and forthcoming re-
search on (logic) algorithm transformation and implementation. Indeed, the design of correct
(logic) algorithms is already sufficiently hard, so there is no need to complicate matters with
simultaneous considerations about time/space efficiency or implementability. The so-called
“naive” version of the reverse algorithm is thus a perfectly convenient result, because (i) it is
correct, (ii) it can be automatically transformed into a more efficient algorithm, and (iii) it
can be automatically implemented into an executable form.

Moreover, the focus is on the synthesis of algorithms for the so-called algorithmic prob-
lems, and actually, to be even more precise, on the synthesis of recursive algorithms, where
the intentions may correspond to a full-fledged relation (and not just to a total function). The
following two assumptions are made. First, we assume that the specifier knows the intended
relation, even if s/he doesn’t have a formal definition of it. Second, we assume that the actu-
ally specified relation is a sub-set of the intended relation. This means that there is assumed
to be no noise in specifications. Other aims are that the developed synthesis mechanism be
able to synthesize entire families of algorithms from a single specification, and that a fair
amount of algorithms knowledge and domain knowledge be available to it.

A first question that naturally comes to mind is: What specification language to use? As
the relation entry in the specification language of [Deville 90] is non-formal, it is obvious that
this language is only appropriate for manual construction of logic algorithms, but not for
(semi-)automatic synthesis thereof. There are then basically three solutions: either augment
the existing specification language with suitable entries, or develop a language that allows
the writing of intermediate descriptions that are good starting points for automated synthesis,
or develop a new specification language. In Chapter 6, we opt for the latter solution. The ac-
tually chosen language is irrelevant at this point, but the first two stages of the overall meth-
odology now are:

• Stage A’: Elaboration of a specification (in the new formalism);
• Stage B’: Synthesis of a logic algorithm.

Once the new specification formalism developed, this thesis is mainly concerned with
Stage B’, and only marginally with Stage A’.

Compared to [Deville 90], we adopt the following two differences in attitude. First, we
prefer to blur the distinction between the domain description and the relation definition of a
specification. In the case of a complete specification, the specified relation is assumed to be
identical to the intended relation. In the case of an incomplete specification, the specified re-
lation is assumed to be a subset of the intended relation.
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Second, at the logic algorithm level, we prefer to view domains as pre-conditions, as in
[Deville 87]. This means that rather than making sure a logic algorithm yields false when its
parameters are not compatible with the domain, one has to make sure the used predicates are
called with parameters that are compatible with their domains. This approach is more natural,
as it corresponds to standard practice at the logic program level.

Actually, considering that the introduction of explicit domain checking literals is often a
minor task because most of the domain checking is already implicitly performed by the logic
algorithm, and that it is often difficult otherwise, and that it is definitely not a truly creative
part of algorithm design, and that the presence of these literals is a matter of personal taste
anyway, we further restrict the scope of our objective to the synthesis of logic algorithms
without domain checking.

5.2 Motivating Examples
In order to motivate this research, we pose a series of sample problems in Section 5.2.1, and
give sample logic algorithms solving some of them in Section 5.2.2. Last, in Section 5.2.3,
we give some comments on these logic algorithms.

5.2.1 Sample Problems

For the sake of conciseness, we adopt the following shorthand format for Deville’s specifi-
cation formalism:

<procedure declaration> iff <relation definition>,
where <domain description>.

Note that this format is restricted to the purpose of algorithm design, as no directionality in-
formation is given. Here follow the specifications of a series of sample problems that will be
used throughout this thesis:

add(X,Y,S) iff S is the sum of X and Y,
where X, Y, S are integers.

append(A,B,C) iff C is the concatenation of B to the end of A,
where A, B, C are lists.

compress(L,C) iff C is a list of <vi,ci> couples, such that the ith plateau of L has ci elements
equal to vi,
where L is a list, and C is a compact list.

delOddElems(L,R) iff R is L without its odd elements,
where L, R are integer lists.

efface(E,L,R) iff R is L without its first (existing) occurrence of E,
where E is a term, L is a non-empty list, and R is a list.

firstN(N,L,R) iff R is the first N elements of L,
where N is an integer, L is a list of at least N elements, and R is
a list of N elements.

firstPlateau(L,P,S) iff P is the first plateau of L, and S is the corresponding suffix of L,
where L is a non-empty list, P is a plateau, and S is a list.

flatTree(T,L) iff L is the infix traversal of T,
where L is a list, and B is a binary tree.

insert(E,L,R) iff R is L with E inserted at the right place,
where E is an integer, L is an ascending integer list, and R is a
non-empty ascending integer list.
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length(L,N) iff N is the length of L,
where N is an integer, and L is a list.

member(E,L) iff E is an element of L,
where E is a term, and L is a list.

merge(A,B,C) iff C is the merger of A and B,
where A, B, C are ascending integer lists.

minimum(L,M) iff M is the minimum of L,
where M is an integer, and L is a non-empty integer list.

multiply(X,Y,P) iff P is the product of X and Y,
where X, Y, P are integers.

parity(L,R) iff R is even when L is of even length, and odd otherwise,
where L is a list, and R is a term.

partition(L,P,S,B) iff S (respectively B) contains the elements of L that are smaller than
(respectively bigger than or equal to) the pivot P,
where L, S, B are integer lists, and P is an integer.

permutation(L,P) iff P is a permutation of L,
where L, P are lists.

plateau(N,E,P) iff P is a plateau of N elements equal to E,
where N is a positive integer, E a term, and P a non-empty list.

reverse(L,R) iff R is the reverse of L,
where L, R are lists.

sort(L,S) iff S is an ascendingly ordered permutation of L,
where L, S are integer lists.

split(L,F,S) iff F is the first half of L, and S is the second half of L,
where L, F, S are lists.

stuff(E,L,R) iff R is L with E inserted at a random place,
where E is a term, L is a list, and R is a non-empty list.

sum(L,S) iff S is the sum of the elements of L,
where S is an integer, and L is an integer list.

5.2.2 Sample Logic Algorithms

We now list sample logic algorithms in order to illustrate the variety of difficulties that arise.
No domain checking literals have been added. The given logic algorithms may look some-
what contrived, and are definitely subject to many simplifying transformation opportunities,
but these versions make subsequent analysis much easier. Also, these logic algorithms do not
always exactly result from an application of the construction methodology of [Deville 90],
as outlined in the previous chapter.

We first construct a few alternative logic algorithms for the compress predicate of
Chapter 4. Then we list some logic algorithms for some of the problems posed in
Section 5.2.1.

Alternative Logic Algorithms for the compress/2 Predicate

In order to give some more insights into Stage B of the existing methodology, we first con-
struct a few alternative logic algorithms for the compress predicate.

Let’s first reconsider Step 2 (Selection of a Well-Founded Relation), and follow the Ex-
trinsic Heuristic when selecting a well-founded relation over the type of the induction param-
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eter L. This means that we want to decompose L into something smaller in a way reflecting
the structure of parameter C. Every element of C represents a “summary” of a plateau of L,
so the idea is to decompose L by extracting its first plateau as head of L, and the correspond-
ing suffix as tail of L. This decomposition is non-trivial, but considerably facilitates the rest
of the construction. Step 3 is unaffected by this decision, and after Step 4, the result is:

compress(L,C) ⇔
L=[] ∧ C=[]

∨ L=[_|_] ∧ firstPlateau(L,HL,TL)
∧ compress(TL,TC)
∧ plateau(N,E,HL) ∧ HC=<E,N>
∧ C=[HC|TC]

Logic Algorithm 5-1: LA(compress-ext-L)

Let’s now reconsider Step 1 (Selection of an Induction Parameter), and select the other
parameter, C, as induction parameter. At Step 2 (Selection of a Well-Founded Relation), we
first follow the Intrinsic Heuristic, and select “is the tail of” as well-founded relation over the
type of the induction parameter. Step 3 is straightforward, and after Step 4, the result is:

compress(L,C) ⇔
C=[] ∧ L=[]

∨ C=[_|_] ∧ C=[HC|TC]
∧ compress(TL,TC)
∧ HC=<E,N> ∧ plateau(N,E,HL)
∧ firstPlateau(L,HL,TL)

Logic Algorithm 5-2: LA(compress-int-C)

Let’s finally reconsider Step 2 (Selection of a Well-Founded Relation), and follow the Ex-
trinsic Heuristic when selecting a well-founded relation over the type of induction parameter
C. This means that we want to decompose C into something smaller in a way reflecting the
structure of parameter L. Every element of L represents an increment by 1 of the counter in
an element of C, so the idea is to decompose C by decrementing, if possible, the counter of
its first element by 1. Step 3 is unaffected by this decision, and after Step 4, the result is:

compress(L,C) ⇔
C=[] ∧ L=[]

∨ C=[_|_] ∧ decompose(C,HC,TC)
∧ compress(TL,TC)
∧ HL=HC
∧ L=[HL|TL]

decompose(C,HC,TC) ⇔
C=[<E,s(N)>|T] ∧ N=0 ∧ HC=E ∧ TC=T

∨ C=[<E,s(N)>|T] ∧ N>0 ∧ HC=E ∧ TC=[<E,N>|T]
Logic Algorithm 5-3: LA(compress-ext-C)

Note that Logic Algorithm 5-1 and Logic Algorithm 5-2 are almost identical. Also, Logic
Algorithm 4-3 and an unfolded version of Logic Algorithm 5-3 would be almost identical.

Logic Algorithms for Other Predicates

Here follow, in alphabetical order on the predicates, some logic algorithms for some prob-
lems posed in Section 5.2.1. We do not explain their design processes, but give some useful
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comments on the results. The reader is invited to check that they are correct wrt their speci-
fications. Unless otherwise noted, they have all been designed with the Intrinsic Heuristic.
Example 5-1: The following logic algorithm for delOddElems(L,R) has been designed
with L as induction parameter. A design with R as induction parameter would yield a quite
similar logic algorithm.

delOddElems(L,R) ⇔
L=[] ∧ R=[]

∨ L=[_|_] ∧ L=[HL|TL]
∧ odd(HL)
∧ delOddElems(TL,TR)
∧ HR=_
∧ R=TR

∨ L=[_|_] ∧ L=[HL|TL]
∧ ¬odd(HL)
∧ delOddElems(TL,TR)
∧ HR=HL
∧ R=[HR|TR]

Logic Algorithm 5-4: LA(delOddElems-L)

Example 5-2: The following logic algorithm for efface(E,L,R) has been designed with L
as induction parameter. A design with R would yield a quite similar logic algorithm. Note
that the non-minimal form gives rise to two cases, one of them without recursion. Also note
that E could have been used instead of TE in the recursive atom, because both are unified with
HE. Such a parameter is called an auxiliary parameter, because it has nothing to do with the
inductive nature of the problem. Induction on an auxiliary parameter obviously is a bad idea.

efface(E,L,R) ⇔
L=[_] ∧ L=[HL] ∧ E=HL ∧ R=[]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ HL=E
∧ E=HL ∧ R=TL

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ HL≠E
∧ efface(TE,TL,TR)
∧ HE=_ ∧ HR=HL
∧ E=TE ∧ R=[HR|TR]
Logic Algorithm 5-5: LA(efface-L)

Example 5-3: The following logic algorithm for firstN(N,L,R) has been designed with L as
induction parameter. A design with R as induction parameter would yield a quite similar
logic algorithm. The non-minimal form gives rise to two cases, one of them without a
recursive atom. Note the relevant redundancy between the N=0 atoms.
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firstN(N,L,R) ⇔
L=[] ∧ N=0 ∧ R=[]

∨ L=[_|_] ∧ L=[HL|TL]
∧ N=0
∧ N=0 ∧ R=[]

∨ L=[_|_] ∧ L=[HL|TL]
∧ N>0
∧ firstN(TN,TL,TR)
∧ HN=_ ∧ HR=HL
∧ N=s(TN) ∧ R=[HR|TR]
Logic Algorithm 5-6: LA(firstN-L)

The following other logic algorithm for firstN(N,L,R) has been designed with N as induction
parameter. Note the interesting variable sharing between HL and HR: their value is “invent-
ed”, but common. Also note the relevant presence of a true atom.

firstN(N,L,R) ⇔
N=0 ∧ L=_ ∧ R=[]

∨ N>0 ∧ N=s(TN) ∧ HN=N
∧ true
∧ firstN(TN,TL,TR)
∧ HL=A ∧ HR=A
∧ L=[HL|TL] ∧ R=[HR|TR]
Logic Algorithm 5-7: LA(firstN-N)

Example 5-4: The following logic algorithm for insert(E,L,R) has been designed with L as
induction parameter. Parameter E is an auxiliary parameter. Note that the non-minimal form
gives rise to two cases, one of them without a recursive atom.

insert(E,L,R) ⇔
L=[] ∧ E=_ ∧ R=[E]

∨ L=[_|_] ∧ L=[HL|TL]
∧ HL≥E
∧ E=_ ∧ R=[E|L]

∨ L=[_|_] ∧ L=[HL|TL]
∧ HL<E
∧ insert(TE,TL,TR)
∧ HE=_ ∧ HR=HL
∧ E=TE ∧ R=[HR|TR]
Logic Algorithm 5-8: LA(insert-L)

The following other logic algorithm for insert(E,L,R) has been designed with R as induction
parameter. Note that the non-minimal form gives rise to two cases, one of them without a re-
cursive atom.
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insert(E,L,R) ⇔
R=[_] ∧ R=[A] ∧ E=A ∧ L=[]

∨ R=[_,_|_] ∧ R=[HR|TR]
∧ HR=E
∧ E=HR ∧ L=TR

∨ R=[_,_|_] ∧ R=[HR|TR]
∧ HR<E {HR≠E would do as well}
∧ insert(TE,TL,TR)
∧ HE=_ ∧ HL=HR
∧ E=TE ∧ L=[HL|TL]
Logic Algorithm 5-9: LA(insert-R)

Example 5-5: The following logic algorithm for member(E,L) has been designed with L
as induction parameter. Parameter E is an auxiliary parameter. Note that the non-minimal
form gives rise to two cases, one of them without a recursive atom. Also note how the desired
non-determinism is achieved.

member(E,L) ⇔
L=[_] ∧ L=[A] ∧ E=A

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ true
∧ E=HL

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ true
∧ member(TE,TL)
∧ HE=_
∧ E=TE

Logic Algorithm 5-10: LA(member-L)

Example 5-6: The following logic algorithm for merge(A,B,C) has been designed with the
couple <A,B> as compound induction parameter. Note the different decomposition patterns.
Parameter A or B alone as induction parameter does not lead to a successful design. This is
however possible with C alone, but we do not list that logic algorithm here.
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merge(A,B,C) ⇔
A=[] ∧ C=B

∨ B=[] ∧ C=A
∨ A=[_|_] ∧ B=[_|_]

∧ A=[HA|TA] ∧ B=[HB|TB]
∧ HA=HB
∧ merge(TA,TB,TC)
∧ HC=HA ∧ HC=HB
∧ C=[HC,HC|TC]

∨ A=[_|_] ∧ B=[_|_]
∧ A=[HA|TA] ∧ B=TB
∧ HA<HB ∧ B=[HB|_]
∧ merge(TA,TB,TC)
∧ HC=HA
∧ C=[HC|TC]

∨ A=[_|_] ∧ B=[_|_]
∧ A=TA ∧ B=[HB|TB]
∧ HA>HB ∧ A=[HA|_]
∧ merge(TA,TB,TC)
∧ HC=HB
∧ C=[HC|TC]

Logic Algorithm 5-11: LA(merge-<A,B>)

Example 5-7: The following logic algorithm for parity(L,R) has been designed with L as
induction parameter. Note that there are two minimal forms, and that the non-minimal form
is decomposed by taking two elements away from L.

parity(L,R) ⇔
L=[] ∧ R=even

∨ L=[_] ∧ R=odd
∨ L=[_,_|_] ∧ L=[HL1,HL2|TL]

∧ true
∧ parity(TL,TR)
∧ HR=_
∧ R=TR
Logic Algorithm 5-12: LA(parity-L)

Example 5-8: The following logic algorithm for partition(L,P,S,B) has been designed with
L as induction parameter. Parameter P is an auxiliary parameter.
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partition(L,P,S,B) ⇔
L=[] ∧ P=_ ∧ S=[] ∧ B=[]

∨ L=[_|_] ∧ L=[HL|TL]
∧ HL≥P
∧ partition(TL,TP,TS,TB)
∧ HP=_ ∧ HS=_ ∧ HB=HL
∧ P=TP ∧ S=TS ∧ B=[HB|TB]

∨ L=[_|_] ∧ L=[HL|TL]
∧ HL<P
∧ partition(TL,TP,TS,TB)
∧ HP=_ ∧ HS=HL ∧ HB=_
∧ P=TP ∧ S=[HS|TS] ∧ B=TB

Logic Algorithm 5-13: LA(partition-L)

Example 5-9: The following logic algorithm for permutation(L,P) has been designed with
L as induction parameter. Because of the symmetry of the underlying relation, a design with
P as induction parameter would yield the same logic algorithm. Note that the use of
efface(HP,P,TP) rather than stuff(HP,TP,P) avoids redundant solutions at the logic program
level.

permutation(L,P) ⇔
L=[] ∧ P=[]

∨ L=[_|_] ∧ L=[HL|TL]
∧ permutation(TL,TP)
∧ HP=HL
∧ efface(HP,P,TP)

Logic Algorithm 5-14: LA(permutation-L)

Example 5-10: The following logic algorithm for plateau(N,E,P) has been designed with
N as induction parameter. A design with P as induction parameter would yield a quite similar
logic algorithm. Note the intricate way in which HP is unified with the correct value.
Parameter E is an auxiliary parameter.

plateau(N,E,P) ⇔
N=1 ∧ E=_ ∧ P=[E]

∨ N>1 ∧ N=s(TN) ∧ HN=N
∧ plateau(TN,TE,TP)
∧ HE=A ∧ HP=A
∧ E=TE ∧ E=HE ∧ P=[HP|TP]

Logic Algorithm 5-15: LA(plateau-N)

Example 5-11: The following logic algorithm for sort(L,S) has been designed with L as
induction parameter, following the Intrinsic Heuristic. The result is the Insertion-Sort
algorithm.
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sort(L,S) ⇔
L=[] ∧ S=[]

∨ L=[_|_] ∧ L=[HL|TL]
∧ sort(TL,TS)
∧ HS=HL
∧ insert(HS,TS,S)

Logic Algorithm 5-16: LA(sort-int-L) {Insertion-Sort}

The following other logic algorithm for sort(L,S) has been designed with L as induction pa-
rameter, following the Extrinsic Heuristic by partitioning L according to some pivot element.
The result is the Quick-Sort algorithm.

sort(L,S) ⇔
L=[] ∧ S=[]

∨ L=[_|_] ∧ L=[HL|T] ∧ partition(T,HL,TL1,TL2)
∧ sort(TL1,TS1) ∧ sort(TL2,TS2)
∧ HS=HL
∧ append(TS1,[HS|TS2],S)

Logic Algorithm 5-17: LA(sort-ext-L) {Quick-Sort}

The following other logic algorithm for sort(L,S) has been designed with L as induction pa-
rameter, following the Extrinsic Heuristic by splitting L into two halves. The result is the
Merge-Sort algorithm.

sort(L,S) ⇔
L=[] ∧ S=[]

∨ L=[_|_] ∧ split(L,TL1,TL2)
∧ sort(TL1,TS1) ∧ sort(TL2,TS2)
∧ merge(TS1,TS2,S)

Logic Algorithm 5-18: LA(sort-ext-L) {Merge-Sort}

Example 5-12: The following logic algorithm for split(L,F,S) has been designed by a
totally different method, namely introduction of an additional parameter, plus logic
algorithm design by structural induction for the new problem.

split(L,F,S) ⇔
split(L,L,F,S)

split(L,M,F,S) ⇔
M=[] ∧ F=[] ∧ S=L

∨ M=[_] ∧ F=[] ∧ S=L
∨ M=[_,_|_] ∧ M=[HM1,HM2|TM] ∧ L=[HL|TL]

∧ true
∧ split(TL,TM,TF,TS)
∧ HF=HL ∧ HS=_
∧ F=[HF|TF] ∧ S=TS

Logic Algorithm 5-19: LA(split)
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5.2.3 Some Comments on Logic Algorithms

Several aspects of logic algorithm design can be discussed now. We first propose a useful ter-
minology for logic algorithm classification, and then show in what sense minimal cases and
non-recursive non-minimal cases, though syntactically similar, are totally different concepts.

Logic Algorithm Classification

Logic Algorithms can be classified along five dimensions, namely according to how the in-
duction parameter is decomposed, according to how much of the induction parameter is ac-
tually traversed, according to how many times the induction parameter is traversed,
according to the determinism of the defined relation given a ground value of the induction
parameter, and according to the kind of manipulations performed on the constituents (con-
stants and variables) of the parameters.

Regarding the decomposition of the induction parameter, we distinguish between the fol-
lowing three categories of logic algorithms:

• intrinsic-decomposition logic algorithms: if X is decomposed into h≥1 heads and t≥1
tails in a manner reflecting the definition of the type of X; for instance, decompose a
list L into its head HL and tail TL;

• extrinsic-decomposition logic algorithms: if X is decomposed into h≥0 heads and t≥1
tails in a manner reflecting the definition of the type of some other parameter than X,
or reflecting the intended relation; for instance, partition an integer-list L according to
a pivot P into a list S of elements smaller than P and a list B of elements bigger than or
equal to P;

• logarithmic-decomposition logic algorithms: if X is decomposed into h=0 heads and
t≥2 tails of about equal size; for instance, split a list L into two halves A and B.

An intrinsic decomposition reflects a well-founded relation selected via the Intrinsic Heuris-
tic, and an extrinsic or logarithmic decomposition reflects a well-founded relation selected
via the Extrinsic Heuristic (see Chapter 4). Sample classifications are given below.

Regarding the scope of the traversal of the induction parameter, we here distinguish be-
tween the following two categories of logic algorithms:

• complete-traversal logic algorithms: all elements of the induction parameter are visit-
ed;

• prefix-traversal logic algorithms: only the first few elements of the induction parameter
are visited.

Sample classifications are given below.
Regarding the number of times the induction parameter is actually traversed, we distin-

guish between the following two categories of logic algorithms:
• single-loop logic algorithms: only one traversal of the induction parameter is being

performed at any moment;
• multiple-loop logic algorithms: at least two nested traversals of the induction parameter

are performed at some moment.
Sample classifications are given below.

Regarding the determinism of a logic algorithm given ground values of the induction pa-
rameter and the auxiliary parameter(s), we define the following notions.
Definition 5-1: A scalar is either an integer, or the special symbol ∗ (representing any
finite integer), or the special symbol ∞ (representing infinity).
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Definition 5-2: Let min and max be two scalars. Let LP(r) be the logic program derived
from a logic algorithm LA(r). Let r(t) be an atom where the induction parameter and the
auxiliary parameter(s) are ground, and all other parameters are variables. We say that LA(r)
is min – max deterministic iff there are between min and max ground instances of r(t) for
which there exists an SLDNF refutation using LP(r).

The following terminology is then useful for classifying logic algorithms according to
their determinism:

• deterministic logic algorithms are 0 – 1 deterministic;
• fully-deterministic logic algorithms are 1 – 1 deterministic;
• non-deterministic logic algorithms are min – max deterministic, where min is an inte-

ger greater than 0, and max is either an integer greater than min, or ∗, or ∞;
• finite logic algorithms are min – max deterministic, where min is an integer, and max is

either an integer greater than min, or ∗;
• infinite logic algorithms are min – ∞ deterministic, where min is any scalar.

Sample classifications are given below.
Finally, regarding the kind of manipulations that are performed on the constituents of the

parameters, we distinguish between the following two categories of logic algorithms:
• structural-manipulation logic algorithms: some—if not all—constituents of the induc-

tion parameter are shuffled around unconditionally, because their values are irrelevant,
for the construction of the other parameters;

• semantic-manipulation logic algorithms: some—if not all—constituents of the induc-
tion parameter are shuffled around conditionally, because their values are relevant, or
even new constituents are created, for the construction of the other parameters.

This last dimension is actually also applicable for classifying relations, as no design choice
affects into which category the resulting logic algorithms fall.
Example 5-13: Table 5-1 charts the features of the relations for which logic algorithms
have been given so far. The columns list (from left to right):

• the arity of the relation;
• the presence of auxiliary parameters (denoted by their names), or the absence (denoted

no) of auxiliary parameters;
• the kind of the manipulations on the parameters. ♦

But this ambivalence does not hold for the first four dimensions, because a relation might
give rise to several logic algorithms that are classified differently along these dimensions.
Example 5-14: Table 5-2 charts the features of the logic algorithms given so far. The
columns list (from left to right):

• the name of the selected induction parameter;
• the kind of the selected induction parameter (where s stands for simple induction pa-

rameter, and c stands for compound induction parameter);
• the kind of traversal performed on the induction parameter (where comp stands for

complete-traversal, and pre stands for prefix-traversal);
• the determinism of the logic algorithm given ground values of the induction parameter

and the auxiliary parameter(s);
• the number of structural forms of the induction parameter, represented as a+b, where

a is the number of minimal forms, and b is the number of non-minimal forms;
• the selected strategy of decomposition of the induction parameter (where int stands for

intrinsic decomposition, ext stands for extrinsic decomposition, and log stands for log-
arithmic decomposition);
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• the number of cases of the logic algorithm, represented as u+v+w, where u is the num-
ber of minimal cases, v is the number of non-minimal non-recursive cases, and w is the
number of non-minimal recursive cases;

• the number of loops performed by the logic algorithm (where 1 indicates that it is a sin-
gle-loop logic algorithm, and integers greater than 1 indicates that it is a multiple-loop
logic algorithm);

• the number of the logic algorithm within this thesis, and the page where it can be found.
The first four features are independent of the selected decomposition strategy. The numbers
of cases and loops depend on the selected decomposition strategy. ♦

Minimal Cases and Non-Recursive, Non-Minimal Cases

As the logic algorithms of this thesis exhibit, not all non-minimal cases are recursive. Indeed,
prefix-scan logic algorithms have such cases. But some structural cases of logic algorithms
in Chapter 4, or [Deville 90], seem hard to classify. There are several potential reasons to this.

A first reason is that non-recursive, non-minimal cases of prefix-scan logic algorithms can
often be merged with their minimal cases. The resulting logic algorithm looks like it has no
minimal case. It exhibits cases whose structural forms are not mutually exclusive, and is thus
easy to detect as being a rewriting from the “canonical” version.
Example 5-15: Logic Algorithm 5-5 could be rewritten as follows:

Table 5-1: Summary of the features of some sample relations

Arity AP Manipulation

compress 2 no semantic

delOddElems 2 no semantic

efface 3 E semantic

firstN 3 no structural

firstPlateau 3 no semantic

insert 3 E semantic

member 2 E structural

merge 3 no semantic

parity 2 R structural

partition 4 P semantic

permutation 2 no structural

plateau 3 E semantic

sort 2 no semantic

split 4 no structural
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efface(E,L,R) ⇔
L=[_|_] ∧ L=[HL|TL]

∧ HL=E
∧ E=HL ∧ R=TL

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ HL≠E
∧ efface(TE,TL,TR)
∧ HE=_ ∧ HR=HL
∧ E=TE ∧ E=HE ∧ R=[HR|TR]

The form L=[_|_] is not a minimal form,as it overlaps with the other form. It rather results
from a merger of the minimal case and the non-recursive, non-minimal case. ♦

Table 5-2: Summary of the features of some sample logic algorithms

IP K Trav Det Fms Dec Cases Lps LA #, page #

compress

L s comp 1 – 1 1+1
int 1+0+2 1 4-3, page 61

ext 1+0+1 2 5-1, page 68

C s comp 1 – 1 1+1
int 1+0+1 2 5-2, page 68

ext 1+0+1 1 5-3, page 68

delOddElems L s comp 1 – 1 1+1 int 1+0+2 1 5-4, page 69

efface L s pre 1 – 1 1+1 int 1+1+1 1 5-5, page 69

firstN
L s pre 1 – ∗ 1+1 int 1+1+1 1 5-6, page 70

N s comp 1 – 1 1+1 int 1+0+1 1 5-7, page 70

firstPlateau L s pre 1 – 1 1+1 int 1+1+1 1 4-2, page 58

insert
L s pre 1 – 1 1+1 int 1+1+1 1 5-8, page 70

R s pre 1 – 1 1+1 int 1+1+1 1 5-9, page 71

member L s comp 1 – ∗ 1+1 int 1+1+1 1 5-10, page 71

merge A,
B c comp 1 – 1 2+1 int 2+0+3 1 5-11, page 72

parity L s comp 1 – 1 2+1 int 2+0+1 1 5-12, page 72

partition L s comp 1 – 1 1+1 int 1+0+2 1 5-13, page 73

permutation L s comp 1 – ∗ 1+1 int 1+0+1 2 5-14, page 73

plateau N s comp 1 – 1 1+1 int 1+0+1 1 5-15, page 73

sort L s comp 1 – 1 1+1

int 1+0+1 2 5-16, page 74

ext 1+0+1 2 5-17, page 74

log 1+0+1 2 5-18, page 74

split M s comp 1 – 1 2+1 int 2+0+1 1 5-19, page 74
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Another reason for non-recursive, non-minimal cases is recursion elimination by partial
evaluation. The result is a non-minimal case that looks like a minimal case. This is harder to
detect, since the cases still exhibit mutually exclusive structural forms. There is of course no
limit to creating non-recursive, non-minimal cases by partial evaluation.
Example 5-16: Logic Algorithm 4-1 is actually a rewriting of:

compress(L,C) ⇔
L=[] ∧ C=[]

∨ L=[_|_] ∧ L=[HL|TL]
∧ ( TL=[] ) ∨ ( L=[HL1,HL2|_] ∧ HL1≠HL2 )
∧ compress(TL,TC)
∧ HC=<HL,1>
∧ C=[HC|TC]

∨ L=[_|_] ∧ L=[HL|TL]
∧ L=[HL1,HL2|_] ∧ HL1=HL2
∧ compress(TL,TC)
∧ HC=_
∧ C=[<V,s(N)>|TTC] ∧ TC=[<V,N>|TTC]

Indeed, we have that TL=[] iff TC=[], so the rewriting was correct. But it was also misleading,
as the fact that there really is only one minimal case and only one non-minimal form was not
apparent at all. ♦

It is important to understand that such logic algorithms with non-recursive, non-minimal
cases are the result of re-writing “canonical” logic algorithms, rather than unpleasant aber-
rations.

5.3 Challenges
Looking at the sheer variety of possible logic algorithms, some of them in the preceding sec-
tion, the automatic synthesis of logic algorithms looks like quite a formidable task. Indeed,
the following difficulties need to be tackled:

• What induction parameter to select? How to discover compound induction parame-
ters? According to what well-founded relation to decompose the induction parameter?
Ideally, a synthesis mechanism should be able to design the whole family of possible
logic algorithms for a given problem. For instance, given the sorting problem, at least
the three logic algorithms above should be designed.

• How many structural forms are there? The number of minimal and non-minimal struc-
tural forms is specific to each logic algorithm. While most logic algorithms seem to
have one minimal and one non-minimal form, this does not always hold, as illustrated
by the logic algorithms for parity/3 and split/4.

• What are the structural forms? The type of the induction parameter is not sufficient to
infer its structural forms: these are actually dependent on the domain of the induction
parameter, and are thus a problem-specific issue.

• Into how many cases is each structural case divided? How to discriminate between
these sub-cases? Many of the logic algorithms listed above fork their non-minimal
case into two sub-cases.

• How to detect that recursion is useless in some non-minimal sub-cases? Sometimes,
the desired result is obtained before reducing the induction parameter to a minimal
form, and no recursion is then needed: this happens for instance in the logic algorithms
for efface/3 and insert/3. The existence or not of useless recursion is dependent on the
selected induction parameter, as illustrated by the two logic algorithms for firstN/3.
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• How to “invent” or re-use appropriate predicates? How to implement “invented”
predicates? The combination of partial results often is a full-scale problem by itself, as
illustrated by the logic algorithms for compress/2 (induction on C), permutation/2, and
sort/2. The same holds for a decomposition following the Extrinsic Heuristic. This is
known as the predicate invention problem.

• How to discover which parameters are auxiliary parameters? Problems such as ef-
face/3, insert/3, member/2, partition/4, and plateau/3 have auxiliary parameters: un-
less this is stated somewhere, considerable design effort may go into detecting this. The
logic algorithms listed above for these problems actually are versions for which the de-
tection was not yet done.

• How to synthesize logic algorithms that are non-deterministic, such as those for mem-
ber/2 and permutation/2? As seen in Section 2.4, this is known to be a hard problem
for deductive synthesis approaches.

• How to achieve a synthesis that yields logic algorithms that are correct wrt their spec-
ifications? This is another tough problem.

and so on. This list of challenges is impressive. The answers depend of course a lot on the
chosen specification language. Once that language defined, and a synthesis mechanism de-
veloped for it, we evaluate the results to see to what extent we have brought answers to these
challenges.

5.4 Results and Contributions

Our synthesis mechanism builds upon a wide variety of ideas found in algorithm design, in-
ductive inference, deductive inference, theorem proving, and so on.

In Part II, we provide the building blocks that are used later (in Part III) for the develop-
ment of a logic algorithm synthesis mechanism. These building blocks are a language for ex-
pressing incomplete specifications (Chapter 6), a complete theoretical framework for the
formulation of stepwise synthesis strategies (Chapter 7), an introduction to the notion of al-
gorithm schemas and their usage in algorithm synthesis (Chapter 8), a method for deductive-
ly synthesizing parts of logic algorithms (Chapter 9), and another method for inductively
synthesizing parts of logic algorithms (Chapter 10). Note that Chapters 7 to 10 may be read
in any order. More specifically:

In Chapter 6, we define a specification approach that is based on the notions of examples
and properties. It requires multiple, ground, single-predicate, relational, positive and nega-
tive, pre-synthesis examples that are chosen in a consistent way by a human specifier who
knows the intended relation. The presence of properties (whose actual language is applica-
tion-specific, and thus left unspecified for a while) is meant to overcome the problems of am-
biguity and limited expressive power of examples, while still preserving their virtues of
naturalness and conciseness. Such specification languages are quite expressive and readable.
Specifications by examples and properties are usually incomplete, and hence ambiguous, but
minimal. There is a danger of internal inconsistency and redundancy in such specifications,
though. This specification approach holds the promise of faster and more dependable synthe-
sis than from specifications by examples alone.

In Chapter 7, we develop a complete theoretical framework for stepwise synthesis of logic
algorithms from specifications by examples and properties. Three layers of new correctness
criteria relating intentions, specifications, and logic algorithms are introduced. Comparison
criteria relating logic algorithms in terms of semantic or syntactic generality are then pro-
posed. All these criteria provide an adequate structure for the formulation of stepwise syn-
thesis strategies, be they incremental (examples and properties are presented one-by-one) or
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non-incremental (examples and properties are presented all-at-once). A particular non-incre-
mental strategy is developed in greater detail for use in the sequel.

In Chapter 8, we discuss algorithm schemas as an important support for algorithm design.
Such schemas are an old idea in computer science, but one of the major ideas of this thesis
is that schema-independent methods can be developed for the synthesis of instances of the
variables of schemas. Such methods may be merely based on databases of useful instances,
but more sophisticated methods would perform actual computations for inferring such in-
stances. Such computations would be based on the specifications and the algorithm designed
so far. Several methods of such a tool-box might be applicable at each step, thus yielding op-
portunities for user interaction, or for the application of heuristics. We thus advocate a very
disciplined approach to algorithm synthesis: rather than using a uniform method for instan-
tiating all variables of a given schema (possibly without any awareness of such a schema),
one should deploy for each variable the best-suited method. In other words, we propose to
view research on automatic programming as:

(1) the search for adequate schemas;
(2) the development of useful methods of predicate variable instantiation;
(3) the discovery of interesting mappings between these methods and the variables of

these schemas.
As many methods would be schema-independent, and hence variable-independent, one could
even investigate synthesis methodologies that are parameterized on schemas. In other words,
a first step would be to select an appropriate schema, and the subsequent steps would be ei-
ther a hardwired sequence (specific to the selected schema) of applications of methods, or a
user-guided selection of variables and methods. Our grand view of algorithm synthesis sys-
tems thus is one of a large workbench with a disparate set of specialized methods and a set
of schemas that covers (as much as possible of) the space of all possible algorithms.

In Chapter 9, we develop the Proofs-as-Programs Method, which deductively adds literals
to a logic algorithm so that it satisfies a given set of properties. The added literals are extract-
ed from the proof that the given logic algorithm is complete wrt these properties. This is not
a new problem, but our method extends some existing methods, and is completely different
from others. This method is part of our tool-box for instantiating variables of an algorithm
schema.

In Chapter 10, we develop the Most-Specific-Generalization Method, which inductively
synthesizes a logic algorithm from a set of examples. The intended relation, though unknown
as a whole, is however known to feature a given data-flow pattern between its parameters.
This method is applicable if the intended relation can be expressed by a logic algorithm that
is defined solely in terms of the =/2 primitive. The synthesized logic algorithm is correct wrt
a “natural extension” of the given examples. Note that this method is also part of our tool-
box for instantiating variables of an algorithm schema, but not meant to be a solution to the
more general problem of synthesis from specifications by examples. Indeed, our problem
statement is much more specific here, which justifies the highly specialized, new method.

Most of these building blocks are thus not necessarily new (to algorithm synthesis), but
they are here combined in a novel way, if not extended, and associated with some new results.

In Part III, we develop an actual logic algorithm synthesis mechanism from incomplete
specifications by examples and properties (as seen in Chapter 6). It fits the particular non-
incremental synthesis strategy (presented in Chapter 7), is guided by a divide-and-conquer
algorithm schema (as seen in Chapter 8), and uses the tool-box of methods (developed in
Chapter 9 and Chapter 10). More specifically:

In Chapter 11, we motivate the desired features of the mechanism (such as the actual lan-
guage for the properties), and argue for a series of preliminary restrictions, so as to keep the
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presentation simple until the discussion of its extensions. We also give an intuitive overview
of the entire synthesis mechanism by illustrating it on a sample execution, so as to give the
reader the feel for its working.

In Chapter 12, we give full detail about the expansion phase of synthesis, that is the first
four steps of the mechanism. These steps are rather straightforward, and do not require any
sophisticated methods.

In Chapter 13, we give full detail about the reduction phase of synthesis, that is the re-
maining three steps of the mechanism. These steps are the truly creative ones, and require the
sophisticated methods of the tool-box developed in Chapter 9 and Chapter 10.

In Chapter 14, we provide a detailed evaluation of the obtained synthesis mechanism wrt
the challenges of the previous section. Domain generality and full automation are sacrificed
for the sake of better end-user orientation, and because this is a most reasonable approach
with incomplete specifications anyway. Incorporated knowledge sources are the algorithms
knowledge of the divide-and-conquer schema, and domain knowledge about types. Whole
algorithm families can be synthesized from a single specification, because some synthesis
steps are non-deterministic. The predicate invention problem is tackled at various points dur-
ing the synthesis, namely by re-use of predefined predicates, by extraction from the proper-
ties, and by inference of specifications for sub-problems plus subsequent synthesis of sub-
algorithms therefrom. The kinds of inference used during synthesis are inductive inference
and deductive inference. The synthesis mechanism is a hybrid of transformational synthesis
(due to its stepwise approach), proofs-as-programs synthesis, knowledge-based synthesis,
bottom-up approximation-driven empirical learning, and Summers’ recurrence detection
mechanism. The synthesis of multiple-loop logic algorithms and of non-deterministic logic
algorithms is possible. We also discuss some extensions to the synthesis mechanism (such as
the handling of negation, of auxiliary parameters, and of other schemas). Finally, we outline
a methodology for choosing “good” examples and properties, which, when followed, in-
creases dependability and speed of synthesis, and decreases the need for interaction with the
specifier. The mechanism seems very robust to example ordering and example choice,
though.

A prototype implementation of this synthesis mechanism is being developed. It is called
SYNAPSE (SYNthesis of logic Algorithms from PropertieS and Examples), and is written in
portable Prolog.
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II BUILDING BLOCKS
In this second part, we provide the building blocks for a solution to our objective. Thus, in
Chapter 6, we define a generic specification approach that is based on examples and proper-
ties. Next, in Chapter 7, we develop a theoretical framework for stepwise synthesis of logic
algorithms from such specifications, and address the aspects of correctness and comparison
of logic algorithms. In Chapter 8, we introduce logic algorithm schemata as an important
support for logic algorithm design. Chapter 9 is about the Proofs-as-Programs Method,
which deductively enhances a logic algorithm such that it satisfies certain correctness criteria
wrt a given set of properties. Finally, Chapter 10 is about the Most-Specific-Generalization
Method, which inductively infers a logic algorithm from a given set of examples. Chapters 7
to 10 may be read in any order.
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6 A Specification Approach
The first building block is the actual specification formalism used to elaborate the input to
algorithm synthesis. An arbitrary choice has been made here to investigate synthesis from in-
complete specifications. Starting from the pros and cons of specifications by examples, and
of specifications by axioms, as outlined in Part I, we define, in Section 6.1, a specification
approach that is based on examples and properties. Then, in Section 6.2, we illustrate this ap-
proach on a few sample problems. Future work and related work are discussed in Section 6.3
and Section 6.4, respectively, before drawing some conclusions in Section 6.5.

6.1 Specifications by Examples and Properties
When contrasting the pros and cons of specifications by axioms (as seen in Section 2.1) and
specifications by examples (as seen in Section 3.1), it turns out that these specification ap-
proaches are quite complementary, each alleviating the drawbacks of the other by its own ad-
vantages. This gives rise to the idea of combining these two specification approaches so as
to preserve only their benefits, while diminishing their disadvantages. But we must bear in
mind the fundamental difference between the two approaches, namely specification com-
pleteness and specification incompleteness.

Merely amalgamating the two formalisms into specifications by axioms and examples is
thus not a good idea, as the incomplete example-set only plays an illustrative side-role to the
complete axiom-set.

But, on the other hand, one could aim at incomplete specifications and add some weaker
form of axioms to the examples so as to overcome the weaknesses of specifications by ex-
amples only. We call properties such a relaxed form of axioms, and only require them to be
written in (some subset of) logic. Indeed, until Part III, we do not restrict ourselves to any
syntax or required computational content of properties. We only assume that properties are
an incomplete source of information. Actually, in case properties were a complete source of
information, most of the results hereafter would remain valid, but not always be relevant.

Let R be the relation one has in mind when elaborating a specification of a procedure for
predicate r. We call R the intended relation, in contrast to the relation actually specified,
called the specified relation. This distinction is very important in general, but crucial with in-
complete specifications, where one deliberately admits a gap between the two.

The following three assumptions are crucial in the sequel. First, we only aim at specifying
relations that give rise to recursive algorithms. This excludes many of the concept descrip-
tions aimed at by the machine learning community. Second, we assume the specifier
knows R, even if s/he doesn’t have a formal definition of it. This also precludes some scenar-
ios envisaged by the machine learning community. Third, we assume that the specified rela-
tion is a sub-set of the intended relation. This means that there is assumed to be no noise in
specifications. These assumptions define a highly specialized niche within the learning prob-
lem, and allow hence some specific choices in the sequel.
Definition 6-1: A specification by examples and properties of a procedure for predicate
r/n, denoted EP(r), consists of:

• a set E(r) of ground examples of r/n, partitioned into:
– a set E+(r) of positive examples of r/n (that is, ground atoms whose n-tuples are

supposed to belong to R);
– a set E–(r) of negative examples of r/n (that is, negated ground atoms whose n-tu-

ples are supposed not to belong to R);
• a set P(r) of properties (first-order logic statements) of r/n.
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The (unique) specified relation is defined as follows:
Definition 6-2: The specified relation of a specification by examples and properties is the
set of tuples extracted from the set of its Herbrand-logical consequences.

It is interesting to note that, very often, examples are properties, because the example lan-
guage is a subset of the property language. In these cases, one could then simply talk about
specifications by properties. But a specification language doesn’t prejudice on how the spec-
ification information is actually used in algorithm design: indeed, an algorithm designer
might use examples in a way that is totally different from the way non-example properties
are used. This is why, in case the language subset relationship holds, we still prefer to talk
about specifications by examples and properties. The assumption then is that the word “prop-
erty” refers to properties that are not examples.

6.2 Sample Specifications by Examples and Properties
Let’s illustrate the notion of specifications by examples and properties by a few sample spec-
ifications. The chosen language for properties is, for the sake of illustration, Horn clauses that
are non-recursive, that have a head with the predicate of the examples, and that may have ne-
gated atoms in their bodies. Universal quantifiers are usually dropped for convenience. Also,
negative examples are not required. Note that most of Part II is independent of these choices.
Our claim is that such properties and examples, if carefully chosen, embody the minimal
knowledge that doesn’t give away the solution, but is sufficient to successful algorithm de-
sign.

In the first two sample specifications hereafter, we also illustrate how properties can be
elaborated as generalized versions of examples.
Example 6-1: A sample version of EP(compress) is:

E(compress) = { compress([],[]) (E1)
compress([a],[a,1]) (E2)
compress([b,b],[b,2]) (E3)
compress([c,d],[c,1,d,1]) (E4)
compress([e,e,e],[e,3]) (E5)
compress([f,f,g],[f,2,g,1]) (E6)
compress([h,i,i],[h,1,i,2]) (E7)
compress([j,k,m],[j,1,k,1,m,1]) } (E8)

P(compress) = { compress([X],[X,1]) (P1)
compress([X,Y],[X,2]) ⇐ X=Y (P2)
compress([X,Y],[X,1,Y,1]) ⇐ X≠Y } (P3)

Note that, for ease of syntax, we have changed the format of compact lists to lists whose el-
ements alternately are values and counters.

How to elaborate these properties?

Note that properties P1 to P3 generalize examples E2 to E4, respectively. Example E1 can’t
be generalized. So what about generalizing examples E5 to E8? The Horn clause:

compress([X, Y, Z], [X, 2, Z, 1]) ⇐ X=Y ∧ Y≠Z
generalizes example E6, and is a legal property. But it doesn’t introduce any predicates the
three properties above don’t already introduce: it could thus be considered a superfluous
property. Similarly, properties generalizing examples E5, E7, or E8 wouldn’t provide any new
information.
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But one could also think about writing properties that generalize more than the given ex-
amples, say with the first parameter being a list of any length. Rather than only generalizing
the problem-specific constants a, b,… of the examples into variables X, Y,…, this consists in
also generalizing the predefined constant nil into a variable, say T. The Horn clauses:

compress([X⏐T], [X, 1⏐U]) ⇐ T≠[X⏐_] ∧ compress(T, U)
compress([X⏐T], [X, s(N)⏐U]) ⇐ compress(T, [X, N⏐U])

compress([X, Y⏐T], [X, 2⏐U]) ⇐ X=Y ∧ T≠[Y⏐_] ∧ compress(T, U)
compress([X, Y⏐T], [X, 1⏐U]) ⇐ X≠Y ∧ compress([Y⏐T], U)

compress([X, Y⏐T], [X, 1, Y, 1⏐U]) ⇐ X≠Y ∧ T≠[Y⏐_] ∧ compress(T, U)
state constraints on compressing lists of at least one, or at least two, elements. But, for us,
they are not properties because of the non-recursion restriction. Indeed, these statements are
already almost identical to clauses of a logic program that correctly implements the given
problem. Moreover, the elaboration of correct recursive properties is almost as difficult as
writing the logic algorithm itself. This is clearly not what one would expect from an incom-
plete specification, and thus speaks in favor of disallowing recursive properties. If one is giv-
en such statements where the gap to a correct logic program is quite small, then the
techniques advocated in this thesis are not adequate, and a purely deductive approach would
be more reasonable.

Evaluation of this specification

When studying this first sample specification, it becomes easily apparent how it improves its
examples-only counterpart: properties allow the specifier to make explicit what s/he perfectly
knows, but can’t express by examples alone. Especially the last two properties in the given
property set embody such additional knowledge: it is equality or disequality of the first two
elements of the non-compressed list that discriminate between having the first counter of the
compressed list being 1 or larger than 1. This knowledge has otherwise to be guessed by the
algorithm designer, which is dangerous (risk of wrong guesses) and time-consuming (enu-
meration of all possible guesses). The addition of disambiguating properties thus holds the
promise of faster and more dependable algorithm design. ♦

Example 6-2: A sample version of EP(firstPlateau) is:
E(firstPlateau) = { firstPlateau([a],[a],[]) (E1)

firstPlateau([b,b],[b,b],[]) (E2)
firstPlateau([c,d],[c],[d]) (E3)
firstPlateau([e,f,g],[e],[f,g]) (E4)
firstPlateau([h,i,i],[h],[i,i]) (E5)
firstPlateau([j,j,k],[j,j],[k]) (E6)
firstPlateau([m,m,m],[m,m,m],[]) } (E7)

P(firstPlateau) = { firstPlateau([X],[X],[]) (P1)
firstPlateau([X,Y],[X,Y],[]) ⇐ X=Y (P2)
firstPlateau([X,Y],[X], [Y]) ⇐ X≠Y } (P3)

How to elaborate these properties?

Properties P1 to P3 generalize the examples E1 to E3, respectively. As in the preceding sam-
ple specification, there is no real motivation to explicitly generalize the other examples. But,
this time, it is possible to generalize the nil constant into a variable without always having to
introduce recursive atoms. The resulting allowed properties are:
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firstPlateau([X⏐T], [X], T) ⇐ T≠[X⏐_] (1)
firstPlateau([X, Y⏐T], [X, Y], T) ⇐ X=Y ∧ T≠[Y⏐_] (2)

firstPlateau([X, Y⏐T], [X], [Y⏐T]) ⇐ X≠Y (3)
and the disallowed properties are:

firstPlateau([X⏐T], [X⏐U], V) ⇐ T=[X⏐_] ∧ firstPlateau(T, U, V)
firstPlateau([X, Y⏐T], [X, Y⏐U], V) ⇐ X=Y ∧ T=[Y⏐_] ∧ firstPlateau(T, U, V)

Each property (i) is more precise than its counterpart Pi, for i=1,2,3. Also, property (1) actu-
ally subsumes property (3). So the probably most useful set of properties would be {(1), (2)}.
But the property set above should also be convenient for algorithm design, even though it is
less precise. The same holds for any set of properties chosen among the six above, as long as
the predicates ≠/2 and =/2 occur in it (the latter may actually be hidden in a unification). ♦

Example 6-3: A sample version of EP(delOddElems) is:
E(delOddElems) = { delOddElems([],[]) (E1)

delOddElems([0],[0]) (E2)
delOddElems([1],[]) (E3)
delOddElems([2,4],[2,4]) (E4)
delOddElems([6,3],[6]) (E5)
delOddElems([5,8],[8]) (E6)
delOddElems([7,9],[]) } (E7)

P(delOddElems) = { delOddElems([X], []) ⇐ odd(X) (P1)
delOddElems([X],[X]) ⇐ ¬odd(X) } (P2)

where odd/1 is assumed to be a primitive, and odd(N) holds iff N is an odd integer. Similar
specifications can be elaborated for other filtering problems. ♦

Example 6-4: A sample version of EP(efface) is:
E(efface) = { efface(a,[a],[]) (E1)

efface(b,[b,c],[c]) (E2)
efface(e,[d,e],[d]) (E3)
efface(f,[f,g,h],[g,h]) (E4)
efface(j,[i,j,k],[i,k]) (E5)
efface(p,[m,n,p],[m,n]) } (E6)

P(efface) = { efface(X,[X|T],T) (P1)
efface(X,[Y,X|T],[Y|T]) ⇐ X≠Y } (P2)

Note that, in property P2, the conclusion actually also holds if X=Y. In other words, property
P2 could be rewritten as follows:

efface(X, [Y, X⏐T], [Y⏐T])
But this new version no longer contains the predicate ≠/2, which is so crucial for disambig-
uating the examples. This is a useful illustration of the following observation: properties are
implications (even though most of them could be recast as equivalences and still be correct),
but nothing prejudices that their conditions must be as general as possible. In other words,
properties are meant to be informative, rather than maximally general.

Also note that the following Horn clause:
efface(X, [Y⏐T], U) ⇐ X≠Y

is an incorrect property, because X≠Y doesn’t imply that X∈[Y⏐T], which is required by the
informal specification. The only way to correct this is to add the atom efface(X,T,U) to the
condition, but the resultant recursive Horn clause is a disallowed property. ♦
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Example 6-5: A sample version of EP(firstN) is:
E(firstN) = { firstN(0,[],[]) (E1)

firstN(0,[a],[]) (E2)
firstN(1,[b,c],[b]) (E3)
firstN(2,[d,e,f],[d,e]) (E4)
firstN(3,[g,h,i,j],[g,h,i]) } (E5)

P(firstN) = { firstN(0,T,[]) (P1)
firstN(1,[X|T],[X]) (P2)
firstN(2,[X,Y|T],[X,Y]) } (P3)

Example 6-6: A sample version of EP(insert) is:
E(insert) = { insert(1,[],[1]) (E1)

insert(2,[3],[2,3]) (E2)
insert(5,[4],[4,5]) (E3)
insert(6,[7,8],[6,7,8]) (E4)
insert(10,[9,11],[9,10,11]) (E5)
insert(14,[12,13],[12,13,14]) } (E6)

P(insert) = { insert(X,[],[X]) (P1)
insert(X,[Y],[Y,X]) ⇐ X>Y (P2)
insert(X,[Y|T],[X,Y|T]) ⇐ X≤Y } (P3)

Example 6-7: A sample version of EP(member) is:
E(member) = { member(a,[a]) (E1)

member(b,[b,c]) (E2)
member(c,[b,c]) (E3)
member(d,[d,e,f]) (E4)
member(e,[d,e,f]) (E5)
member(f,[d,e,f]) } (E6)

P(member) = { member(X,[X|T]) (P1)
member(X,[Y,X|T]) } (P2)

Example 6-8: A sample version of EP(permutation) is:
E(permutation) = { permutation([],[]) (E1)

permutation([a],[a]) (E2)
permutation([b,c],[b,c]) (E3)
permutation([b,c],[c,b]) (E4)
permutation([d,e,f],[d,e,f]) (E5)
permutation([d,e,f],[d,f,e]) (E6)
permutation([d,e,f],[e,d,f]) (E7)
permutation([d,e,f],[e,f,d]) (E8)
permutation([d,e,f],[f,d,e]) (E9)
permutation([d,e,f],[f,e,d]) } (E10)

P(permutation) = { permutation([X],[X]) (P1)
permutation([X,Y],[X,Y]) (P2)
permutation([X,Y],[Y,X]) } (P3)

Example 6-9: A sample version of EP(plateau) is:
E(plateau) = { plateau(1,b,[b]) (E1)

plateau(2,c,[c,c]) (E2)
plateau(3,d,[d,d,d]) } (E3)
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P(plateau) = { plateau(1,X,[X]) (P1)
plateau(2,X,[X,X]) } (P2)

Example 6-10: A sample version of EP(sort) is:
E(sort) = { sort([],[]) (E1)

sort([1],[1]) (E2)
sort([2,3],[2,3]) (E3)
sort([3,2],[2,3]) (E4)
sort([4,5,6],[4,5,6]) (E5)
sort([4,6,5],[4,5,6]) (E6)
sort([5,4,6],[4,5,6]) (E7)
sort([5,6,4],[4,5,6]) (E8)
sort([6,4,5],[4,5,6]) (E9)
sort([6,5,4],[4,5,6]) } (E10)

P(sort) = { sort([X],[X]) (P1)
sort([X,Y],[X,Y]) ⇐ X≤Y (P2)
sort([X,Y],[Y,X]) ⇐ X>Y } (P3)

Example 6-11: A sample version of EP(sum) is:
E(sum) = { sum([],0) (E1)

sum([7],7) (E2)
sum([4,5],9) (E3)
sum([2,3,1],6) } (E4)

P(sum) = { sum([X],X) (P1)
sum([X,Y],R) ⇐ add(X,Y,R) } (P2)

6.3 Future Work

Regardless of the actually chosen language for properties, it is quite likely that the latter are
some form of a generalization of examples. It would therefore be interesting to investigate
more formally how properties can be elaborated from examples. We even conjecture that this
process might be partially automated.

6.4 Related Work

In terms of related work, specifications by examples are surveyed in Section 3.1. Also, the
notion of specifying property can be traced back to the notion of specifying axiom, and spec-
ifications by axioms are surveyed in Section 2.1. In this section, we only survey research on
extending example-based specifications by another incomplete information source.

Shapiro pointed out that the oracle of his Model Inference System (MIS, see Section 3.4.1)
could be partly mechanized by the incorporation of “constraints and partial specifications”
[Shapiro 82, page 79]. The idea is investigated by [Lichtenstein and Shapiro 88], whose sys-
tem asks non-ground queries to an oracle.

Shapiro’s idea has also been picked up by [Drabent et al. 88]: they define four kinds of
assertions that may be added to a specification by examples. These assertions describe ap-
proximate knowledge about the intended model of the specified program. The language for
assertions is Horn clauses plus negation. A positive assertion defines a set of atoms that are
valid in the intended model. For example:

insert(X, T, U) ⇐ integer(X) ∧ sorted(T) ∧ sorted(U) ∧ permutation([X⏐T], U)
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A negative assertion defines a set of atoms that are not valid in the intended model. For ex-
ample:

¬sort(T, U) ⇐ member(X, T) ∧ ¬member(X, U)

A positive existential assertion defines a set of atoms that are satisfiable in the intended mod-
el. For example:

sort(T, U) ⇐ integerList(T)

A negative existential assertion defines a set of atoms that are not satisfiable in the intended
model. For example:

¬sort(T, U) ⇐ integerList(U) ∧ ¬sorted(U)

These assertions are used for partly mechanizing the oracle of Shapiro’s MIS. They consti-
tute a possible instantiation of our notion of properties.

Another interesting idea is proposed by [De Raedt and Bruynooghe 92]: in view of cross-
fertilization, they represent the problems of intensional knowledge-base updating and incre-
mental concept-learning as particular cases of the more general problem of belief updating
from integrity constraints and queries. Indeed, intensional knowledge-base updating can
benefit from the possibility of asserting non-unit clauses in the knowledge-base. And incre-
mental concept-learning can benefit from the generalization of examples into integrity con-
straints. The language for integrity constraints is range-restricted functor-free clauses.
However, some integrity constraints are slightly different from our properties in the sense
that they are not meant to (partially) specify the problem, but rather to verify the behavior of
the designed program. This is then reflected in the possible presence of predicate(s) other
than the one(s) of the examples in the conclusions of integrity constraints.

Similarly, note that properties are totally different from background knowledge, as often
used in concept-learning from examples. Indeed, properties partially define the predicate(s)
that is (are) incompletely specified by the examples, whereas background information de-
fines predicate(s) that is (are) different from the one(s) found in the examples.

6.5 Conclusion

In this chapter, we have developed an approach for incomplete specifications that is based on
the notions of examples and properties.

It requires multiple, ground, single-predicate, relational, positive and negative, pre-syn-
thesis examples that are chosen in a consistent way by a human specifier who knows the in-
tended relation.

The presence of properties (whose actual language is application-specific, and thus left
unspecified in this part) is meant to overcome the problems of ambiguity and limited expres-
sive power of examples, while still preserving the virtues of naturalness and conciseness of
examples. The predicates used in the properties constitute a partial basis set, and thus a par-
tial conceptual bias for synthesis.

Overall, the specification language is quite expressive and readable. Specifications by ex-
amples and properties are usually incomplete, and hence ambiguous, but minimal. There is
a danger of internal inconsistency and redundancy in such specifications, though.

This specification approach holds the promise of faster and more dependable synthesis of
algorithms than from specifications by examples alone.
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7 A Framework for Stepwise Logic Algorithm Synthesis
In this chapter, we develop a theoretical framework for stepwise synthesis of logic algorithms
from examples and properties. Thus, in Section 7.1, we elaborate correctness criteria for log-
ic algorithms, and in Section 7.2, we develop comparison criteria for logic algorithms. This
provides an adequate structure for the formulation, in Section 7.3, of stepwise logic algo-
rithm synthesis strategies. Future work and related work are discussed in Section 7.4 and
Section 7.5, respectively, before drawing some conclusions in Section 7.6.

7.1 Correctness of Logic Algorithms

It is important to measure a logic algorithm against its intentions and its specification, as well
as to measure a specification against its intentions. Indeed, such correctness criteria allow us
to have a grip on any software engineering activity, be it specification elaboration, manual
algorithm construction from informal specifications, semi-automatic algorithm synthesis
from formal specifications, algorithm transformation, algorithm verification, and so on.

We here consider three levels of objects, namely the intended relation, the specified rela-
tion (by the specification), and the computed relation (by the logic algorithm). This means
that we restrict our attention to relations, and not to any kind of intentions. Moreover, we as-
sume that the intended relation is known, even if there only is an informal description of it:
no fixed language is imposed for expressing the intentions. So if the intended relation is in-
formally defined, then the correctness criteria cannot be automatically verified. They may
however be used to guide software engineering activities. By specifications, we here implic-
itly mean specifications by examples and properties. This may be generalized to any kind of
logic specifications, as in [Deville and Flener 93]. A fourth level, the actually-computed re-
lation (by a logic program) could also be considered here, but we here put the focus exclu-
sively on the logical part of software engineering activities. Comparing these three levels of
relations one-by-one gives rise to three sets of correctness criteria. After completing this in-
troduction with more formal definitions of the three levels of relations, this section is divided
into three sub-sections, each dedicated to one of the three sets of correctness criteria.

Since we are only concerned with the declarative semantics of logic statements, we define
model-theoretic criteria, rather than proof-theoretic ones. The used logic framework is a Her-
brand-based first-order logic. This means that we are here only interested in Herbrand inter-
pretations. For simplicity and uniformity, we assume an (infinite) language underlying our
specifications and logic algorithms. Some correctness criteria have already been given in
Chapter 4, but they do not handle examples and properties. We thus start from scratch for the
elaboration of a suitable set of criteria.

Let R be the n-ary intended relation. The final objective is to obtain a logic program that
succeeds on the n-tuples of R, and fails on the n-tuples of R (which is the complement of R
in the set of all ground n-tuples over the universe U of terms).

We now formally define the notion of specified relation. It consists of the set of n-tuples
for which the specified predicate r/n is true according to the specification, and of the set of
n-tuples for which the specified predicate r/n is false according to the specification:
Definition 7-1: The specified relation of a specification by examples and properties EP(r)
consists of the following two sets:

EP+(r) = {t | EP(r) |== r(t)}

EP–(r) = {t | EP(r) |== ¬r(t)}.
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It is clear that the specified relation is usually different from the intended relation. It is
usually expected to be a subset of the intended relation, though. It is also clear that EP–(r) is
not always the complement of EP+(r). We however assume that EP(r) is internally consis-
tent, that is that the intersection between EP+(r) and EP–(r) is empty.

A logic algorithm induces a computed relation. As for specifications, it consists of two
sets:
Definition 7-2: The computed relation of a logic algorithm LA(r) consists of:

LA+(r) = {t | LA(r) |== r(t)}
LA–(r) = {t | LA(r) |== ¬r(t)}.

Let LA(r) be r(X) ⇔ Def [X]. In the sequel, we assume that Def contains only primitive
predicates and possibly the r/n predicate. This restriction amounts to assuming that the sub-
problems involved in LA(r) have been—or will be—correctly implemented, and can thus be
seen as primitives for LA(r). This restriction is only for ease of understanding, and can be
overcome by simultaneously considering LA(r) and its non-primitive predicates, as in [Dev-
ille 90].

In order to stress the differences between a specification and a logic algorithm, we further
restrict logic algorithms to those designed by structural induction (as in [Deville 90]). This
means that some well-founded relation can be defined between the recursive literals and the
head of the logic algorithm. This emphasizes the algorithmic aspect of the formula. This also
expresses that the obtained logic algorithm terminates (for ground queries). If such a require-
ment is not fulfilled, then, according to our framework, the logic algorithm is considered a
specification.

When a logic algorithm is designed by structural induction on some parameter (as in
Chapter 4 for instance), then predicate r/n can be interpreted in any Herbrand model of LA(r).
Theorem 7-1: If LA(r) is designed by structural induction, then the interpretation of r/n is
the same in all the Herbrand models of LA(r).
Proof 7-1: Base case. In a design by structural induction of Def, there are disjuncts in Def
that are without recursion. Since all predicates other than r/n have a fixed interpretation in all
the Herbrand models of LA(r), so does every instance of r/n that satisfies the non-recursive
disjuncts. Induction. Since LA(r) is designed by structural induction, in any disjunct with
recursion, the recursive literals involve parameters that are smaller, according to some well-
founded relation, than those in the head. More precisely, for every ground instance of the
logic algorithm such that the non-recursive literals in the disjunct are true, the recursive
literals have smaller parameters than the head. Hence, by the induction hypothesis, the
recursive instances of r/n have a fixed interpretation in all the Herbrand models. Since the
other, non-recursive literals also have a fixed interpretation, so does r/n for the recursive
disjuncts. ❏

The following corollary is then obvious:
Corollary 7-2: If LA(r) is designed by structural induction, then LA+(r) is the complement
of LA–(r).

In the sequel, we thus only consider recursive logic algorithms where some well-founded
relation can be defined between the recursive literals and the head. We thus have to enforce
that a synthesis mechanism doesn’t design non-terminating recursion (for ground queries).

For convenience, correctness criteria are here defined wrt a Herbrand interpretation  ℑ,
called the intended interpretation, which is such that the following two conditions hold:

• r(t) is true in ℑ iff R(t) holds,
• ℑ is a model of all primitive predicates.
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Note that ℑ captures the intended relation R , since the interpretation of r/n in ℑ is R. So R
does not have to be explicitly considered in the correctness criteria.
Example 7-1: Here are four logic algorithms for sum/2, as specified in Example 6-11:

LA1(sum): sum(L,S) ⇔ L=[] ∧ S=0
LA2(sum): sum(L,S) ⇔ L=[] ∧ S=0

∨ L=[HL|TL] ∧ sum(TL,TS)
∧ add(HL,TS,S)

LA3(sum): sum(L,S) ⇔ L=[] ∧ S=0
∨ length(L,N) ∧ N>0

∧ sub(S,TS,HL)
LA4(sum): sum(L,S) ⇔ L=[] ∧ S=0

∨ L=[HL|TL]
 where sub(X,Y,D) holds iff add(Y,D,X) holds. The intended relation is denoted Sum. We use
these logic algorithms in the sequel to illustrate our purpose. ♦

Three levels of correctness criteria can now be identified: measuring a logic algorithm
against its intentions, measuring a logic algorithm against its specification, and comparing a
specification and its intentions. We discuss these three levels in Section 7.1.1 to
Section 7.1.3, respectively.

7.1.1 Logic Algorithms and Intentions

The idea behind correctness of a logic algorithm wrt the intentions is to state that the intended
relation R is identical to the relation computed by LA(r):

R = LA+(r)
R = LA–(r)

Correctness thus states an identity, in the Herbrand models of LA(r), between the intended
relation R and the interpretation of predicate r/n. The second criterion, which in general is
not a consequence of the first one, is necessary to handle logic algorithms with negation (also
see [Deville 90]).

Since we only consider logic algorithms that are designed by structural induction, correct-
ness reduces, by Corollary 7-1, to R = LA+(r). Moreover, partial correctness is achieved iff
R ⊇ LA+(r) (that is, iff the atoms “computed” by LA(r) are correct), and completeness is
achieved iff R ⊆ LA+(r) (that is, iff all the correct atoms are “computed” by LA(r)). These
criteria are in the sequel called the intuitive criteria.

The total correctness of a logic algorithm wrt its intended relation can however be re-ex-
pressed more conveniently:
Definition 7-3: LA(r) is totally correct wrt R iff r(X) ⇔ Def [X] is true in ℑ.

We now show that this actual criterion is equivalent to its intuitive counterpart:
Theorem 7-3: r(X) ⇔ Def [X] is true in ℑ iff R = LA+(r).
Proof 7-3: Let’s prove the involved implications one by one:

(1) Suppose that r(X) ⇔ Def [X] is true in ℑ. ℑ is thus a Herbrand model of LA(r).
By Theorem 7-1, the interpretation of r/n is R in all the Herbrand models of LA(r).
Hence R = LA+(r).

(2) Suppose that R = LA+(r). By the definition of LA+(r), r(t) is true in all the Her-
brand models of LA(r)  iff t∈R, or, equivalently, iff r(t) is true in ℑ. Hence ℑ is
also a model of LA(r), that is r(X) ⇔ Def [X] is true in ℑ. ❏

Total correctness is as usual decomposed into partial correctness and completeness:
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Definition 7-4: LA(r) is partially correct wrt R iff r(X) ⇐ Def [X] is true in ℑ.
Definition 7-5: LA(r) is complete wrt R iff r(X) ⇒ Def [X] is true in ℑ.
Example 7-2: LA2(sum) is totally correct wrt Sum. LA1(sum) is only partially correct wrt
Sum. LA3(sum) and LA4(sum) are only complete wrt Sum.

Let’s show that these actual criteria are slightly stronger than their intuitive counterparts.
Theorem 7-4: Assuming Def [X] is in disjunctive normal form and without recursion
through negation, the following assertions hold:

(1) If r(X) ⇐ Def [X] is true in ℑ, then R ⊇ LA+(r);
(2) If r(X) ⇒ Def [X] is true in ℑ, then R ⊆ LA+(r).

Proof 7-4: We only prove (1). The proof of (2) is analogous. Let’s perform a proof by
contradiction: suppose that r(X) ⇐ Def [X] is true in ℑ, but that R ⊇/ LA+(r),  or,
equivalently, that LA+(r) \ R ≠ ∅. Take t0 ∈ LA+(r) \ R, with t0 minimal according to the
well-founded relation “<” used for the design of LA(r). Such a minimal element exists since
“<” is well-founded. Now, since t0 ∈ LA+(r), we have that r(t0), and thus Def [t0], are true
in all the Herbrand models of LA(r). If we can prove (see below) that Def [t0] is also true in
ℑ, then, using the first hypothesis above, r(t0) is true in ℑ, that is t0 ∈ R. This contradicts the
fact that t0 ∈ LA+(r) \ R. Hence assertion (1) holds.
So let’s prove now that Def [t0] is also true in ℑ. All predicates in Def [t0] other than r/n are
necessarily primitive predicates and have a fixed interpretation in all the Herbrand models of
LA(r). Henceℑ is equivalent to all the Herbrand models of LA(r) as regards the interpretation
of these primitive predicates. Thus, if a non-recursive disjunct of Def [t0] is true in all the
Herbrand models of LA(r), then it is also true in ℑ. Next, let D be some (ground instance of)
a recursive disjunct of Def [t0], with D being true in all the Herbrand models of LA(r). Since
LA(r) is designed by structural induction, the recursive atoms are of the form r(t1), with t1
“<” t0. We also have that t1 ∈ LA+(r), since D is true in all the Herbrand models of LA(r). In
order to have D also true in ℑ, it is sufficient to show that r(t1) is true in ℑ. This is the case
because t1 ∈ LA+(r), and t1 “<” t0, and t0 is minimal in LA+(r) \ R. Hence t1 ∈ R, and thus
r(t1) is true in ℑ. ❏

Note that Theorem 7-4 does not hold when there is recursion through negation. We show
this by constructing adequate counter-examples:

• Regarding partial correctness, let R = {[],[1]}, and let LA(r) be:
r(L) ⇔ L=[]

∨ L=[_,_|_] ∧ ¬r([1])
In the Herbrand models of LA(r), the interpretation of r/n is the set {r(t) | t is any non-
singleton list}, and thus R ⊇/ LA+(r). However, r(L) ⇐ Def [L] is true in ℑ, as
Def [L] is true in ℑ only for L=[], and as r([]) is true in ℑ. Assertion (1) thus doesn’t
hold when there is recursion through negation.

• Regarding completeness, let R be the set of lists of 1s, and let LA(r) be:
r(L) ⇔ L=[]

∨ L=[0|T] ∧ r(T)
∨ L=[1|T] ∧ ¬r([0|T])

No Herbrand model of LA(r) contains r([1]), and thus R ⊆/ LA+(r). However, r(L) ⇒
Def [L] is true in ℑ. Assertion (2) thus doesn’t hold when there is recursion through
negation.

Also note that the converse assertions of (1) and (2) do not hold. We show this by construct-
ing adequate counter-examples:

• Regarding partial correctness, let R = {[],[1]}, and let LA(r) be:
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r(L) ⇔ L=[]
∨ L=[_,_|_] ∧ r([1])

The only Herbrand model of LA(r) is {r([])}, and thus LA+(r) = {[]}⊆R. Hence LA(r)
fulfills the intuitive criterion of partial correctness. However, r(L) ⇐ Def [L] is false
in ℑ, because Def [[1,1,1]] is true in ℑ, but r([1,1,1]) is false in ℑ. Hence LA(r) does
not fulfill the actual criterion of partial correctness. The converse of assertion (1) thus
doesn’t hold.

• Regarding completeness, let R be the set of lists of 1s, and let LA(r) be:
r(L) ⇔ L=[]

∨ L=[0|T] ∧ r(T)
∨ L=[1|T] ∧ r([0|T])

LA+(r) is the set of lists of 0s and 1s, and thus a superset of R. Hence LA(r) fulfills the
intuitive criterion of completeness. However, r(L) ⇒ Def [L] is false in ℑ, because
r([1]) is true in ℑ, but Def [[1]] is false in ℑ. Hence LA(r) does not fulfill the actual
criterion of completeness. The converse of assertion (2) thus doesn’t hold.

These last two counter-examples clearly show why the actual criteria are “better” than their
intuitive counterparts: they prevent logic algorithms that are partially correct (respectively
complete) in a “bad” way, namely in that they cannot easily be “extended” to totally correct
algorithms.

7.1.2 Logic Algorithm and Specification

Next come criteria for measuring a logic algorithm against its specification. Given a set of
examples E(r) = E+(r)∪E –(r), a logic algorithm LA(r) is complete wrt E(r) iff the positive
examples are contained9 in the relation computed by LA(r), but the negative examples are not
(that is, iff E+(r) ⊆ LA+(r) and E –(r) ⊆ LA–(r)). And LA(r) is partially correct wrt E(r) iff
the positive examples contain the computed relation (that is, iff E+(r) ⊇ LA+(r); note that it
is meaningless to include here the partial correctness of the negative examples, because
E+(r) is not usually the complement of E –(r) in Un).

Similar criteria can be expressed for a set of properties P(r). In the above versions, the
sets E+(r) and E –(r) then have to be replaced by the following two sets:

P+(r) = {t|P(r) |== r(t)}
P –(r) = {t|P(r) |== ¬r(t)}

Again, these criteria are in the sequel called the intuitive criteria. Their following formaliza-
tion is defined in terms of the intended interpretation ℑ. Although slightly stronger than the
intuitive criteria, the following actual criteria are more adapted to a framework of logic al-
gorithm synthesis (see [Deville and Flener 93] for a precise account on this subject):
Definition 7-6: LA(r) is complete wrt E(r) iff the following two conditions hold:

• r(t) ∈ E+(r) ⇒ Def [t] is true in ℑ;
• ¬r(t) ∈ E–(r) ⇒ Def [t] is false in ℑ.

Definition 7-7: LA(r) is partially correct wrt E(r) iff the following condition holds:
• r(t) ∈ E+(r) ⇐ Def [t] is true in ℑ.

Definition 7-8: LA(r) is complete wrt P(r) iff the following two conditions hold:
• P(r) |== r(t) ⇒ Def [t] is true in ℑ;
• P(r) |== ¬r(t) ⇒ Def [t] is false in ℑ.

9. For ease of notation, the set E+(r) of positive examples is here also considered to denote the corresponding
set of tuples. Similarly for the set E–(r) of negative examples.
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Definition 7-9: LA(r) is partially correct wrt P(r) iff the following condition holds:
• P(r) |== r(t) ⇐ Def [t] is true in ℑ.

Definition 7-10: LA(r) is totally correct wrt E(r) (respectively P(r)) iff LA(r) is complete
and partially correct wrt E(r) (respectively P(r)).

Any of all these criteria above holds between a logic algorithm LA(r) and a specification
EP(r) iff it holds between LA(r) and both the example set and the property set of EP(r).

Total correctness thus means that what is computed (positively or negatively) by the logic
algorithm must be consistent with its (part of the) specification. For a tuple t where the con-
sidered (part of the) specification is undecidable (that is, where t ∉ EP+(r) and t ∉ EP–(r)),
r(t) can be either true or false in the logic algorithm.
Example 7-3: LA2(sum), LA3(sum), and LA4(sum) are complete wrt EP(sum).

7.1.3 Specification and Intentions

Finally, there is consistency of a specification wrt the intentions. For instance, consistency of
the examples E(r) wrt the intended relation R means that the positive examples are contained
in R, and that the negative examples are contained in its complement R.
Definition 7-11: E(r) is consistent with R iff the following two conditions hold:

• r(t) ∈ E+(r) ⇒ r(t) is true in ℑ (that is, iff E+(r) ⊆ R);
• ¬r(t) ∈ E–(r) ⇒ r(t) is false in ℑ (that is, iff E–(r) ⊆ R).

Definition 7-12: P(r) is consistent with R iff the following condition holds:
• p ∈ P(r) ⇒ p is true in ℑ (that is, iff P+(r) ⊆ R and P–(r) ⊆ R).

Definition 7-13: A specification EP(r) is consistent with R iff both the example set and
the property set of EP(r) are consistent with R.
Example 7-4: EP(sum) is consistent with Sum.

The specified relation of a consistent specification is thus a subset of the intended relation.
Moreover, if LA(r) is partially or totally correct wrt E(r) (respectively P(r)), and
E(r) (respectively P(r)) is consistent with R, then LA(r) is partially correct wrt R.

If there is no formal definition of the intended relation R, then some correctness criteria
cannot be applied in a formal way. But they can be used to state features and heuristics of a
synthesis mechanism.

7.2 Comparison of Logic Algorithms

It is also important to compare logic algorithms for the same intended relation R. Indeed, this
is useful in stepwise synthesis to compare intermediate logic algorithms, and to establish pro-
gression criteria.

Let L(r) be the set of all possible logic algorithms of r/n, where the definition parts only
involve some fixed set of primitive predicates and the r/n predicate, and where X1,…,Xn are
the distinct variables used in the heads. Let:

• LA1(r): r(X1,…,Xn) ⇔ Def1[X1,…,Xn]
• LA2(r): r(X1,…,Xn) ⇔ Def2[X1,…,Xn]

be two logic algorithms in L(r).
In Section 7.2.1, we define a criterion for comparing logic algorithms in terms of gener-

ality. Since verifying this criterion is only semi-decidable, we introduce, in Section 7.2.2, a
sound approximation of this criterion, namely syntactic generalization.



7.2 Comparison of Logic Algorithms 99

7.2.1 Semantic Generalization

Intuitively, LA1(r) is less general than LA2(r) iff Def1 is “less often” true than Def2. More
formally:
Definition 7-14: LA1(r) is less general than LA2(r) (denoted LA1(r) ≤ LA2(r)) iff
∀X1…∀Xn (Def1 ⇒ Def2) is true.

The fact of being more general (≥) is defined dually. Two logic algorithms, each more gen-
eral than the other, are equivalent (≅). We use < for ≤ and ≅/ .
Example 7-5: We have LA1(sum) < LA2(sum) < LA3(sum) < LA4(sum).

Note that a generalization relationship between two logic algorithms does not amount to
a logical implication relation between them.

The set L(r) modulo ≅ (denoted L(r)≅) is partially ordered under ≤. It includes as least
element ⊥r (defined as  r(X1,…,Xn) ⇔ false, and called bottom) and as greatest
element Tr (defined as r(X1,…,Xn) ⇔ true, and called top). In order to have an upper bound
to any ascending sequence of logic algorithms, let’s extend L(r) to M(r) by allowing an in-
finite number of literals in the body of a logic algorithm. We obviously have that (M(r)≅,
≤) is isomorphic to (P(Un), ⊆), where P(S) denotes the set of subsets of set S.
Hence (M(r)≅, ≤) is also a complete lattice, whose lub operator is the logical or connective
(denoted ∨), and whose glb operator is the logical and connective (denoted ∧) over the bod-
ies of logic algorithms.

Comparing logic algorithms in terms of semantic generality can be a difficult task, and is
only semi-decidable anyway. We thus define a particular case of this generality relation in
terms of purely syntactic criteria.

7.2.2 Syntactic Generalization

In view of defining syntactic criteria for generalization, we need to constrain the logic algo-
rithm language. Thus, in this section, we assume that logic algorithms have bodies that are
disjunctions of conjunctions of literals. We represent formulas by multisets, so as to avoid
ordering problems. A similar development, though for second-order expressions, but without
negation, has been made by [Tinkham 90].
Definition 7-15: Let F be a conjunction of literals (respectively a disjunction of
conjunctions of literals). Then elems(F) is ∅ iff F is the predicate true (respectively false),
and the multiset of literals of F (respectively the multiset of the conjunctions of literals of F),
otherwise.

Let’s first define syntactic generalization over conjunctions of literals, and then over logic
algorithms:
Definition 7-16: A conjunction C1 is syntactically less general than a conjunction C2
(denoted C1 « C2) with a substitution θ iff elems(C2θ) ⊆ elems(C1).
Example 7-6: p(a,X) ∧ q(Y) « p(V,W) with {V/a, W/X}.

Note that this definition is different from classical θ-subsumption for clauses [Plotkin 70],
because the used substitution is here given, rather than only constrained to exist. This variant
is useful if one wants to compare sets of clauses, as captured in the next definition.
Definition 7-17: LA1(r) is syntactically less general than LA2(r) (denoted LA1(r) « LA2(r))
iff there is a total function fct from elems(Def1) to elems(Def2), such that, for every disjunct
D in elems(Def1), there is a substitution θ that only binds existential variables of LA2(r), such
that D « fct(D) with substitution θ.
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Note that θ cannot bind a universal variable of LA2(r) since this could actually lead to a
specialization. For instance: r(X,Y) ⇔ q(Z) > r(X,Y) ⇔ q(X).
Example 7-7: We have LA1(sum) « LA2(sum) « LA4(sum). However, LA2(sum) and
LA3(sum) are incomparable under «, as they involve different predicates.

The fact of being syntactically more general (») is defined dually. Two logic algorithms,
each syntactically more general than the other, are syntactically equivalent (≈). Note that syn-
tactical equivalence is more general than alphabetic variance, because of the irrelevance of
the ordering of disjuncts within logic algorithms, and of literals within disjuncts.

The set L(r)≈ is partially ordered under «. The following proposition is a direct conse-
quence of the definitions:
Proposition 7-5: The relations «, », and ≈ are sub-relations of ≤, ≥, and ≅, respectively.

We now define an atomic refinement operator, after making two preliminary observations.
A most general literal in a disjunct D of LA(r) is of the form p(Z1,…,Zm) or
¬p(Z1,…,Zm), where p is an m-ary predicate, and Z1,…,Zm are existential variables occur-
ring exactly once in D. And a most general term in a disjunct D of LA(r) is of the form
f(Z1,…,Zm), where f is an m-ary functor, and Z1,…,Zm are existential variables occurring ex-
actly once in D.
Definition 7-18: Let gen be a refinement operator such that LA2(r) ∈ gen(LA1(r)) iff
exactly one of the following holds:

• LA2(r) is derived from LA1(r) by adding a disjunct to LA1(r); 10

• LA2(r) is derived from LA1(r) by replacing a disjunct D1 by a disjunct D2, such that:
– D2 is D1 without a most-general literal in D1; 11

– D2 is D1 where one or more occurrences of a variable V are replaced by a new ex-
istential variable W;

– D2 is D1 where one or more occurrences of a most general term in D1 are replaced
by a new existential variable W.

The ability to add a disjunct of course often overrides the need to modify a disjunct, as it
suffices to add the modified disjunct in the first place, for instance when creating a logic al-
gorithm from ⊥r. However, this is not always possible, for instance when modifying an ex-
isting logic algorithm into another one.
Example 7-8: LA2(sum) ∈ gen(LA1(sum)), and LA4(sum) ∈ gen3(LA2(sum)).

Let us now relate the refinement operator gen to the generality relation «:
Theorem 7-6: The following three assertions hold:

(1) gen is a syntactic generalization operator:
∀LA’(r) ∈ gen(LA(r)) LA(r) « LA’(r);

(2) gen can generate any syntactic generalization:
LA1(r) « LA2(r) ⇔ ∃n ∃LA2’(r) ∈ genn(LA1(r)) LA2’(r) ≈ LA2(r);

(3) gen can generate all logic algorithms of L(r) from ⊥r:
gen*(⊥r) = L(r).

Proof 7-6: Analogous to the proofs in [Tinkham 90]. ❑

An inverse operator spec of gen is similarly defined, such that spec is a syntactic special-
ization operator that can generate all logic algorithms of L(r) from Tr.
10. By convention, adding a disjunct D to ⊥r amounts to replacing false by D.
11. By convention, deleting the unique literal of a singleton disjunct D amounts to replacing D by true if there

is no true disjunct yet in LA1(r), and to discarding D, otherwise.
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7.3 Stepwise Logic Algorithm Synthesis Strategies
It is interesting to decompose a synthesis process into a series of steps, each designing an in-
termediate logic algorithm. Indeed, this:

• allows different methods to be deployed at each step, thus enforcing a neat separation
of concerns;

• yields monitoring points where correctness and comparison criteria can be applied,
hence measuring the effectiveness and progression of synthesis.

Stepwise synthesis can be:
• incremental: examples or properties are presented one-by-one, each presentation yield-

ing a run through all synthesis steps;
• non-incremental: examples or properties are presented all-at-once, yielding a single

run through all synthesis steps;
• increasing: each intermediate logic algorithm is more general than its predecessor;
• decreasing: each intermediate logic algorithm is less general than its predecessor;
• monotonic: synthesis is either increasing, or decreasing;
• non-monotonic: synthesis is neither increasing, nor decreasing;
• consistent: each intermediate logic algorithm is complete wrt the examples and prop-

erties presented so far;
• inconsistent: each intermediate logic algorithm is not necessarily complete wrt the ex-

amples and properties presented so far.
Using the criteria defined in the two previous sections, a huge variety of stepwise synthesis
strategies can be defined, fitting any valid combination of the features enumerated above. In
Section 7.3.1, we briefly sketch a strategy for incremental synthesis, and in Section 7.3.2, we
fully describe a strategy for non-incremental synthesis.

7.3.1 An Incremental Synthesis Strategy

In the case of incremental synthesis, let’s view the steps of one synthesis increment as a mac-
ro-step performing a transformation trans. Synthesis is then the design of a series of logic
algorithms:

LA0(r), LA1(r), …, LAi(r), …
from a series of specifications Si(r) that are sets of examples and properties:

S1(r), …, Si(r), …
with:

Si(r) ⊆ Si+1(r), for i≥0
such that the following two conditions hold:

• LA0(r) = ⊥r ,
• LAi(r) = trans(LAi-1(r), Si(r)), for i>0.

This covers iterative synthesis, where only the last presented example or property is actually
used by trans. If trans is monotonic and continuous (wrt the ≤ order on logic algorithms),
then transω(⊥r) is its least fixpoint. So if trans preserves partial correctness wrt R, then the
fixed point is also partially correct wrt R. Note that completeness wrt R is not necessarily
achieved, and that the resulting logic algorithm can involve infinitely many literals. This in-
cremental strategy is increasing (hence monotonic); it may be consistent or inconsistent.

7.3.2 A Non-Incremental Synthesis Strategy

Let’s first give a criterion for upward (or partial-correctness preserving) progression:
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Definition 7-19: (See Figure 7-1a.) If the following two conditions hold:
• LA2(r) ≥ LA1(r),
• LA2(r) is partially correct wrt R,

then LA2(r) is a better partially correct approximation of R than LA1(r).
Dually, there is a criterion for downward (or completeness preserving) progression:

Definition 7-20: (See Figure 7-1b.) If the following two conditions hold:
• LA2(r) ≤ LA1(r),
• LA2(r) is complete wrt R,

then LA2(r) is a better complete approximation of R than LA1(r).
Example 7-9: LA3(sum) is a better complete approximation of Sum than LA4(sum).

A first idea of a non-incremental stepwise synthesis strategy (with a fixed, finite number f
of predefined steps) is to achieve downward progression:

At Step 1, “create” LA1(r) such that:
• LA1(r) is complete wrt R.
At Step i (2≤i≤f), transform LAi-1(r) into LAi(r) such that:
• LAi(r) is a better complete approximation of R than LAi-1(r).

An obvious way to do Step 1 is to make LA1(r) equal to Tr .
But this strategy doesn’t take care of the partial-correctness aspects. We thus want to de-

fine a specialization operator that allows the transformation of the series of intermediate logic
algorithms into another series of intermediate logic algorithms that actually reflects upward
progression. The idea is to expand the disjuncts of a logic algorithm with equality atoms,
each such atom unifying one of the variables of a disjunct with some constant(s) obtained by
“evaluating”, in ℑ, that disjunct on some example of the specification.
Example 7-10: Let LA5(sum) be as follows:

sum(L,S) ⇔
L=[]

∨ L=[HL|TL] ∧ sum(TL,TS)
Its expansion according to the examples of EP(sum), as in Example 6-11, is as follows:

sum(L,S) ⇔
L=[] ∧ L=[] ∧ S=0

∨ L=[HL|TL] ∧ sum(TL,TS)
∧ L=[7] ∧ HL=7 ∧ TL=[] ∧ TS=0 ∧ S=7
∨ L=[4,5] ∧ HL=4 ∧ TL=[5] ∧ TS=5 ∧ S=9
∨ L=[2,3,1] ∧ HL=2 ∧ TL=[3,1] ∧ TS=4 ∧ S=6

LA1(r)

LA2(r)
R

Figure 7-1: (a) Upward and (b) downward progression

LA2(r)

LA1(r)

R

Un
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where the boldface atoms are synthesized atoms, and the others are trailing atoms. ♦

The series of expanded logic algorithms can be shown to progress upwards (see below).
To achieve this expansion, we here only consider logic algorithms whose bodies are disjunc-
tions of conjunctions of literals. The used predicates are assumed to be either primitives or
the predicate r/n that is defined by the logic algorithm. Let’s start with a few basic definitions.
Definition 7-21: Let D[X] be a disjunct of a logic algorithm LA(r), such that the only free
variables of D are the n universal variables X in the head of LA(r). We say that D[X] covers
atom r(t) iff ∃D[t] is true in ℑ.
Example 7-11: The first disjunct of LA5(sum) covers the example sum([],0). Its second
disjunct covers the example sum([7],7), but it doesn’t cover the example sum([],0).
Definition 7-22: Let disjunct D[X] of a logic algorithm LA(r) cover atom r(t). The
expansion of D[X] wrt r(t) is D[X] ∧ X=t ∧ wit(Y), where Y are the existential variables of
D[X], and wit(Y) is a formula that is true in ℑ only for (ground) witnesses w of Y in ∃D[t]
(that is, D[t]{Y/w} is true in ℑ iff wit(w) is true in ℑ).
Example 7-12: The expansion of the second disjunct of LA5(sum) wrt sum([7],7) is:

L=[HL|TL] ∧ sum(TL,TS) ∧ (L=[7] ∧ S=7) ∧ (HL=7 ∧ TL=[] ∧ TS=0)
The expansion of the second disjunct of LA5(sum) wrt sum([1,2,A],6) is:

L=[HL|TL] ∧ sum(TL,TS) ∧
(L=[1,2,A]∧ S=6) ∧ (HL=1 ∧ TL=[2,A] ∧ TS=B ∧ add(2,A,B)) ♦

Obviously, wit(Y) can always be expressed as a possibly infinite disjunction of equality
atoms. In the sequel, we here only consider the situation where wit(Y) can be expressed as a
finite disjunction of equality atoms (whose left-hand sides are Y). Moreover, we then rewrite
wit(Y) as Y=w (iff wit(Y) is a single equality atom whose right-hand side is the term-tuple
w), or as Y∈w (iff wit(Y) is a disjunction of equality atoms whose right-hand sides are the
term-tuples wi). We call w the witnesses of Y, even though they are not necessarily ground.

For the non-recursive literals, since they are assumed to be primitives, it is possible to
compute the witnesses w without knowing R. We thus only need an oracle for the specified
predicate r/n. A candidate mechanized oracle is one that performs deduction using the spec-
ification EP(r) as knowledge about r/n. Such a deductive oracle is sound12 provided EP(r) is
consistent with R. Other oracles can be imagined, performing analogical reasoning, say. In
the sequel we just assume the existence of such an oracle, but do not require it to be sound
or complete. A more practical version of the previous definition is thus:
Definition 7-23: Let O(r) be an oracle for predicate r/n. Let disjunct D[X] of a logic
algorithm LA(r) cover atom r(t). The expansion of D[X] wrt r(t) and O(r) is D[X] ∧ X=t ∧
Y∈w, where Y are the existential variables of D[X], and w are the witnesses of Y, using O(r),
of ∃D[t].
Example 7-13: Take EP(permutation) as in Example 6-8, and let LA(permutation) be:

permutation(L,P) ⇔
L=[]

∨ L=[HL|TL] ∧ permutation(TL,TP)

The expansion of the second disjunct of LA(permutation) wrt permutation([a,b,c],[c,a,b])
and the deductive oracle based on EP(permutation) is:

L=[HL|TL] ∧ permutation(TL,TP) ∧
(L=[a,b,c] ∧ P=[c,a,b]) ∧ (HL=a ∧ TL=[b,c] ∧ TP∈{[b,c], [c,b]})

12. An oracle is sound iff all its answers are correct. An oracle is complete iff it gives all correct answers.
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If TL=[b,c], then the deductive oracle infers that either TP=[b,c] or TP=[c,b], according to
properties P2 and P3, respectively. ♦

Example 7-14: Take EP(efface) as in Example 6-4, and let LA(efface) be:
efface(E,L,R) ⇔

R=[]
∨ R=[HR|TR] ∧ efface(TE,TL,TR)

The expansion of the second disjunct of LA(efface) wrt efface(b,[b,c],[c]) and the deductive
oracle based on EP(efface) is:

R=[HR|TR] ∧ efface(TE,TL,TR) ∧
(E=b ∧ L=[b,c] ∧ R=[c]) ∧ (HR=c ∧ TR=[] ∧ <TE,TL>∈{<a,[a]>,<X,[X]>})

Indeed, if TR=[], then the deductive oracle infers that either <TE,TL>=<a,[a]> or
<TE,TL>=<X,[X]>, according to example E1 and property P1, respectively. This illustrates
three things. First, some of the existential variables may have to be regrouped into tuples in
order to avoid losing some relationships. Second, the availability of the examples to the ora-
cle provokes the appearance of an answer that is totally unrelated to any computation of ef-
face(b,[b,c], [c]), namely <TE,TL>=<a,[a]>. We explain in Section 12.4.2 how such freak
answers may be eliminated. Third, variables may appear in answers given by the oracle, such
as in <TE,TL>=<X,[X]>. It is important to realize that these are existential variables. ♦

Let’s now extend the previous definition to entire sets of covered atoms:
Definition 7-24: Let O(r) be an oracle for predicate r/n. Let disjunct D[X] of a logic
algorithm LA(r) cover all the atoms of an atom set A(r) = {r(ti)}. The expansion of D[X] wrt
A(r) and O(r) is D[X] ∧ ∨i (X=t i ∧ Y∈wi), where Y are the existential variables of D[X], and
wi are the witnesses of Y, using O(r), of ∃D[ti].

Finally, let’s extend this definition to the expansion of an entire logic algorithm:
Definition 7-25: Given an atom set A(r), an oracle O(r), and a logic algorithm LA(r), the
operator exp/3 is a total function into L(r), such that exp(LA(r), A(r), O(r)) is LA(r) where
each disjunct has been replaced by its expansion wrt the largest subset of A(r) that it covers
and O(r).
Example 7-15: We effectively have that exp(LA5(sum),E+(sum),EP(sum)) is as depicted
in Example 7-10. ♦

It is obvious that exp/3 can be expressed as a sequence of applications of spec. Hence exp
is a syntactic specialization function: exp(LA(r)) « LA(r), thus exp(LA(r)) ≤ LA(r).

In the sequel, once a specification EP(r) has been clearly mentioned, we assume that O(r)
is the deductive oracle based on EP(r), and that A(r) is the positive example set of EP(r). This
allows a more compact notation for the exp/3 operator.
Definition 7-26: In an expanded logic algorithm, the literals can be partitioned into two
categories: the synthesized literals are those that are already present before the expansion
process, and the trailing atoms are the atoms added by the expansion process.

For syntactic brevity, the trailing atoms of a logic algorithm are often summarized into an
annotation to the disjunct of synthesized literals they are logically attached to. Such an an-
notation consists of a set of identifiers of positive examples.
Example 7-16: For instance, exp(LA5(sum)) could also be written as:

sum(L,S) ⇔
L=[] {E1}

∨ L=[HL|TL] ∧ sum(TL,TS) {E2,E3,E4}
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The strategy above can now be refined as follows, so as to have simultaneous upward and
downward progressions:

At Step 1, “create” LA1(r) such that:
• LA1(r) is complete wrt R,
• exp(LA1(r)) is partially correct wrt R.
At Step i (2≤i≤f), transform LAi-1(r) into LAi (r) such that:
• LAi(r) is a better complete approximation of R than LAi-1(r),
• exp(LAi(r)) is a better partially correct approximation of R than exp(LAi-1(r)).

This strategy is very general.
We now state and prove a generic theorem showing how steps 2 to f of the generic strategy

above can be refined in order to yield a practical framework.
Theorem 7-7: Let LA(r) be r(X) ⇔ ∨1≤j≤m Aj and LA’(r) be r(X) ⇔ ∨1≤j≤m Aj ∧ Bj, where
Aj, Bj are any formulas. The following two assertions hold:

(1) If LA(r) is complete wrt R and R(X) ∧ Aj ⇒ Bj (1≤j≤m)
then LA’(r) is a better complete approximation of R than LA(r).

(2) If LA(r) is partially correct wrt R and Aj ⇒ Bj (1≤j≤m)
then LA’(r) is a better partially correct approximation of R than LA(r).

Proof 7-7: Let’s prove these assertions one by one:
(1) By Definition 7-5, the first hypothesis reads:

r(X) ⇒ ∨1≤j≤m Aj.
By definition of ℑ, the second hypothesis reads (1≤j≤m):

r(X) ∧ Aj ⇒ Bj, or, equivalently: r(X) ⇒ ¬Aj ∨ Bj
Combined with the first hypothesis, we get:

r(X) ⇒ (∨1≤j≤m Aj) ∧ (∧1≤j≤m ¬Aj ∨ Bj)
The right-hand side can be rearranged as:

∨1≤j≤m Aj ∧ Bj ∧ Cj
where Cj is a formula involving ¬Ai and Bi (1≤i≤m, i≠j). Hence:

r(X) ⇒ ∨1≤j≤m Aj ∧ Bj
that is: LA’(r) is complete wrt R. By construction, we have: LA’(r) « LA(r), that is,
by Theorem 7-5: LA’(r) ≤ LA(r). Thus: LA’(r) is a better complete approximation
of R than LA(r).

(2) Obviously, we have:
∨1≤j≤m Aj ∧ Bj ⇒ ∨1≤j≤m Aj

Moreover, the second hypothesis implies:
∨1≤j≤m Aj ⇒ ∨1≤j≤m Aj ∧ Bj

Thus: LA’(r) ≅ LA(r), that is, in particular: LA’(r) ≥ LA(r). Using the first hypoth-
esis, we obtain: LA’(r) is partially correct wrt R. Thus: LA’(r) is a better partially
correct approximation of R than LA(r). ❏

The second hypothesis of assertion (2) ensures then that the introduced literals are redun-
dant with the already existing ones. In other words, as the proof has shown, we then actually
have LA’(r) ≅ LA(r). The second hypothesis of assertion (1) ensures that the introduced lit-
erals are “redundant” with the intended relation R.

In practice, assertion (1) is applied to the logic algorithms LAi(r), whereas assertion (2) is
applied to the logic algorithms exp(LAi(r)), where i>1. The first hypotheses of both assertions
need not be proved if they are established by Step 1 and then preserved by application of
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Theorem 7-7 to all previous steps. Proving the second condition of assertion (1) can’t be
done in a formal way for lack of a formal definition of R. However, this can be used to guide
a synthesis mechanism, for instance by means of interaction with the specifier, hence increas-
ing the confidence in the synthesis.

Also note that the exp(LAi(r)) actually do not strictly progress upwards at all, and that
there is hence no possible upwards convergence. This is not a disaster, because the LAi(r)
may actually strictly progress downwards, and hence possibly converge to a correct logic al-
gorithm. But the exp(LAi(r)) do not regress either, and may be used to show that complete-
ness wrt the examples is preserved (provided this is initially achieved by Step 1). Moreover,
the exp(LAi(r)) are useful in that they provide the input data for steps i+1.

7.4 Future Work
This chapter doesn’t address learnability. This issue is very important for inductive infer-
ence, and has mainly been studied for incremental approaches. The definition of the class of
algorithms that can be identified from examples and properties, and the characterization of
how this identification can be attained (finitely, in-the-limit,…), are open questions so far.

Regarding generalization models, the main focus here is on syntactic generalization, be-
cause of its usage and adequacy in later chapters. But our framework of comparing logic al-
gorithms in terms of generality can of course be further generalized by incorporating
stronger, semantic generalization criteria, such as those of [Buntine 88], which exploit back-
ground knowledge.

7.5 Related Work
The here presented criteria for correctness of logic algorithms are a direct consequence of
the results by [Deville 90], which are also outlined in Chapter 4. A comprehensive survey of
correctness criteria for logic programs can be found in the background sections of chapters 4
and 8 of [Deville 90]. Some researchers of the machine learning community, and almost all
authors of the ILP community (see Chapter 3), have addressed the correctness issue. The re-
sulting criteria are specific to the chosen specification languages, but very similar (also to
ours) once the differences in terminology are abstracted away. A consensus is about to
emerge, though. These works usually also address learnability issues.

Many artificial intelligence tasks involve a search space of hypotheses. A model of gener-
alization of hypotheses then comes in handy to organize that search space. This allows a
more intelligent search than pure enumeration, for instance by pruning uninteresting branch-
es of the search space.

One of the first studies on syntactic generalization was made by [Plotkin 70, 71]. His gen-
eralization criterion for clauses, known as θ-subsumption, is that clause C θ-subsumes clause
D iff there exists a substitution σ such that Cσ ⊆D. In other words, only the dropping of con-
ditions and the conversion of constants into variables are covered by θ-subsumption. But this
criterion is purely syntactic, and thus doesn’t exploit possibly existent background knowl-
edge. So he developed another criterion, called relative subsumption, which says that clause
C generalizes clause D relative to the set of clauses P iff there exists a substitution σ such
that P |==∀(Cσ ⇒D). He also introduced an induction mechanism for computing the relative
least general generalization (rlgg) of two clauses relative some other clauses. His search for
an rlgg goes from specific to general. The drawback of this technique is that, in general, the
rlgg of two clauses is not finite. This severely restricts the applicability of these results.

The concept of θ-subsumption has been picked up again by [Shapiro 82], who only con-
siders Horn clauses. His search for hypotheses goes from general to specific, using a most
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general specialization operator to explore a specialization hierarchy. The technique has been
applied to logic program synthesis and debugging: specialization of a too general program
occurs by discarding too general clauses, and generalization of a too specific program occurs
by adding specializations of previously discarded clauses.

This Model Inference System (MIS, see Section 3.4.1) has spawned a lot of renewed in-
terest in generalization models. For instance, [Tinkham 90] extends Shapiro’s results to a
second-order search space. Simultaneously, but independently, [Gegg-Harrison 89, 93] also
suggests generalization operators within a second-order logic, though for an entirely differ-
ent application.

But these models of syntactic generalization are insufficient (because many “wanted”
generalizations are not covered), and inadequate (because they cover many “unwanted” gen-
eralizations). [Buntine 88] introduces generalized subsumption as a stronger model of se-
mantic generalization, of which θ-subsumption is a particular case. Background knowledge
is used for inferring more “interesting” generalizations. As we don’t exploit such background
knowledge in the sequel, these stronger models have not been further investigated here:
please refer to [Buntine 88] for more details, for a comparison with other generalization
models and logical implication, and for applications for inductive inference and redundancy
control.

Building upon the “limited success due to the complexity of constructed clauses” of Bun-
tine’s proposal to circumvent Plotkin’s negative result, [Muggleton 91] introduces another
model of generalization, with more restrictions on hypotheses.

Regarding stepwise synthesis, the immense majority of research goes into incremental ap-
proaches, with much focus on monotonic and consistent techniques. Other incremental ap-
proaches are, for instance, non-monotonic synthesis [Jantke 91], and inconsistent synthesis
[Lange and Wiehagen 91].

The non-incremental, stepwise synthesis strategy presented in Section 7.3.2 features the
same idea as the incremental version spaces strategy of [Mitchell 81], namely simultaneous
bottom-up and top-down search, but is after all totally different from it.

7.6 Conclusion
In this chapter, we have developed a general framework for stepwise synthesis of logic algo-
rithms from specifications by examples and properties. It includes correctness criteria for re-
lating the intended, specified, and computed relations, as well as comparison criteria for
relating logic algorithms in terms of their generality. As part of a framework, these sets of
criteria are modular, as new criteria can be added. The main issue is that such criteria can be
used to state strategies of stepwise synthesis, be they incremental or not, monotonic or not,
consistent or not. A particular, non-incremental, monotonic, and consistent strategy has been
developed in greater detail for use in the sequel.
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8 Algorithm Analysis and Algorithm Schemata
Algorithm schemata have become a popular research topic. In Section 8.1, we introduce al-
gorithm schemata and argue that they are an important support for guiding algorithm design.
Then, in Section 8.2, we introduce a logic algorithm schema reflecting a divide-and-conquer
design strategy. This allows us, in Section 8.3, to refine the framework of Chapter 7 to step-
wise and schema-guided synthesis of logic algorithms from examples and properties. Future
work and related work are discussed in Section 8.4 and Section 8.5, respectively, before
drawing some conclusions in Section 8.6.

8.1 Introduction to Algorithm Schemata

Algorithms can be classified according to their design strategies, such as divide-and-conquer,
generate-and-test, global search, local search, top-down decomposition, and so on. Informal-
ly, an algorithm schema is a template algorithm with a fixed control flow, but without specific
indications about the parameters or the actual computations. An algorithm schema thus rep-
resents a whole family of particular algorithms that can be obtained by instantiating the
place-holders to particular parameters or calls. It is therefore interesting to guide algorithm
design by a schema that captures the essence of some strategy.

In order to be more precise, we have to settle for a specific algorithm language. Our focus
goes of course to logic algorithms. Informally, in a first approximation, a logic algorithm
schema is a second-order logic algorithm. A particular logic algorithm, called an instance of
the schema, is then obtained by instantiating the variables of the schema.
Example 8-1: The following is a logic algorithm schema for the generate-and-test
strategy:

R(X,Y) ⇔
Generate(X,Y) ∧ Test(Y)

The following logic algorithm for the sort/3 predicate is also known as Naive-Sort:
sort(L,S) ⇔

permutation(L,S) ∧ ordered(S)

where ordered(S) iff S is an ascendingly ordered list of integers.This logic algorithm is an
instance of the generate-and-test schema above, namely via the second-order substitution
{R/sort, Generate/permutation, Test/ordered, X/L, Y/S}. ♦

Reality is more complex, however. Function variables and predicate variables may have
any arity, and this calls for schema variables to denote these arities. Conjunctions, disjunc-
tions, or quantifications of any length may appear, and this calls for schema variables to de-
note the ranges of such ellipses. Permutations of parameters, conjuncts, disjuncts, or
quantifications may have to be performed in order to see why a logic algorithm is an instance
of some schema. Unfold transformations may have to be performed in order to see why a log-
ic algorithm is an instance of some schema.
Example 8-2: Given the logic algorithm schema:
R(X1,…,Xn,Y) ⇔

P(Y,Z1,…,Zn)
∧ ∧1≤i≤n Qi(Xi,Zi)

it is not immediately clear why the logic algorithm LA(foo):
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foo(S,B,A) ⇔
permutation(A,SA)

∧ reverse(B,RB)
∧ append(SA,RB,S)
∧ ordered(SA)

is an instance of this schema. Indeed, one of the possible schema substitutions is {R/foo, n/2,
X1/B, X2/A, Y/S, P/append, Z1/RB, Z2/SA, Q1/reverse, Q2/sort}. But the sort/2 atom must also
be unfolded into the conjunction of the permutation/2 and ordered/1 atoms (as in
Example 8-1), and a series of permutations of parameters and conjuncts are required to ob-
tain this instance. ♦

A second-order wff schema language is thus needed to write realistic logic algorithm
schemas. The formal definition of such a language and its semantics is beyond the scope of
this thesis, so we do not develop it. But we know from experience that the intuitive under-
standing of our schemata is sufficient.
Definition 8-1: A logic algorithm schema is a closed second-order wff schema of the form:

∀R ∀X1…∀Xn R(X1,…,Xn) ⇔ F
where n is a schema variable or a constant, the Xi are distinct variables, R is a predicate vari-
able, and F is a second-order wff schema. The atom schema R(X1,…,Xn) is called the head,
and F is called the body of the logic algorithm schema.

In the sequel, we drop the universal quantifications in front of the heads, as well as any
existential quantifications at the beginning of the bodies of logic algorithm schemas.

It is evident that a logic algorithm schema without function variables, predicate variables,
and schema variables is a logic algorithm.
Definition 8-2: An instance of a logic algorithm schema is a logic algorithm obtained by
the following sequence of operations:

(1) permutation of parameters, conjuncts, disjuncts, and quantifications of the schema;
(2) application of a second-order schema substitution to the resulting schema, such that

all function variables, predicate variables, and schema variables are instantiated to
first-order objects;

(3) application of unfold transformations.
This process is called instantiation of a schema. The reverse process is called classification
of the logic algorithm, and yields a schema called a cover of that logic algorithm.

The process of classifying several algorithms into a same schema is called algorithm anal-
ysis. Interestingly, it may even be seen as schema synthesis, because it amounts to second-
order schema learning. Similarly, the process of instantiating a given schema into several al-
gorithms is called algorithm synthesis, but may also be seen as schema analysis.

In order to facilitate “visual” classification of logic algorithms, we introduce the following
purely syntactic criterion for the writing of logic algorithms.
Definition 8-3: A canonical representation of a logic algorithm wrt a covering schema
exactly matches the layout of that schema.
Example 8-3: A possible canonical representation of LA(foo) wrt the schema of the
previous example is:

foo(S,B,A) ⇔
append(SA,RB,S)

∧ reverse(B,RB) ∧ ( permutation(A,SA) ∧ ordered(SA) ) ♦

Note that a canonical representation is not unique, because of the possible permutations
of parameters. The permutations of parameters as in the schema can’t be imposed at the in-
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stance level, because there is no possible control over how problems, and hence predicates,
are defined. We can’t thus introduce a concept such as the normalized representation of a log-
ic algorithm.

Almost all logic algorithms of this thesis are canonical representations wrt some schema
in this chapter.

Note that one may distinguish between design schemas and transformation schemas: the
former are useful for guiding algorithm design, whereas the latter are useful for guiding al-
gorithm transformation. But as nothing prevents the use of transformation schemas for guid-
ing algorithm design, the boundary between these two types of schemas seems to be a
subjective one. Our views on the differences between design and transformation extend to
the differences between design schemas and transformation schemas. Good examples of
transformation schemas are the generalization schemas of [Deville 90].

8.2 A Divide-and-Conquer Logic Algorithm Schema
As algorithm design strategies are fairly orthogonal, there is apparently little opportunity for
re-use between design steps for different strategies. In this thesis, we focus on the divide-and-
conquer strategy, for the following reasons (also see [Smith 85]):

• diversity: a wide variety of relations can be implemented by such algorithms;
• efficiency: the resulting algorithms often have good time/space complexities;
• simplicity: the simplicity of this strategy makes it particularly convenient for (semi-)

automated algorithm design.
The support of other strategies is discussed in Section 14.2.3.

In essence, the divide-and-conquer design strategy solves a problem by the following se-
quence of three steps [Cormen et al. 90]:

(1) divide a problem into sub-problems, unless it can be trivially solved;
(2) conquer the sub-problems by solving them recursively;
(3) combine the solutions to the sub-problems into a solution to the original problem.

Hence the name of the strategy. In the sequel, we focus on applying this strategy to data-
structures, rather than to states of partial computations.

This strategy description is a little rough, and calls for further details. In Section 8.2.1, we
proceed by successive refinements to incrementally infer various versions of a divide-and-
conquer logic algorithm schema. Then, in Section 8.2.2, we list the integrity constraints that
instances of these schemas have to satisfy in order to be divide-and-conquer algorithms. In
Section 8.2.3, we justify the choices that have been made during this algorithm analysis. Fi-
nally, in Section 8.2.4, we discuss some other issues related to divide-and-conquer schemas.

8.2.1 Divide-and-Conquer Logic Algorithm Analysis

We now incrementally infer six different versions of a divide-and-conquer logic algorithm
schema, starting from the logic algorithms of Chapter 5. Each new version covers a larger set
of logic algorithms. As a reminder, we still hypothesize that no parameter is a tuple, that is
that procedure declarations are “flattened” out.

First Version

Let’s first restrict ourselves to binary relations, and present a most basic strategy that already
yields solutions to many problems.

A divide-and-conquer algorithm for a binary predicate r over parameters X and Y works
as follows. Let X be the induction parameter. If X is minimal, then Y is (usually) easily found
by directly solving the problem. Otherwise, that is if X is non-minimal, decompose X into a



112 Algorithm Analysis and Algorithm Schemata

vector HX of heads of X and a vector TX of tails of X, the tails being of the same type as X,
as well as smaller than X according to some well-founded relation. The tails TX recursively
yield tails TY of Y. The heads HX are processed into a vector HY of heads of Y. Finally, Y is
composed from its heads HY and tails TY.

For further discussion, we quantify the vectors as follows. There are h heads of X, and h’
heads of Y, and t tails of X, hence t tails of Y. Thus:

#HX = h
#HY = h’

#TX = #TY = t
Note that h, h’, and t are schema variables, not constants.

Logic algorithms designed by this basic divide-and-conquer strategy are covered by
Schema 8-1, where R(TX,TY) stands for ∧1≤j≤t R(TXj,TYj), where j is a notation variable.

Note that here, and in the sequel, we prefer the verb “decompose” to “divide”, and that the
“combine” operation is actually split into a “process” operation and a “compose” operation.
Example 8-4: Logic algorithms that are covered by Schema 8-1 are LA(compress-ext-L)
(LA 5-1), LA(compress-int-C) (LA 5-2), LA(compress-ext-C) (LA 5-3), LA(permutation-L)
(LA 5-14), LA(sort-int-L) {Insertion-Sort} (LA 5-16), LA(sort-ext-L) {Quick-Sort}
(LA 5-17), and LA(sort-ext-L) {Merge-Sort} (LA 5-18).

Second Version

But many logic algorithms are not covered by Schema 8-1 because the non-minimal case is
further partitioned into sub-cases, each featuring a different way of combining partial solu-
tions. The enhanced strategy is as follows.

A divide-and-conquer algorithm for a binary predicate r over parameters X and Y works
as follows. Let X be the induction parameter. If X is minimal, then Y is (usually) easily found
by directly solving the problem. Otherwise, that is if X is non-minimal, decompose X into a
vector HX of heads of X and a vector TX of tails of X, the tails being of the same type as X,
as well as smaller than X according to some well-founded relation. The tails TX recursively
yield tails TY of Y. The heads HX are processed into a vector HY of heads of Y. Finally, Y is
composed from its heads HY and tails TY. It may happen that sub-cases emerge with different
processing and composition operators: discriminate between them according to the values of
HX, TX, and Y.

Of course, if non-determinism of the problem requires alternative solutions, then discrim-
inants should evaluate to true. Logic algorithms designed by this enhanced divide-and-con-
quer strategy are covered by Schema 8-2.

A schema variable c represents the number of different sub-cases of the non-minimal case.
This new schema supersedes the previous schema if c is bound to 1, and the Discriminate1
predicate variable is bound to a predicate that always holds.

Note that the disjunction over k could be “pushed” further into the body of the schema:
we however prefer the given layout as it preserves the resemblance to the previous version.

R(X,Y) ⇔
Minimal(X) ∧ Solve(X,Y)

∨ NonMinimal(X) ∧ Decompose(X,HX,TX)
∧ R(TX,TY)
∧ Process(HX,HY)
∧ Compose(HY,TY,Y)

Logic Algorithm Schema 8-1: Divide-and-conquer (version 1)
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Example 8-5: A logic algorithm that is covered by Schema 8-2, but not by the previous
schema, is LA(delOddElems-L) (LA 5-4).

Third Version

But many logic algorithms are not even covered by Schema 8-2 because the non-minimal
case is partitioned into a recursive and a non-recursive case, each of which is in turn parti-
tioned into sub-cases, as in the second version. In the non-recursive case, Y is (usually) easily
found by directly solving the problem, taking advantage of the decomposition of X into HX
and TX. We assume there are v non-recursive sub-cases and w recursive sub-cases, such that
v+w=c, where c, v, and w are schema variables. Logic algorithms designed by this enhanced
divide-and-conquer strategy are covered by the following schema:
R(X,Y) ⇔

Minimal(X) ∧ Solve(X,Y)
∨ ∨1≤k≤v NonMinimal(X) ∧ Decompose(X,HX,TX)

∧ Discriminatek(HX,TX,Y)
∧ SolveNonMink(HX,TX,Y)

∨ ∨c-w<k≤c NonMinimal(X) ∧ Decompose(X,HX,TX)
∧ Discriminatek(HX,TX,Y)
∧ R(TX,TY)
∧ Processk(HX,HY)
∧ Composek(HY,TY,Y)

But this schema is very lengthy, and doesn’t sufficiently show the commonalities between the
recursive and the non-recursive sub-cases. We thus syntactically merge these cases by sepa-
rating their differences by a BNF-style “or” operator, denoted “⏐”, which has nothing to do
with the logical “or” connective. It is interesting to note that this operator is actually some
kind of a second-order “exclusive-or” connective. The result is Schema 8-3.
Example 8-6: A logic algorithm that is covered by Schema 8-3, but not by the previous
two schemas, is LA(member-L) (LA 5-10).

R(X,Y) ⇔
Minimal(X) ∧ Solve(X,Y)

∨ ∨1≤k≤c NonMinimal(X) ∧ Decompose(X,HX,TX)
∧ Discriminatek(HX,TX,Y)
∧ R(TX,TY)
∧ Processk(HX,HY)
∧ Composek(HY,TY,Y)

Logic Algorithm Schema 8-2: Divide-and-conquer (version 2)

R(X,Y) ⇔
Minimal(X) ∧ Solve(X,Y)

∨ ∨1≤k≤c NonMinimal(X) ∧ Decompose(X,HX,TX)
∧ Discriminatek(HX,TX,Y)
∧ ( SolveNonMink(HX,TX,Y)

⏐
R(TX,TY)

∧ Processk(HX,HY)
∧ Composek(HY,TY,Y) )

Logic Algorithm Schema 8-3: Divide-and-conquer (version 3)
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Fourth Version

Let’s now relax the requirement that predicate r be binary. But we keep the (so far implicit)
constraint that the induction parameter be simple. Supposing predicate r is n-ary (where n is
a schema variable), this new setting implies that Y becomes a vector Y of n–1 variables Yj,
and that vector TY becomes a vector TY of n–1 vectors TYj, each of which is a vector of t
variables TYjl (where j, l are notation variables). Similarly, HY becomes a vector HY of n–1
vectors HYj, each of which is a vector of h’(j) variables HYjl, where h’/1 is a schema function
variable. Thus:

#HX = h
#HYj = h’(j) (1≤j≤n–1)

#TX = #TYj = t (1≤j≤n–1)
#Y = #HY = #TY = n–1

Logic algorithms designed by this enhanced divide-and-conquer strategy are covered by
Schema 8-4, where R(TX,TY) stands for ∧1≤l≤t R(TXl,TY1l,…,TYn–1l).
Example 8-7: Logic algorithms that are covered by Schema 8-4, but not by the previous
three schemas, are LA(efface-L) (LA 5-5), LA(firstN-L) (LA 5-6), LA(firstN-N) (LA 5-7),
LA(insert-L) (LA 5-8), LA(insert-R) (LA 5-9), LA(partition-L) (LA 5-13), and LA(plateau-
N) (LA 5-15).

Fifth Version

Let’s now relax the requirement that there be exactly one minimal case and exactly one non-
minimal case. We assume there are p minimal cases, and q non-minimal cases, where p, q
are schema variables. There are c(i) sub-cases for non-minimal case i, where c/1 is a schema
function variable. Similarly, there are h(i) heads of X, and h’(i,j) heads of Yj, and t(i) tails of
X, in non-minimal case i, where h/1, h’/2, and t/1 are schema function variables. Thus:

#HXi = h(i) (1≤i≤q)
#HYij = h’(i,j) (1≤i≤q) (1≤j≤n–1)

#TXi = #TYij = t(i) (1≤i≤q) (1≤j≤n–1)
#Y = #HYi = #TYi = n-1 (1≤i≤q)

Logic algorithms designed by this enhanced divide-and-conquer strategy are covered by
Schema 8-5.
Example 8-8: A logic algorithm that is covered by Schema 8-5, but by none of the
previous four schemas, is LA(parity-L) (LA 5-12).

R(X,Y) ⇔
Minimal(X) ∧ Solve(X,Y)

∨ ∨1≤k≤c NonMinimal(X) ∧ Decompose(X,HX,TX)
∧ Discriminatek(HX,TX,Y)
∧ ( SolveNonMink(HX,TX,Y)

⏐
R(TX,TY)

∧ Processk(HX,HY)
∧ Composek(HY,TY,Y) )

Logic Algorithm Schema 8-4: Divide-and-conquer (version 4)
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Sixth Version

Let’s finally relax the constraint that the induction parameter be simple. We assume the in-
duction parameter is composed of x parameters, while there are y other parameters, where x,
y are schema variables. This implies that HXi becomes a vector HXi of x vectors HXij, each
of which is a vector of h(i) variables HXijl. Similarly, TXi becomes a vector TXi of x vectors
TXij, each of which is a vector of t(i) variables TXijl. Hence:

#X = #HXi = #TXi = x (1≤i≤q)

#HXij = h(i) (1≤i≤q) (1≤j≤x)

#HYij = h’(i,j) (1≤i≤q) (1≤j≤y)

#TXij = t(i) (1≤i≤q) (1≤j≤x)

#TYij = t(i) (1≤i≤q) (1≤j≤y)

#Y = #HYi = #TYi = y (1≤i≤q)

Logic algorithms designed by this enhanced divide-and-conquer strategy are covered by
Schema 8-6.

Example 8-9: A logic algorithm that is covered by Schema 8-6, but by none of the
previous five schemas, is LA(merge-<A,B>) (LA 5-11).

Things are already getting very complicated with the fifth version. But LA(split)
(LA 5-19) is still uncovered, which means that the search for even more general versions
could continue. But we stop it here. Some of the possible extensions are outlined in
Section 8.4. The remainder of this discussion is mostly about version 4.

R(X,Y) ⇔
∨1≤i≤p Minimali(X) ∧ Solvei(X,Y)

∨ ∨1≤i≤q
∨1≤k≤c(i) NonMinimali(X) ∧ Decomposei(X,HXi,TXi)

∧ Discriminateik(HXi,TXi,Y)
∧ ( SolveNonMinik(HXi,TXi,Y)

⏐
R(TXi,TYi)

∧ Processik(HXi,HYi)
∧ Composeik(HYi,TYi,Y) )

Logic Algorithm Schema 8-5: Divide-and-conquer (version 5)

R(X,Y) ⇔
∨1≤i≤p Minimali(X) ∧ Solvei(X,Y)

∨ ∨1≤i≤q
∨1≤k≤c(i) NonMinimali(X) ∧ Decomposei(X,HXi,TXi)

∧ Discriminateik(HXi,TXi,Y)
∧ ( SolveNonMinik(HXi,TXi,Y)

⏐
R(TXi,TYi)

∧ Processik(HXi,HYi)
∧ Composeik(HYi,TYi,Y) )

Logic Algorithm Schema 8-6: Divide-and-conquer (version 6)
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8.2.2 Integrity Constraints on Instances

The schemas above can be instantiated in many ways. However, some constraints need to be
verified by these instantiation processes in order to result in valid divide-and-conquer logic
algorithms. The constraints on instances of version 4 are as follows.

The instance of X, that is the induction parameter, must be of an inductive type. Indeed,
otherwise, its decomposition into tails TX that are each smaller than X according to some
well-founded relation would be impossible.

The minimal form and the non-minimal form must be mutually exclusive over the domain
of the induction parameter. This means that the chosen instance of the formula:

X∈dom(R) ⇒ Minimal(X) ∨⋅ NonMinimal(X) (1)
must be true in ℑ, where ∨⋅  denotes the “exclusive or” connective. This constraint consider-
ably facilitates algorithm design. Of course, as seen earlier, a rewriting of the final logic al-
gorithm may blur this distinction, which is thus only mandatory at the level of canonical
representations of divide-and-conquer logic algorithms.

The instance of NonMinimal must be a precondition for the instance of Decompose. And
the instance of Decompose must be deterministic if X is given. This means that the chosen
instance of the formula:

X∈dom(R) ∧ NonMinimal(X) ⇒ ∃!HX ∃!TX Decompose(X,HX,TX) (2)
must be true inℑ. This is a reasonable constraint, as it facilitates algorithm design, especially
in conjunction with constraint (1). The determinism of Decompose is not necessary for cor-
rectness reasons, but is reasonable in view of efficiency of the synthesized algorithm.

The decomposition of X must yield tails TXi that are each smaller than X according to
some well-founded relation “<”. This means that the following formula:

∃“<” ∀(Decompose(X,HX,TX1,…,TXt) ⇒ ∀i∈{1,…,t} TXi “<” X) (3)
must be true in ℑ. This ensures termination of the algorithm in the “all ground” mode. Note
that a similar constraint need not be imposed on the TY.

The constraints on the instances of the schema variables (all versions) are as follows:
n ≥ 1 (4)

x ≥ 1 ∧ y ≥ 0 ∧ x+y = n (5)
p ≥ 1 ∧ q ≥ 1 (6)

c ≥ 1, respectively c(i) ≥ 1 (1≤i≤q) (7)
h ≥ 0, respectively h(i) ≥ 0 (1≤i≤q) (8)

h’ ≥ 0, respectively h’(j) ≥ 0, respectively h’(i,j) ≥ 0 (1≤i≤q) (1≤j≤y) (9)
t ≥ 1, respectively t(i) ≥ 1 (1≤i≤q) (10)

Constraints (4) and (5) state that 0-ary relations cannot be solved by a divide-and-conquer
approach, and that there must be some induction parameter. Constraint (6) requires that there
must be at least one minimal case, and at least one non-minimal case. Constraint (7) says that
each non-minimal case must have at least one sub-case. Constraints (8) to (10) state that ev-
ery parameter must be decomposable into at least one tail and zero heads.

Note that there is no constraint that the primitive =/2 must be used in the definition of the
instances of Minimal and NonMinimal. We did so in Section 5.2, but this is not necessary.
For instance, if the minimal form is [], and the non-minimal form is [_|_], the following in-
stances of NonMinimal could be used:

nonMinimal(L) ⇔ L=[_|_]
nonMinimal(L) ⇔ L≠[]
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nonMinimal(L) ⇔ length(L,N) ∧ N>0
Up to domain checking, these variants are equivalent.

It is also worth noting that the HX (respectively HY) may be of the same type as X (re-
spectively Y). Indeed, there is no reason why, say, HL should be an integer when L is a list of
integers. This is illustrated by LA(compress-ext-L) (LA 5-1), where HL is a list of integers.

8.2.3 Justifications

A series of deliberate decisions have been made during the algorithm analysis above. Let’s
justify them now.

Instances of Solve may be defined by fairly complex formulas, including divisions into
sub-cases and the corresponding discriminating mechanisms, just as in non-minimal cases.
But since this is relatively exceptional, we prefer to keep the schema simple, and always stuff
such formulas into a single predicate variable.

Such is however not the case with the SolveNonMink, where Decompose and Discrimi-
natek are explicitly present: this is for reasons of homogeneity with the recursive non-mini-
mal case. This even implies that instances of the SolveNonMink may use the variables HX
and TX introduced by Decompose, rather than start from scratch with a non-decomposed X.

Instances of Solve and the SolveNonMink are fundamentally different in nature from in-
stances of the Processk ∧ Composek conjunctions: in the former, Y can be anything, even to-
tally unrelated to X, HX, or TX; in the latter, Y must be in terms of TY at least.

The distinction between NonMinimal and Decompose may seem artificial at first sight. In-
deed, in many of the logic algorithms of Chapter 5, their instances can be unified, such as in
LA(firstN-L) (LA 5-6). But the mission of NonMinimal only is to detect a non-minimal form,
whereas the mission of Decompose is to decompose a form that is known to be non-minimal:
these are two totally different missions, and the integrity constraint above on the relationship
between their instances indeed is an implication, not an equivalence. This is also reflected in
the different parameters to the corresponding predicate variables. Sample logic algorithms
that clearly illustrate these differences are LA(compress-ext-L) (LA 5-1), LA(sort-ext-L)
{Quick-Sort} (LA 5-17), and LA(efface-L) (LA 5-5).

In the first four versions (where there is only one minimal case and only one non-minimal
case), NonMinimal(X) can be rewritten as ¬Minimal(X) iff this preserves constraint (2). But,
in view of preserving the similarity with the last two versions, we prefer to make the distinc-
tion explicit right away. Also, and more importantly, there is no need for such an arbitrary
restriction on possible instances of NonMinimal.

8.2.4 Discussion

Some issues about the divide-and-conquer strategy need to be discussed in order to show its
generality, and clearly distinguish it from some other approaches.

First, the divide-and-conquer strategy is often believed to be restricted to algorithms that
involve some sophisticated design decisions. A famous example is the Quick-Sort algorithm,
where the divide step partitions the given list into two sublists of elements that are greater
(respectively smaller) than a pivot element. However, such design decisions only affect the
complexity of the resulting algorithm, and are thus not strictly necessary for the design of
correct algorithms. Hence, a divide step that simply decomposes a list into its head and its
tail is also valid. In the sorting problem, it leads to Insertion-Sort.

Also, we mentioned that step (1) of a divide-and-conquer strategy consists of “dividing a
problem into sub-problems, unless it can be trivially solved”. We have here taken the option
that the “unless it can be trivially solved” clause is applicable iff a minimal form of the do-
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main of the induction parameter is attained. An alternative interpretation would be that the
clause may be applicable in even other cases. A good illustration of this point of view is
Sedgewick’s enhancement of Hoare’s original Quick-Sort algorithm: it switches to Insertion-
Sort once the unsorted list has less than, say, 15 elements. Such eminently sophisticated de-
sign-choices are beyond the scope of our study.

An apparent disadvantage of the divide-and-conquer strategy is that it seems to lead to
logic algorithms, and hence logic programs, that are not tail-recursive, because of the very
placement of recursion in the schema. This argument can however be disputed because (au-
tomatable) transformation techniques exist for obtaining tail-recursive versions of a program,
and this in many cases [Deville 90].

The divide-and-conquer strategy should not be confused with the top-down decomposi-
tion strategy, despite their almost synonymic names and their overall problem reduction ap-
proaches. Indeed, the former is a very precisely defined strategy that always yields recursive
algorithms, whereas the latter almost never yields recursive algorithms. Note however that
the divide-and-conquer strategy may be applied recursively, yielding a top-down approach.
This amounts to re-applying the divide-and-conquer strategy in order to synthesize the in-
stances of some predicate variables of the divide-and-conquer schema.

Finally, what is the relationship between the divide-and-conquer strategy and the method-
ology of algorithm construction by structural induction, as described in Chapter 4? Funda-
mentally, there is none: both strategies are based on the principle of well-founded induction.
However, in practice, there are some differences. The divide-and-conquer strategy, especially
its formalization as a schema, is much more prescriptive and more precisely defined than the
other methodology. For instance, the first-order variables of a divide-and-conquer schema
have well-defined scopes. A good illustration of this phenomenon is that the logic algorithms
of Chapter 4 are designed by the structural induction methodology, but are not obtainable by
simply instantiating some divide-and-conquer schema. Such schema instances usually look
a little bit contrived compared to their more natural-looking hand-constructed counterparts.
But it is precisely this extreme formalization that allows (partial) mechanization of the design
process. The point thus merely is that both methodologies were formulated with different ob-
jectives in mind: hand-construction, respectively automation.

8.3 Stepwise, Schema-Guided Logic Algorithm Synthesis
Let’s reconsider the strategies of stepwise synthesis of logic algorithms, seen in Section 7.3.
An interesting idea, especially with non-incremental stepwise strategies, is then to establish
a mapping between steps and the variables of a schema: each step synthesizes instance(s) of
some predicate or schema variable(s) of a given schema.
Example 8-10: Given Schema 8-3, a possible stepwise strategy would be the following
fixed sequence of steps:

• Step 1: Syntactic creation of a first approximation;
• Step 2: Synthesis of Minimal and NonMinimal;
• Step 3: Synthesis of Decompose;
• Step 4: Syntactic introduction of the recursive atoms;
• Step 5: Synthesis of Solve and the SolveNonMink;
• Step 6: Synthesis of the Processk and Composek;
• Step 7: Synthesis of the Discriminatek.

This sequence of predicate variable instantiations is quite “natural”. It can be justified as fol-
lows. Due to interdepencies within the schema, there is no discussion as to the mission of
Steps 1, 2, and 7. Also, Steps 5 and 6 have missions that can be accomplished in parallel.
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Finally, there is no prejudice about what happens first at Step 6: the predicates could be syn-
thesized serially or in parallel. But an alternative sequence nevertheless emerges: one might
first choose an adequate composition operator for parameter Y, and then reason backwards in
order to infer the corresponding decomposition operator for parameter X. As a result, Step 3
would be interchanged with Steps 5 and 6. A similar analysis is made by [Smith 85]. How-
ever, due to the multi-directionality (or reversibility) of logic algorithms, we can here claim
that the given sequence and its outlined alternative are isomorphic: choosing a composition
operator compose for parameter Y amounts to actually selecting Y as the induction parameter
and using compose, in its reversed directionality, as a decomposition operator for Y. In other
words, the given sequence is probably the only one. ♦

One of the major ideas of this thesis is that schema-independent methods can be devel-
oped for the synthesis of predicate variables. Such methods may be merely based on databas-
es of useful instances of predicate variables. More sophisticated methods would perform
actual computations for inferring such instances. Possible modes of reasoning are inductive
inference, deductive inference, analogical inference, abductive inference, and so on. These
reasonings would be based on the contents of the specifications, as well as the algorithm as
designed so far. Several methods of such a tool-box might be applicable at each step, thus
yielding opportunities for user interaction, or for the application of heuristics.

We thus advocate a more disciplined approach to algorithm synthesis: rather than use a
uniform method for instantiating all variables of a given schema (possibly without any
awareness of such a schema), one should deploy for each variable the best-suited method. In
other words, we propose to view research on automatic programming as (1) the search for
adequate schemas, (2) the development of useful methods of predicate variable instantiation,
and (3) the discovery of interesting mappings between these methods and the variables of
these schemas.

As many methods would be schema-independent, and hence variable-independent, one
could even investigate synthesis methodologies that are parameterized on schemas. In other
words, a Step 0 would be to select an appropriate schema, and the subsequent steps would be
either a hardwired sequence (specific to the selected schema) of applications of methods, or
a user-guided selection of variables and methods. Our grand view of algorithm synthesis sys-
tems thus is one of a large workbench with a disparate set of highly specialized methods for
a set of schemas that covers (as much as possible of) the space of all possible algorithms.

Note that this discussion is independent of the used specification formalism, and hence of
their completeness or incompleteness. In this thesis, we investigate a particular niche of au-
tomatic algorithm synthesis as defined above: in the context of (incomplete) specifications
by examples and properties, develop methods of predicate variable instantiation, and apply
them to the step/variable mapping identified in Example 8-10.

8.4 Future Work
There are several directions for future research.

First, in view of having a theory of logic algorithm schemas and a formalization of the ac-
companying notions of instantiation and classification, a language for second-order wff sche-
mas needs to be developed, as well as its semantics defined.

Second, as we already have hinted when stopping the incremental inference of different
versions of a divide-and-conquer schema, version 6 of that schema is far from covering all
possible divide-and-conquer logic algorithms.

A possible enhancement is a schema that automatically introduces an additional parame-
ter to the specified predicate, hence covering LA(split) (LA 5-19). Such an extension is dis-



120 Algorithm Analysis and Algorithm Schemata

cussed by [Summers 77]. This schema could still be considered a design schema, rather than
a transformation schema, as it is not possible to design a logic algorithm for split/3 that is
covered by one of the given versions.

Another observation is that no operator is applied to the final value of parameter Y. For
instance, problems like:

average(L,A) iff A is the average value of L,
where A is an integer, and L is a non-empty integer-list.

are beyond the scope of the given schemas, and must be solved via a different approach. For
instance, it could be solved by a top-down decomposition:

average(L,A) ⇔
sum(L,S) ∧ length(L,N) ∧ div(S,N,A)

and possible optimization by loop-merging the logic algorithms for sum/2 and length/2. An-
other solution would be to extend the divide-and-conquer schemas accordingly.

Also, in Chapter 5, we have informally introduced the notion of auxiliary parameter. But
in this chapter, we have completely ignored them. This is justifiable by the observation that
the identification of auxiliary parameters is not necessary at all for correct algorithm design.
Indeed, as the logic algorithms of Section 5.2 show, it is possible to write logic algorithms
that don’t distinguish between auxiliary parameters and “ordinary” parameters. However, the
(de)composition of an auxiliary parameter from (into) its heads and tails may look cumber-
some because an auxiliary parameter Y and its tail TY are eventually found to be identical:
Y=TY. But it is precisely this composition pattern that allows the subsequent detection of aux-
iliary parameters, and their elimination from the decomposition machinery, so as transform
the logic algorithm into a more “graceful” and “natural” version. For instance, LA(efface-L)
(LA 5-5) could be rewritten as follows:

efface(E,L,R) ⇔
L=[_] ∧ L=[HL] ∧ E=HL ∧ R=[]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ HL=E
∧ E=HL ∧ R=TL

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ HL≠E
∧ efface(E,TL,TR)
∧ HR=HL
∧ R=[HR|TR]

We should not forget that just a casual glance at a specification will not tell whether a param-
eter is an “ordinary” or an auxiliary one. Things are even more difficult with automated al-
gorithm design, and the surest way is indeed to ignore the potential existence of auxiliary
parameters until a transformation phase. But suppose now that knowledge about which pa-
rameters are auxiliary parameters is available earlier during the algorithm synthesis process
(for instance because the specifier declares them as such, or because type heuristics detect
them as such). It would certainly be helpful to pre-compile the needed subsequent transfor-
mations into a schema with an explicit consideration of auxiliary parameters.

Third, this chapter is exclusively concerned with the divide-and-conquer strategy. It
would be interesting to investigate the development of schemas for other strategies, such as
generate-and-test, local search, global search, and so on.
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8.5 Related Work
Algorithm (and program) schemas are an old, and ever popular, idea of computer science.
They have been proposed for a huge variety of applications.

Some properties of programs can be proven independently of their actual computations.
Hence the idea of abstracting away these details, and proving such properties for the resulting
schemas. This makes proofs of properties at the instance level easier, as it suffices to show
that the program is covered by a schema that is known to have the desired property. Sample
properties are termination, divergence, equivalence, isomorphism, and so on. An early survey
of this research can be found in [Manna 74]. Note that Manna’s schemas are first-order sche-
mas, and that their semantics is defined via (Herbrand) interpretations. This semantics-based
approach is of course also perfectly valid. It is sufficient for the study of schemas, but not as
a tool for algorithm design. Indeed, unlike our second-order approach, it doesn’t permit the
concept of instantiation of a schema, and is thus less “constructive” for design purposes.

In the field of logic programming tutors for beginners, [Gegg-Harrison 89, 93] proposes
a hierarchy of 14 logic program schemas. These are also set in a second-order logic frame-
work, and embody the otherwise rare feature of arbitrary arities. They are specialized ver-
sions of our divide-and-conquer schemas, in the sense that they have less predicate variables,
and that they are already partly instantiated (induction parameter of type list, fixed forms,
fixed decomposition, fixed number of cases, fixed discriminants, and so on).

In the area of manual or computer-aided algorithm/program construction for experts,
[Deville 87, 90] and [Deville and Burnay 89] suggest an ancestor version of our divide-and-
conquer schemas. It roughly corresponds to a highly instantiated version of our version 1 (no
discriminants, and most schema variables are bound to the constant 1). They also discuss in-
teresting transformation schemas, based on structural or computational generalization.

A similar study is made by [O’Keefe 90], who rephrases “specifications” of problems in
an algebraic way. The predicates of such “specifications” can be directly plugged into given
logic program schemas. Several schemas may be applicable according to the properties (as-
sociativity, commutativity, existence of left identities, and so on) of the identified predicates.

 Alternatively, [Lakhotia 89] experiments with what he calls “incorporating programming
techniques into Prolog programs”. Similarly, [Barker-Plummer 90] discusses a system based
on clichés that assists experienced programmers in the construction of Prolog programs.
These approaches could be seen as transformation rather than design approaches.

The field of automatic algorithm/program synthesis has naturally seen a lot of interest in
schemas. The promise of schema-guidance is a more disciplined synthesis that exploits use-
ful knowledge about algorithm design strategies.

In the sub-area of synthesis from incomplete specifications (see Section 3.3), schemas are
often implicitly or explicitly present to guide the synthesis. Early systems based on divide-
and-conquer schemas are described by [Shaw et al. 75], [Hardy 75], [Summers 77], and
[Biermann and Smith 79].

Surprisingly, the new strand of research spawned by MIS [Shapiro 82] (see Section 3.4.1)
has long ignored the virtues of schemas. It is only in these days that schemas have been found
to be interesting for organizing search spaces for MIS-like systems. Sample approaches are
described by [Tinkham 90] and [Sterling and Kirschenbaum 91].

In the sub-area of synthesis from complete specifications, the use of schemas seems much
less established. The Programmer’s Apprentice project is based on the fundamental notion
of clichés, which are application-specific schemas [Rich and Waters 88b].

Some of the most fascinating research on using schemas for program synthesis is being
reported by Douglas R. Smith. The synthesis of divide-and-conquer algorithms is described
by [Smith 81, 85]: the underlying schema is quite similar to our version 4, except that the
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discriminants are merged into the form-identifying formulas. With the implemented system,
called CYPRESS, one proceeds by arbitrarily choosing instances of two predicate variables
among <Decompose, Process, Compose>, and then infers the other ones deductively using a
synthesis theorem.

The synthesis of global search algorithms is reported by [Smith 88, 90]. Global search is
an enumerative search strategy that generalizes many known search strategies, such as binary
search, backtracking, branch-and-bound, constraint satisfaction, and so on. The resulting
system, called KIDS, is similar in nature to the CYPRESS approach.

As a conclusion of this survey, it must be observed that almost all of the research has gone
into investigating divide-and-conquer schemas. This is not a bad thing, as the covered class
of algorithms is very interesting and large. But these published schemas tend to be extremely
simplified ones, namely often at best the equivalents of our version 2. In order to be really
useful, we think that more sophisticated versions should also be supported.

8.6 Conclusion
In this chapter, we have given a brief semi-formal introduction to algorithm schemas, and ar-
gued for their usefulness in guiding algorithm design. Focusing on the divide-and-conquer
strategy, we have incrementally inferred six increasingly powerful schemas from a series of
divide-and-conquer logic algorithms. These schemas are data-structure independent. Finally,
we have proposed a vision of stepwise, schema-guided algorithm synthesis mechanisms,
where each variable of a schema is instantiated using the best-suited method from a tool-box
of such methods.

Algorithm schemas are used in a widespread variety of areas, including automated algo-
rithm synthesis. This is quite natural, as algorithm schemas are a powerful way of embodying
our knowledge about algorithms. Surprisingly, though, schemas are not as broadly used
across all existing synthesis mechanisms as we think they ought to be. For instance, in the
branch of inductive synthesis, schemas had almost disappeared until recently. One of the rea-
sons could be that Inductive Logic Programming (ILP) seems more focused on concept
learning than on algorithm design, and it is little wonder that concept schemas are hardly ex-
istent, and thus considered only with skepticism. Similarly, in the branch of deductive syn-
thesis, schemas have attracted little attention. We think that deductive synthesis paradigms
as proofs-as-programs synthesis, or transformational synthesis, would gain a lot from sche-
ma-guided approaches, as search spaces can then be significantly cut down.
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9 The Proofs-as-Programs Method
In this chapter, we develop the Proofs-as-Programs Method, which adds atoms to a logic al-
gorithm so that some correctness criteria wrt a set of properties become satisfied. This meth-
od is part of our tool-box of methods for instantiating the predicate variables of a schema.
First, in Section 9.1, we state the problem. Then, in Section 9.2, we explain a method to solve
this problem, and discuss its correctness in Section 9.3. In Section 9.4, we illustrate this
method on a few sample problems. Future work and related work are discussed in Section 9.5
and Section 9.6, respectively, before drawing some conclusions in Section 9.7.

9.1 The Problem
Let’s first illustrate the objectives on a sample problem.
Example 9-1: Intuitively, the first objective consists of adding atoms to a logic algorithm
so that it becomes totally correct wrt a given set of properties. For instance, given the logic
algorithm LA(efface):

efface(E,L,R) ⇔
L=[HL|TL] ∧ R=TL

∨ L=[HL|TL] ∧ efface(E,TL,TR)
∧ R=[HL|TR]

and the set of properties P(efface):
efface(X,[X|T],T)
efface(X,[Y,X|T],[Y|T]) ⇐ X≠Y

one can see that LA(efface) is complete, but not totally correct, wrt P(efface). Indeed, some
atoms are missing for deciding when R should be unified with TL (namely iff HL=E), respec-
tively when R should be unified with [HL|TR] (namely iff HL≠E and the first element of TL
is E). The objective is thus to add the missing literals to LA(efface), yielding LA’(efface):

efface(E,L,R) ⇔
L=[HL|TL] ∧ HL=E ∧ R=TL

∨ L=[HL|TL] ∧ HL≠E ∧ TL=[E|_]
∧ efface(E,TL,TR)
∧ R=[HL|TR]

which is indeed totally correct wrt P(efface). However, as properties are usually an incom-
plete source of information about the intended relation, we are not necessarily interested in
achieving such a total correctness wrt the given property set. We are thus rather interested in
achieving total correctness wrt the intended relation. The second objective is thus to gener-
alize LA’(efface) into LA”(efface) so that it becomes “more complete” wrt Efface, and this
with some reasonable certainty. In our case, this may be achieved by dropping one of the ini-
tially added conditions (namely that the first element of TL be E). So LA”(efface) is:

efface(E,L,R) ⇔
L=[HL|TL] ∧ HL=E ∧ R=TL

∨ L=[HL|TL] ∧ HL≠E
∧ efface(E,TL,TR)
∧ R=[HL|TR]

which is indeed totally correct wrt Efface. In general, the conditions to be dropped are deter-
mined by some application-specific heuristics, whereas the initial addition of conditions
seems feasible in an application-independent fashion. ♦
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Formally, the problem can now be posed as follows.
Given:

• a logic algorithm LA(r),
• a set of properties P(r),
• a set H of application-specific generalization heuristics,

such that:
• LA(r) only contains primitive predicates, and the r/n predicate,
• LA(r) is complete wrt P(r),

find:
• a logic algorithm LA’(r),
• a logic algorithm LA”(r),

such that:
• LA'(r) is a syntactic specialization of LA(r) that is totally correct wrt P(r),
• LA”(r) is obtained by applying the heuristics of H to LA’(r).
The latter task cannot be further explained here, as the heuristics are application-specific.

A semantic specialization of LA(r) would be P(r) re-expressed as a logic algorithm. The most
“useful” specialization is however a syntactic specialization that only adds atoms to the ex-
isting disjuncts of LA(r), and hence preserves the existing computations. Indeed, the objec-
tive is not that LA'(r) be totally correct wrt P(r), but that LA”(r) be totally correct wrt R. So
the construction of LA'(r) is only a useful intermediate step.

9.2 A Method
First of all, let’s remark that our Proofs-as-Programs Method is totally unlike classical
proofs-as-programs approaches to algorithm synthesis (see Chapter 2). Indeed, we here
adopt the liberal viewpoint that any technique that extracts some computational contents
from a proof may be seen as a proofs-as-programs technique.

Intuitively, the Proofs-as-Programs Method specializes the given logic algorithm by add-
ing atoms extracted from the proofs that the given properties are its logical consequences.
After deciding on some concrete language issues, this section is organized as follows:
Section 9.2.1 is about the proof aspects of the Proofs-as-Programs Method, whereas
Section 9.2.2 is about its condition extraction aspects.

The concrete languages for logic algorithms and properties need to be fixed before actu-
ally developing a method for solving the problem at hand. In the following, we assume that:

• logic algorithms have bodies in prenex disjunctive normal form, without negation;
• properties are Horn clauses with atoms of predicate r/n in their heads.

These choices are motivated by the theorem proving technology used below. Note that the
language for properties is different from the language chosen in Section 6.2, because recur-
sion is allowed here, while negation is disallowed here.

9.2.1 Proofs by Extended Execution

The idea is to perform a verification proof that LA(r) is effectively complete wrt P(r). This
should reveal, in case of success, a set of conditions explaining why, if at all, LA(r) is not
already totally correct wrt P(r).

If we want to perform this proof in a mechanized fashion, we cannot apply the actual cri-
terion of completeness (namely Definition 7-8) of a logic algorithm wrt a property set, be-
cause this requires the knowledge ofℑ. So we have to resort to the (weaker) intuitive criterion
of completeness. The latter would be achieved if (but not only if) LA(r) |==P(r). But we rather
want to prove, for each property Pi  ∈ P(r), that:



9.2 A Method 125

Ti |== Pi (1)
where Ti is a theory composed of:

• the logic algorithm LA(r),
• the specification P(r) \ {Pi},
• logic algorithms for all primitive predicates.

The reason why the properties other than Pi are included in Ti is that the recursive calls of
LA(r) had better not be resolved using LA(r) itself, as we have no guarantee yet of the total
correctness of LA(r) wrt the intended relation R. So these other properties should be used for
the resolution of these recursive calls, because properties are assumed to be a consistent, al-
beit incomplete, approximation of R. This is reflected in the search rule described below.

These proofs have to be performed by an extension to SLD resolution, because the initial
goals are here Horn clauses, and not mere conjunctions of atoms. An existing such extension
is the extended execution mechanism of [Kanamori and Seki 86] [Kanamori and Fujita 86],
where theories are definite programs, and goals are so-called S-formulas (short for specifica-
tion formulas). Note that most of the terminology (but not the notation) used hereafter is bor-
rowed from these two original references. This passage only states results, but not their
motivations or proofs: refer to these references when in need of further explanations.

We syntactically restrict S-formulas (which are not explained here) to implicative goals
(as in [Fribourg 90, 91a]), that is statements G of the form:

∀X ∃Y G+(X,Y) ⇐ G−(X)
where conclusion G+ and hypothesis G− are conjunctions of atoms, and X, Y are vectors of
(universal, respectively existential) variables. For syntactic convenience, we write implica-
tive goals in quantifier-free form:

G+(X,?Y) ⇐ G−(X)
where X, ?Y are (now) vectors of (free, respectively undecided) variables. In the sequel, we
often write “goal” instead of “implicative goal”.

Properties are thus a particular case of implicative goals. Note that ?Y is necessarily al-
ways empty for a property.

As a theory of extended execution is a definite program, a definite program version of Ti
has to be generated: let’s call it Di. In definite program clauses, we use the connectives “←”
and “,” for “if” and “and”, respectively. This is straightforward due to the chosen languages
for logic algorithms and properties. This is explained, for instance, in [Deville 90, pages 227–
228] and [Lloyd 87, page 113]. Note that such a translation is deterministic in this case, and
thus reversible. Objective (1) thus amounts to proving the following:

Di |— Pi (2)
The variables of Di are renamed at each use so that there is no conflict with the variable
names of previous goals.

The initial goal is property Pi, translated into an implicative goal.
Due to our syntactic restriction to implicative goals, only three inference rules of extended

execution are actually required in our context. 13

Definition 9-1: The rule of definite clause inference (denoted DCI) is a natural extension
of SLD resolution to implicative goals. Given a goal G, the selected atom is chosen within
G+, and the mgu may only bind undecided variables of G+. All new variables introduced in
the resolvent goal are undecided variables.
13. Note that we could have adapted extended execution to handle our original formalisms without translations.

But we feel that re-using (subsets of) existing results (namely [Kanamori and Fujita 86] [Kanamori and
Seki 86] for execution, and [Deville 90] for the necessary translations) is a better approach.
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Definition 9-2: The rule of negation-as-failure inference (denoted NFI) is a natural
extension of the NF rule [Clark 78] to implicative goals. Given a goal G, the selected atom A
is chosen within G–, and a conjunction of d resolvent goals is generated, namely Gσi, where
Aσi has been replaced by the conjunction Biσi, with Hi ← Bi being one of the d definite
clauses whose head Hi unifies with A under mgu σi. All new variables introduced in the
resolvent goals are free variables.
Definition 9-3: Given a goal G, the rule of simplification (denoted Sim) selects two atoms
A and B, in G+ and G− respectively, that unify with an mgu σ that only binds undecided
variables of G+: the resolvent goal is obtained from Gσ by deleting A and B.

This subset of extended execution is sound and complete wrt the Clark completion seman-
tics [Kanamori 86]. Hence, provability by extended execution is equivalent to truth. More-
over, since Ti is by construction the completion of Di, the proofs of (2) thus effectively do
amount to the truths of (1).

SLD resolution is parameterized on a computation rule and a search rule [Lloyd 87]. For
extended execution, these rules are, for the purpose of the Proofs-as-Programs Method, in-
stantiated as follows:

• the computation rules for DCI and NFI satisfy the following condition: never select an
atom with predicate r/n if there are atoms with primitive predicates. Indeed, while the-
oretically not required, delaying the selection of r/n atoms generally results in less
search;

• the search rule for DCI is as follows:
– an atom with a primitive predicate is resolved according to its semantics;
– the atom with predicate r/n originating from the initial goal of the proof tree is re-

solved using the clauses generated from LA(r);
– an atom with predicate r/n not originating from the initial goal of the proof tree is

resolved using the clauses generated from P(r) \ {Pi}.
Note that the search rule is context-dependent. For the resolution of the atom with predicate
r/n originating from the initial goal, we use LA(r) rather than P(r) \ {Pi}, because that
wouldn’t make sense: we are trying to prove LA(r) complete wrt P(r), not to prove P(r) in-
ternally consistent. For the resolution of atoms with predicate r/n not originating from the
initial goal, we use P(r) \ {Pi} rather than LA(r), because the latter is in general not correct
wrt P(r).

Note that there is independence of the computation rules. But a fairness condition requires
that no atom be indefinitely ignored by NFI. The completeness proof of extended execution
[Kanamori 86] states that every logical consequence is provable by a so-called normalized
derivation, in which a sequence of NFI inferences precedes a sequence of DCI inferences,
which in turn precedes a sequence of Sim inferences. Hence the idea of a priority ordering
between the inference rules, namely NFI > DCI > Sim.
Definition 9-4: A derivation via the NFI, DCI, and Sim rules succeeds iff it ends in a goal
whose conclusion is empty. Such a derivation fails iff it doesn’t succeed.

Failure is not always detectable, except in specific settings. For instance, no infinite deri-
vation can occur if all primitive predicates have finite proofs for all directionalities, and if
there is a well-founded relation between the recursive atoms of a property and the head of
that property.

Before proceeding with the theoretical considerations, let’s illustrate all this on a sample
derivation.
Example 9-2: Given the definite clause theory D2:
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firstPlateau(L,P,S) ← L=[_,_|_],
L=[HL|TL],
firstPlateau(TL,TP,TS),
P=[HL|TP],S=TS,TP=[HL|_] (C3)

firstPlateau([X],[X],[]) (P1)
firstPlateau([X,Y],[X],[Y]) ← X≠Y (P3)

and the implicative goal:
firstPlateau([X,Y],[X,Y],[]) ⇐ X=Y (P2)

here follows the proof that D2 |— P2: 14

firstPlateau([X,Y],[X,Y],[]) ⇐ X=Y

NFI: LA(=) ↓ {Y/X}
firstPlateau([X,X],[X,X],[]) ⇐

DCI: C3 ↓ {}
[X,X]=[?_,?_|?_] ∧ [X,X]=[?HL|?TL] ∧

firstPlateau(?TL,?TP,?TS) ∧
[X,X]=[?HL|?TP] ∧ []=?TS ∧ ?TP=[?HL|?_] ⇐

5 × DCI: LA(=) ↓ {HL/X, TL/[X], TP[X], TS/[]}
firstPlateau([X],[X],[]) ⇐

DCI: P1 ↓ {}
❏

This derivation succeeds. ♦

For a non-recursive property Pi, a normalized successful derivation is an instance of the
following derivation schema: 15

r(t) ⇐ B

NFI ↓ λ

r(t)λ ⇐ Q

DCI: clause Ck from LA(r) ↓ {}
S ∧ r(s) ⇐ Q

DCI ↓ σ

r(s)σ ⇐ Qσ

DCI: P(r) \ {Pi} ↓ µ

T ⇐ Qσµ

DCI, Sim ↓ ρ

⇐ Qσµρ

where:
• B, Q, S, T are (possibly empty) conjunctions of atoms with primitive predicates,
• s, t are vectors of terms,
• λ, σ, µ, ρ are mgus.

The relevant part of the computed answer substitution, denoted ϕ, is the composition σµρ.
14. In sample derivations, the selected atom(s) for the next inference(s) is (are) written in boldface (because

there is no ambiguity with the vector convention).
15. In derivation schemas, the selected atom(s) for the next inference(s) is (are) underlined.
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If clause Ck is not recursive, then everything related to r(s) may simply be ignored. A slight
variation of this schema can be established for recursive properties.

We are now able to state a theorem that shows a practical way of verifying the complete-
ness of a logic algorithm wrt a property set.
Theorem 9-1: A logic algorithm LA(r) is complete (according to the new criterion (1)) wrt
a property set P(r) iff, for every property Pi in P(r), there exists a successful derivation (via
the NFI, DCI, and Sim rules) of Di |— Pi, where theory Di is defined as above.
Proof 9-1: The theorem directly follows from the soundness and completeness of extended
execution wrt the Clark completion semantics [Kanamori 86]. ❏

The problem statement of the Proofs-as-Programs Method requires that LA(r) be com-
plete wrt P(r), and this, in retrospective, according to the new criterion (1). Indeed, there
wouldn’t exist any complete syntactic specialization otherwise. But in practice, it is often im-
possible to know beforehand whether this constraint is satisfied or not. Theorem 9-1 thus
shows a way of verifying this simultaneously with the attempts at enhancement, as captured
in the following definition:
Definition 9-5: The Proofs-as-Programs Method succeeds iff LA(r) is proven (by extended
execution) to be complete wrt P(r). It fails otherwise.

So far for the proof aspects of the Proofs-as-Programs Method. Let’s now turn to the con-
dition extraction aspects.

9.2.2 The Extraction of Conditions

The fundamental observation of condition extraction is that the final goal of a successful der-
ivation may have a non-empty hypothesis. So the idea is to use that hypothesis (even if it is
empty, that is true) together with the computed answer substitution in order to build a condi-
tion that, if added to the original logic algorithm, would then give rise to an unconditionally
successful derivation.

More precisely, let Ck be the kth clause generated from LA(r). Assume Ck is as follows:
r(U) ← ∃W Bk[U]

where:
• U is the vector of universal variables in the kth disjunct of LA(r),
• W is the vector of existential variables in the kth disjunct of LA(r).

In case of a successful derivation whose first DCI resolution was based on Ck, a (new) pred-
icate qk is partially defined by the definite program clause:

qk(t,W)ϕ ← Qϕ (3)
where:

• t is the vector of terms in the head of Pi,
• ϕ is the computed answer substitution,
• Qϕ is the hypothesis of the last goal of the derivation.

Note that such a definite program clause is defined in terms of primitive predicates only. In-
deed, Qϕ originally is the body of property Pi (remember that properties are defined in terms
of primitives only), and atoms can be deleted from it (by use of the NFI and Sim rules), and
atoms with primitive predicates can be added to it (by use of the NFI rule). An important fea-
ture is thus that these definite program clauses can’t be recursive.

Before proceeding with the theoretical considerations, let’s illustrate all this on a sample
condition extraction.
Example 9-3: The derivation of Example 9-2 succeeds, and a new predicate, say
discFirstPlateau3, is partially defined as follows:
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discFirstPlateau3(L,P,S,HL,TL,TP,TS) ←
L=[X,X],P=[X,X],S=[],
HL=X,TL=[X],TP=[X],TS=[] ♦

Once that all successful derivations of all formulas (2) have been computed, and provided
the method succeeds, LA'(r) is obtained from LA(r) by adding an atom qk(U,W) to its kth dis-
junct, for every newly created predicate qk.

Similarly, a set Z of logic algorithms LA(qk) is obtained by translating the definite proce-
dures of the qk into the logic algorithm language. The used translation rules are the reverse
of those used above for achieving the applicability of extended execution: they amount to
computing the Clark completion of the definite procedures of the qk. These logic algorithms
are by construction non-recursive, so they may be unfolded into LA'(r).

The Proofs-as-Programs Method is deterministic because the results of all successful der-
ivations are collected before computing Z therefrom. The method is thus independent of any
ordering of disjuncts within LA(r), or of properties within P(r). The method may fail, as con-
veyed in Definition 9-5. However, nothing can be said about the synthesized logic algorithms
in terms of determinism or finiteness, because nothing is known about the properties.

Establishing the complexity of the method is quite intricate, unless some assumptions are
made. Thus, assume that properties are non-recursive, and that all primitives used in P(r) are
deterministic, and let c be the number of disjuncts in LA(r), p be the number of properties of
P(r), and t be the number of recursive atoms in LA(r). There are p proofs to be made. Each
proof-tree has only two choice-points, namely the DCI resolution of the head of the initial
goal, where there are c possibilities, and the DCI resolution of the t recursive atoms, where
there are p–1 possibilities, all other proof steps being deterministic. Each proof tree has thus
size O(cpt). Hence, the time complexity of the method is O(cpt+1). This assumes that there
is a fixed maximum number of atoms for the definitions of the used primitives. Indeed, if that
number is a function of c, t, or p, then this complexity analysis doesn’t hold.

9.3 Correctness
The following correctness theorem can now be established.
Theorem 9-2: LA'(r) is a syntactic specialization of LA(r) that is totally correct wrt P(r).
Proof 9-2: Let Ti' be defined like Ti, but using LA'(r) rather than LA(r). Suppose we now
prove that each property Pi is a logical consequence of its theory Ti'. Without loss of
generality, we can assume that the previous derivations of Di |— Pi are prefixes of the new
derivations of Di' |— Pi (namely by a relaxation of the recommendations above for the
computation rules and for the normalization of proofs). Each new derivation then eventually
yields a goal whose conclusion only involves a qk atom, as shown by the revised derivation
schema:

r(t) ⇐ B

NFI ↓ λ

r(t)λ ⇐ Q

DCI: clause C’k from LA’(r) ↓ {}
S ∧ r(s) ∧ qk(t,W) ⇐ Q

DCI ↓ σ

r(s)σ ∧ qk(t,W)σ ⇐ Qσ

DCI: P(r) \ {Pi} ↓ µ

T ∧ qk(t,W)σµ ⇐ Qσµ
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DCI, Sim ↓ ρ

qk(t,W)σµρ ⇐ Qσµρ

Replacing σµρ by ϕ, this last goal may be rewritten more compactly, and the revised deriva-
tion schema continues as follows:

qk(t,W)ϕ ⇐ Qϕ

DCI: clause (3) ↓ {}
Qϕ ⇐ Qϕ

Sim ↓ {}
❏

Every new derivation thus succeeds as well. By soundness and completeness of extended ex-
ecution wrt the Clark completion semantics [Kanamori 86], the property set P(r) is thus also
logical consequence of LA'(r). Hence LA'(r) is complete wrt P(r).

Note that LA'(r) is certainly the most specific syntactic specialization of LA(r) that the
Proofs-as-Programs Method can produce: starting from LA'(r), a renewed application of that
method would, as the proof above indicates, lead to a logic algorithm that is syntactically
equivalent to LA'(r). The Proofs-as-Programs Method is thus idempotent, and LA'(r) is par-
tially correct wrt P(r), that is syntactically equivalent to P(r) expressed as a logic algorithm.

By construction, LA'(r) is a syntactic specialization of LA(r). ❏

9.4 Illustration
Let’s illustrate the described method on two sample problems.
Example 9-4: As a reminder, the compress(L,C) procedure succeeds iff C is a compact list
of <vi,ci> couples, such that the ith plateau of list L has ci elements equal to vi. The logic
algorithm LA(compress) that is to be specialized is:

compress(L,C) ⇔
L=[] ∧ C=[]

∨ L=[_|_] ∧ L=[HL|TL]
∧ compress(TL,TC)
∧ C=[HL,1|TC]

∨ L=[_|_] ∧ L=[HL|TL]
∧ compress(TL,TC)
∧ C=[HL,s(s(N))|TTC] ∧ TC=[HL,s(N)|TTC]

The corresponding definite program is:
compress(L,C) ← L=[],C=[] (C1)
compress(L,C) ← L=[_|_],

L=[HL|TL],
compress(TL,TC),
C=[HL,1|TC] (C2)

compress(L,C) ← L=[_|_],
L=[HL|TL],
compress(TL,TC),
C=[HL,s(s(N))|TTC],TC=[HL,s(N)|TTC] (C3)

Finally, let the properties be:
compress([],[]) (E1)
compress([X],[X,1]) (P1)
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compress([X,Y],[X,2]) ⇐ X=Y (P2)
compress([X,Y],[X,1,Y,1]) ⇐ X≠Y (P3)

The objective is to attempt to prove, by extended execution, that each property Pi is a logical
consequence of theory Ti.

We skip the proof of property E1, as it is trivial, and as it leads to the extraction of a con-
dition that is redundant wrt the existing atoms.

Let’s pursue with P1, and use clause C1 for the first DCI resolution:
compress([X],[X,1]) ⇐

DCI: C1 ↓ {}
[X]=[] ∧ [X,1]=[] ⇐

This derivation fails, and no extraction is performed.
We continue with clause C2 for the first DCI resolution:

compress([X],[X,1]) ⇐

DCI: C2 ↓ {}
[X]=[?_|?_] ∧ [X]=[?HL|?TL] ∧

compress(?TL,?TC) ∧ [X,1]=[?HL,1|?TC] ⇐

3 × DCI: LA(=) ↓ {HL/X, TL/[], TC/[]}
compress([],[]) ⇐

DCI: E1 ↓ {}
❏

This derivation succeeds. A clause for a new predicate discCompress2 is defined as follows:
discCompress2(L,C,HL,TL,TC) ←

L=[X],C=[X,1],
HL=X,TL=[],TC=[]

We continue with clause C3 for the first DCI resolution:
compress([X],[X,1]) ⇐

DCI: C3 ↓ {}
[X]=[?_|?_] ∧ [X]=[?HL|?TL] ∧ compress(?TL,?TC) ∧

[X,1]=[?HL,s(s(?N))|?TTC] ∧ ?TC=[?HL,s(?N)|?TTC] ⇐

This derivation fails, and no extraction is performed.
We pursue with P2, and restart from clause C1 for the first DCI resolution:

compress([X,Y],[X,2]) ⇐ X=Y

NFI: LA(=) ↓ {Y/X}
compress([X,X],[X,2]) ⇐

DCI: C1 ↓ {}
[X,X]=[] ∧ [X,2]=[] ⇐

This derivation fails, and no extraction is performed.
We continue with clause C2 for the first DCI resolution:

compress([X,Y],[X,2]) ⇐ X=Y

NFI: LA(=) ↓ {Y/X}
compress([X,X],[X,2]) ⇐

DCI: C2 ↓ {}
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[X,X]=[?_|?_] ∧ [X,X]=[?HL|?TL] ∧
compress(?TL,?TC) ∧ [X,2]=[?HL,1|?TC] ⇐

This derivation also fails, and no extraction is performed.
We continue with clause C3 for the first DCI resolution:

compress([X,Y],[X,2]) ⇐ X=Y

NFI: LA(=) ↓ {Y/X}
compress([X,X],[X,2]) ⇐

DCI: C3 ↓ {}
[X,X]=[?_|?_] ∧ [X,X]=[?HL|?TL] ∧ compress(?TL,?TC) ∧
[X,2]=[?HL,s(s(?N))|?TTC] ∧ ?TC=[?HL,s(?N)|?TTC] ⇐

2 × DCI: LA(=) ↓ {HL/X, TL/[X], N/0, TTC/[], TC/[X,1]}
compress([X],[X,1]) ⇐

DCI: P1 ↓ {}
❏

This derivation succeeds. A new predicate discCompress3 is partially defined as follows:
discCompress3(L,C,HL,TL,TC,N,TTC) ←

L=[X,X],C=[X,2],
HL=X,TL=[X],TC=[X,1],
N=0,TTC=[]

We pursue with P3, and restart from clause C1 for the first DCI resolution:
compress([X,Y],[X,1,Y,1]) ⇐ X≠Y

DCI: C1 ↓ {}
[X,Y]=[] ∧ [X,1,Y,1]=[] ⇐ X≠Y

This derivation fails, and no extraction is performed.
We continue with clause C2 for the first DCI resolution:

compress([X,Y],[X,1,Y,1]) ⇐ X≠Y

DCI: C2 ↓ {}
[X,Y]=[?_|?_] ∧ [X,Y]=[?HL|?TL] ∧

compress(?TL,?TC) ∧ [X,1,Y,1]=[?HL,1|?TC] ⇐ X≠Y

3 × DCI: LA(=) ↓ {HL/X, TL/[Y], TC/[Y,1]}
compress([Y],[Y,1]) ⇐ X≠Y

DCI: P1 ↓ {}
⇐ X≠Y

This derivation succeeds. Another clause for predicate discCompress2 is created as follows:
discCompress2(L,C,HL,TL,TC) ←

L=[X,Y],C=[X,1,Y,1],
HL=X,TL=[Y],TC=[Y,1],
X≠Y

We continue with clause C3 for the first DCI resolution:
compress([X,Y],[X,1,Y,1]) ⇐ X≠Y

DCI: C3 ↓ {}
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[X,Y]=[?_|?_] ∧ [X,Y]=[?HL|?TL] ∧ compress(?TL,?TC) ∧
[X,1,Y,1]=[?HL,s(s(?N))|?TTC] ∧ ?TC=[?HL,s(?N)|?TTC] ⇐ X≠Y

This derivation fails, and no extraction is performed.
There is no other property. There are no alternative derivations. So LA'(compress) is de-

fined as follows, after adding two atoms to LA(compress):
compress(L,C) ⇔

L=[] ∧ C=[]
∨ L=[_|_] ∧ L=[HL|TL]

∧ discCompress2(L,C,HL,TL,TC)
∧ compress(TL,TC)
∧ C=[HL,1|TC]

∨ L=[_|_] ∧ L=[HL|TL]
∧ discCompress3(L,C,HL,TL,TC,N,TTC)
∧ compress(TL,TC)
∧ C=[HL,s(s(N))|TTC] ∧ TC=[HL,s(N)|TTC]

where the procedures of the new predicates are rewritten as a set Z of logic algorithms:
discCompress2(L,C,HL,TL,TC) ⇔

L=[X] ∧ C=[X,1]
∧ HL=X ∧ TL=[] ∧ TC=[]

∨ L=[X,Y] ∧ C=[X,1,Y,1]
∧ HL=X ∧ TL=[Y] ∧ TC=[Y,1]
∧ X≠Y

discCompress3(L,C,HL,TL,TC,N,TTC) ⇔
L=[X,X] ∧ C=[X,2]

∧ HL=X ∧ TL=[X] ∧ TC=[X,1]
∧ N=0 ∧ TTC=[]

Suppose now that some application-specific heuristics (see Section 13.3.2) suggest that:
• both conditions may be generalized by projection onto their 2nd to 4th parameters;
• the values of the C parameter are irrelevant in both conditions;
• the TL parameter should vary over its entire domain in both conditions.

This transforms Z into Z’, which is as follows (after some additional rewriting):
discCompress2(L,C,HL,TL,TC) ⇔

TL=[]
∨ TL=[HTL|_] ∧ HL≠HTL

discCompress3(L,C,HL,TL,TC,N,TTC) ⇔
TL=[HTL|_] ∧ HL=HTL

If we unfold LA'(compress) using Z’, then we obtain LA”(compress):
compress(L,C) ⇔

L=[] ∧ C=[]
∨ L=[_|_] ∧ L=[HL|TL]

∧ (TL=[]) ∨ (TL=[HTL|_] ∧ HL≠HTL)
∧ compress(TL,TC)
∧ C=[HL,1|TC]

∨ L=[_|_] ∧ L=[HL|TL]
∧ TL=[HTL|_] ∧ HL=HTL
∧ compress(TL,TC)
∧ C=[HL,s(s(N))|TTC] ∧ TC=[HL,s(N)|TTC] ♦
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Example 9-5: As a reminder, the firstPlateau(L,P,S) relation holds iff P is the first maximal
plateau of the non-empty list L, and list S is the corresponding suffix of L. The logic algorithm
LA(firstPlateau) that is to be specialized is:

firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ P=[HL] ∧ S=TL ∧ TL=[_|_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ firstPlateau(TL,TP,TS)
∧ P=[HL|TP] ∧ S=TS ∧ TP=[HL|_]

The corresponding definite program is (after performing an obvious simplification in C1):
firstPlateau(L,P,S) ← L=[_],P=L,S=[] (C1)
firstPlateau(L,P,S) ← L=[_,_|_],

L=[HL|TL],
P=[HL],S=TL,TL=[_|_] (C2)

firstPlateau(L,P,S) ← L=[_,_|_],
L=[HL|TL],
firstPlateau(TL,TP,TS),
P=[HL|TP],S=TS,TP=[HL|_] (C3)

Finally, let the properties be:
firstPlateau([X] , [X] , [] ) (P1)
firstPlateau([X,Y],[X,Y],[] ) ⇐ X=Y (P2)
firstPlateau([X,Y],[X] , [Y]) ⇐ X≠Y (P3)

The objective is to attempt to prove, by extended execution, that each property Pi is a logical
consequence of theory Ti.

Let’s start with P1, and use clause C1 for the first DCI resolution:
firstPlateau([X],[X],[]) ⇐

DCI: C1 ↓ {}
[X]=[?_] ∧ [X]=[X] ∧ []=[] ⇐

3 × DCI: LA(=) ↓ {}
❏

This derivation succeeds. A new predicate discFirstPlateau1 is partially defined as follows:
discFirstPlateau1(L,P,S) ←

L=[X],P=[X],S=[]
We continue with clause C2 for the first DCI resolution:

firstPlateau([X],[X],[]) ⇐

DCI: C2 ↓ {}
[X]=[?_,?_|?_] ∧ [X]=[?HL|?TL] ∧

[X]=[?HL] ∧ []=?TL ∧ ?TL=[?_|?_] ⇐

This derivation fails, and no extraction is performed.
We continue with clause C3 for the first DCI resolution:

firstPlateau([X],[X],[]) ⇐

DCI: C3 ↓ {}



9.4 Illustration 135

[X]=[?_,?_|?_] ∧ [X]=[?HL|?TL] ∧ firstPlateau(?TL,?TP,?TS) ∧
[X]=[?HL|?TP] ∧ []=?TS ∧ ?TP=[?HL|?_] ⇐

This derivation also fails, and no extraction is performed.
We pursue with P2, and restart from clause C1 for the first DCI resolution:

firstPlateau([X,Y],[X,Y],[]) ⇐ X=Y

NFI: LA(=) ↓ {Y/X}
firstPlateau([X,X],[X,X],[]) ⇐

DCI: C1 ↓ {}
[X,X]=[?_] ∧ [X,X]=[X,X] ∧ []=[] ⇐

This derivation fails, and no extraction is performed.
We continue with clause C2 for the first DCI resolution:

firstPlateau([X,Y],[X,Y],[]) ⇐ X=Y

NFI: LA(=) ↓ {Y/X}
firstPlateau([X,X],[X,X],[]) ⇐

DCI: C2 ↓ {}
[X,X]=[?_,?_|?_] ∧ [X,X]=[?HL|?TL] ∧
[X,X]=[?HL] ∧ []=?TL ∧ ?TL=[?_|?_] ⇐

This derivation also fails, and no extraction is performed.
We continue with clause C3 for the first DCI resolution. This is shown in Example 9-2,

where the derivation succeeds, and a new predicate discFirstPlateau3 is defined as follows:
discFirstPlateau3(L,P,S,HL,TL,TP,TS) ←

L=[X,X],P=[X,X],S=[],
HL=X,TL=[X],TP=[X],TS=[]

We pursue with P3, and restart from clause C1 for the first DCI resolution:
firstPlateau([X,Y],[X],[Y]) ⇐ X≠Y

DCI: C1 ↓ {}
[X,Y]=[?_] ∧ [X]=[X,Y] ∧ [Y]=[] ⇐ X≠Y

This derivation fails, and no extraction is performed.
We continue with clause C2 for the first DCI resolution:

firstPlateau([X,Y],[X],[Y]) ⇐ X≠Y

DCI: C2 ↓ {}
[X,Y]=[?_,?_|?_] ∧ [X,Y]=[?HL|?TL] ∧

[X]=[?HL] ∧ [Y]=?TL ∧ ?TL=[?_|?_] ⇐ X≠Y

5 × DCI: LA(=) ↓ {HL/X, TL/[Y]}
⇐ X≠Y

This derivation succeeds. A new predicate discFirstPlateau2 is partially defined as follows:
discFirstPlateau2(L,P,S,HL,TL) ←

L=[X,Y],P=[X],S=[Y],
HL=X,TL=[Y],
X≠Y

We continue with clause C3 for the first DCI resolution:
firstPlateau([X,Y],[X],[Y]) ⇐ X≠Y
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DCI: C3 ↓ {}

[X,Y]=[?_,?_|?_] ∧ [X,Y]=[?HL|?TL] ∧
firstPlateau(?TL,?TP,?TS) ∧

[X]=[?HL|?TP] ∧ [Y]=?TS ∧ ?TP=[?HL|?_] ⇐ X≠Y

4 × DCI: LA(=) ↓ {HL/X, TL/[Y], TP[], TS/[Y]}

firstPlateau([Y],[],[Y]) ∧ []=[X|?_] ⇐ X≠Y

This derivation fails, and no extraction is performed.
There is no other property. There are no alternative derivations. So LA’(firstPlateau) is de-

fined as follows, after adding three atoms to LA(firstPlateau):

firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_]

∧ discFirstPlateau1(L,P,S)
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ discFirstPlateau2(L,P,S,HL,TL)
∧ P=[HL] ∧ S=TL ∧ TL=[_|_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ discFirstPlateau3(L,P,S,HL,TL,TP,TS)
∧ firstPlateau(TL,TP,TS)
∧ P=[HL|TP] ∧ S=TS ∧ TP=[HL|_]

where the procedures of the new predicates are rewritten as a set Z of logic algorithms:

discFirstPlateau1(L,P,S) ⇔
L=[X] ∧ P=[X] ∧ S=[]

discFirstPlateau2(L,P,S,HL,TL) ⇔
L=[X,Y] ∧ P=[X] ∧ S=[Y]

∧ HL=X ∧ TL=[Y]
∧ X≠Y

discFirstPlateau3(L,P,S,HL,TL,TP,TS) ⇔
L=[X,X] ∧ P=[X,X] ∧ S=[]

∧ HL=X ∧ TL=[X] ∧ TP=[X] ∧ TS=[]

Suppose now that some application-specific heuristics (see Section 13.3.2) suggest that:
• the last two conditions may be projected onto their 2nd to 5th parameters;
• the values of the P and S parameters are irrelevant in all three conditions;
• the TL parameter should vary over its entire domain in the last two conditions.

This transforms Z into Z’, which is as follows (after some additional rewriting):

discFirstPlateau1(L,P,S) ⇔
L=[_]

discFirstPlateau2(L,P,S,HL,TL) ⇔
TL=[HTL|_] ∧ HL≠HTL

discFirstPlateau3(L,P,S,HL,TL,TP,TS) ⇔
TL=[HTL|_] ∧ HL=HTL

If we unfold LA’(firstPlateau) using Z’, then we obtain LA”(firstPlateau):
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firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_] ∧ L=[_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ TL=[HTL|_] ∧ HL≠HTL
∧ P=[HL] ∧ S=TL ∧ TL=[_|_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ TL=[HTL|_] ∧ HL=HTL
∧ firstPlateau(TL,TP,TS)
∧ P=[HL|TP] ∧ S=TS ∧ TP=[HL|_] ♦

9.5 Future Work
This method can be easily extended to handle negated primitive predicates since they are re-
solved according to their semantics. Moreover, the constraint that LA(r) should be expressed
solely in terms of primitive predicates and possibly of the r/n predicate can be easily over-
come, namely by considering sets of logic algorithms rather than a single logic algorithm.

A more sophisticated extension would be the handling of proofs-by-induction. This re-
quires additional rules of inference, such as those of [Kanamori and Fujita 86] or
[Fribourg 91a]. Such proofs are sometimes necessary, as shown in Example 14-6.

9.6 Related Work
The research related to our Proofs-as-Programs Method can be separated into two parts: the
motivation for the terminology used in naming this method, as well as the discussion of other
methods that solve the same (or a similar) problem as the one defined here.

Our Proofs-as-Programs Method is not like the other methods of program extraction from
proofs (see Chapter 2), since the program is here extracted from the unique final results of
several proofs, rather than from multiple intermediate steps of a single proof. What justifies
our naming the method as such is a broader interpretation of the proofs-as-programs para-
digm: it covers any method of extracting a computational content from a proof.

In terms of methods that solve the same (or a similar) problem as the one tackled by our
Proofs-as-Programs Method, there first is the method described by [Smith 82]: given two for-
mulas F and G, the objective is to find the weakest precondition P such that G follows from
F ∧ P. Taking F as the initial logic algorithm, G as its property set, and F ∧ P as the final logic
algorithm, this problem is a sub-case of ours, because F, G, and P are here sets of formulas.
Smith’s proofs are performed by natural deduction.

In explanation-based generalization, there is some research on failure recovery (such as
[Gupta 87]), which is quite similar in spirit to the derivation of weakest pre-conditions.

Another related research is about deductive debugging, as reported by [Dershowitz and
Lee 87]. In the context of logic program debugging, suppose that, upon execution of a test-
case, a bug has been discovered, located, and classified as a “missing condition” bug. Their
automated program debugger (apd) then adds the missing condition by extracting it from a
failed proof that the program satisfies its (complete) specification. Their method seems quite
close to ours, except for the used proof-theoretic framework.

The problem of belief updating from integrity constraints and queries is introduced by
[De Raedt and Bruynooghe 92] as a generalization of the problems of intensional knowl-
edge-base updating and incremental concept-learning. Given a knowledge-base KB, an in-
tegrity constraint theory IT that is satisfied by KB, an integrity constraint IC, and an oracle O
that is willing to answer existential and membership questions, the problem of belief updat-
ing amounts to finding another knowledge base KB' that satisfies IT+IC, and that is obtained
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by asserting/retracting any clause/fact to/from KB, possibly via asking questions to O. If we
abstract away the differences in the chosen languages, this problem statement is very close
to the formulation of our Proofs-as-Programs problem: the logic algorithm is replaced by a
knowledge-base, properties become integrity constraints, and there is an oracle now. But
from these very problem statements, one can also already detect a first major difference: their
integrity constraints are incrementally presented and verified, whereas our properties are pre-
sented and verified all-at-once. Other main differences lie in the solutions to the two prob-
lems. The belief updating problem is solved by a simple adaptation of Shapiro’s Model
Inference System (MIS, see Section 3.4.1) [Shapiro 82]: integrity constraints are a generali-
zation of examples. Also, integrity constraints are only used for verifying the results of the
learning, and not for actually constructing these results. This means that the clause special-
ization algorithms of MIS are still only based on the examples, that is a subset of the provided
integrity constraints. The Proofs-as-Programs Method is more powerful in that it actually ex-
tracts complex information from properties so as to constructively use it in the design of the
target logic algorithm.

It is also interesting to directly compare our Proofs-as-Programs Method with MIS. Both
“debug” a given statement (logic algorithm, respectively logic program) such that it satisfies
a given set of constraints (properties, respectively positive and negative examples), using
some theorem proving technique (extended execution, respectively SLD resolution) for the
diagnosis. In case of incompleteness (failure to prove a positive constraint), the former adds
some atom(s) to some disjunct of the logic algorithm, whereas the latter adds a clause to the
logic program. In case of incorrectness (proof of a negative constraint), the latter deletes
some clause from the logic program, whereas this case is impossible with the former (there
are no negative properties). In case of potential divergence (failure to prove a constraint with-
in preset resource limits), the latter deletes some clause from the logic program, whereas this
case is impossible with the former (by construction, as explained above).

9.7 Conclusion
In this chapter, we have presented the Proofs-as-Programs Method, which adds atoms to (and
hence specializes) a logic algorithm so that it is complete wrt a set of given properties. The
added atoms are extracted from the proof that the initial logic algorithm is already complete
wrt these properties.
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10 The Most-Specific-Generalization Method
In this chapter, we develop the Most-Specific-Generalization (MSG) Method, which, within
a restricted setting, inductively infers a logic algorithm from examples. This method is part
of our tool-box of methods for instantiating the predicate variables of a schema. First, in
Section 10.1, we define the concept of most-specific-generalization. Then, in Section 10.2,
we state the objective of the MSG Method, and introduce some other preliminary terminol-
ogy. We proceed by increasing difficulty, and start with the simplest form the problem can
take. Thus, in Section 10.3, we first discuss the case where every example is a ground atom.
Then, in Section 10.4, we study the case where non-ground examples, called general exam-
ples, are allowed. General examples have disjunctions and existential variables, and are thus
different from properties. Future work and related work are discussed in Section 10.5 and
Section 10.6, respectively, before drawing some conclusions in Section 10.7.

10.1 Most-Specific-Generalization of Terms

The concept of most specific generalization (msg) was introduced independently by
[Plotkin 70] and [Reynolds 70]. We focus our attention to terms and atoms, rather than to
wffs.
Definition 10-1: Term s is less general than term t (denoted s ≤ t) iff there is a
substitution σ, such that s = tσ.

The relation ≤/2 forms a complete lattice on the term set T (modulo variable renaming) to
which a least element has been added [Lassez et al. 87]. The glb operator computes the gci
(greatest common instance) of two terms (by a unification algorithm, yielding the mgu). The
lub operator computes the msg of two terms (by an anti-unification algorithm). The msg of
two terms thus always exists, and is unique up to variable renaming.

Here follows another, constructive, definition of the concept of msg:
Definition 10-2: Let s and t designate two terms f(s1,s2,…,sm) and g(t1,t2,…,tn),
respectively, where m ≥ 0, n ≥ 0. The most specific generalization of s and t, denoted msg(s,t),
is defined as follows:

• if f/m = g/n, then msg(s,t) = f(msg(s1,t1),msg(s2,t2),…,msg(sm,tm));
• otherwise, msg(s,t) = inj(s,t);

where inj is an injection from T × T into V (the set of variable symbols).
Example 10-1: The msg of the terms f(a,b,X,Y,X,c) and f(a,c,d,Z,d,b) is f(a,K,L,M,L,N).
Definition 10-3: The most specific generalization of a non-empty set S of terms, denoted
msg(S), is defined as follows:

• msg({t}) = t;
• msg(T ∪ {t}) = msg(msg(T),t), where T is a non-empty set of terms;

where the difference between msg/1 and msg/2 should be noted.
Definition 10-4: Let s and t designate two atoms r(s1,s2,…,sn) and r(t1,t2,…,tn). The most
specific generalization of s and t, denoted msg(s,t), is the atom r(m1,m2,…,mn), where
<m1,m2,…,mn> = msg(<s1,s2,…,sn>,<t1,t2,…,tn>).

The msg of a non-empty set of atoms is defined in the same way as the msg of a non-empty
set of terms. The overloading of the msg operator (different arities, different types of param-
eters) should pose no problem to the reader, especially that the different concepts are closely
related anyway, and that we only use the msg of atoms with the same predicate symbol.
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10.2 Objective and Terminology
Let’s close in now on the MSG Method. Intuitively, its objective is to infer a logic algorithm
of a predicate r/n, given a finite set of examples of r/n. 16 The method should be applicable
if the intended relation R (from which the examples are extracted) can be expressed by a log-
ic algorithm that is defined solely in terms of the =/2 primitive (hence is non-recursive,
among others). This is feasible iff, in the intended relation, some parameters are somehow
syntactically constructed from some other parameters.

In a first approximation, we suppose that R is ternary, and that its third parameter is syn-
tactically constructed from its second parameter, while the first parameter may or may not be
used in this construction.

Let’s first illustrate the objective on a sample problem.
Example 10-2: Given the example set:

E(pcCompress)={ pcCompress(a,[],[a,1]) (E2)
pcCompress(b,[b,1],[b,2]) (E3)
pcCompress(c,[d,1],[c,1,d,1]) (E4)
pcCompress(e,[e,2],[e,3]) (E5)
pcCompress(f,[f,1,g,1],[f,2,g,1]) (E6)
pcCompress(h,[i,2],[h,1,i,2]) (E7)
pcCompress(j,[k,1,m,1],[j,1,k,1,m,1]) } (E8)

the MSG Method could infer the following version of LA(pcCompress):
pcCompress(HL,TC,C) ⇔

C=[HL,1|TC]
∨ C=[HL,s(s(N))|TTC] ∧ TC=[HL,s(N)|TTC]

which is indeed complete wrt E(pcCompress) and all “similar” examples. ♦

Let’s now formally define what it means for an atom to satisfy the parameter construction
constraint mentioned above.
Definition 10-5: An atom r(t1,t2,t3) is admissible iff the following two conditions hold:

cons(t2) ⊆ cons(t3)
vars(t2) ⊆ vars(t3).

In other word, the constituents of t2 must be included in the constituents of t3, where the
constituents of a term are the constants and variables occurring in that term.
Definition 10-6: A set A(r) of atoms is admissible iff all atoms of A(r) are admissible.
Example 10-3: The set E(pcCompress) above is admissible.

We also need a criterion for verifying whether several atoms construct their third param-
eters from their second parameters in the same way.
Definition 10-7: Let s, t be two atoms of predicate r. Then s is compatible with t iff msg(s,t)
is admissible. We also say that s and t are compatible.
Definition 10-8: Let A(r) be a set of atoms. Then A(r) is compatible iff the atoms of A(r)
are pairwisely compatible.
Example 10-4: Take the data of Example 10-2 again. Then E6 is compatible with E1,
because the msg pcCompress(A,T,[A,1|T]) is admissible. But E7 is not compatible with E2,
because the msg pcCompress(A,[B,s(0)|T],[A,s(M)|U]) is not admissible.
16. In the sequel, we shall actually distinguish between (ground) examples, as in Definition 6-1, and general

examples (to be defined).
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The compatibility relation is reflexive and symmetric, but not transitive. Compatible sets
are thus sets over which the compatibility relation is total.
Example 10-5: The atom r(a,[b],[a,b]) is compatible with r(c,[d,d],[c,d,d]), and
r(c,[d,d],[c,d,d]) is compatible with r(e,[f,g],[e,g,f]), but r(a,[b],[a,b]) is not compatible with
r(e,[f,g],[e,g,f]).

The following theorem is easily proved. It helps in the practical verification of admissibil-
ity and compatibility of atom sets.
Theorem 10-1: Let A(r) be a non-empty set of atoms. Then:

(1) If msg(A(r)) is admissible, then A(r) is admissible;
(2) A(r) is compatible iff msg(A(r)) is admissible;
(3) A(r) is compatible iff A(r) ∪ msg(A(r)) is compatible.
Compatible sets A(r) of atoms are of great interest, because, by Theorem 10-1, A(r) and

its msg are admissible, and the atoms of A(r) construct their parameters in the same way as
their msg does. In other words, A(r) can be “collapsed” into a single atom, namely its msg,
which “represents” the entire set A(r).

The following theorem trivially holds:
Theorem 10-2: Let A(r) be a non-empty set of (ternary) atoms, and r(m1,m2,m3) be
msg(A(r)). Then:

r(X1,X2,X3) ⇔ X1=m1 ∧ X2=m2 ∧ X3=m3
is a logic algorithm that is complete wrt A(r), and correct wrt all the instances of msg(A(r)).

But this theorem is independent of the admissibility and compatibility notions. So what
are their roles? We are not interested in synthesizing a logic algorithm that covers “too
many”, if not all, examples beyond the given ones. Intuitively, admissibility and compatibil-
ity are thus meant to restrict the covered set, as captured in the following definition.
Definition 10-9: Let A(r) be a non-empty, admissible set of atoms, and P(A) a partition of
A(r) into compatible subsets. The natural extension of A(r) wrt P(A) is the set of atoms that
match the msg of some element of P(A).

The constraints on R can easily be generalized now so as to obtain a larger domain of ap-
plicability. Suppose that R is of arity n = a+2b, where ab ≠ 0, and that its (a+b+i)th parameter
is constructed from its (a+i)th parameter, for 1≤i≤b, while the first a parameters may or may
not be used in these constructions. This generalization covers the approximation above in
case a=b=1. Definition 10-5 can be changed as follows.
Definition 10-10: An atom r(any1,any2,…,anya, in1,in2,…,inb, out1,out2,…,outb) is
admissible wrt a and b iff the following two conditions hold:

∀i∈[1,…,b] cons(ini) ⊆ cons(outi)

∀i∈[1,…,b] vars(ini) ⊆ vars(outi).

The other definitions are unchanged, and both theorems still hold, if adapted.

10.3 The Ground Case

Let’s start with the ground case, where all examples are ground atoms (as in Definition 6-1).
The problem is stated in Section 10.3.1, and a method to solve it is explained in
Section 10.3.2. Its correctness is discussed in Section 10.3.3, and it is illustrated in
Section 10.3.4.
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10.3.1 The Problem

Formally, the problem can first be posed as follows.
Given:

• a set E(r) of examples,
such that:

• E(r) is admissible,
find:

• a logic algorithm LA(r),
such that:

• LA(r) is defined in terms of the =/2 primitive only,
• LA(r) is correct wrt some natural extension of E(r).
The initial problem is correctly solved iff the natural extension of E(r) is the unknown in-

tended relation R. This is of course impossible to verify, so the main issue is to infer a logic
algorithm that gives maximal confidence that the initial problem is correctly solved.

10.3.2 A Method

It seems desirable to infer a logic algorithm that is correct wrt the largest possible natural ex-
tension of E(r). Indeed, a trivial solution would be to partition E(r) into singletons, and thus
create a logic algorithm that is only correct wrt E(r). This may clearly not be what is intend-
ed, because E(r) is ground and finite. So the “less ground” the msgs of the subsets, the larger
the natural extension. And the best way to obtain variables in the msgs of sets of ground at-
oms is to make these sets as large as possible. So the partition of E(r) should yield as few
subsets as possible, provided they are all compatible. Because of the non-transitivity of the
compatibility relation, this is a non-deterministic problem. It can be solved as follows.

First, decompose the graph of the compatibility relation over E(r) into its connected com-
ponents. This is a classical graph theory problem, and is done by a depth-first traversal of the
graph. The decomposition is known to be unique, and the algorithm is of complexity
O(m+q), where m is #E(r), and q is the number of edges of the compatibility graph.

Second, partition each connected component into maximal compatible subgraphs
(cliques). Non-deterministically retain, for each component, a partition that has the least
number of cliques. So far, the algorithm can be graphically illustrated as follows:

Note that we could directly partition the entire E(r)—rather than its connected compo-
nents—into maximal compatible subgraphs. But the chosen approach is justifiable because
non-compatible connected components are rather unusual in reality: the components ob-
tained by the first step are often already cliques.

Finally, create a logic algorithm LA(r) from the msgs of the obtained compatible subsets
(suppose there are c of them):

example

example set

component

clique

compatibility
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r(X1,…,Xn) ⇔
X1=m11 ∧ X2=m12 ∧ … ∧ Xn=m1n

∨ X1=m21 ∧ X2=m22 ∧ … ∧ Xn=m2n
∨ …
∨ X1=mc1 ∧ X2=mc2 ∧ … ∧ Xn=mcn

where r(mi1,mi2,…,min) is the msg of component i (1≤i≤c), and the Xk (1≤k≤n)are different
variables not occurring in the mij (1≤i≤c, 1≤j≤n). The obtained logic algorithm can usually
be rewritten more compactly, using equivalence-preserving transformation rules such as
elimination of an X=Y atom plus application of the substitution {Y/X} to the corresponding
disjunct, where Y is an existential variable.

The resulting MSG Method algorithm is thus as follows.
Algorithm 10-1: MSG Method (Ground Case).

(1) decompose the compatibility graph over E(r) into its connected components;
(2) partition each connected component into a least number of cliques;
(3) create a logic algorithm from the msgs of the obtained cliques.
Note that this algorithm actually also works for atom sets, by virtue of Definition 10-5 and

Definition 10-7.
This algorithm is non-deterministic, finite, and never fails. Moreover, the synthesized log-

ic algorithm is non-deterministic in general, finite, but may fail. For instance, considering
Example 10-2, the atom pcCompress(e,[e,2],X) is covered by both disjuncts of the synthe-
sized logic algorithm, namely via the answer substitutions {X/[e,3]} and {X/[e,1,e,2]}.

The computation of the complexity of this algorithm goes as follows. Partitioning a graph
into a maximum of k cliques (k being a given constant) is known to be an NP-complete prob-
lem [Garey and Johnson 79, page 193]. Hence the union of the first two steps already repre-
sents an NP-complete problem, as it requires an iteration over this problem, for k=1…m.

10.3.3 Correctness

The following correctness theorem can now be established.
Theorem 10-3: Let E(r) be a set of admissible (ground) examples, and LA(r) be the logic
algorithm obtained by Algorithm 10-1, using a partition P(E) of E(r). Then LA(r) is defined
in terms of the =/2 primitive only, and is correct wrt the natural extension of E(r) wrt P(E).
Proof 10-3: Obvious, from Theorem 10-2, Definition 10-9, and Algorithm 10-1. ❏

10.3.4 Illustration

Let’s illustrate the described method on some sample problems.
Example 10-6: Take the data of Example 10-2 again. The decomposition is
{{E2,E4,E7,E8}, {E3,E5,E6}}. Both components are already compatible, so need not be split.
Their msgs are pcCompress(A,T,[A,1|T]) and pcCompress(B,[B,s(N)|U],[B,s(s(N))|U]). The
created logic algorithm effectively is, after rewriting, the one given in Example 10-2.
Example 10-7: Let:

E(pcFirstPlateau) = {
pcFirstPlateau(b,[b],[],[b,b],[]) (E2)
pcFirstPlateau(j,[j],[k],[j,j],[k]) (E6)
pcFirstPlateau(m,[m,m],[],[m,m,m],[]) } (E7)

and a=1, b=2. All examples are admissible. The decomposition yields one component, name-
ly {E2,E6,E7}, that is already compatible. The created logic algorithm is:
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pcFirstPlateau(HL,TP,TS,P,S) ⇔
HL=A ∧ TP=[A|U] ∧ TS=T ∧ P=[A,A|U] ∧ S=T

It may be rewritten as:
pcFirstPlateau(HL,TP,TS,P,S) ⇔

P=[HL|TP] ∧ S=TS ∧ TP=[HL|_] ♦

Example 10-8: Let:
E(foo) = { foo(a,[],[a]) (E1)

foo(b,[c],[b,c]) (E2)
foo(d,[e,e],[d,e,e]) (E3)
foo(f,[g,h],[f,h,g]) (E4)
foo(i,[j,k,m],[i,k,j,m]) } (E5)

and a=b=1. All examples are admissible. The compatibility graph has one connected com-
ponent, namely E(foo) itself, which is not compatible. One of the two (symmetric) possible
partitions into cliques is as follows:

Whatever the chosen clique partition, the created logic algorithm is:
foo(X,Y,Z) ⇔

X=A ∧ Y=T ∧ Z=[A|T]
∨ X=A ∧ Y=[B,C|T]] ∧ Z=[A,C,B|T] ♦

10.4 The Non-Ground Case

The groundness assumption on E(r) is very strong. So we extend the MSG Method to sets
G(r) of not necessarily ground examples, called general examples. The idea is to introduce
alternatives in examples. Alternatives are naturally characterized by disjunctions and exis-
tential quantifiers.
Definition 10-11: A general example of predicate r/n is the existential closure of a
disjunction of atoms of predicate r/n.

Note that a single-disjunct general example is different from an atomic property (a prop-
erty with no body), because properties have universal quantifiers. If there is no ambiguity
whether we are referring to an atomic property or a general example, we omit quantifiers.

For ease of notation, a general example r(P,t1,Q) ∨ r(P,t2,Q) ∨ … ∨ r(P,tn,Q) is
denoted r(P,{t1,t2,…,tn},Q), where t1, t2,…, tn are terms, n>1, and P, Q are possibly empty
vectors of terms. We also allow a recursive use of this convention.

E5

E3

E4E1

E2

example

example set

component

clique

compatibility
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Example 10-9: The general example append([X],[b],[a,b]) represents the formula ∃X
append([X],[b],[a,b]). The general example append({[a],[b]}, {[c],[d]}, [a,d]) represents the
formula append([a],[c],[a,d]) ∨ append([a],[d],[a,d]) ∨ append([b],[c],[a,d]) ∨
append([b],[d],[a,d]).
Definition 10-12: Given a general example g, the set of admissible alternatives of g,
denoted adm(g), is defined as follows:

adm(g) = {h∈A | h is an instance of some disjunct of g, and h is admissible}.
Definition 10-13: Given a set G(r) = {g1,g2,…,gm} of general examples, the set of
admissible alternatives of G(r), denoted adm(G(r)), is defined as follows:

adm(G(r)) = { {h1,h2,…,hm} | hi∈adm(gi) }.
Note that the admissible alternatives of a general example (set) are (sets of) atoms, not

(sets of) ground examples. Also note that the adm relations may be infinite if variables occur
in their arguments.
Example 10-10: Let:

G(pcPlateau)= { pcPlateau(1,[],A,[b],b) (G1)
pcPlateau(2,[B],B,[c,c],c) (G2)
pcPlateau(3,[C,C],C,[d,d,d],d) } (G3)

and a=1, b=2. Then adm(G2) contains pcPlateau(2,[c],c,[c,c],c), but not pcPlateau(2,[b],
b,[c,c],c), nor pcPlateau(2,[d],d,[c,c],c). ♦

The new problem is stated in Section 10.4.1, and a method to solve it is in Section 10.4.2.
Its correctness is discussed in Section 10.4.3, and it is illustrated in Section 10.4.4.

10.4.1 The Problem

Formally, the problem can now be expanded as follows:
Given:

• a set G(r) of general examples,
such that:

• G(r) has admissible alternatives,
find:

• a logic algorithm LA(r),
such that:

• LA(r) is defined in terms of the =/2 primitive only,
• LA(r) is correct wrt some natural extension of some element of adm(G(r)).

10.4.2 A Method

The objective is again to produce partitions with the smallest possible number of subsets.
This can be done as follows: Compute all possible admissible alternatives of G(r), and par-
tition them using Algorithm 10-1. Select one of the solutions that have the least number of
cliques. The resulting extended algorithm is thus as follows.
Algorithm 10-2: MSG Method (Non-ground Case).

(1) perform Algorithm 10-1 for every element in adm(G(r)), and select a logic algo-
rithm resulting from the least number of cliques.

This algorithm is non-deterministic and NP-complete, as it is based on Algorithm 10-1. It
always succeeds, but may be infinite. Moreover, the synthesized logic algorithm is non-de-
terministic in general, but finite, because Algorithm 10-1 produces such logic algorithms.
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If a set adm(g) is infinite, then the search space must be reduced by applying some heu-
ristics. Thus, given an atom g = r(any,in,out), where vars(<in,out>) ≠ ∅, we have to bridle
the adm relation so that, in its search for a substitution σ for g, it enumerates a smaller space
than the infinite vars(g) × T, and preferably a finite one. First, this search space can be pruned
with type knowledge, such as:

• application-independent type knowledge, such as: s/1 is only applicable to integers;
• application-specific type knowledge, in case type information is given along with g.

Next, there are some particular cases where the search space is (or may be) reduced, taking
advantage of the context:

• if vars(out) = ∅, then the range of σ is restricted to U(out); we may even first emit the
minimal hypothesis that the range of σ is restricted to the finite set cons(out);

• if vars(in) = ∅, then we may in a first approximation look for the least solution: the
strongly conservative hypothesis restricts the range of σ to cons(in); otherwise, the
weakly conservative hypothesis restricts the range of σ to U(in).

Anyway, the resultant search space may be huge, so we have to be careful in practice to apply
this method only when there are few variables in g, less than 3, say. There is no problem of
course if the general example is ground, because adm then only needs to perform a finite enu-
meration.

10.4.3 Correctness

The following correctness theorem can easily be proven.
Theorem 10-4: Let G(r) be a set of admissible general examples, and LA(r) be the logic
algorithm obtained by Algorithm 10-2, using a partition P(G') of some element G'(r) of
adm(G(r)). Then LA(r) is defined in terms of the =/2 primitive only, and is correct wrt the
natural extension of G’(r) wrt P(G').

10.4.4 Illustration

Let’s illustrate the described method on some sample problems. The first one involves exis-
tential variables, while the second involves disjunctions.
Example 10-11: Take the data of Example 10-10 again. If we restrict the functor set to
{b,c,d}, the only element of adm(G(pcPlateau)) is:

{ pcPlateau(1,[],b,[b],b) (G1')
pcPlateau(2,[c],c,[c,c],c) (G2')
pcPlateau(3,[d,d],d,[d,d,d],d) } (G3')

The only clique is {G1',G2',G3'}, and has pcPlateau(s(N),T,A,[A|T],A) as msg. The created
logic algorithm is, after rewriting, as follows:

pcPlateau(HN,TL,TX,L,X) ⇔
L=[X|TL] ∧ X=TX ∧ HN=s(N) ♦

Example 10-12: Let:
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G(pcPermutation) = {
pcPermutation(a,[],[a]) (G2)
pcPermutation(b,[c],[b,c]) (G3)
pcPermutation(b,[c],[c,b]) (G4)
pcPermutation(d,{[e,f],[f,e]},[d,e,f]) (G5)
pcPermutation(d,{[e,f],[f,e]},[d,f,e]) (G6)
pcPermutation(d,{[e,f],[f,e]},[e,d,f]) (G7)
pcPermutation(d,{[e,f],[f,e]},[e,f,d]) (G8)
pcPermutation(d,{[e,f],[f,e]},[f,d,e]) (G9)
pcPermutation(d,{[e,f],[f,e]},[f,e,d]) } (G10)

and a=b=1. There are 26=64 admissible alternatives of G(pcPermutation): for general exam-
ples G5 to G10, we denote their first alternative by Gi', and their second alternative by Gi".
There are two least partitions, namely {{G2,G3,G5',G6"}, {G4,G7',G9"}, {G8',G10"}}, and
{{G2,G3,G5',G6"}, {G4,G7',G9"}, {G8",G10'}}. For the first partition, the created logic algo-
rithm is as follows:

pcPermutation(HL,TP,P) ⇔
HL=A ∧ TP=T ∧ P=[A|T]

∨ HL=A ∧ TP=[B|T] ∧ P=[B,A|T]
∨ HL=A ∧ TP=[B,C] ∧ P=[B,C,A]

For the second partition, the created logic algorithm is as follows:
pcPermutation(HL,TP,P) ⇔

HL=A ∧ TP=T ∧ P=[A|T]
∨ HL=A ∧ TP=[B|T] ∧ P=[B,A|T]
∨ HL=A ∧ TP=[B,C] ∧ P=[C,B,A] ♦

10.5 Future Work

The MSG Method, as presented here, is sufficient for our future needs. But it may be en-
hanced along several lines.

First, as of now, the compatibility criterion of Definition 10-10 doesn’t prescribe any re-
strictions on the first a parameters of an (a+2b)-ary atom. This holds because of the statement
that they may or may not be involved in the construction of the last b parameters from the
other b parameters. The current compatibility criterion is fine with a large number of appli-
cations. But it could be refined so as to include the following restriction: if (some of) the con-
stants or variables of (some of) the first a parameters of atom s are used in the construction
of (some of) the last b parameters of s, then the same must happen for atom t. This refinement
should enlarge the number of successfully covered applications. Other refinements can be
imagined, but the whole framework of correctness definitions and theorems for the MSG
Method needs to be proved afresh each time.

Second, the notion of general examples could be extended to the notion of constrained
general examples. Constraints, such as those generated by the exp/3 operator
(Definition 7-25), could indeed be attached to general examples, and thus constrain the
search for admissible alternatives of such constrained general examples.

Third, the decomposition of the arity n of predicate r into a+2b directly results from the
applications we have in mind for the MSG Method. But such a restrictive setting may not be
suitable for other needs. In order to generalize this setting, we could define the concept of
mode, so that we may precisely describe which parameters are constructed in terms of which
parameters.
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Definition 10-14: Let r be an n-ary predicate symbol. A mode mr for r is a total function
from {1,2,…,n} into {in,in1,in2,…,out,out1,out2,…,any}. If mr(i) is X, then the ith parameter
of r is called an X-parameter of r. If mr(i) is in or inj, then the ith parameter of r is called an
input-parameter of r. If mr(i) is out or outj, then the ith parameter of r is called an output-
parameter of r.

A mode mr is often written in the more suggestive form r(mr(1),mr(2),…,mr(n)). It should
be noted that, despite the syntactic similarity, these “construction” modes have nothing to do
with the “execution” modes, such as r(ground,ground,any), that are often found in the logic
programming literature. Indeed, “construction” modes are descriptions of static relationships
between parameters, whereas “execution” modes are descriptions of dynamic states of pa-
rameters.
Example 10-13: The mode for pcCreate/5, as defined in Example 10-10, would be
pcCreate(in,in1,in2,out1,out2).

The intuition behind these “construction” modes is the following. The outi-parameters
must be constructed in terms of the ini-parameters. The in-parameters may or may not be
used in the construction of output-parameters. The out-parameters may or may not be con-
structed in terms of input-parameters. There are no constraints on any-parameters. Nothing
prevents outi-parameters to be constructed in terms of inj-parameters, where i≠j. Nothing
prevents outi-parameters to “invent” constants.

These modes are a possible starting point for a very refined version of the MSG Method,
with enhanced admissibility and compatibility criteria.

10.6 Related Work

The related work for the MSG Method can be divided into two categories. First, there is the
theoretical research on the concept of msg, and its practical applications. Second, there is re-
search on techniques similar to the MSG Method.

As said earlier, the concepts of msg and anti-unification were introduced simultaneously,
but independently, by [Plotkin 70, 71] and [Reynolds 70]. The original motivation is accred-
ited to [Popplestone 70], who suggested that “since unification is useful in automatic deduc-
tion by the resolution method, its dual might prove helpful for induction”. The main
differences between both works are that Plotkin takes a logic-based approach and considers
atomic formulas and clauses, whereas Reynolds is more concerned about an algebraic ap-
proach and only considers atomic formulas. But their results and msg algorithms are essen-
tially the same.

These early works have spawned a lot of theoretical interest, among which the following
studies of term lattices should be noted: [Huet 76] and [Lassez et al. 87].

The concepts of msg and anti-unification have naturally generated a lot of practical appli-
cations for the machine learning community, and especially from researchers on inductive
logic programming. [Vere 75] infers conjunctive concept descriptions from positive and neg-
ative examples, using msgs. He introduces the useful notion of inverse substitution in order
to formalize how the term lattice can be traversed “upwards”. The problem of learning con-
cept descriptions from negative examples is studied by [Lassez and Marriott 87]. Building
on his semantic generalization model (surveyed in Section 7.5), [Buntine 88] suggests the
notion of msg of two clauses relative some other clauses.

[Gegg-Harrison 89, 93] extends the computation of msgs to a second-order framework
(and improves the complexity of the original algorithms) so as to infer logic program sche-
mas for a logic programming tutor. Simultaneously, but independently, [Tinkham 90] also
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uses a second-order lattice of logic program schemas so as to efficiently guide an MIS-like
system for logic program synthesis from examples.

In terms of alternative techniques to the MSG Method, there is of course the whole liter-
ature on empirical learning, and inductive logic programming, as surveyed in Chapter 3. But
it should be noted that the MSG Method only aims at the synthesis of a sub-class of concept
descriptions, namely non-recursive algorithms that are implemented in terms of the =/2 prim-
itive only, and whose intended relation, though unknown as a whole, is however known to
feature a given construction pattern between its parameters. This extremely restrictive setting
justifies the non-incremental approach, as well as the highly specialized MSG Method.

The technique of [Vere 75] is quite similar to ours in spirit, as the fundamental notion is
the one of msg, and as no recursive concept descriptions are aimed at. But he only aims at
conjunctive concept descriptions, whereas our technique is also able to infer disjunctive con-
cept descriptions. Also, the MSG Method is based only on positive examples, and is only set
in a first-order logic.

The notion of general example seems to be new. It is not related to noisy examples, be-
cause the existence of a correct admissible alternative of a general example is assumed.

10.7 Conclusion
Within a restricted setting, the MSG Method infers, from a finite set of general examples, a
non-recursive logic algorithm that is defined in terms of the =/2 primitive only, and that is
correct wrt a natural extension of the given examples. The underlying algorithm is non-de-
terministic.

If the resulting logic algorithm is judged, by whatever application-dependent heuristics,
to be “not good enough”, then the assumption that the examples can be covered by such a
logic algorithm must be revised: recursion, or other predicates, or both, might be needed.
This requires a more involved method. A possible solution is outlined in Section 14.2.4: it is
called the Synthesis Method, because it automatically infers a property set of the intended re-
lation (this is possible in some applications), and then uses the entire synthesis mechanism
(as described in Part III) in order to infer a logic algorithm that covers the given examples
and inferred properties.

So why not immediately use the Synthesis Method? The reason is that both methods tack-
le different classes of problems. The MSG Method and the Synthesis Method are a joint an-
swer to the same problem: how to infer, from a finite set of general examples of an unknown
relation that is however known to feature a given construction pattern between its parameters,
a logic algorithm that is correct wrt a natural extension of the given examples. The MSG
Method is the “base case” of the answer, because it doesn’t look for recursion, and the Syn-
thesis Method is the “structure case” of the answer, because it does look for recursion.

Another crucial question that pops up is: Why not use a “classical” concept learner? The
reason for not doing so is that a concept learner, in its incremental approach and blind enu-
meration, doesn’t take advantage of the knowledge about the construction pattern between
the parameters of the intended relation. Concept learners are a reasonable approach if noth-
ing is known about the intended relation. But this is not the case here, and more practical
methods can then be developed.

Note that the MSG Method is part of our tool-box for solving sub-problems occurring dur-
ing synthesis, and not a solution to the overall problem of synthesis from specifications by
examples (and properties).
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III A LOGIC ALGORITHM
SYNTHESIS MECHANISM

Synthesis, in wider philosophical use and generally:
the putting together of parts or elements so as to make a complex whole;

the combination of immaterial or abstract things, or of elements
into an ideal or abstract whole (opposed to analysis).

—The Oxford English Dictionary

In this third part, we present a particular logic algorithm synthesis mechanism, designed from
the building blocks provided in Part II. Thus, in Chapter 11, we give an intuitive overview of
the entire synthesis mechanism, so as to give the reader the feel for its working. Chapter 12
gives full detail about the Expansion Phase of synthesis, that is the first four steps, while
Chapter 13 does similarly with the Reduction Phase, that is the remaining three steps. Final-
ly, in Chapter 14, we evaluate the resulting mechanism.
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11 Overview of the Synthesis Mechanism
In this chapter, we give an intuitive overview of the entire synthesis mechanism, so as to give
the reader the feel for its working. Thus, in Section 11.1, we first motivate the desired fea-
tures of this mechanism. Then, in Section 11.2, we argue for a series of preliminary restric-
tions of this mechanism, so as to keep the presentation simple until the discussion of its
extensions (see Chapter 14). Finally, in Section 11.3, we perform a sample synthesis.

11.1 Desired Features
Considering the state of the art of inductive synthesis from examples (as seen in Chapter 3),
we now decide on, and motivate, some desired features of the synthesis mechanism. These
decisions are about the specification language, the logic algorithm language, the degree of
automation of synthesis, the types of performed reasoning, and the features of the chosen
synthesis strategy. In the sequel, “synthesis system” stands for an implementation of the syn-
thesis mechanism.

Specification Language

We gave a very general definition of specifications by examples and properties in Chapter 6,
but postponed the actual decisions about the concrete languages for examples and properties
to this Part III, in order to be independent of such decisions for as long as possible. During
the course of Part II, various languages have been proposed, according to how much could
actually be handled for each notion or method we introduced. Basically, the property lan-
guage is each time some extension or restriction to Horn clauses, the differences lying in
whether negation and recursion are allowed or not. And the example languages differ in
whether negative examples are required or not. In summary:

• in Chapter 6 (specification approach), a sample language is proposed for illustration
purposes only;

• in Chapter 7 (synthesis framework), all definitions are language-independent;
• in Chapter 8 (algorithm schemas), there is no concern about specifications;
• in Chapter 9 (Proofs-as-Programs Method), the example language is irrelevant, but

properties are constrained to be (possibly recursive) Horn clauses (without negation);
• in Chapter 10 (MSG Method), the property language is irrelevant, whereas only posi-

tive examples are taken into account, be they ground or general examples.
So we could here simply choose the largest common subset of all the proposed relevant lan-
guages. But two additional restrictions can still be made: Are negative examples required?
Are recursive properties allowed? Negative examples are usually expected in order to avoid
over-generalization. But it can be argued (see Section 14.2.1) that negative information is not
required here. Then, although we could handle recursive Horn clauses, we limit properties to
be non-recursive, so as to focus on synthesis from incomplete specifications. Recursion dis-
covery is indeed a major challenge of algorithm synthesis, and a challenge that we want to
pick up. So there is no need to give that information away by means of recursive properties.
The refined definition of specifications by examples and properties is thus as follows:
Definition 11-1: A specification by examples and properties of a procedure for predicate
r/n, denoted EP(r), consists of:

• a set E+(r) of positive examples of r (that is, ground atoms whose n-tuples are sup-
posed to belong to the intended relation R); for simplicity, we denote E+(r) by E(r);

• a set P(r) of properties of r (that is, non-recursive Horn clauses whose heads are atoms
of predicate r).
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We thus require multiple, ground, single-predicate, relational, positive-only, pre-synthesis
examples that are chosen in a consistent way by a human specifier who knows the intended
relation. The predicates used in the properties constitute a partial basis set, and thus a partial
conceptual bias for synthesis. For convenience, and as there is no ambiguity in doing so, we
drop the universal quantifications of properties. Overall, the specification language is quite
expressive and readable. Specifications by examples and properties are usually incomplete,
and hence ambiguous, but minimal. There is a danger of internal inconsistency and redun-
dancy in such specifications, though. The synthesis mechanism should be robust to the or-
dering and choice of examples and properties.

Logic Algorithm Language

We gave a very general definition of logic algorithms in Chapter 4, but postponed the actual
decisions about the concrete language for bodies to this Part III, in order to be independent
of such decisions for as long as possible. During the course of Part II, various languages have
been proposed, according to how much could actually be handled for each notion or method
we introduced. In summary:

• in Chapter 6 (specification approach), there is no concern about logic algorithms;
• in Chapter 7 (synthesis framework), logic algorithms are required to be implemented

in terms of primitives only; for more specific purposes (see Section 7.2.2 and
Section 7.3.2), bodies of logic algorithms are constrained to be in disjunctive normal
form (with negation, that is);

• in Chapter 8 (algorithm schemas), all definitions are language-independent;
• in Chapter 9 (Proofs-as-Programs Method), bodies of logic algorithms are constrained

to be in prenex disjunctive normal form, though without negation;
• in Chapter 10 (MSG Method), the imposed restrictions are only on target logic algo-

rithms, and hence irrelevant.
So we here simply choose the largest common subset of all the proposed relevant languages.
The refined definition of logic algorithms is thus as follows:
Definition 11-2: A logic algorithm defining a predicate r/n, denoted LA(r), is a closed
well-formed formula of the form:

∀X1…∀Xn r(X1,…,Xn) ⇔ F
where the Xi are distinct variables, and F is a well-formed formula in prenex disjunctive nor-
mal form, without negation. The atom r(X1,…,Xn) is called the head, and F is called the body
of the logic algorithm.

This definition actually constitutes a partial syntactic bias for the synthesis. As usual, we
drop the universal quantifications in front of the heads, as well as any existential quantifica-
tions at the beginnings of bodies of logic algorithms. Moreover, we often write logic algo-
rithms in a more compact form, using one of De Morgan’s laws in order to merge disjuncts.

Degree of Automation

With incomplete specifications, it is more realistic to strive for an interactive synthesis mech-
anism, so as to explicitly disambiguate some situations, rather than have a default iteration
over (all) possible choices. The initiative should be on the system’s side, because the latter
would otherwise slide from the synthesizer category into the design assistant category. The
questions asked to the specifier should be kept simple, the universe of the dialogue being re-
stricted to the specified predicate and the primitive predicates. In other words, predicates that
the mechanism invents during the synthesis should not occur in any dialogue, as the specifier
is not familiar with them. Also, the language of questions and answers should not be more
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“complicated” than the actual specification language. This means that the answers could ac-
tually be seen as extensions to the initially given specification, so that if the extended speci-
fication had been given right away, the synthesis would have been fully automatic. In our
case, questions to the specifier could be of the following kinds:

• classification queries, such as “is a given ground atomic formula A a positive example
of the intended relation R?”; a correct answer is either yes (iff the tuple of terms ex-
tracted from A belongs to R) or no (otherwise);

• existential queries, such as “is a given atomic formula A satisfiable in the intended
model ℑ?”; a correct answer is either <yes, σ> (iff Aσ is valid in ℑ, where σ is a sub-
stitution) or no (otherwise);

• universal queries, such as “is a given atomic formula A valid in the intended model
ℑ?”; a correct answer is either yes (iff A is valid in ℑ) or no (otherwise);

• conditional queries, such as “under what (conjunctive) condition is a given atomic for-
mula A valid in ℑ?”; a correct answer is either <yes, C> (iff A ⇐ C is valid in ℑ, where
C is a conjunction of literals) or never (otherwise).

Answers such as “I don’t know” should also be taken into account. Classification queries are
a particular case of universal queries and of existential queries, namely when there are no
variables in A. Universal queries are a particular case of conditional queries, namely when C
reduces to true. Similarly to our assumption about the consistency of specifications with in-
tended relations, we assume that the specifier’s answers to queries are noise-free. Note that
we talk about questions to a (human) specifier here, and not about the more general problem
of asking questions to some oracle. At this level of the discourse, we are not interested in
knowing whether a mechanized oracle is queried during synthesis or not.

There is another level of specifier interference during synthesis. Indeed, there is an infinity
of algorithms defining a given intended (and computable) relation. For instance, if we only
consider divide-and-conquer algorithms, there are design choices to be made about the in-
duction parameter, its decomposition, a well-founded relation over its domain, and so on. A
synthesis mechanism should then be able to discover a significant sub-family of algorithms
within its search space, one algorithm per combination of taken choices. Given a specifica-
tion of the sort/2 predicate, one would thus expect Insertion-Sort, Merge-Sort, Quick-Sort,
and so on [Clark and Darlington 80] [Lau 89], and not just one of these algorithms. While
the derivability of a large family of algorithms is an impressive (and desired) feature, this
may go counter the specifier’s expectations, because s/he only needs one algorithm, or be-
cause s/he has some understanding of the synthesis mechanism and wants to experiment with
some very specific design choices. A synthesis system should thus accept hints about prefer-
ences from the specifier, as well as “think aloud” so that the specifier may interfere.

Finally, given some synthesized logic algorithm(s), how does the specifier continue to in-
teract with the synthesis system? S/he could experiment with the algorithm by executing a
logic program derived [Deville 90] from it, or s/he could directly analyze the algorithm itself
(this calls for the invention of meaningful names of system-generated variables and predi-
cates). In either case, an error might be discovered, or maybe even the requirements change.
Traditional debugging techniques can then be invoked at the logic algorithm or logic program
level. Ideally, though, the original specification is debugged to reflect the corrected/updated
requirements, and a new synthesis is performed.

Kinds of Inference

With specifications by examples (which traditionally give rise to inductive synthesis) and
properties (which, as a particular case of axioms, traditionally give rise to deductive synthe-
sis), it should be natural to use both inductive and deductive inference in the synthesis mech-
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anism, whichever is best suited for each sub-task. Other, obviously less well-founded
decisions, would be (1) to do purely inductive synthesis only from the examples, and to use
the properties only as integrity constraints in order to reject candidate logic algorithms, or (2)
to do purely deductive/constructive synthesis only from the properties, and to use the exam-
ples only as test data in order to reject candidate logic algorithms. Moreover, other kinds of
inference (such as analogical inference, or abductive inference) could be used as well.

Strategy Criteria

Stepwise synthesis is argued for in Section 7.3 because it allows different methods to be de-
ployed at each step (rather than having a unique method handle a wide variety of different
tasks), and because it yields monitoring points where correctness and comparison criteria can
be applied (rather than having a unique monitoring point).

Schema-guided synthesis is argued for in Section 8.1 because schemas are an interesting
way to incorporate algorithm design knowledge into a synthesis process. Schema-guided
synthesis is naturally a stepwise synthesis, as the predicate variables are not all instantiated
at the same time. A most interesting approach is then advocated in Section 8.3, namely to
deploy an entire tool-box of predicate variable instantiating methods, rather than a unique
method. In Chapter 9 (Proofs-as-Programs Method) and Chapter 10 (MSG Method), we de-
scribe two of the more sophisticated methods we have developed so far. Note that these meth-
ods are entirely dissociated from specific schemas or predicate variables.

The divide-and-conquer strategy is presented as an attractive strategy in Section 8.2, be-
cause of its diverse applicability, simplicity of application, efficient results, and suitability
with incomplete specifications. The here chosen approach for developing a synthesis mech-
anism is thus stepwise synthesis guided by a divide-and-conquer schema.

As a first approximation to this approach, this thesis develops a synthesis mechanism that
reflects a hardwired, fixed sequence of instantiations of the predicate variables of (some ver-
sion of) the divide-and-conquer schema, as well as hardwired, fixed mapping between these
predicate variables and the methods of the tool-box. The chosen sequence of steps is present-
ed in Example 8-10; the chosen mapping between steps and methods is presented in the sub-
sequent chapters, as other methods are introduced. Note that this approach also amounts to
hardwiring the divide-and-conquer schema into the synthesis mechanism. The development
of a synthesis mechanism that is parameterized on schemas, and that has no fixed sequences
of steps or mappings between steps and methods, is considered future research.

Now, what is the chosen strategy for stepwise synthesis? We consider that all the specifi-
cation information should be available for every inference during synthesis, and that a single
run through all synthesis steps is hence sufficient. We thus favor a non-incremental (all-at-
once) presentation of examples and properties to the synthesis mechanism. This leads to non-
incremental synthesis, which is more “disciplined” than incremental synthesis, where parts
of algorithms are continuously designed/debugged/rejected from partial information (ex-
tracted from an incomplete specification). The drawback of our approach is that we can’t use
the nice learnability-in-the-limit results that are known for incremental synthesis.

Note the difference between incremental synthesis and the incremental usage of a non-
incremental synthesis mechanism: the former continuously debugs a unique algorithm from
an increasingly large specification, whereas the latter amounts to presenting increasingly
large specifications to a synthesis mechanism that always starts from scratch and generates
as many different algorithms. The latter action only makes sense when a specification turns
out to be not specific enough. But this amounts to specification augmentation, not to algo-
rithm debugging. A useful generalization of specification augmentation is full-blown speci-
fication debugging.
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So we adopt the non-incremental synthesis strategy presented in Section 7.3.2, which re-
flects monotonically decreasing synthesis (and is actually also monotonically increasing, if
one also considers the expanded logic algorithms), as well as consistent synthesis. We should
also strive to make each synthesis step comply with Theorem 7-7.

11.2 Preliminary Restrictions
In order to keep the presentation of the synthesis mechanism simple, we now decide on three
preliminary restrictions.

First, regarding the schema underlying the mechanism, we retain version 3 of the divide-
and-conquer schema for the theoretical presentation:
R(X,Y) ⇔

Minimal(X) ∧ Solve(X,Y)
∨ ∨1≤k≤c NonMinimal(X) ∧ Decompose(X,HX,TX)

∧ Discriminatek(HX,TX,Y)
∧ ( SolveNonMink(HX,TX,Y)

⏐
R(TX,TY)

∧ Processk(HX,HY)
∧ Composek(HY,TY,Y) )

This amounts to the support of binary relations, induction on a single parameter, a single min-
imal form, a single non-minimal form, and non-recursive non-minimal cases.

The support of version 4 (relations of any non-zero arity) is actually a pretty straightfor-
ward extension, but the needed vectorization implies a useless syntactic complication of no-
tations. Some sample illustrations during the presentation of the synthesis mechanism
actually require version 4, but we assume the reader can easily extrapolate how the theory
has to be expanded in order to accommodate these illustrations. Version 4 is the schema that
is actually supported by the implementation of the mechanism. The support of version 5 (any
number of minimal or non-minimal forms) and version 6 (compound induction parameters)
is considered future research. Note that Section 5.2.3 shows that single minimal forms and
non-minimal forms are more general than one might believe at first sight.

Second, the mechanism should support any inductively defined data-types (such as inte-
gers, lists, bags, sets, trees, graphs, grammars, and so on) for potential induction parameters,
provided their definitions have been made known to it. But whenever concrete data-types
need to be discussed, we arbitrarily restrict the support to lists and integers.

Third, we only aim at the synthesis of single-loop logic algorithms. In other words, we
assume that the only “loop” is the one that is achieved in the schema by the recursion on the
induction parameter, and that none of the instances of the predicate variables is defined re-
cursively (possibly as a divide-and-conquer logic algorithm).

11.3 A Sample Synthesis
Instantiating some predicate variable(s) of the schema above is a synthesis step. The synthe-
sis mechanism is expressed as the following sequence of steps (see Example 8-10):

• Step 1: Syntactic creation of a first approximation;
• Step 2: Synthesis of Minimal and NonMinimal;
• Step 3: Synthesis of Decompose;
• Step 4: Syntactic introduction of the recursive atoms;
• Step 5: Synthesis of Solve and the SolveNonMink;
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• Step 6: Synthesis of the Processk and Composek;
• Step 7: Synthesis of the Discriminatek.

The chosen, fixed mapping between the synthesis steps and the methods of our tool-box is
explained in the next two chapters, where other methods are introduced.
Example 11-1: Let’s now perform an intuitive overview of these seven steps and illustrate
them on the compress/2 relation. Before proceeding to the detailed explanations in the next
two chapters, the reader is thus assumed to perform some learning-from-traces while
studying this sample synthesis. Reconsider EP(compress) as given in Example 6-1:

E(compress) = { compress([],[]) (E1)
compress([a],[a,1]) (E2)
compress([b,b],[b,2]) (E3)
compress([c,d],[c,1,d,1]) (E4)
compress([e,e,e],[e,3]) (E5)
compress([f,f,g],[f,2,g,1]) (E6)
compress([h,i,i],[h,1,i,2]) (E7)
compress([j,k,m],[j,1,k,1,m,1]) } (E8)

P(compress) = { compress([X],[X,1]) (P1)
compress([X,Y],[X,2]) ⇐ X=Y (P2)
compress([X,Y],[X,1,Y,1]) ⇐ X≠Y } (P3)

The chosen stepwise strategy is such that the synthesized logic algorithms progress down-
wards, while their expansions progress upwards. The synthesis proceeds as follows.

Step 1: Syntactic Creation of a First Approximation

Step 1 creates LA1(r) by setting its body to true. For instance, LA1(compress) is as follows:
compress(L,C) ⇔

true {E1,...,E8}
The set annotation to a disjunct explains which examples are covered by that disjunct. This
logic algorithm always holds, and thus covers all given examples.

The expanded version of LA1(compress), that is exp(LA1(compress)), is as follows:
compress(L,C) ⇔

true ∧ L=[] ∧ C=[] {E1}
∨ L=[a] ∧ C=[a,1] {E2}
∨ L=[b,b] ∧ C=[b,2] {E3}
∨ L=[c,d] ∧ C=[c,1,d,1] {E4}
∨ L=[e,e,e] ∧ C=[e,3] {E5}
∨ L=[f,f,g] ∧ C=[f,2,g,1] {E6}
∨ L=[h,i,i] ∧ C=[h,1,i,2] {E7}
∨ L=[j,k,m] ∧ C=[j,1,k,1,m,1] {E8}

Note that this expanded version is a mere syntactic translation of the example set.
In the sequel, we only compute expansions that involve the variables that correspond to

parameters in the schema. Also note that the inferences of each Step i (where i∈{2,…,7}) are
actually based on exp(LAi-1(r)).

Step 2: Synthesis of Minimal and NonMinimal

An instantiation of the Minimal (respectively NonMinimal) predicate variable tests whether
the induction parameter is of a minimal (respectively non-minimal) form. These forms must
be mutually exclusive over the domain of the induction parameter. Step 2 yields LA2(r) by



11.3 A Sample Synthesis 159

first selecting an induction parameter, and then instantiating the Minimal and NonMinimal
predicate variables by means of a so-called Database Method, which here relies on a data-
base of type-specific form-identifying predicates.

For instance, we assume that Step 2 selects L as the induction parameter, identifies its type
as being a list, and selects the empty list as the (unique) minimal form (which is identified by
the atomic formula L=[]), and the non-empty list as the (unique) non-minimal form (which
is identified17 by the atomic formula L=[_|_]). LA2(compress) is thus as follows:

compress(L,C) ⇔
L=[] {E1}

∨ L=[_|_] {E2,...,E8}

Note the usage of anonymous variables: we are here merely interested in testing of what form
the induction parameter is, not in knowing how it fits this test. This logic algorithm expresses
that compress(L,C) holds whenever L is either an empty list or a non-empty list. This is strict-
ly less often than always, as L now has to be a list (or at least a pseudo-list).

The expanded version of LA2(compress), that is exp(LA2(compress)), is as follows:

compress(L,C) ⇔
L=[] ∧ L=[] ∧ C=[] {E1}

∨ L=[_|_] ∧ L=[a] ∧ C=[a,1] {E2}
∨ L=[b,b] ∧ C=[b,2] {E3}
∨ L=[c,d] ∧ C=[c,1,d,1] {E4}
∨ L=[e,e,e] ∧ C=[e,3] {E5}
∨ L=[f,f,g] ∧ C=[f,2,g,1] {E6}
∨ L=[h,i,i] ∧ C=[h,1,i,2] {E7}
∨ L=[j,k,m] ∧ C=[j,1,k,1,m,1] {E8}

Note the redundancy between the two L=[] atoms in the minimal case: one of them is a syn-
thesized atom, whereas the other one is a trailing atom introduced by expansion.

Step 3: Synthesis of Decompose

An instantiation of the Decompose predicate variable deterministically decomposes, in the
non-minimal case, the induction parameter, say X, into a vector HX of heads and a vector TX
of tails, the tails TXi being smaller than X according to some well-founded relation. These
tails are meant for the recursive computation of the tails TYi of the other parameter, say Y.
Step 3 yields LA3(r) by instantiating the Decompose predicate variable by means of the Da-
tabase Method, which here relies on a database of type-specific decomposition predicates.

For instance, we assume that Step 3 selects a simple head-tail decomposition of the induc-
tion parameter L. This is performed by the atomic formula L=[HL|TL]. LA3(compress) is thus
as follows:

compress(L,C) ⇔
L=[] {E1}

∨ L=[_|_] ∧ L=[HL|TL] {E2,...,E8}

Note the coincidental redundancy between the instantiations of the NonMinimal and Decom-
pose predicate variables. This logic algorithm is thus equivalent to its predecessor.

The expanded version of LA3(compress), that is exp(LA3(compress)), is as follows:
17. Pseudo-lists, such as [a |b], are actually also identified by this formula.
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compress(L,C) ⇔
L=[] ∧ L=[] ∧ C=[] {E1}

∨ L=[_|_] ∧ L=[HL|TL]
∧ L=[a] ∧ C=[a,1]

∧ HL=a ∧ TL=[] {E2}
∨ L=[b,b] ∧ C=[b,2]
∧ HL=b ∧ TL=[b] {E3}

∨ L=[c,d] ∧ C=[c,1,d,1]
∧ HL=c ∧ TL=[d] {E4}

∨ L=[e,e,e] ∧ C=[e,3]
∧ HL=e ∧ TL=[e,e] {E5}

∨ L=[f,f,g] ∧ C=[f,2,g,1]
∧ HL=f ∧ TL=[f,g] {E6}

∨ L=[h,i,i] ∧ C=[h,1,i,2]
∧ HL=h ∧ TL=[i,i] {E7}

∨ L=[j,k,m] ∧ C=[j,1,k,1,m,1]
∧ HL=j ∧ TL=[k,m] {E8}

Step 4: Syntactic Introduction of the Recursive Atoms

Now that TX is defined, we can introduce a conjunction of recursive atoms, at the rate of one
per TXi. This introduces a vector TY of tails of Y, at the rate of one per TXi.

For instance, LA4(compress) is as follows:
compress(L,C) ⇔

L=[] {E1}
∨ L=[_|_] ∧ L=[HL|TL]

∧ compress(TL,TC) {E2,...,E8}

This logic algorithm expresses that compress(L,C) holds iff L is either an empty list or a non-
empty list whose tail has a compression. As this compression isn’t really computed yet, this
only amounts to checking whether L is a real list (and this hence eliminates pseudo-lists). The
expanded version of LA4(compress), that is exp(LA4(compress)), is as follows:

compress(L,C) ⇔
L=[] ∧ L=[] ∧ C=[] {E1}

∨ L=[_|_] ∧ L=[HL|TL]
∧ compress(TL,TC)
∧ L=[a] ∧ C=[a,1]

∧ HL=a ∧ TL=[] ∧ TC=[] {E2}
∨ L=[b,b] ∧ C=[b,2]
∧ HL=b ∧ TL=[b] ∧ TC=[b,1] {E3}

∨ L=[c,d] ∧ C=[c,1,d,1]
∧ HL=c ∧ TL=[d] ∧ TC=[d,1] {E4}

∨ L=[e,e,e] ∧ C=[e,3]
∧ HL=e ∧ TL=[e,e] ∧ TC=[e,2] {E5}

∨ L=[f,f,g] ∧ C=[f,2,g,1]
∧ HL=f ∧ TL=[f,g] ∧ TC=[f,1,g,1] {E6}

∨ L=[h,i,i] ∧ C=[h,1,i,2]
∧ HL=h ∧ TL=[i,i] ∧ TC=[i,2] {E7}

∨ L=[j,k,m] ∧ C=[j,1,k,1,m,1]
∧ HL=j ∧ TL=[k,m] ∧ TC=[k,1,m,1] {E8}
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Step 5: Synthesis of Solve and the SolveNonMink

An instantiation of the Solve (respectively SolveNonMink) predicate variable computes, in
the minimal case (respectively the non-recursive, non-minimal case), the value of the other
parameter Y from the induction parameter X. Step 5 yields LA5(r) by using similar methods
to those of Steps 6 and 7.

For instance, in case L is the empty list, its compression C is the empty list as well. This
is performed by the atomic formula C=[]. There is no non-recursive, non-minimal case, and
hence no need to instantiate some SolveNonMink. LA5(compress) is thus as follows:

compress(L,C) ⇔
L=[] ∧ C=L {E1}

∨ L=[_|_] ∧ L=[HL|TL]
∧ compress(TL,TC) {E2,...,E8}

This logic algorithm holds strictly less often than its predecessor, as the minimal case is now
correctly computed.

The expanded version of LA5(compress), that is exp(LA5(compress)), is as follows.
compress(L,C) ⇔

L=[] ∧ C=L
∧ L=[] ∧ C=[] {E1}

∨ L=[_|_] ∧ L=[HL|TL]
∧ compress(TL,TC)
∧ L=[a] ∧ C=[a,1]

∧ HL=a ∧ TL=[] ∧ TC=[] {E2}
∨ L=[b,b] ∧ C=[b,2]
∧ HL=b ∧ TL=[b] ∧ TC=[b,1] {E3}

∨ L=[c,d] ∧ C=[c,1,d,1]
∧ HL=c ∧ TL=[d] ∧ TC=[d,1] {E4}

∨ L=[e,e,e] ∧ C=[e,3]
∧ HL=e ∧ TL=[e,e] ∧ TC=[e,2] {E5}

∨ L=[f,f,g] ∧ C=[f,2,g,1]
∧ HL=f ∧ TL=[f,g] ∧ TC=[f,1,g,1] {E6}

∨ L=[h,i,i] ∧ C=[h,1,i,2]
∧ HL=h ∧ TL=[i,i] ∧ TC=[i,2] {E7}

∨ L=[j,k,m] ∧ C=[j,1,k,1,m,1]
∧ HL=j ∧ TL=[k,m] ∧ TC=[k,1,m,1] {E8}

Note the redundancy between the two C=[] atoms in the minimal case: one of them is a syn-
thesized atom, whereas the other one is a trailing atom introduced by expansion.

Step 6: Synthesis of the Processk and Composek

An instantiation of a Processk predicate variable transforms the heads HX of the induction
parameter X into a vector HY of heads of the other parameter Y. An instantiation of a Com-
posek predicate variable computes the other parameter Y from its heads HY (obtained by pro-
cessing the HX) and tails TY (obtained by recursion on the TX). Step 6 does this
simultaneously, and hence actually looks for an instantiation of a ProcCompk predicate vari-
able that computes the other parameter Y from the heads HX and tails TY. Step 6 yields
LA6(r) by first invoking the MSG Method (see Chapter 10) and assessing its results via some
heuristics: if these results are not satisfying, then a so-called Synthesis Method is invoked.

For instance, in our case the MSG Method is sufficient: it discovers 2 different ways of
computing C from HL and TC, so the schema variable c of sub-cases is instantiated with 2.
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This is actually shown in full detail in Example 10-2 and Example 10-6, where the following
instance of ProcComp is synthesized:

pcCompress(HL,TC,C) ⇔
C=[HL,1|TC]

∨ C=[HL,s(s(N))|TTC] ∧ TC=[HL,s(N)|TTC]

LA6(compress) is thus as follows:

compress(L,C) ⇔
L=[] ∧ C=L {E1}

∨ L=[_|_] ∧ L=[HL|TL]
∧ compress(TL,TC)
∧ C=[HL,1|TC] {E2,E4,E7,E8}

∨ L=[_|_] ∧ L=[HL|TL]
∧ compress(TL,TC)
∧ C=[HL,s(s(N))|TTC] ∧ TC=[HL,s(N)|TTC]

{E3,E5,E6}

Note how the splitting of the non-minimal case into 2 sub-cases affects a partitioning of the
examples that were covered by the original case. Basically, the added atoms express that the
first value of the compression C is necessarily HL, and that the first counter of C is either 1
(in which case the tail of C is simply TC), or an integer s(s(N)) strictly greater than 1 (in
which case the tail of C is the tail of TC, the first value of TC is also HL, and the first counter
of TC is s(N)).

The expanded version of LA6(compress), that is exp(LA6(compress)), is as follows:

compress(L,C) ⇔
L=[] ∧ C=L

∧ L=[] ∧ C=[] {E1}
∨ L=[_|_] ∧ L=[HL|TL]

∧ compress(TL,TC)
∧ C=[HL,1|TC]
∧ L=[a] ∧ C=[a,1]

∧ HL=a ∧ TL=[] ∧ TC=[] {E2}
∨ L=[c,d] ∧ C=[c,1,d,1]
∧ HL=c ∧ TL=[d] ∧ TC=[d,1] {E4}

∨ L=[h,i,i] ∧ C=[h,1,i,2]
∧ HL=h ∧ TL=[i,i] ∧ TC=[i,2] {E7}

∨ L=[j,k,m] ∧ C=[j,1,k,1,m,1]
∧ HL=j ∧ TL=[k,m] ∧ TC=[k,1,m,1] {E8}

∨ L=[_|_] ∧ L=[HL|TL]
∧ compress(TL,TC)
∧ C=[HL,s(s(N))|TTC] ∧ TC=[HL,s(N)|TTC]
∧ L=[b,b] ∧ C=[b,2]

∧ HL=b ∧ TL=[b] ∧ TC=[b,1] {E3}
∨ L=[e,e,e] ∧ C=[e,3]
∧ HL=e ∧ TL=[e,e] ∧ TC=[e,2] {E5}

∨ L=[f,f,g] ∧ C=[f,2,g,1]
∧ HL=f ∧ TL=[f,g] ∧ TC=[f,1,g,1] {E6}

Note that the internal variables N and TTC do not appear in the expansions.



11.3 A Sample Synthesis 163

Step 7: Synthesis of the Discriminatek

An instantiation of the Discriminatek predicate variable tests the values of HX, TX, and Y in
order to see whether ProcCompk is applicable. Step 7 yields LA7(r) by invoking the Proofs-
as-Programs Method (see Chapter 9) and generalizing its results via some heuristics.

For instance, in our case the Proofs-as-Programs Method performs exactly as shown in
Example 9-4, where the following instances of Discriminatek are synthesized (k=2…3):

discCompress2(HL,TL,C) ⇔
TL=[]

∨ TL=[HTL|_] ∧ HL≠HTL
discCompress3(HL,TL,C) ⇔

TL=[HTL|_] ∧ HL=HTL
LA7(compress) is thus as follows:

compress(L,C) ⇔
L=[] ∧ C=L {E1}

∨ L=[_|_] ∧ L=[HL|TL]
∧ (TL=[]) ∨ (TL=[HTL|_] ∧ HL≠HTL)
∧ compress(TL,TC)
∧ C=[HL,1|TC] {E2,E4,E7,E8}

∨ L=[_|_] ∧ L=[HL|TL]
∧ TL=[HTL|_] ∧ HL=HTL
∧ compress(TL,TC)
∧ C=[HL,s(s(N))|TTC] ∧ TC=[HL,s(N)|TTC]

{E3,E5,E6}
Basically, the added discriminants express that the first sub-case identified at Step 6 is appli-
cable iff TL does not start with an element equal to HL, and that the second sub-case is ap-
plicable iff TL does start with an element equal to HL.

The expanded version of LA7(compress), that is exp(LA7(compress)), is as follows:
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compress(L,C) ⇔
L=[] ∧ C=L

∧ L=[] ∧ C=[] {E1}
∨ L=[_|_] ∧ L=[HL|TL]

∧ (TL=[]) ∨ (TL=[HTL|_] ∧ HL≠HTL)
∧ compress(TL,TC)
∧ C=[HL,1|TC]
∧ L=[a] ∧ C=[a,1]

∧ HL=a ∧ TL=[] ∧ TC=[] {E2}
∨ L=[c,d] ∧ C=[c,1,d,1]
∧ HL=c ∧ TL=[d] ∧ TC=[d,1] {E4}

∨ L=[h,i,i] ∧ C=[h,1,i,2]
∧ HL=h ∧ TL=[i,i] ∧ TC=[i,2] {E7}

∨ L=[j,k,m] ∧ C=[j,1,k,1,m,1]
∧ HL=j ∧ TL=[k,m] ∧ TC=[k,1,m,1] {E8}

∨ L=[_|_] ∧ L=[HL|TL]
∧ TL=[HTL|_] ∧ HL=HTL
∧ compress(TL,TC)
∧ C=[HL,s(s(N))|TTC] ∧ TC=[HL,s(N)|TTC]
∧ L=[b,b] ∧ C=[b,2]

∧ HL=b ∧ TL=[b] ∧ TC=[b,1] {E3}
∨ L=[e,e,e] ∧ C=[e,3]
∧ HL=e ∧ TL=[e,e] ∧ TC=[e,2] {E5}

∨ L=[f,f,g] ∧ C=[f,2,g,1]
∧ HL=f ∧ TL=[f,g] ∧ TC=[f,1,g,1] {E6}

Note that the internal variables HTL, N, and TTC do not appear in the expansions.
The sample synthesis ends here. It can be shown that LA7(compress) is totally correct wrt

its intended relation. ♦

Note that Steps 2,3, 5, and 6 are non-deterministic: different logic algorithms can be syn-
thesized upon reconsideration of decisions taken at these steps.

Regarding correctness issues, Steps 2 to 7 are proven to fit the hypotheses of Theorem 7-7.
It can be shown that:

LAi(r) {«, ≤} LAi-1(r)
exp(LAi(r)) {«, ≈/ , ≅} exp(LAi-1(r))

where i∈{2,…,7}.
A careful study of this sample synthesis shows that the synthesis mechanism can actually

be decomposed into two phases, an expansion phase (covering Steps 1 to 4) and a reduction
phase (covering Steps 5 to 7). During the former, the expansions are gradually expanding as
more variables are introduced. During the latter, the expansions are reduced by partitioning
of cases.
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12 The Expansion Phase
Assuming a binary intended relation R, and its corresponding predicate r/2, we suppose there
is a specification EP(r), whose example set is defined as follows:

E(r) = {E1, E2, … , Em} = { r(x1,y1), r(x2,y2), … , r(xm,ym) }
and whose property set is defined as follows:

P(r) = {P1, P2, … , Pp} = { r(s1,t1) ⇐ B1, r(s2,t2) ⇐ B2, … , r(sp,tp) ⇐ Bp }
where the body Bi of a property Pi is a conjunction of atoms. As usual in compilation, trans-
formation, or synthesis, we assume that EP(r) is consistent with R: we call this the consis-
tency assumption.
Example 12-1: The firstPlateau/3 relation is used all along this (and the following) chapter
for illustration purposes. We assume that EP(firstPlateau) is as follows:

firstPlateau([a],[a],[]) (E1)
firstPlateau([b,b],[b,b],[]) (E2)
firstPlateau([c,d],[c],[d]) (E3)
firstPlateau([e,f,g],[e],[f,g]) (E4)
firstPlateau([h,i,i],[h],[i,i]) (E5)
firstPlateau([j,j,k],[j,j],[k]) (E6)
firstPlateau([m,m,m],[m,m,m],[]) (E7)
firstPlateau([X] , [X] , [] ) (P1)
firstPlateau([X,Y],[X,Y],[] ) ⇐ X=Y (P2)
firstPlateau([X,Y],[X] , [Y]) ⇐ X≠Y (P3)

In order to keep this chapter self-sufficient, we here repeat the chosen synthesis strategy
(see Section 7.3.2), where synthesis is seen as a sequence of f steps:

At Step 1, “create” LA1(r) such that:
+ LA1(r) is complete wrt R;
+ exp(LA1(r)) is partially correct wrt R.

At Step i (2≤i≤f), transform LAi-1(r) into LAi (r) such that:
+ LAi(r) is a better complete approximation of R than LAi-1(r);
+ exp(LAi(r)) is a better partially correct approximation of R than exp(LAi-1(r)).

The following theorem (originally Theorem 7-7) indicates a practical way of pursuing this
strategy at Steps 2 to f:
Let LA(r) be r(X) ⇔ ∨1≤j≤m Aj and LA'(r) be r(X) ⇔ ∨1≤j≤m Aj ∧ Bj, where Aj, Bj are any
formulas literals. The following two assertions hold:

(1) If LA(r) is complete wrt R and R(X) ∧ Aj ⇒ Bj (1 ≤ j ≤ m)
then LA'(r) is a better complete approximation of R than LA(r).

(2) If LA(r) is partially correct wrt R and Aj ⇒ Bj (1 ≤ j ≤ m)
then LA'(r) is a better partially correct approximation of R than LA(r).

Indeed, assertion (1) may be applied to the logic algorithms LAi(r), and assertion (2) may be
applied to the logic algorithms exp(LAi(r)), where 2 ≤ i ≤ f.

Finally, we here also repeat Schema 8-3, that is version 3 of the divide-and-conquer sche-
ma:
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R(X,Y) ⇔
Minimal(X) ∧ Solve(X,Y)

∨ ∨1≤k≤c NonMinimal(X) ∧ Decompose(X,HX,TX)
∧ Discriminatek(HX,TX,Y)
∧ ( SolveNonMink(HX,TX,Y)

⏐
R(TX,TY)

∧ Processk(HX,HY)
∧ Composek(HY,TY,Y) )

Instantiating some predicate variable(s) of this schema is a synthesis step. The synthesis
mechanism is expressed as the following sequence of f=7 steps (see Example 8-10):

• Step 1: Syntactic creation of a first approximation;
• Step 2: Synthesis of Minimal and NonMinimal;
• Step 3: Synthesis of Decompose;
• Step 4: Syntactic introduction of the recursive atoms;
• Step 5: Synthesis of Solve and the SolveNonMink;
• Step 6: Synthesis of the Processk and Composek;
• Step 7: Synthesis of the Discriminatek.

The expansion phase of synthesis comprises the first four steps of this mechanism. In
Section 12.1 to Section 12.4, we give complete descriptions of each of these steps: we state
their objectives, describe the used methods, analyze their correctness and progression behav-
iors, and illustrate them on the firstPlateau/3 and compress/2 relations.

12.1 Step 1: Syntactic Creation of a First Approximation
A first approximation needs to be “created” so as to establish the applicability of
Theorem 7-7.

12.1.1 Objective

According to the chosen strategy, the objective at Step 1 is to “create” LA1(r) such that:
(1) LA1(r) is complete wrt R;
(2) exp(LA1(r)) is partially correct wrt R.

The achievement of this objective makes Theorem 7-7 applicable for the subsequent steps.

12.1.2 Method

The safest method to achieve this is to postulate that LA1(r) is Tr, which is as follows:
r(X,Y) ⇔

true {E1,E2,…,Em}

This is always possible, hence Step 1 is fully deterministic (and thus never fails). Moreover,
LA1(r) is also fully deterministic. Step 1 yields a unique case, called the all-true case. As usu-
al, the set annotation to a disjunct explains which examples are covered by that disjunct.
Now, exp(LA1(r)) is as follows:

r(X,Y) ⇔
true ∧ X=x1 ∧ Y=y1 {E1}

∨ X=x2 ∧ Y=y2 {E2}
∨ ... ...
∨ X=xm ∧ Y=ym {Em}
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12.1.3 Correctness

We can now prove the following theorem establishing that Step 1 is in line with the strategy:
Theorem 12-1: Step 1 achieves the two conditions of its objective:

(1) LA1(r) is complete wrt R;
(2) exp(LA1(r)) is partially correct wrt R.

Proof 12-1: Let’s prove these assertions one by one:
(1) Trivial (by construction).
(2) We obviously have that exp(LA1(r)) is totally correct wrt E(r). By the consistency

assumption, exp(LA1(r)) is thus partially correct wrt R. ❏

Note that this proof is independent of R.

12.1.4 Illustration

Let’s illustrate Step 1 on the firstPlateau/3 and compress/2 relations.
Example 12-2: For the firstPlateau/3 relation, Step 1 yields LA1(firstPlateau) as shown in
Logic Algorithm 12-1, and exp(LA1(firstPlateau)) as shown in Logic Algorithm 12-2.
Example 12-3: For the compress/2 relation, Step 1 yields a logic algorithm and its
expansion as shown in Example 11-1.

12.2 Step 2: Synthesis of Minimal and NonMinimal

An instantiation of the Minimal (respectively NonMinimal) predicate variable tests whether
the induction parameter is of a minimal (respectively non-minimal) form.

12.2.1 Objective

The objective at Step 2 is to instantiate the predicate variables Minimal and NonMinimal of
the divide-and-conquer schema. This amounts to transforming LA1(r) into LA2(r) such that
it is covered by the following schema:

r(X,Y) ⇔
Minimal(X)

∨ NonMinimal(X)

firstPlateau(L,P,S) ⇔
true {E1,…,E7}

Logic Algorithm 12-1: LA1(firstPlateau)

firstPlateau(L,P,S) ⇔
true

∧ L=[a] ∧ P=[a] ∧ S=[] {E1}
∨ L=[b,b] ∧ P=[b,b] ∧ S=[] {E2}
∨ L=[c,d] ∧ P=[c] ∧ S=[d] {E3}
∨ L=[e,f,g] ∧ P=[e] ∧ S=[f,g] {E4}
∨ L=[h,i,i] ∧ P=[h] ∧ S=[i,i] {E5}
∨ L=[j,j,k] ∧ P=[j,j] ∧ S=[k] {E6}
∨ L=[m,m,m] ∧ P=[m,m,m] ∧ S=[] {E7}

Logic Algorithm 12-2: exp(LA1(firstPlateau))
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where X is the selected induction parameter. This amounts to splitting the all-true case into
 two cases, called the minimal case and the non-minimal case, respectively. Let minimal/1
and nonMinimal/1 be the synthesized instances. The following objectives of the strategy:

(1) LA2(r) is a better complete approximation of R than LA1(r);
(2) exp(LA2(r)) is a better partially correct approximation of R than exp(LA1(r));

and the following integrity constraints of the divide-and-conquer schema:
(3) X is single and of an inductive type;
(4) X∈dom(r) ⇒ minimal(X) ∨⋅ nonMinimal(X);

must be satisfied.

12.2.2 Method

This objective can be achieved by the following sequence of tasks:
• Task A: selection of an induction parameter;
• Task B: ordering of the examples into a sequence;
• Task C: partitioning of the example sequence into 2 sub-sequences;
• Task D: selection of minimal/1 and nonMinimal/1.

Let’s explain these tasks one by one.

Task A: Selection of an Induction Parameter

Task A is done in the same fashion as in manual logic algorithm construction [Deville 90]
(see Section 4.2.1): the induction parameter must be simple, and of an inductive type. This
selection can be automated by type inference from the given examples. In case more detailed
specification knowledge is available, the Functionality Heuristic (Heuristic 4-1) and the Di-
rectionality Heuristic (Heuristic 4-2) may even be used, the latter being of higher precedence
in case they yield contradictory results. A reasonable implementation of this synthesis mech-
anism would actually even accept preference hints from the specifier. We assume that the uth

parameter is selected as induction parameter, where 1≤u≤n.
Example 12-4: Within the firstPlateau/3 relation, all three parameters are of an inductive
type, namely list. If we consider the specification of Figure 4-2, both heuristics would point
towards L being the “best” induction parameter. Without this extended specification
knowledge, a non-deterministic selection of an induction parameter among {L, P, S} takes
place. We assume that L is effectively selected: its position u is 1.

Task B: Ordering of the Examples

Task B is based on the notion of term size. As agreed in Section 11.2, this theoretical discus-
sion only considers the type-constructing functors s/1 (for integers) and •/2 (for lists).
Definition 12-1: The size of a ground term t, denoted #t, is the number of appearances of
the outmost type-constructing functor within t, if t is of an inductive type, and undefined
otherwise.
Example 12-5: For instance, #3 = #s(s(s(0))) = 3, because s/1 appears thrice in 3. Also,
#[a,b] = #•(a, •(b, nil)) = 2, because •/2 appears twice in [a,b]. But # a = undefined, because
no type-constructing functor occurs in a.
Definition 12-2: Given an example E of predicate r/n, and an integer position i (where
1≤i≤n), the size of E wrt i, denoted #(E,i), is the size of the ith parameter of E.
Example 12-6: Considering the examples of EP(firstPlateau) (see Example 12-1), we
have #(E1,1) = 1, and #(E2,1) = #(E3,1) = 2, and #(E4,1) = #(E5,1) = #(E6,1) = #(E7,1) = 3.
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The examples of E(r) are now ordered by increasing-or-equal size of the examples wrt the
position u of the selected induction parameter. The result is a sequence S of examples.
Example 12-7: For the firstPlateau/3 relation, with induction on L, the ordered sequence
is exactly the one of the given example set: S = [E1,E2,E3,E4,E5,E6,E7].

Task C: Partitioning of the Examples

Task C non-deterministically partitions the sequence S into 2 sub-sequences S1 and S2, such
that:

∀E1∈S1 ∀E2∈S2 #(E1,u) < #(E2,u)
The idea is that the examples of S1 are hypothesized to be of the minimal form, while the
examples of S2 are hypothesized to be of the non-minimal form. Hence the partitioning into
two sub-sequences, since we agreed upon a total of two forms. We call the elements of S1 the
minimal examples, and the elements of S2 the non-minimal examples.
Example 12-8: For the firstPlateau/3 relation, with induction on L, there are two ways of
partitioning the example sequence S: either S1 = [E1] and S2 = [E2,E3,E4,E5,E6,E7], or S1 =
[E1,E2,E3] and S2 = [E4,E5,E6,E7]. We assume that the first partition is selected.

Task D: Selection of minimal/1 and nonMinimal/1

Task D consists of mechanically extracting minimal/1 and nonMinimal/1 from a parameter-
ized database. Suppose that the sizes of the examples in S1 are within the integer interval
[p1,…,q1], and that the sizes of the examples in S2 are within the integer interval [p2,…,q2].
Table 12-1 below shows the used fragment of the database, which only uses primitive pred-
icates (for simplicity, we here restrict it to the situation where p = p1 = q1 and p2 = q1 + 1):

Type inference from the examples may be used to access the appropriate row of the database.
The hypothesis underlying this excerpt of the database is that the examples of sub-sequence
S1 represent all the sizes of the minimal form, whereas the examples of sub-sequence S2 rep-
resent only a prefix of the sizes of the non-minimal form. This amounts to assuming that q2
may be safely replaced by +∞. This hypothesis is quite reasonable and covers a huge number
of circumstances. Instances reflecting other hypotheses may also be stored in the database.
We call such hypotheses the domain extrapolation hypotheses. The mechanical instance ex-
traction is thus non-deterministic. The commonality between all instances is that there is only
concern about the size of the induction parameter, and not about its value (hence the presence
of anonymous variables in the database). The mentioned hypotheses have an obvious influ-
ence upon the formulation of a methodology for choosing “good” examples.

Note that exp(LA2(r)) is as follows:
r(X,Y) ⇔

minimal(X) ∧ ∨j∈I X=xj ∧ Y=yj
∨ nonMinimal(X) ∧ ∨j∈J X=xj ∧ Y=yj

where I is the set of indices of the minimal examples, and J is the set of indices of the non-
minimal examples, such that I ∪ J is a permutation of the integer set {1,…,m}.

Table 12-1: Excerpt of the database of instances of Minimal/1 and NonMinimal/1

Type of X Minimal(X) NonMinimal(X)

integer X = p X > p

list X = [_,…,_] (p elements) X = [_,…,_,_ |_] (> p elements)



170 The Expansion Phase

Example 12-9: For the firstPlateau/3 relation, with the decisions taken by the previous
tasks, we obtain p = p1 = q1 = 1, and p2 = 2 = q1 + 1. Following the hypothesis underlying
Table 12-1, we assume that the minimal form is [_] (that is, a list of exactly one element) and
that the non-minimal form is [_,_ |_] (that is, a list of at least two elements). The instances
of Minimal and NonMinimal thus are L = [_], and L = [_,_ |_], respectively.

Comments

This ends the presentation of the method used at Step 2. Before the discussion of its correct-
ness, a few comments are necessary.

First, note that L = [_] is strictly speaking not an instance of Minimal(X). The predicate
variable Minimal/1 is rather instantiated to, say, a predicate minimal/1, which is defined by
the following logic algorithm: minimal(X) ⇔ X = [_]. It is actually only the renaming sub-
stitution {X/L} and then the unfolding of minimal(L) that bring the atom L = [_] into some
logic algorithm for firstPlateau/3. So it is only by abuse of language that we may speak of
L = [_] as being an “instance” of Minimal(X).

Second, it is the very focus on structural aspects of the induction parameter (its size, that
is) that makes this database approach possible. If semantic aspects of the induction parameter
(its value, that is) also have to be taken into account, then a deductive approach reasoning
backwards from instances of all other predicate variables becomes necessary [Smith 85]. We
here clearly separate these aspects: the structure of the induction parameter is analyzed at
Step 2 for instantiating Minimal and NonMinimal, and the value of the induction parameter
is analyzed at Step 7 for instantiating the Discriminatek.

Finally, the methods of tasks A, C, and D are non-deterministic, but finite. This means that
choice-points are created there, and that the made selections may be reconsidered later (ei-
ther because synthesis fails, or because synthesis succeeds and the specifier wants more al-
gorithms). Only Task A could possibly fail, namely if there is no parameter of an inductive
type. Do not confuse however non-deterministic synthesis and a non-deterministic synthe-
sized algorithm. The latter would feature either mutually non-exclusive cases or predicates
that are non-deterministic in the all-ground mode. The logic algorithm synthesized at Step 2
is deterministic, because the two cases are mutually exclusive by construction, and because
the introduced predicates are deterministic in the all-ground mode.

12.2.3 Correctness

We can now prove the following theorem establishing that Step 2 is in line with the strategy:
Theorem 12-2: Step 2 achieves the four conditions of its objective:

(1) LA2(r) is a better complete approximation of R than LA1(r);
(2) exp(LA2(r)) is a better partially correct approximation of R than exp(LA1(r));
(3) X is single and of an inductive type;
(4) X∈dom(R) ⇒ minimal(X) ∨⋅  nonMinimal(X).

Proof 12-2: Let’s prove these assertions one by one:
(1) By assertion (1) of Theorem 7-7 and assertion (1) of Theorem 12-1, it suffices to

show that:
R(X,Y) ∧ true ⇒ minimal(X) ∨ nonMinimal(X)

in order to prove that LA2(r) is a better complete approximation of R than LA1(r).
This statement is actually implied by Point (4) of this theorem, because
R(X,Y) ⇒ X∈dom(R) and F ∨⋅  G ⇒ F ∨ G.

(2) By assertion (2) of Theorem 7-7 and assertion (2) of Theorem 12-1, it suffices to
show that:
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X=xj ∧ Y=yj ⇒ minimal(X) (j∈I)
X=xj ∧ Y=yj ⇒ nonMinimal(X) (j∈J)

in order to prove that exp(LA2(r)) is a better partially correct approximation of R
than exp(LA1(r)). This is achieved by the methods of Tasks B to D.

(3) By the method of Task A, the selected induction parameter is single and of an in-
ductive type.

(4) By the methods of Tasks B to D, minimal/1 and nonMinimal/1 are mutually exclu-
sive over the domain of the induction parameter within E(r). If the right domain ex-
trapolation hypothesis is taken by the method of Task D, then minimal/1 and
nonMinimal/1 are also mutually exclusive over the entire intended domain of the in-
duction parameter. ❏

This proof hinges on the fact that the right domain extrapolation hypothesis must be taken by
the method of Task D. In the sequel, we assume that such is the case. Of course, a reasonable
implementation of this synthesis mechanism would include some interaction with the speci-
fier so as to maximize the confidence that everything goes right.

12.2.4 Illustration

Let’s illustrate Step 2 on the firstPlateau/3 and compress/2 relations.
Example 12-10: For the firstPlateau/3 relation, Step 2 proceeds as illustrated in the
previous six examples. Logic Algorithm 12-3 shows LA2(firstPlateau), whereas Logic
Algorithm 12-4 shows exp(LA2(firstPlateau)).
Example 12-11: For the compress/2 relation, Step 2 proceeds as follows. At Task A, both
parameters are found to be of an inductive type, namely list. If we considered the
specification of Figure 4-1, the heuristics would point towards L being the “best” induction
parameter. Without this extended specification knowledge, a non-deterministic selection of
an induction parameter among {L, C} takes place. We assume that L is effectively selected:
its position u is 1. At Task B, we have #(E1,1) = 0, and #(E2,1) = 1, and #(E3,1) = #(E4,1) =
2, and #(E5,1) = #(E6,1) = #(E7,1) = #(E8,1) = 3. So the ordered sequence of examples is
exactly the one of the given example set: S = [E1,E2,E3,E4,E5,E6,E7,E8]. At Task C, there are
three ways of partitioning this sequence S: either S1 = [E1] and S2 = [E2,E3,E4,E5,E6,E7,E8],

firstPlateau(L,P,S) ⇔
L=[_]

∨ L=[_,_|_]
Logic Algorithm 12-3: LA2(firstPlateau)

firstPlateau(L,P,S) ⇔
L=[_]

∧ L=[a] ∧ P=[a] ∧ S=[] {E1}
∨ L=[_,_|_]

∧ L=[b,b] ∧ P=[b,b] ∧ S=[] {E2}
∨ L=[c,d] ∧ P=[c] ∧ S=[d] {E3}
∨ L=[e,f,g] ∧ P=[e] ∧ S=[f,g] {E4}
∨ L=[h,i,i] ∧ P=[h] ∧ S=[i,i] {E5}
∨ L=[j,j,k] ∧ P=[j,j] ∧ S=[k] {E6}
∨ L=[m,m,m] ∧ P=[m,m,m] ∧ S=[] {E7}

Logic Algorithm 12-4: exp(LA2(firstPlateau))
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or S1 = [E1,E2] and S2 = [E3,E4,E5,E6,E7,E8], or S1 = [E1,E2,E3,E4] and S2 = [E5,E6,E7,E8].
We assume that the first partition is selected. At Task D, we obtain p = p1 = q1 = 0, as well
as p2 = 1 = q1 + 1. Following the hypothesis underlying Table 12-1, we assume that the
minimal form is [] (that is, an empty list) and that the non-minimal form is [_ |_] (that is, a
list of at least one element). The corresponding instances of Minimal and NonMinimal thus
are L = [], and L = [_ |_], respectively. The resulting logic algorithm and its expansion are
shown in Example 11-1.

12.3 Step 3: Synthesis of Decompose
An instantiation of the Decompose predicate variable deterministically decomposes, in the
non-minimal case, the induction parameter X into a vector HX of heads and a vector TX of
tails, each tail TXi being smaller than X according to some well-founded relation. These tails
are meant for the recursive computation of the tails TYi of the other parameter Y.

12.3.1 Objective

The objective at Step 3 is to instantiate the predicate variable Decompose of the divide-and-
conquer schema. This amounts to transforming LA2(r) into LA3(r) such that it is covered by
the following schema:

r(X,Y) ⇔
minimal(X)

∨ nonMinimal(X) ∧ Decompose(X,HX,TX)
Let decompose be the synthesized instance. It is of arity 1+h+t, where h = #HX and t = #TX.
The following objectives of the strategy:

(1) LA3(r) is a better complete approximation of R than LA2(r);
(2) exp(LA3(r)) is a better partially correct approximation of R than exp(LA2(r));

and the following integrity constraints of the divide-and-conquer schema:
(3) h ≥ 0 and t ≥ 1;
(4) X∈dom(R) ∧ nonMinimal(X) ⇒ ∃!HX ∃!TX decompose(X,HX,TX);
(5) ∃“<” ∀(decompose(X,HX,TX1,…,TXt) ⇒ ∀ i∈{1,…,t} TXi “<” X);

must be satisfied.

12.3.2 Method

This objective can be achieved by the following sequence of tasks:
• Task E: selection of a decomposition strategy;
• Task F: selection of decompose/1+h+t.

Let’s explain these tasks one by one.

Task E: Selection of a Decomposition Strategy

Task E consists of selecting one of the three decomposition strategies seen in Section 5.2.3.
As a reminder, these strategies are:

• intrinsic decomposition: X is decomposed into h ≥ 1 heads and t ≥ 1 tails in a manner
reflecting the definition of the type of X;

• extrinsic decomposition: X is decomposed into h ≥ 0 heads and t ≥ 1 tails in a manner
reflecting the definition of the type of some other parameter than X, or reflecting the
intended relation;

• logarithmic decomposition: X is decomposed into h = 0 heads and t ≥ 2 tails of about
equal size.
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An intrinsic decomposition reflects a well-founded relation selected via the Intrinsic Heuris-
tic, and an extrinsic or logarithmic decomposition reflects a well-founded relation selected
via the Extrinsic Heuristic (see Chapter 4). The selection of a strategy is a high-level design
decision that may significantly affect the complexity of the resulting algorithm (but probably
not its existence). A reasonable implementation of this synthesis mechanism would accept a
preference hint from the specifier.

If an intrinsic decomposition is selected, then a decomposition decrement, denoted d,
needs to be selected before proceeding to Task F. This is done by selecting a value within the
following integer interval:

[ #(Ew,u) – #(Ev,u),…,#(Ew,u) ]
where Ev is the last (largest-sized) example of S1, and Ew is the first (smallest-sized) example
of S2. The lower bound represents the size decrease needed to decompose an example of the
size of Ev into an example of the size of Ew. The upper bound is justified by the fact that one
can at most take away as many elements as there are elements in the smallest non-minimal
example. Note that d is thus constrained to be a constant.
Example 12-12: For the firstPlateau/3 relation, suppose the intrinsic decomposition
strategy is selected, and that the decomposition decrement d is selected to be 1, namely from
the interval [1,…,2].

Task F: Selection of decompose/1+h+t

Task F consists of mechanically extracting decompose/1+h+t from a parameterized data-
base. Tables 12-2 to 12-4 below show the used fragments of the database, which only uses
primitive predicates (we omit the subscripts i from the HXi and TXi in case h = 1 or t = 1):

Table 12-2: Excerpt of the database of intrinsic instances of Decompose/1+h+t

Type of X Decompose(X,HX,TX)

integer add(TX,d,X) ∧ HX=X

list X = [HX1,…,HXd |TX]

Table 12-3: Excerpt of the database of extrinsic instances of Decompose/1+h+t

Type of X Decompose(X,HX,TX)

integer —

list firstPlateau(X,HX,TX)
…

integer-list X = [HX|T] ∧ partition(T,HX,TX1,TX2)
…

Table 12-4: Excerpt of the database of logarithmic instances of Decompose/1+h+t

type of X Decompose(X,HX,TX)

integer —

list split(X,TX1,TX2)
…
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Type inference from the examples may be used to access the appropriate row of the database.
Note that exp(LA3(r)) is as follows:

r(X,Y) ⇔
minimal(X) ∧ ∨j∈I X=xj ∧ Y=yj

∨ nonMinimal(X) ∧ decompose(X,HX,TX)
∧ ∨j∈J X=xj ∧ Y=yj

∧ HX=hxj ∧ TX=txj
where the hxj and txj are vectors of witnesses such that decompose(xj,hxj,txj) holds (j∈J).
Example 12-13: For the firstPlateau/3 relation, with the decisions taken at the previous
task, the instance L = [HL|TL] is extracted from Table 2. This means that h = t = 1.

Comments

This ends the presentation of the method used at Step 3. Before the discussion of its correct-
ness, a few comments are necessary.

First, the support of the extrinsic and logarithmic decomposition strategies is quite diffi-
cult, as the required knowledge about the intended relation is not available. This apparent
drawback may be alleviated however by the observation that the logic algorithms LA(r-int-
X) and LA(r-ext-Y) are by construction quite similar. Compare LA(compress) (LA 4-1) and
LA(compress-ext-C) (LA 5-3), or LA(compress-int-C) (LA 5-2) and LA(compress-ext-L)
(LA 5-1) for illustrations of this observation. In other words, the support of the extrinsic and
logarithmic decomposition strategies often doesn’t give rise to new logic algorithms. This is
due to the reversibility of logic algorithms: Compose(HY,TY,Y) may not only be used in the
composition mode (ground,ground,var), but also in the decomposition mode (var,var,
ground). Similarly, Decompose(X,HX,TX) may not only be used in the decomposition mode
(ground,var,var), but also in the composition mode (var,ground,ground). However, the con-
straints (4) and (5) sometimes prevent the reversion of LA(r-int-X) into LA(r-ext-Y). Indeed,
the decomposition mode of Compose(HY,TY,Y) might be non-deterministic. For
instance, efface(HY,Y,TY), insert(HY,TY,Y), append(TY1,[HY|TY2],Y), and merge(TY1,TY2,Y)
may not be used as instances of Decompose, but are suitable as instances of Compose. Or the
decomposition mode of Compose(HY,TY,Y) might not reflect a well-founded relation. For in-
stance, Y = TYi may not be used as an instance of Decompose, but is suitable as an instance
of Compose. Such an instance may appear because Y is an auxiliary parameter, or because Y
would be part of a compound induction parameter for the reversion.

Second, note that the methods of both tasks are non-deterministic, finite, and can never
fail. However, the introduced predicates are deterministic in the decomposition mode. This
implies that the witnesses hxj and txj are unique. The logic algorithm synthesized at Step 3
is thus deterministic.

Third, the methods used by Steps 2 and 3 could be abstracted into a Database Method.
Roughly speaking, this would work as follows: given an example set E, some computations
C, and a database DB, select an entry from DB using the key generated by executing C on E.

Finally, with an intrinsic decomposition, obvious simplification opportunities arise be-
tween nonMinimal and decompose. However, we never perform these simplifications, so as
to present canonical representations of all logic algorithms.

12.3.3 Correctness

We can now prove the following theorem establishing that Step 3 is in line with the strategy:
Theorem 12-3: Step 3 achieves the five conditions of its objective:

(1) LA3(r) is a better complete approximation of R than LA2(r);
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(2) exp(LA3(r)) is a better partially correct approximation of R than exp(LA2(r));
(3) h ≥ 0 and t ≥ 1;
(4) X∈dom(R) ∧ nonMinimal(X) ⇒ ∃!HX ∃!TX decompose(X,HX,TX);
(5) ∃“<” ∀(decompose(X,HX,TX1,…,TXt) ⇒ ∀i∈{1,…,t} TXi “<” X).

Proof 12-3: Let’s prove these assertions one by one:
(1) By assertion (1) of Theorem 7-7 and assertion (1) of Theorem 12-2, it suffices to

show that:
R(X,Y) ∧ minimal(X) ⇒ true

R(X,Y) ∧ nonMinimal(X) ⇒ decompose(X,HX,TX)
in order to prove that LA3(r) is a better complete approximation of R than LA2(r).
The first statement is trivially true (and we shall omit such statements in the sequel).
The second statement is implied by Point (4) of this theorem.

(2) By assertion (2) of Theorem 7-7 and assertion (2) of Theorem 12-2, it suffices to
show that:

minimal(X) ∧ X=xj ∧ Y=yj ⇒ true (j∈I)
nonMinimal(X) ∧ X=xj ∧ Y=yj ⇒

decompose(X,HX,TX) ∧ HX=hxj ∧ TX=txj (j∈J)
in order to prove that exp(LA3(r)) is a better partially correct approximation of R
than exp(LA2(r)). The first statement is trivially true (and we shall omit such state-
ments in the sequel). The second statement is implied by Point (4) of this theorem.

(3) The databases used by the method of Task F guarantee that h≥0 and t≥1.
(4) The databases used by the method of Task F guarantee that each instance is deter-

ministic.
(5) The databases used by the method of Task F guarantee that each instance reflects

decomposition according to some well-founded relation. ❏

12.3.4 Illustration

Let’s illustrate Step 3 on the firstPlateau/3 and compress/2 relations.
Example 12-14: For the firstPlateau/3 relation, Step 3 proceeds as illustrated in the
previous two examples. Logic Algorithm 12-5 shows LA3(firstPlateau), whereas Logic
Algorithm 12-6 shows exp(LA3(firstPlateau)).
Example 12-15: For the compress/2 relation, Step 3 proceeds as follows. At Task E,
suppose the intrinsic decomposition strategy is selected. The decomposition decrement d is
then necessarily 1, because selected from the singleton interval [1,…,1]. At Task F, the
instance L = [HL|TL] is extracted from Table 2. This means that h = t = 1. The resulting logic
algorithm and its expansion are shown in Example 11-1.

12.4 Step 4: Syntactic Introduction of the Recursive Atoms
In the non-minimal case, some tails TY of Y are obtained by recursion on the tails TX of X.

12.4.1 Objective

The objective at Step 4 is to instantiate the conjunction of recursive atoms of the divide-and-
conquer schema. This amounts to transforming LA3(r) into LA4(r) such that it is covered by
the following schema:
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r(X,Y) ⇔
minimal(X)

∨ nonMinimal(X) ∧ decompose(X,HX,TX)
∧ ( true

∨
r(TX,TY) )

This amounts to splitting the non-minimal case into two non-mandatory cases, called the
non-recursive non-minimal case and the recursive non-minimal case, respectively. For con-
venience, we drop the qualifier “non-minimal” from these two names. Recursion may be use-
less in the sense that the recursively computed TY are not needed for the computation of Y.
Useless recursion wouldn’t affect the correctness of a logic algorithm, though. Its elimination
is thus rather a matter of algorithm optimization. The following objectives of the strategy:

(1) LA4(r) is a better complete approximation of R than LA3(r);
(2) exp(LA4(r)) is a better partially correct approximation of R than exp(LA3(r));

must be satisfied.

12.4.2 Method

The case splitting and the introduction of a conjunction of recursive atoms into one of the
resulting cases are mere syntactic operations, and hence pretty straightforward.

However, the decision whether both cases are necessary involves some computations on
the non-minimal examples during the generation of exp(LA4(r)). Recall from Definition 7-25
that exp is actually a ternary operator that expands the disjuncts of a logic algorithm LA(r)
wrt some covered examples E(r) and some oracle O(r). We agreed on the default usage of
the so-called deductive oracle based on the specification EP(r). This oracle is automatable,
sound (under the consistency assumption), but not necessarily complete. The deductive ora-

firstPlateau(L,P,S) ⇔
L=[_]

∨ L=[_,_|_] ∧ L=[HL|TL]
Logic Algorithm 12-5: LA3(firstPlateau)

firstPlateau(L,P,S) ⇔
L=[_]

∧ L=[a] ∧ P=[a] ∧ S=[] {E1}
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ L=[b,b] ∧ P=[b,b] ∧ S=[]
∧ HL=b ∧ TL=[b] {E2}

∨ L=[c,d] ∧ P=[c] ∧ S=[d]
∧ HL=c ∧ TL=[d] {E3}

∨ L=[e,f,g] ∧ P=[e] ∧ S=[f,g]
∧ HL=e ∧ TL=[f,g] {E4}

∨ L=[h,i,i] ∧ P=[h] ∧ S=[i,i]
∧ HL=h ∧ TL=[i,i] {E5}

∨ L=[j,j,k] ∧ P=[j,j] ∧ S=[k]
∧ HL=j ∧ TL=[j,k] {E6}

∨ L=[m,m,m] ∧ P=[m,m,m] ∧ S=[]
∧ HL=m ∧ TL=[m,m] {E7}

Logic Algorithm 12-6: exp(LA3(firstPlateau))
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cle could even be based on LA(r) itself: it would be automated, sound (if LA(r) is partially
correct wrt R), and complete (if LA(r) is complete wrt R). But such an oracle would be rarely
useful in practice. Other automated oracles can be imagined, performing other types of rea-
soning on the examples and properties, such as analogical reasoning. A reasonable imple-
mentation of this synthesis mechanism would also interact with the specifier, especially for
queries where all other oracles yield empty witness sets. Such a human oracle is supposed to
be sound and complete.

Now, the decision whether both cases are really necessary is achieved by the following
sequence of four tasks:

• Task G: compute exp(LA4(r)) according to some sound oracle O(r);
• Task H: in the non-recursive case, eliminate every disjunct that is an expansion wrt

some example that is also covered by the recursive case. Indeed, every example cov-
ered by the recursive case in LA4(r) is also covered by the non-recursive case (but the
opposite doesn’t hold): this task amounts to eliminating unwanted redundancy;

• Task I: in the recursive case, remove every disjunct where the general example proc-
Comp(<hxj>,<tyj>,yj) would have no admissible alternatives18 wrt a = b = 1, and ex-
pand the non-recursive case wrt the corresponding example Ej. Indeed, if yj is not
somehow constructed in terms of tyj, then recursion is useless for testing example Ej.

This amounts so far to splitting the sequence of examples S2 (see Step 2) into two comple-
mentary (but possibly empty) sub-sequences S21 and S22, such that the examples of S21 are
covered by the disjuncts of the non-recursive case, whereas the examples of S22 are covered
by the disjuncts of the recursive case. We call the elements of S21 the non-recursive exam-
ples, and the elements of S22 the recursive examples.

• Task J: take the following decisions:
– if S21 is empty, then conjecture that recursion is necessary for every possible exam-

ple of R, rather than just for those of E(r), and eliminate the non-recursive case in
both LA4(r) and exp(LA4(r));

– if S22 is empty, then conjecture that recursion is useless for every possible example
of R, rather than just for those of E(r), and eliminate the recursive case in both
LA4(r) and exp(LA4(r)).

If the recursive case is eliminated, then this synthesis mechanism is overkill.
In the sequel, we assume that the exp/3 operator actually executes all of these four tasks, rath-
er than just the first one. Note that exp(LA4(r)) is then as follows:

r(X,Y) ⇔
minimal(X) ∧ ∨j∈I X=xj ∧ Y=yj

∨ nonMinimal(X) ∧ decompose(X,HX,TX)
∧ ∨j∈K X=xj ∧ Y=yj

∧ HX=hxj ∧ TX=txj
∨ nonMinimal(X) ∧ decompose(X,HX,TX)

∧ r(TX,TY)
∧ ∨j∈L X=xj ∧ Y=yj

∧ HX=hxj ∧ TX=txj
∧ TY∈tyj

where K is the set of indices of the non-recursive examples, and L is the set of indices of the
recursive examples, such that K ∪ L is a permutation of J. The tyj are vectors of sets tyjk of
witnesses such that r(txjk,tyjki) holds for some alternative tyjki of tyjk (j∈L, 1≤k≤ t).
18. The notions of admissibility of an atom, of general example, and of admissible alternatives of a general ex-

ample are explained in Definition 10-10 to Definition 10-12, respectively.
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Note that the methods of all four tasks are fully deterministic (and thus never fail). More-
over, the logic algorithm synthesized at Step 4 is always deterministic.

12.4.3 Correctness

We can now prove the following theorem establishing that Step 4 is in line with the strategy:

Theorem 12-4: Step 4 achieves the two conditions of its objective:
(1) LA4(r) is a better complete approximation of R than LA3(r);
(2) exp(LA4(r)) is a better partially correct approximation of R than exp(LA3(r)).

Proof 12-4: Let’s prove these assertions one by one:
(1) LA4(r) is trivially equivalent to LA3(r), hence LA4(r) is a better complete approxi-

mation of R than LA3(r).
(2) By assertion (2) of Theorem 7-7 and assertion (2) of Theorem 12-3, it suffices to

show that:

nonMinimal(X) ∧ decompose(X,HX,TX) ∧
X=xj ∧ Y=yj ∧ HX=hxj ∧ TX=txj ⇒ r(TX,TY) ∧ TY∈ tyj (j∈L)

in order to prove that exp(LA4(r)) is a better partially correct approximation of R
than exp(LA3(r)). This is trivially true by the very definition of the exp/3 operator,
provided a sound oracle is invoked. ❏

12.4.4 Illustration

Let’s illustrate Step 4 on the firstPlateau/3 and compress/2 relations.

Example 12-16: For the firstPlateau/3 relation, Step 4 proceeds as follows. The case split
is performed, yielding a first version of LA4(firstPlateau). Task G computes a first version of
exp(LA4(firstPlateau)), using the deductive oracle based on EP(firstPlateau). Note that the
determinism of firstPlateau/3 in the input mode (ground,any,any) makes that the oracle finds
a singleton set of witnesses to each query. Task H eliminates from the non-recursive case the
disjuncts that are expansions wrt the examples E2 to E7, because these are also covered by
the recursive case. This leaves the expansion of the non-recursive case temporarily empty.
Task I removes from the recursive case the disjuncts that are expansions wrt the examples E3
to E5, because these do not lead to the existence of admissible alternatives. The non-recursive
case is re-expanded wrt these examples. Task J need not eliminate any case. Logic
Algorithm 12-7 shows the final version of LA4(firstPlateau), whereas Logic Algorithm 12-8
shows the final version of exp(LA4(firstPlateau)).

Example 12-17: For the compress/2 relation, Step 4 proceeds as follows. The case split is
performed, yielding a first version of LA4(compress). Task G computes a first version of
exp(LA4(compress)), using the deductive oracle based on EP(compress). Note that the
determinism of compress/2 in the input mode (ground,any) makes that the oracle finds a
singleton set of witnesses to each query. Task H eliminates from the non-recursive case the
disjuncts that are expansions wrt the examples E2 to E8, because these are also covered by
the recursive case. This leaves the expansion of the non-recursive case empty. Task I doesn’t
remove any disjuncts from the recursive case, because they all lead to the existence of
admissible alternatives. Task J eliminates the non-recursive case. The resulting logic
algorithm and its expansion are shown in Example 11-1.
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firstPlateau(L,P,S) ⇔
L=[_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ firstPlateau(TL,TP,TS)
Logic Algorithm 12-7: LA4(firstPlateau)

firstPlateau(L,P,S) ⇔
L=[_]

∧ L=[a] ∧ P=[a] ∧ S=[] {E1}
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ L=[c,d] ∧ P=[c] ∧ S=[d]
∧ HL=c ∧ TL=[d] {E3}

∨ L=[e,f,g] ∧ P=[e] ∧ S=[f,g]
∧ HL=e ∧ TL=[f,g] {E4}

∨ L=[h,i,i] ∧ P=[h] ∧ S=[i,i]
∧ HL=h ∧ TL=[i,i] {E5}

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ firstPlateau(TL,TP,TS)
∧ L=[b,b] ∧ P=[b,b] ∧ S=[]

∧ HL=b ∧ TL=[b]
∧ TP=[b] ∧ TS=[] {E2}

∨ L=[j,j,k] ∧ P=[j,j] ∧ S=[k]
∧ HL=j ∧ TL=[j,k]
∧ TP=[j] ∧ TS=[k] {E6}

∨ L=[m,m,m] ∧ P=[m,m,m] ∧ S=[]
∧ HL=m ∧ TL=[m,m]
∧ TP=[m,m] ∧ TS=[] {E7}

Logic Algorithm 12-8: exp(LA4(firstPlateau))
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13 The Reduction Phase
The reduction phase of synthesis comprises the last three steps of the synthesis mechanism.
In Section 13.1 to Section 13.3, we give complete descriptions of each of these steps: we
state their objectives, describe the used methods, analyze their correctness and progression
behaviors, and illustrate them on at least the firstPlateau/3 and compress/2 relations.

13.1 Step 5: Synthesis of Solve and the SolveNonMink

An instantiation of the Solve predicate variable computes, in the minimal case, the value of
the other parameter Y from the induction parameter X. An instantiation of the SolveNonMink
predicate variable computes, in the kth sub-case of the non-recursive case, the value of Y from
the decomposition <HX,TX> of X.

13.1.1 Objective

The objective at Step 5 is to instantiate the predicate variables Solve and SolveNonMink of
the divide-and-conquer schema. The number v of sub-cases of the non-recursive case must
also be found. This amounts to transforming LA4(r) into LA5(r) such that it is covered by the
following schema:
r(X,Y) ⇔

minimal(X) ∧ Solve(X,Y)
∨ ∨1≤k≤v nonMinimal(X) ∧ decompose(X,HX,TX)

∧ ( SolveNonMink(HX,TX,Y)
∨

r(TX,TY) )
The following objectives of the strategy:

(1) LA5(r) is a better complete approximation of R than LA4(r);
(2) exp(LA5(r)) is a better partially correct approximation of R than exp(LA4(r));

must be satisfied.

13.1.2 Method

Let’s first remember that instances of Solve/2 may be defined by fairly complex formulas,
including divisions into sub-cases and the corresponding discriminating mechanisms, just as
in non-minimal cases. But since this is relatively exceptional, we preferred to keep the sche-
ma simple. Rather than excluding such complicated instances of Solve/2, we slightly depart
from our strict mapping between steps and predicate variables: this Step 5 synthesizes the
actual “solving” part of Solve/2, while Step 7 synthesizes its “discriminating” part. For this
theoretical discussion, we assume however that this Step 5 does the whole job.

A first idea is to use the MSG Method (see Chapter 10). Note that, in both the minimal
and the non-recursive case, Y may be totally independent of X. Indeed, Y could be constructed
in terms of:

• all the constituents of X, as in LA(efface-L) (LA 5-5), LA(insert-R) (LA 5-9), and in
LA(permutation-L) (LA 5-14);

• only some of the constituents of X, as in LA(member-L) (LA 5-10);
• all or some of the constituents of X, plus some new constituents, as in LA(partition-L)

(LA 5-13);
• new constituents only, as in LA(firstN-N) (LA 5-7), LA(parity-L) (LA 5-12), and in

LA(plateau-N) (LA 5-15).
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The idea is then to invoke the MSG Method twice, so as to tune the admissibility parameters
a and b (see Definition 10-10) according to these construction categories. Remember that for
admissible examples of arity a+2b, the last b parameters are constructed from the median b
parameters, while the first a parameters may or may not be used in these constructions. So
we first apply the MSG Method on the extracted examples that fall into the first construction
category (because the word “all” allows us to fix a=0 and b=1), and we then apply it on all
the other extracted examples (where a=2 and b=0).

The synthesis of an instance solve/2 of Solve/2 may thus be performed by the following
sequence of tasks:

• Task K: extract the example set:
E(solve) = { solve(xj,yj) ⏐ j∈I and xj, yj appear in exp(LA4(r)) }

from exp(LA4(r));
• Task L: split E into two complementary (but possibly empty) sub-sets E’ and E”, such

that every example of E’ is admissible wrt a=0 and b=1, and no example of E” is ad-
missible wrt a=0 and b=1. The set E’ is relative the minimal examples of r/n where Y
is effectively constructed from all the constituents of X, while the set E” is relative the
minimal examples of r/n where Y is not constructed from all the constituents of X;

• Task M: invoke the MSG Method (namely the ground case) on the set E’ for a=0 and
b=1, yielding LA(solve’), and invoke the MSG Method (again the ground case) on the
set E” for a=n=2 and b=0, yielding LA(solve”). Admissibility of the provided exam-
ple sets is achieved in both situations, so the use of the MSG Method is justified. The
latter invocation of the MSG Method by construction always discovers a single clique,
and may thus possibly miss the appropriate answer;

• Task N: define LA(solve) as follows:
solve(X,Y) ⇔

solve’(X,Y)
∨ solve”(X,Y)

Similarly, the synthesis of the instances solveNonMink/h+t+1 of the SolveNonMink/h+t+1
may be performed by the following sequence of tasks:

• Task O: extract the example set:
E(solveNonMin) =

{ solveNonMin(<hxj,txj>,yj) ⏐ j∈K and hxj, txj, yj appear in exp(LA4(r)) }
from exp(LA4(r));

• Task P: split E into two complementary (but possibly empty) sub-sets E’ and E”, such
that every example of E’ is admissible wrt a=0 and m=1, and no example of E” is ad-
missible wrt a=0 and b=1. The set E’ is relative the non-recursive examples of r/n
where Y is effectively constructed from all the constituents of the decomposition <HX,
TX> of X, while the set E” is relative the non-recursive examples of r/n where Y is not
constructed from all the constituents of <HX,TX>;

• Task Q: invoke the MSG Method (namely the ground case) on the set E’ for a=0 and
b=1, yielding LA(solveNonMin’), and invoke the MSG Method (again the ground
case) on the set E” for a=n=2 and b=0, yielding LA(solveNonMin”). Admissibility of
the provided example sets is achieved in both situations, so the use of the MSG Method
is justified. The latter invocation of the MSG Method by construction always discovers
a single clique, and may thus possibly miss the appropriate answer;

• Task R: define LA(solveNonMin) as follows:
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solveNonMin(HX,TX,Y) ⇔
solveNonMin’(<HX,TX>,Y)

∨ solveNonMin”(<HX,TX>,Y)
which may be re-expressed as follows:

solveNonMin(HX,TX,Y) ⇔
∨1≤k≤v solveNonMink(HX,TX,Y)

hence revealing the value of v, and the instances of the SolveNonMink.
Every logic algorithm resulting from the MSG Method is here subjected to an assessment

heuristic, so as to figure out whether it may be further generalized or not. We have identified
the following valuable heuristic for LA(solve) (similarly for LA(solveNonMin)):
Heuristic 13-1: The msg of a singleton clique is not a real generalization, as it is ground.
Let r(xi,yi) be the example corresponding to that clique. Some disjunct of LA(solve) is thus
as follows: X=xi ∧ Y=yi. Now, if there is a property r(sj,tj) ⇐ Bj such that:

(1) minimal(sj) is provable (where minimal/1 is the selected instance of Minimal/1),
(2) r(xi,yi) ≤ r(sj,tj) (with substitution σ),
(3) Bjσ is provable,

then that disjunct of LA(solve) may be semantically generalized (because of (2) and (3))
to: X=sj ∧ Y=tj ∧ Bj. This heuristic is justified at the end of Section 13.3.2.

Note that exp(LA5(r)) is as follows:
 r(X,Y) ⇔

minimal(X) ∧ solve(X,Y)
∧ ∨j∈I X=xj ∧ Y=yj

∨ ∨1≤k≤v nonMinimal(X) ∧ decompose(X,HX,TX)
∧ solveNonMink(HX,TX,Y)
∧ ∨j∈K k

X=xj ∧ Y=yj
∧ HX=hxj ∧ TX=txj

∨ nonMinimal(X) ∧ decompose(X,HX,TX)
∧ r(TX,TY)
∧ ∨j∈L X=xj ∧ Y=yj

∧ HX=hxj ∧ TX=txj
∧ TY∈tyj

where the K k form a partition of K.
The methods of Tasks M and Q are non-deterministic, finite, and never fail, because of the

usage of the ground case of the MSG Method. Moreover, the synthesized instances are non-
deterministic and finite, for the same reason. The logic algorithm synthesized at Step 5 may
thus be non-deterministic, but is certainly finite. All other tasks are fully deterministic. Hence
Step 5 never fails.

However, it may happen that the instance of Solve or SolveNonMin is defined as a full-
fledged, possibly recursive, logic algorithm. Different methods need to be applied then. We
discuss one such method in Section 14.2.4.

13.1.3 Correctness

We can now prove the following theorem establishing that Step 5 is in line with the strategy:
Theorem 13-1: Step 5 achieves the two conditions of its objective:

(1) LA5(r) is a better complete approximation of R than LA4(r);
(2) exp(LA5(r)) is a better partially correct approximation of R than exp(LA4(r)).

Proof 13-1: Let’s prove these assertions one by one:
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(1) By assertion (1) of Theorem 7-7 and assertion (1) of Theorem 12-4, it suffices to
show that:

R(X,Y) ∧ minimal(X) ⇒ solve(X,Y)
R(X,Y) ∧ nonMinimal(X) ∧ decompose(X,HX,TX) ⇒

solveNonMin(HX,TX,Y)
in order to prove that LA5(r) is a better complete approximation of R than LA4(r).
However, the second statement is wrong, so assertion (1) of Theorem 7-7 is not ap-
plicable to this disjunct. Instead, we may prove the following statement, obtained by
applying assertion (1) of Theorem 7-7 to LA3(r), which is known by assertion (1) of
Theorem 12-3 to be complete wrt R:

R(X,Y) ∧ nonMinimal(X) ∧ decompose(X,HX,TX) ⇒
solveNonMin(HX,TX,Y) ∨ r(TX,TY)

The obtained statements are of course unprovable in general, because there is no
formal definition of R. But their instances should be proven for each particular syn-
thesis, and they provide thus criteria to be fulfilled by interaction with the specifier.

(2) By assertion (2) of Theorem 7-7 and assertion (2) of Theorem 12-4, it suffices to
show that:

minimal(X) ∧ X=xj ∧ Y=yj ⇒ solve(X,Y) (j∈I)
nonMinimal(X) ∧ decompose(X,HX,TX) ∧ X=xj ∧ Y=yj ∧ HX=hxj ∧ TX=txj ⇒

solveNonMink(HX,TX,Y) (1 ≤k≤v) (j∈K k)
in order to prove that exp(LA5(r)) is a better partially correct approximation of R
than exp(LA4(r)). This follows from the correctness of the ground case of the MSG
Method (see Theorem 10-3). ❏

This correctness theorem is only applicable to the results obtained before application of
the generalization heuristic.

13.1.4 Illustration

Let’s illustrate Step 5 on a few relations.
Example 13-1: For the firstPlateau/3 relation, Step 5 proceeds as follows. Task K extracts
the singleton example set:

E = { solveFirstPlateau([a],<[a],[]>) }
from the minimal disjunct of exp(LA4(firstPlateau)). At Task L, this example is found to be
admissible wrt a=0 and b=1. So E’ = E and E” = ∅. At Task M, the MSG Method yields:

solveFirstPlateau’(L,<P,S>) ⇔
L=[a] ∧ P=[a] ∧ S=[]

solveFirstPlateau”(L,<P,S>) ⇔
false

The first logic algorithm is based on a singleton clique (originating from firstPla-
teau([a],[a],[]), that is example E1 of E(firstPlateau)), and is thus subject to generalization
by Heuristic 13-1. Indeed, E1 is generalized by property P1 of P(firstPlateau), so the gener-
alized logic algorithm is:

solveFirstPlateau’(L,<P,S>) ⇔
L=[X] ∧ P=[X] ∧ S=[]

At Task N, the instance solveFirstPlateau/3 is defined as follows:
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solveFirstPlateau(L,P,S) ⇔
P=L ∧ S=[] ∧ L=[_]

after performing some obvious simplifications.
Similarly, Task O extracts the example set:

E = { solveNMinFirstPlateau(<c,[d]>,<[c],[d]>)
solveNMinFirstPlateau(<e,[f,g]>,<[e],[f,g]>)
solveNMinFirstPlateau(<h,[i,i]>,<[h],[i,i]>)}

from the non-recursive disjuncts of exp(LA4(firstPlateau)). At Task P, these examples are
found to be admissible wrt a=0 and b=1. So E’ = E and E” = ∅. At Task Q, the MSG Meth-
od yields:

solveNMinFirstPlateau’(<HL,TL>,<P,S>) ⇔
HL=A ∧ TL=[B|T] ∧ P=[A] ∧ S=[B|T]

solveNMinFirstPlateau”(<HL,TL>,<P,S>) ⇔
false

The generalization heuristic doesn’t apply here. So, at Task R, the instance solveNMinFirst-
Plateau/4 is defined as follows:

solveNMinFirstPlateau(HL,TL,P,S) ⇔
P=[HL] ∧ S=TL ∧ TL=[_|_]

after performing some obvious simplifications.
Hence, Logic Algorithm 13-1 shows LA5(firstPlateau), whereas Logic Algorithm 13-2

shows exp(LA5(firstPlateau)). ♦

Example 13-2: For the compress/2 relation, Step 5 proceeds as follows. Task K extracts
the singleton example set:

E = { solveCompress([],[]) }
from the minimal disjunct of exp(LA4(compress)). At Task L, this example is found to be ad-
missible wrt a=0 and b=1. So E’ = E and E” = ∅. At Task M, the MSG Method yields:

solveCompress’(L,C) ⇔
L=[] ∧ C=[]

solveCompress”(L,C) ⇔
false

The first logic algorithm is based on a singleton clique (originating from compress([],[]), that
is example E1 of E(compress)), and is thus subject to generalization by Heuristic 13-1. But
there is no property in P(compress) that generalizes E1, so no generalization can be per-
formed here. At Task N, the instance solveCompress/2 is thus defined as follows:

solveCompress(L,C) ⇔
C=L ∧ L=[]

after performing some obvious simplifications. The resulting logic algorithm and its expan-
sion are shown in Example 11-1. ♦

Example 13-3: During the synthesis of LA(firstN-int-N), Step 5 proceeds as follows. Task
K extracts the example set:

E = { solveFirstN(0,<[], []>)
solveFirstN(0,<[a],[]>) }

from the minimal disjuncts of exp(LA4(firstN)). At Task L, none of these examples is found
to be admissible wrt a=0 and b=1. So E” = E and E’ = ∅. At Task M, the MSG Method
yields:
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solveFirstN’(N,<L,R>) ⇔
false

solveFirstN”(N,<L,R>) ⇔
N=0 ∧ L=T ∧ R=[]

At Task N, the instance solveFirstN/3 is thus defined as follows:
solveFirstN(N,L,R) ⇔

N=0 ∧ L=_ ∧ R=[]
after performing some obvious simplifications. ♦

13.2 Step 6: Synthesis of the Processk and Composek

An instantiation of the Processk predicate variable transforms, in the kth sub-case of the re-
cursive case, the heads HX of the induction parameter X into a vector HY of heads of the oth-
er parameter Y. An instantiation of the Composek predicate variable computes, in the kth sub-
case of the recursive case, the parameter Y from its heads HY (obtained by processing the
HX) and tails TY (obtained by recursion on the TX).

firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ P=[HL] ∧ S=TL ∧ TL=[_|_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ firstPlateau(TL,TP,TS)

Logic Algorithm 13-1: LA5(firstPlateau)

firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_]

∧ L=[a] ∧ P=[a] ∧ S=[] {E1}
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ P=[HL] ∧ S=TL ∧ TL=[_|_]
∧ L=[c,d] ∧ P=[c] ∧ S=[d]

∧ HL=c ∧ TL=[d] {E3}
∨ L=[e,f,g] ∧ P=[e] ∧ S=[f,g]
∧ HL=e ∧ TL=[f,g] {E4}

∨ L=[h,i,i] ∧ P=[h] ∧ S=[i,i]
∧ HL=h ∧ TL=[i,i] {E5}

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ firstPlateau(TL,TP,TS)
∧ L=[b,b] ∧ P=[b,b] ∧ S=[]

∧ HL=b ∧ TL=[b]
∧ TP=[b] ∧ TS=[] {E2}

∨ L=[j,j,k] ∧ P=[j,j] ∧ S=[k]
∧ HL=j ∧ TL=[j,k]
∧ TP=[j] ∧ TS=[k] {E6}

∨ L=[m,m,m] ∧ P=[m,m,m] ∧ S=[]
∧ HL=m ∧ TL=[m,m]
∧ TP=[m,m] ∧ TS=[] {E7}

Logic Algorithm 13-2:  exp(LA5(firstPlateau))



13.2 Step 6: Synthesis of the Processk and Composek 187

13.2.1 Objective

The objective at Step 6 is to instantiate the predicate variables Processk and Composek of the
divide-and-conquer schema. The number w of sub-cases of the recursive case must also be
found. This amounts to transforming LA5(r) into LA6(r) such that it is covered by the follow-
ing schema:
r(X,Y) ⇔

minimal(X) ∧ solve(X,Y)
∨ ∨1≤k≤c nonMinimal(X) ∧ decompose(X,HX,TX))

∧ ( solveNonMink(HX,TX,Y)
⏐

r(TX,TY)
∧ Processk(HX,HY)
∧ Composek(HY,TY,Y) )

where c = v + w. The following objectives of the strategy:
(1) LA6(r) is a better complete approximation of R than LA5(r);
(2) exp(LA6(r)) is a better partially correct approximation of R than exp(LA5(r));

must be satisfied.

13.2.2 Method

We merge the Processk(HX,HY) with the Composek(HY,TY,Y) into ProcCompk(HX,TY,Y),
so that their instances are synthesized simultaneously. If we isolated the Processk(HX,HY),
then their only universally correct instantiations would be defined as follows:

processk(HX,HY) ⇔ HY=_
This means that HY would have to be initialized to a vector of different variables, and without
knowing their number h’. Moreover, w is yet unknown, so we wouldn’t know how many of
these instances to create. All this would of course complicate the subsequent synthesis of the
Composek. The schema’s separation of these predicate variables is thus rather “academic”,
but not applicable in practice.

We first hypothesize that all instances of the ProcCompk are defined in terms of the =/2
primitive only. So we may apply the MSG Method (see Chapter 10). The idea is to initialize
the admissibility parameters a and b (see Definition 10-10) to h and 1, respectively, as Y
(which is of length 1) is necessarily constructed from <TY> (which is also of length 1), and
optionally from HX (which is of length h). The synthesis of the instances procCompk/h+t+1
of the ProcCompk/h+t+1 may thus be performed by the following sequence of tasks:

• Task S: extract the general example set:
G(procComp) =

{ procComp(hxj,<tyj>,yj) ⏐ j∈L and hxj, tyj, yj appear in exp(LA5(r)) }
from exp(LA5(r)); 19

• Task T: invoke the MSG Method (the non-ground case) on the set G for a=h and b=1,
yielding LA(procComp). Admissibility of the provided general example set is guaran-
teed by Step 4 (Syntactic introduction of the recursive atoms), so the use of the MSG
Method is justified. The search for admissible alternatives of the general examples may
be restricted because, by construction, yj is ground for every general example in
G(procComp), so the minimal hypothesis (see Section 10.4.2) may be emitted;

• Task U: view the synthesized logic algorithm LA(procComp) as follows:
19. Note that the extracted general examples are immediately in shorthand form. Also remember (from Step 4)

that we do not consider constrained general examples here.
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procComp(HX,<TY>,Y) ⇔
∨c–w<k≤v+w procCompk(HX,TY,Y)

which reveals the values of w and c, and the instances of the ProcCompk.
Every logic algorithm resulting from the MSG Method is here subjected to some assess-

ment heuristic, so as to figure out whether this method was advisable or not. This assessment
is actually performed on the msgs of the discovered cliques, rather than directly on the pro-
duced logic algorithm. We have identified the following valuable heuristic:
Heuristic 13-2: If there are at least as many cliques as properties, then the inferred instanc-
es probably only cover the given examples, but not examples with “larger” parameters. The
assumption of using =/2 only is thus probably too strong.

This heuristic has an obvious influence upon the formulation of a methodology for choos-
ing “good” examples and properties. In the absence of such “good” specifications, a stronger
version of this heuristic would be needed. A heuristic similar to Heuristic 13-1 could be eas-
ily defined for LA(procComp).
Example 13-4: During the synthesis of LA(permutation-int-L), the MSG Method is
invoked as in Example 10-12. The first result is subject to Heuristic 13-2, because there are
“too many” cliques, which lets expect that LA(pcPermutation) wouldn’t behave as intended
on a goal such as pcPermutation(a,[b,c,d,e,f],R). The same holds for the second result. The
intended relation for LA(pcPermutation) is indeed the one underlying the stuff/3 predicate,
and thus requires a recursive logic algorithm. We show in Section 14.2.4 how this can be
obtained.

Note that exp(LA6(r)) is as follows:
r(X,Y) ⇔

minimal(X) ∧ solve(X,Y)
∧ ∨j∈I X=xj ∧ Y=yj

∨ ∨1≤k≤v nonMinimal(X) ∧ decompose(X,HX,TX)
∧ solveNonMink(HX,TX,Y)
∧ ∨j∈K k

X=xj ∧ Y=yj
∧ HX=hxj ∧ TX=txj

∨ ∨c-w<k≤cnonMinimal(X) ∧ decompose(X,HX,TX)
∧ r(TX,TY)
∧ procCompk(HX,<TY>,Y)
∧ ∨j∈L k

X=xj ∧ Y=yj
∧ HX=hxj ∧ TX=txj
∧ TY∈ty’j

where the Lk form a partition of L, and where the elements ty’jk of the ty’j are subsets of the
sets of witnesses tyjk generated at Step 4 (Syntactic introduction of the recursive atoms).
Example 13-5: Let’s reconsider Example 7-13, but with LA(permutation) now as follows:

permutation(L,P) ⇔
L=[]

∨ L=[HL|TL] ∧ permutation(TL,TP)
∧ efface(HL,P,TP)

The expansion of the second disjunct of LA(permutation) wrt permutation([a,b,c],[c,a,b])
and the deductive oracle based on EP(permutation) is:

L=[HL|TL] ∧ permutation(TL,TP) ∧ efface(HL,P,TP) ∧
(L=[a,b,c] ∧ P=[c,a,b]) ∧ (HL=a ∧ TL=[b,c] ∧ TP=[c,b])
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Indeed, if TL=[b,c], then the deductive oracle infers that either TP=[b,c] or TP=[c,b], accord-
ing to properties P2 and P3, respectively. But the efface/3 atom only holds for the first
answer. ♦

If the result of the MSG Method is rejected (due to Heuristic 13-2), then it is likely that
the instance of ProcComp is defined as a full-fledged, possibly recursive, logic algorithm.
Different methods need to be applied then. We discuss one such method in Section 14.2.4.

Note that the method of Task T is non-deterministic, always succeeds, but may be infinite,
because of the non-ground case of the MSG Method. Moreover, the synthesized instances are
non-deterministic and finite, for the same reason. The logic algorithm synthesized at Step 6
may thus be non-deterministic, but is certainly finite. All other tasks are fully deterministic.
Hence Step 6 never fails.

As the ground case of the MSG Method is much easier, this speaks in retrospect in favor
of using the Functionality Heuristic when selecting an induction parameter at Step 2. Indeed,
this forces all the tyj to be ground and unique, so that all the extracted general examples are
mere (ground) examples, because all the hxj and yj are necessarily ground and unique. This
is the best possible situation. The worst possible situation for using the MSG Method is the
non-ground case where the parameters of each general example are existential variables. This
cannot happen here, because all the hxj and yj are necessarily ground and unique. So the
worst situation at Step 6 would be the one where the exp/3 operator generates a variable for
each element of each tyj, because of some “dumb” oracle for r/n. The MSG Method can still
handle such a worst-case situation, as it then enumerates all possible grounding substitutions
in its search for admissible alternatives of each general example. This may be very time-con-
suming of course. The point however is that the oracle used by the exp/3 operator is irrele-
vant, provided it is sound.

13.2.3 Correctness

We can now prove the following theorem establishing that Step 6 is in line with the strategy:
Theorem 13-2: Step 6 achieves the two conditions of its objective:

(1) LA6(r) is a better complete approximation of R than LA5(r);
(2) exp(LA6(r)) is a better partially correct approximation of R than exp(LA5(r)).

Proof 13-2: Let’s prove these assertions one by one:
(1) By assertion (1) of Theorem 7-7 and assertion (1) of Theorem 13-1, it suffices to

show that:
R(X,Y) ∧ nonMinimal(X) ∧ decompose(X,HX,TX) ∧ r(TX,TY) ⇒

procComp(HX,TY,Y)
in order to prove that LA6(r) is a better complete approximation of R than LA5(r).
However, this statement is wrong, so assertion (1) of Theorem 7-7 is not applicable
to this disjunct of LA5(r). Instead, we may prove the following statement, obtained
by applying assertion (1) of Theorem 7-7 to LA3(r), which is known by assertion (1)
of Theorem 12-3 to be complete wrt R:

R(X,Y) ∧ nonMinimal(X) ∧ decompose(X,HX,TX) ⇒
solveNonMin(HX,TX,Y) ∨ ( r(TX,TY) ∧ procComp(HX,TY,Y) )

This is of course unprovable in general, because there is no formal definition of R.
But the corresponding instance should be proven for each particular synthesis, and
this provides thus a criterion to be fulfilled by interaction with the specifier.

(2) By assertion (2) of Theorem 7-7 and assertion (2) of Theorem 13-1, it suffices to
show that:
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nonMinimal(X) ∧ decompose(X,HX,TX) ∧ r(TX,TY) ∧
X=xj ∧ Y=yj ∧ HX=hxj ∧ TX=txj ∧ TY∈ty’j ⇒

procCompk(HX,TY,Y) (c–w <k≤c) (j∈Lk)

in order to prove that exp(LA6(r)) is a better partially correct approximation of R
than exp(LA5(r)). This follows from the correctness of the non-ground case of the
MSG Method (see Theorem 10-4). ❏

This correctness theorem is only applicable to the results obtained before application of
the generalization heuristic.

13.2.4 Illustration

Let’s illustrate Step 6 on a few relations.
Example 13-6: For the firstPlateau/3 relation, Step 6 proceeds as in Example 10-7. The
resulting logic algorithm is subject to no heuristic. Logic Algorithm 13-3 shows
LA6(firstPlateau), whereas Logic Algorithm 13-4 shows exp(LA6(firstPlateau)).
Example 13-7: For the compress/2 relation, Step 6 proceeds as in Example 10-6. The
obtained result is subject to no heuristic. The resulting logic algorithm and its expansion are
shown in Example 11-1.
Example 13-8: During the synthesis of LA(plateau-int-N), the MSG Method is invoked as
in Example 10-11. The resulting logic algorithm is subject to no heuristic.

13.3 Step 7: Synthesis of the Discriminatek

An instantiation of the Discriminatek predicate variable tests the values of HX, TX, and Y in
order to see whether SolveNonMink, respectively Processk ∧ Composek, is applicable.

13.3.1 Objective

The objective at Step 7 is to instantiate the predicate variables Discriminatek of the divide-
and-conquer schema. This amounts to transforming LA6(r) into LA7(r) such that it is covered
by the following schema:
r(X,Y) ⇔

minimal(X) ∧ solve(X,Y)
∨ ∨1≤k≤c nonMinimal(X) ∧ decompose(X,HX,TX)

∧ Discriminatek(HX,TX,Y)
∧ ( solveNonMink(HX,TX,Y)

⏐
r(TX,TY)

∧ processk(HX,HY)
∧ composek(HY,TY,Y) )

The following objectives of the strategy:
(1) LA7(r) is a better complete approximation of R than LA6(r);
(2) exp(LA7(r)) is a better partially correct approximation of R than exp(LA6(r));

must be satisfied.
Also, Step 7 should be totally independent of the choice of Step 6 to merge the processk

and composek predicates.
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13.3.2 Method

The bodies of the properties contain explicit information that has not yet been synthesized
into the logic algorithms. But this explicit knowledge constitutes the very reason why we
augmented example-based specifications with properties. The idea is then to use the Proofs-
as-Programs Method (see Chapter 9), as this amounts to “transferring” appropriate variants
of atoms from the bodies of properties to the body of a logic algorithm. We thus invoke the
Proofs-as-Programs Method with the following input:

• use LA6(r) as the input logic algorithm;
• use EP(r) as the input property set (remember that examples are properties, too);

Indeed, the pre-condition is achieved because LA6(r) only uses, by Steps 1 to 6, primitive
predicates and the r/n predicate, and is, by Theorem 13-2, complete wrt EP(r).

• use the following set H of generalization heuristics:

firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ P=[HL] ∧ S=TL ∧ TL=[_|_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ firstPlateau(TL,TP,TS)
∧ P=[HL|TP] ∧ S=TS ∧ TP=[HL|_]

Logic Algorithm 13-3: LA6(firstPlateau)

firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_]

∧ L=[a] ∧ P=[a] ∧ S=[] {E1}
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ P=[HL] ∧ S=TL ∧ TL=[_|_]
∧ L=[c,d] ∧ P=[c] ∧ S=[d]

∧ HL=c ∧ TL=[d] {E3}
∨ L=[e,f,g] ∧ P=[e] ∧ S=[f,g]
∧ HL=e ∧ TL=[f,g] {E4}

∨ L=[h,i,i] ∧ P=[h] ∧ S=[i,i]
∧ HL=h ∧ TL=[i,i] {E5}

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ firstPlateau(TL,TP,TS)
∧ P=[HL|TP] ∧ S=TS ∧ TP=[HL|_]
∧ L=[b,b] ∧ P=[b,b] ∧ S=[]

∧ HL=b ∧ TL=[b]
∧ TP=[b] ∧ TS=[] {E2}

∨ L=[j,j,k] ∧ P=[j,j] ∧ S=[k]
∧ HL=j ∧ TL=[j,k]
∧ TP=[j] ∧ TS=[k] {E6}

∨ L=[m,m,m] ∧ P=[m,m,m] ∧ S=[]
∧ HL=m ∧ TL=[m,m]
∧ TP=[m,m] ∧ TS=[] {E7}

Logic Algorithm 13-4: exp(LA6(firstPlateau))
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Heuristic 13-3: From the used divide-and-conquer schema, we know that the parameters
of the discriminatek are HX, TX, and Y, so we should project [Pettorossi and Proietti 89] the
discriminants upon these parameters.
Heuristic 13-4: If parameter Y is not an auxiliary parameter (see Section 14.2.2 on how to
detect auxiliary parameters), then it is irrelevant for discrimination, and its equality atom may
be deleted from the body of every discriminant.
Heuristic 13-5: The parameters TX and Y (the latter only if it is an auxiliary parameter)
should range across their entire domains: if necessary, some of their values should be gener-
alized. In our case, this goes as follows:

• if TXi is an integer and the atom TXi = s(s(…s(0)…)) appears in the last disjunct of a
discriminant, then generalize that atom to TXi = s(s(…s(N)…)), where N is a new vari-
able; also delete the equality atom involving HXi;

• if TXi is a list and the atom TXi = [s] appears in the last disjunct of a discriminant, then
generalize that atom to TXi = [s |T], where s are terms, and T is a new variable.

The generalization of Y is similar, provided, of course, it is of an inductive type.
The application of the last two heuristics should be interactive and in accordance with the

given examples.
The output is LA7(r), and the newly added atoms (compared to LA6(r)) constitute the in-

stances of the Discriminatek predicates. Note that exp(LA7(r)) is as follows:
r(X,Y) ⇔

minimal(X) ∧ solve(X,Y)
∧ ∨j∈I X=xj ∧ Y=yj

∨ ∨1≤k≤v nonMinimal(X) ∧ decompose(X,HX,TX)
∧ discriminatek(HX,TX,Y)
∧ solveNonMink(HX,TX,Y)
∧ ∨j∈K k

X=xj ∧ Y=yj
∧ HX=hxj ∧ TX=txj

∨ ∨c-w<k≤cnonMinimal(X) ∧ decompose(X,HX,TX)
∧ discriminatek(HX,TX,Y)
∧ r(TX,TY)
∧ procCompk(HX,TY,Y)
∧ ∨j∈L k

X=xj ∧ Y=yj
∧ HX=hxj ∧ TX=txj
∧ TY∈ty’j

As a reminder, Step 7 is also supposed to synthesize the “discriminating” part of Solve/2. But
we again assume that the instance solve/2 found by Step 5 is left unchanged by this Step 7.

Note that the Proofs-as-Programs Method wouldn’t need to prove that the examples are
logical consequences of the input logic algorithm, as we know that LA6(r) is already com-
plete wrt E(r). Moreover, such proofs would result in very specialized discriminants, and
hence in the need for considerable generalization afterwards. But the presence of some ex-
amples is often necessary within the theories, so that DCI may reduce atoms of predicate r/n
in case no property is applicable. The following definition and heuristic capture this:
Definition 13-1: Given a specification and a minimal form, a property-example is a
minimal example that is a logical consequence of no property.
Example 13-9: The following are property-examples: compress([],[]) and length([],0). But
plateau(1,b,[b]) and firstN(0,[],[]) are not property-examples, because they are logical
consequences of the first properties of their respective specifications.
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Heuristic 13-6: At Step 7, only provide the properties and property-examples of EP(r) as
input property set to the Proofs-as-Programs Method.

Step 7 is deterministic, because of the Proofs-as-Programs Method. It fails iff LA6(r) is
not complete wrt P(r). This should normally be excluded by the conjunction of assertion (1)
of Theorem 13-2 and the consistency assumption. Moreover, nothing can be said about the
synthesized discriminants in terms of determinism or finiteness, because nothing is known
about the properties.

We may now justify Heuristic 13-1. When proving the involved property, say Pj, the der-
ivation starting from the clause, say Ci, that is obtained from the generalized minimal dis-
junct necessarily succeeds, as shown in the following derivation schema:

r(sj,tj) ← Bj
DCI: Ci ↓ {}

minimal(sj) & sj=sj & tj=tj & Bj ← Bj
DCI: LA(minimal) and constraint (1) ↓ {}

sj=sj & tj=tj & Bj ← Bj
2 × DCI, Sim: LA(=) ↓ {}

❏

Property Pj is thus a logical consequence of the synthesized logic algorithm: the performed
generalization is thus legal. Note that the extracted discriminant is redundant with the exist-
ing literals of the involved disjunct. If the heuristic hadn’t already added the conjunction Bj
to that disjunct, then the extracted discriminant would have been Bj.

13.3.3 Correctness

We can now prove the following theorem establishing that Step 7 is in line with the strategy:
Theorem 13-3: Step 7 achieves the two conditions of its objective:

(1) LA7(r) is a better complete approximation of R than LA6(r);
(2) exp(LA7(r)) is a better partially correct approximation of R than exp(LA6(r)).

Proof 13-3: Let’s prove these assertions one by one:
(1) By assertion (1) of Theorem 7-7 and assertion (1) of Theorem 13-2, it suffices to

show that:
R(X,Y) ∧ nonMinimal(X) ∧ decompose(X,HX,TX) ∧ solveNonMink(HX,TX,Y) ⇒

discriminatek(HX,TX,Y) (1 ≤k≤v)
R(X,Y) ∧ nonMinimal(X) ∧ decompose(X,HX,TX) ∧ r(TX,TY) ∧ procCompk(HX,TY,Y) ⇒

discriminatek(HX,TX,Y) (c–w <k≤c)
in order to prove that LA7(r) is a better complete approximation of R than LA6(r).
This is of course unprovable in general, because there is no formal definition of R.
But the corresponding instance should be proven for each particular synthesis, and
this provides thus a criterion to be fulfilled by interaction with the specifier.

(2) By assertion (2) of Theorem 7-7 and assertion (2) of Theorem 13-2, it suffices to
show that:

nonMinimal(X) ∧ decompose(X,HX,TX) ∧ solveNonMink(HX,TX,Y) ∧
X=xj ∧ Y=yj ∧ HX=hxj ∧ TX=txj ⇒

discriminatek(HX,TX,Y) (1 ≤k≤v) (j∈K k)
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nonMinimal(X) ∧ decompose(X,HX,TX) ∧ r(TX,TY) ∧ procCompk(HX,TY,Y) ∧
X=xj ∧ Y=yj ∧ HX=hxj ∧ TX=txj ∧ TY∈ty’j ⇒
discriminatek(HX,TX,Y) (c–w <k≤c) (j∈Lk)

in order to prove that exp(LA7(r)) is a better partially correct approximation of R
than exp(LA6(r)). This follows from the correctness of the Proofs-as-Programs
Method (see Theorem 9-2). ❏

This correctness theorem is only applicable to the results obtained before application of
the generalization heuristics.

13.3.4 Illustration

Let’s illustrate Step 7 on the firstPlateau/3 and compress/2 relations.
Example 13-10: For the firstPlateau/3 relation, Step 7 proceeds as in Example 9-5. There
are no property-examples, so Heuristic 13-6 only provides the properties of EP(firstPlateau)
as a specification to the Proofs-as-Programs Method. The applied generalization heuristics
are Heuristic 13-3, Heuristic 13-4, and Heuristic 13-5, respectively. Logic Algorithm 13-5
shows LA7(firstPlateau), whereas Logic Algorithm 13-6 shows exp(LA7(firstPlateau)).
Example 13-11: For the compress/2 relation, Step 7 proceeds as in Example 9-4. There is
one property-example, namely E1, so Heuristic 13-6 provides E1 and the properties of
EP(compress) as a specification to the Proofs-as-Programs Method. The applied
generalization heuristics are Heuristic 13-3, Heuristic 13-4, and Heuristic 13-5, respectively.
The resulting logic algorithm and its expansion are shown in Example 11-1.
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firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_] ∧ L=[_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ TL=[HTL|_] ∧ HL≠HTL
∧ P=[HL] ∧ S=TL ∧ TL=[_|_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ TL=[HTL|_] ∧ HL=HTL
∧ firstPlateau(TL,TP,TS)
∧ P=[HL|TP] ∧ S=TS ∧ TP=[HL|_]

Logic Algorithm 13-5: LA7(firstPlateau)

firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_] ∧ L=[_]

∧ L=[a] ∧ P=[a] ∧ S=[] {E1}
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ TL=[HTL|_] ∧ HL≠HTL
∧ P=[HL] ∧ S=TL ∧ TL=[_|_]
∧ L=[c,d] ∧ P=[c] ∧ S=[d]

∧ HL=c ∧ TL=[d] {E3}
∨ L=[e,f,g] ∧ P=[e] ∧ S=[f,g]
∧ HL=e ∧ TL=[f,g] {E4}

∨ L=[h,i,i] ∧ P=[h] ∧ S=[i,i]
∧ HL=h ∧ TL=[i,i] {E5}

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ TL=[HTL|_] ∧ HL=HTL
∧ firstPlateau(TL,TP,TS)
∧ P=[HL|TP] ∧ S=TS ∧ TP=[HL|_]
∧ L=[b,b] ∧ P=[b,b] ∧ S=[]

∧ HL=b ∧ TL=[b]
∧ TP=[b] ∧ TS=[] {E2}

∨ L=[j,j,k] ∧ P=[j,j] ∧ S=[k]
∧ HL=j ∧ TL=[j,k]
∧ TP=[j] ∧ TS=[k] {E6}

∨ L=[m,m,m] ∧ P=[m,m,m] ∧ S=[]
∧ HL=m ∧ TL=[m,m]
∧ TP=[m,m] ∧ TS=[] {E7}

Logic Algorithm 13-6: exp(LA7(firstPlateau))
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14 Discussion
In this chapter, we draw some conclusions about the synthesis mechanism presented in the
previous two chapters. First, in Section 14.1, we evaluate its current form wrt the objectives.
Then, in Section 14.2, we imagine some extensions and outline some future work. In
Section 14.3, we outline a methodology for choosing “good” examples and properties. A
prototype implementation of the synthesis mechanism is being developed: it is called SYN-
APSE (SYNthesis of logic Algorithms from PropertieS and Examples), and is written in por-
table Prolog. We discuss its architecture and illustrate its working on some target synthesis
scenarios in Section 14.4. Finally, in Section 14.5, we evaluate our synthesis mechanism wrt
to some related mechanisms.

14.1 Summary
We have described a logic algorithm synthesis mechanism that is stepwise, guided by a di-
vide-and-conquer schema, non-incremental, monotonically decreasing and increasing, as
well as consistent. We conjecture that the logic algorithm synthesized at Step 7, that is
LA7(r), is totally correct wrt the intended relation R. Reliability can however not be guaran-
teed. Moreover, the synthesis mechanism is highly algorithmic and potentially interactive.
We have no theoretical results about its power or data-efficiency.

Domain generality and full automation have been sacrificed for the sake of better end-user
orientation, and because this is a most reasonable approach with incomplete specifications
(where one deliberately admits a gap between the specified relation and the intended rela-
tion). Incorporated knowledge sources are the algorithms knowledge of the divide-and-con-
quer schema, and the domain knowledge of the typed databases. There is no meta-
knowledge, and no efficiency knowledge. Whole algorithm families can be synthesized from
a single specification, because some synthesis steps are non-deterministic.

Table 14-1 charts a summary of the seven synthesis steps and of their sub-tasks. The col-
umns list (from left to right):

• the name(s) of the instantiated (predicate) variable(s) of version 3 of the divide-and-
conquer schema;

• the used method(s) of the tool-box (where MSG1 stands for the ground case of the
MSG Method, MSG2 stands for the non-ground case of the MSG Method, and P-as-P
stands for the Proofs-as-Programs Method);

• the determinism (minimal and maximal number of possible different answers) of the
method underlying each step or task, without the usage of any heuristics; where appli-
cable, a footnote explains under which condition there are no answers, or in what way
the heuristics may alter this determinism;

• the time-complexity of the method underlying each step or task, again without the us-
age of any heuristics;

• the page where the method underlying each step or task is explained.
Empty cells denote non-applicability of a criterion wrt a step or task.

This table shows that all the (predicate) variables of version 3 of the divide-and-conquer
schema are instantiated by the synthesis mechanism, using all the methods of the tool-box
developed in Part II to do so. Overall, synthesis may fail (for a variety of individual reasons),
but it may on the other hand succeed an infinite number of times, yielding as many logic al-
gorithms. The overall mechanism is NP-complete. This is however not dramatic as the num-
ber m of examples usually is quite small.
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a. Where m is the number of examples, p is the number of properties, n is the arity of predicate r, t is
the number of recursive atoms, and c is the number of non-minimal cases. NP denotes an NP-com-
plete problem.

b. No answers if there is no parameter of an inductive type.
c. No answers if some heuristic rejects all the results of the MSG Method.
d. No answers if some heuristic rejects all the results of the MSG Method.
e. No answers if Heuristic 13-2 rejects all the results of the MSG Method.
f. No answers if LA6(r) is not complete wrt P(r).

Table 14-1: Summary of the synthesis steps and tasks

Variable(s) Method Answers Complexity a Page

Step 1 1 – 1 O(m) 166

Step 2

Task A 0 – n b O(n) 168

Task B 1 – 1 O(m log2m) 168

Task C 1 – m O(m) 169

Task D Minimal,
NonMinimal Database 1 – ∗ O(1) 169

Step 3
Task E 1 – ∗ O(1) 172

Task F Decompose Database 1 – ∗ O(1) 173

Step 4

Task G 1 – 1 O(t (m+p)) 177

Task H 1 – 1 O(m) 177

Task I 1 – 1 O(m) 177

Task J 1 – 1 O(1) 177

Step 5

Task K
Task O

1 – 1
1 – 1

O(m)
O(m)

182
182

Task L
Task P

1 – 1
1 – 1

O(m)
O(m)

182
182

Task M
Task Q

MSG1
MSG1

1 – ∗ c

1 – ∗ d
NP
NP

182
182

Task N
Task R

Solve, v,
SolveNonMink

1 – 1
1 – 1

O(1)
O(1)

182
182

Step 6

Task S 1 – 1 O(m) 187

Task T MSG2 1 – ∞ e NP 187

Task U w, c, Processk,
Composek

1 – 1 O(1) 187

Step 7 Discriminatek P-as-P 0 – 1 f O(cpt+1) 191

Steps 1 to 7 All variables Tool-box 0 – ∞ NP
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Table 14-2 charts a summary of the features of the logic algorithms synthesized at step i.
The columns list (from left to right):

• the determinism of the added atoms, given a ground value of the induction parameter,
the other parameters being variables;

• the determinism of the synthesized logic algorithm LAi(r), given a ground value of the
induction parameter;

• the characterization of LAi(r) in terms of correctness and progression; where applica-
ble, a footnote explains under which condition this behavior is achieved;

• the usage (denoted yes) or non-usage (denoted no) of the property set P(r);
• the number of cases of LAi(r), represented as a sum u+v+w, where u is the number of

minimal cases, v is the number of non-recursive cases, and w is the number of recursive
cases.

This table shows that the instances of the predicate variables may be defined by algorithms
of any kind of determinism. The synthesized logic algorithms LAi(r) evolve from full deter-
minism (i = 1) to determinism (i = 2…4) to potential non-determinism (i = 5…7), but are
always terminating. The logic algorithms exp(LAi(r)) exhibit a non-strict upward progres-
sion, starting from a logic algorithm that is totally correct wrt the example set. On the other
hand, the logic algorithms LAi(r) exhibit a possibly strict downward progression, starting
from the top logic algorithm. The property set is used by Step 4 (Syntactic introduction of
the recursive atoms) and Step 7 (Synthesis of the discriminants). The number of cases of the
LAi(r) evolves from 1 (i = 1) to 2 (i = 2…3) to 3 (i = 3…4) to a sum 1+v+w (i = 5…7), where
v and w are any integers. Of course, if it turns out that w=0, then this synthesis mechanism is
inadequate.

We are now in position to analyze which of the challenges of Section 5.3 have been met,
and to state how they have been met, respectively why they have not been met:

a. Under the consistency assumption.
b. If the domain extrapolation hypothesis is correct.
c. If a sound oracle O(r) is used.

Table 14-2: Summary of the features of the synthesized logic algorithms

New
atoms LAi(r) Correctness and Progression P(r) Cases

Step 1 N/A 1 – 1 E ≅ exp(LA1) ≤ R ≤ LA1 = ⊥ a no 1

Step 2 0 – 1
0 – 1 0 – 1 exp(LA1) ≅ exp(LA2) ≤ R ≤ LA2 ≤ LA1

b no
no 1+1

Step 3 0 – 1 0 – 1 exp(LA2) ≅ exp(LA3) ≤ R ≤ LA3 ≤ LA2 no 1+1

Step 4 N/A 0 – 1 exp(LA3) ≅ exp(LA4) ≤ R ≤ LA4 ≅ LA3
c yes 1+1+1

Step 5 0 – ∗
0 – ∗ 0 – ∗ exp(LA4) ≅ exp(LA5) ≤ R ≤ LA5 ≤ LA4

no
no

1+1+1
1+v+1

Step 6 0 – ∗ 0 – ∗ exp(LA5) ≅ exp(LA6) ≤ R ≤ LA6 ≤ LA5 no 1+v+w

Step 7 ? – ? 0 – ∗ exp(LA6) ≅ exp(LA7) ≤ R ≤ LA7 ≤ LA6 yes 1+v+w

Steps
1 to 7 N/A 0 – ∗ conjecture: R ≅ LA = LA7 yes 1+v+w
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• What induction parameter to select? Task A of Step 2 (Synthesis of Minimal and Non-
Minimal) does this non-deterministically by considering all parameters that are of an
inductive type, and possibly by using some selection heuristics, or by listening to the
specifier’s hints.

• How to discover compound induction parameters? Due to our restriction to version 3
of the divide-and-conquer schema, Task A only considers simple induction parameters.
Meeting this challenge is thus considered future research, but shouldn’t be too difficult.

• According to what well-founded relation to decompose the induction parameter?
Step 3 (Synthesis of Decompose) does this non-deterministically by considering all
predefined decomposition operators (which each reflect some well-founded relation)
of a typed database, and possibly by listening to the specifier’s hints.

• Is the mechanism able to design the whole family of possible logic algorithms for a giv-
en problem? This ability is in theory achieved for the family of logic algorithms that
are covered by version 3 of the divide-and-conquer schema. In practice, everything de-
pends on the completeness of the typed databases used by Steps 2 and 3.

• How many structural forms are there? Due to our restriction to version 3 of the divide-
and-conquer schema, Task C of Step 2 only considers the distinction between 2 struc-
tural forms, namely one minimal form and one non-minimal form. A generalization of
this task is considered future research.

• What are the structural forms? Task D of Step 2 non-deterministically selects some do-
main extrapolation hypothesis and extracts the corresponding predefined forms from a
typed database.

• Into how many cases is each structural case divided? The progressive discovery of this
number is summarized in the last column of Table 14-2.

• How to discriminate between these sub-cases? Step 7 (Synthesis of the Discriminatek)
achieves this by using the Proofs-as-Programs Method.

• How to detect that recursion is useless in some non-minimal sub-cases? Step 4 (Syn-
tactic introduction of the recursive atoms) creates a non-recursive non-minimal case if
at least one example Ej leads to a non-admissible procComp(<hxj>,<tyj>,yj) atom.

• How to “invent” or re-use appropriate predicates? How to implement “invented”
predicates? This so-called predicate invention problem is tackled at four points during
the synthesis. At Steps 2 and 3, the Database Method re-uses predefined predicates:
this amounts to the use of domain knowledge. At Step 6, the Synthesis Method (see
Section 14.2.4 below) invents new composition operators. As of now, there is however
no method of re-using common composition operators. At Step 7, the Proof-as-Pro-
grams Method synthesizes discriminants that are in terms of predicates other than r/n.

• How to discover which parameters are auxiliary parameters? Due to our restriction to
version 3 of the divide-and-conquer schema, auxiliary parameters are not taken into ac-
count. See Section 14.2.2 below on how to achieve this.

• How to synthesize logic algorithms that are non-deterministic? Task G of Step 4 is the
first—and only—one to discover whether the intended relation is non-deterministic
given a ground value of the induction parameter and variables for the other parameters,
namely because the exp/3 operator discovers sets of potential values of the TY in some
non-minimal disjuncts of exp(LA4(r)). But, from Table 14-2, we observe that LA4(r) is
at best deterministic, and that it is Step 5 that produces the first possibly non-determin-
istic logic algorithm. Indeed, given a ground value of the induction parameter, a logic
algorithm can only be non-deterministic if it actually unifies Y with some values in sev-
eral non-mutually-exclusive cases. This is clearly not the case with LA4(r), where only
the induction parameter X is unified with some values. But such is the case with LA5(r),
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where the instances of the SolveNonMink necessarily do unify Y with some values, and
this possibly non-deterministically (because of the MSG Method). Note that the dis-
junction between the minimal case and the non-recursive case is not an additional
source of non-determinism of LA5(r), because these cases are known to be mutually
exclusive (because of Step 2). Also note that the non-determinism due to the instances
of the SolveNonMink might even disappear at Step 7 (Synthesis of the Discriminatek),
namely if the added discriminants render these sub-cases mutually exclusive. Step 6
acts in exactly the same way as Step 5: the instances of the ProcCompk necessarily do
unify Y with some values, and this possibly non-deterministically (because of the MSG
Method). And the non-determinism due to the instances of the ProcCompk might also
disappear at Step 7, namely if the added discriminants render these sub-cases mutually
exclusive. All this shows that the discovery of non-determinism and its “synthesis”
take place at different moments. They are even totally unrelated events.

• How to achieve a synthesis that yields logic algorithms that are correct wrt their spec-
ifications? This is impossible to guarantee with specifications by examples and prop-
erties. However, the stepwise synthesis framework of Section 7.3.2 and the correctness
theorems of the seven synthesis steps clearly identify the critical points, where interac-
tion with the specifier should thus take place.

We can also analyze how some of the desired features enumerated in Section 11.1 have been
achieved (note that most of them were decisions rather than open questions):

• The degree of automation depends on the actual implementation of the synthesis mech-
anism. Indeed, as it stands, the mechanism is fully automatable. However, there are
critical points where interaction with the specifier is safer than blind application of the
listed heuristics, however reliable they may seem. The synthesis mechanism is exam-
ple-driven, and uses the properties at selected moments. This implies that synthesis
cannot be done from properties alone. On the other hand, if only examples are provid-
ed, or if “not enough” properties are provided, then there should be a lot of interaction
with the specifier.

• The kinds of inference used during the synthesis are inductive inference from the ex-
amples (due to the usage of the MSG Method), and deductive inference from the prop-
erties (due to the usage of the Proofs-as-Programs Method). The synthesis mechanism
is a hybrid of transformational synthesis (due to its stepwise approach), proofs-as-pro-
grams synthesis (due to the way discriminants are synthesized), knowledge-based syn-
thesis (due to the usage of the divide-and-conquer schema and typed data-bases),
bottom-up approximation-driven empirical learning (due to its usage of incomplete
properties), and Summers’ recurrence detection mechanism. But it is not really com-
parable to the other approaches surveyed in Chapter 3, namely Biermann’s function
merging mechanism (due to the presence of multiple examples), and Shapiro’s debug-
ging mechanism (due to the non-incremental approach, and to the absence of counter-
examples). The mechanism seems very robust to example ordering (due to its non-in-
crementality) and example choice.

Note that the expansion phase of synthesis may be likened to trace generation, while the re-
duction phase of synthesis may be likened to trace generalization (see Section 3.3).

14.2 Extensions

Let’s now discuss some extensions to the existing synthesis mechanism. First, in
Section 14.2.1, we present the problems posed by the introduction of negation in examples,
properties, and logic algorithms. In Section 14.2.2, we show how the mechanism can be en-
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hanced to better cope with auxiliary parameters. We then see how the preliminary restrictions
of Section 11.2 can be overcome:

• the support of schemas other than version 3 of the divide-and-conquer schema is dis-
cussed in Section 14.2.3;

• the synthesis of multiple-loop logic algorithms is discussed in Section 14.2.4, where
we describe the Synthesis Method as a complement to the MSG Method;

• the support of inductively defined data-types other than integers and lists is extremely
modular: just extend the typed databases with the appropriate instances.

Finally, in Section 14.2.5, we generalize the computational contents of properties, and exam-
ine what would need to be done to support such properties. The Future Work sections of the
Building Blocks chapters of Part II of course constitute other directions for future research.

14.2.1 Negation

In Section 11.1, we have constrained the bodies of logic algorithms and properties to be free
of negation, namely because the Proofs-as-Programs Method (which is used by Step 7 of the
synthesis mechanism) cannot handle negation. As outlined in Section 9.5, this method could
be extended to handle negated atoms that have primitive predicates, which thus overcomes
the overall restriction.

Note however that negation is theoretically useless: Horn clause logic is a universal com-
puting formalism (see [Hogger 84] or [Lloyd 87] for accounts of this result). Negation thus
doesn’t increase the expressive power of Horn clause logic. In practice, however, statements
and algorithms are often significantly simplified by the use of negation.

Negative examples (also called counter-examples) have been omitted from the specifica-
tion format adopted in Section 11.1. We are now able to provide the motivation for this de-
cision. Counter-examples are in fact useless in a divide-and-conquer approach, because the
relation is “built” from positive examples. And only positive examples can possibly be used
in order to “explain” how a specific positive example is “built”. Counter- examples could
however be used to check whether the synthesized logic algorithm isn’t too general com-
pared to the intended relation. This is subject to future research.

Note that if properties could also be equivalence statements rather than only Horn clauses,
then properties would actually be a generalization of negative examples, because they would
then embody conditions about when the intended relation does not hold. Most properties are
actually equivalence statements. For instance, all properties in the sample specifications of
Section 6.2, except for the “informative” property P2 of EP(efface), would also be correct if
they were equivalence statements. The current version of the synthesis mechanism would
only use the if parts of such extended properties in Step 7 for the synthesis of the discrimi-
nants. But an extended version performing the above-mentioned over-generalization-check
could use the only-if parts to infer negative examples, rather than relying on their explicit
presence in the specification.

14.2.2 Auxiliary Parameters

Throughout this thesis, the phrase “auxiliary parameter” keeps popping up. Intuitively, an
auxiliary parameter is a parameter that has nothing to do with the inductive nature of the re-
lation. Note that a parameter is auxiliary for a relation, and hence for all possible logic algo-
rithms for that relation. Logic algorithm synthesis by induction on an auxiliary parameter is
obviously a bad idea.

So far, we have completely ignored auxiliary parameters. This is justifiable by the obser-
vation that their identification is not necessary at all for correct algorithm design. Indeed, as
the logic algorithms of Section 5.2 show, it is possible to write algorithms that don’t distin-
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guish between auxiliary parameters and “ordinary” parameters. However, the (de)composi-
tion of an auxiliary parameter from (into) its heads and tails may look cumbersome because
an auxiliary parameter Y and its tail TY are eventually found (by Step 6) to be identical: Y=TY.
But it is precisely this composition pattern that allows the detection of auxiliary parameters,
and their elimination from the decomposition machinery, thus transforming the logic algo-
rithm into a more “graceful” and “natural” version. We call this late detection, because it only
allows the transformation of the synthesized logic algorithm, rather than a simplification of
its actual synthesis process. The appearance of Y=TY in all recursive cases of a logic algo-
rithm is assumed to be the formal definition of the notion of auxiliary parameter.

We should however not forget that just a casual glance at a specification will not always
tell whether a parameter is an “ordinary” or an auxiliary one. Things are even more difficult
with automated algorithm design, and the surest way is indeed to ignore the potential exist-
ence of auxiliary parameters until a transformation phase. But suppose now that knowledge
about which parameters are auxiliary parameters is available earlier during the algorithm
synthesis process. It would certainly be helpful to pre-compile the then needed transforma-
tions into a schema with an explicit consideration of auxiliary parameters. The benefit would
be less complex general example sets for the synthesis of the Processk and Composek, and
hence smaller search spaces. The modified version 4 of the divide-and-conquer schema is:
R(X,Y,Z) ⇔

Minimal(X) ∧ Solve(X,Y,Z)
∨ ∨1≤k≤c NonMinimal(X) ∧ Decompose(X,HX,TX)

∧ Discriminatek(HX,TX,Z)
∧ ( SolveNonMink(HX,TX,Y,Z)

⏐
R(TX,TY,Z)

∧ Processk(HX,HY)
∧ Composek(HY,TY,Y,Z) )

where Z is the vector of auxiliary parameters. Note how Y has disappeared from the discrim-
inants: this knowledge is encoded as Heuristic 13-4 at Step 7 (Synthesis of the Discrimi-
natek). This revised schema also calls for a revised admissibility criterion.

Now, how could knowledge about which parameters are auxiliary parameters be available
earlier during the algorithm synthesis? There are basically two solutions:

• declaration: the specifier could declare them as such at specification time;
• early detection: at Step 4 (Syntactic introduction of the recursive atoms), a parameter

that is not of an inductive type must definitely be an auxiliary parameter; this heuristic
is sound, but not complete. Other (possibly interactive) heuristics could be elaborated.

These solutions allow faster synthesis and more “natural” synthesized logic algorithms.

14.2.3 Supporting Other Schemata

The presented synthesis mechanism is guided by version 3 of the divide-and-conquer logic
algorithm schema. This preliminary restriction(made in Section 11.2) has considerably sim-
plified the notations needed for the theoretical presentation. The support of version 4 (rela-
tions of any non-zero arity) is actually a pretty straightforward extension, because only some
additional vectorization is needed. Version 4 is actually supported by the implementation of
the synthesis mechanism.

The support of version 5 (any number of minimal or non-minimal forms) and version 6
(compound induction parameters) is considered future research, as considerable extensions
to the already defined tasks need to be developed. Note however that Section 5.2.3 shows that
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single minimal forms and non-minimal forms are more general than one might believe at first
sight. As outlined in Section 8.4, there is still a lot of space for designing even more sophis-
ticated divide-and-conquer schemas.

However, version 3 of the divide-and-conquer schema is hardwired into our synthesis
mechanism. This results from a hardwired sequence of instantiations of predicate variable of
that schema, as well as from a hardwired mapping between these predicate variables and the
methods of the developed tool-box. Parameterizing the synthesis mechanism on algorithm
schemas and tool-boxes would thus be a first step towards supporting schemas reflecting al-
gorithm design strategies other than divide-and-conquer.

In other words, a Step 0 would be to select an appropriate schema, and the subsequent
steps would be either a hardwired sequence (specific to the selected schema) of applications
of methods, or a user-guided selection of variables and methods. Our grand view of algorithm
synthesis systems thus is one of a large workbench with a disparate set of highly specialized
methods for a set of schemas that covers (as much as possible of) the space of all possible
algorithms.

In defense of our hardwiring the divide-and-conquer schema, we should however make
the following two remarks. First, the hardwired sequence of predicate variable instantiations
is justifiable by our arguing (see Section 11.3 and Section 12.3.2) that this sequence is prob-
ably the only one in the context of logic programming. Second, the hardwired mapping be-
tween the predicate variables and the methods of the tool-box is justifiable by pure common
sense.

14.2.4 The Synthesis Method

Within a restricted setting, the MSG Method (see Chapter 10) infers, from a finite set of gen-
eral examples, a non-recursive logic algorithm that is defined in terms of the =/2 primitive
only, and that is correct wrt a natural extension of the given examples. But if the resulting
logic algorithm is judged, by some application-dependent heuristic (such as Heuristic 13-2),
to be “not good enough”, then the assumption that the examples can be covered by such a
logic algorithm must be revised: recursion, or other predicates, or both, might be needed.
This requires a more involved method.

A possible solution is to automatically infer a property set of the intended relation and
then to use an entire synthesis mechanism (such as the one described in the two previous
chapters) in order to infer a logic algorithm that is complete wrt the given examples and in-
ferred properties. We here describe such a method, called the Synthesis Method, which is spe-
cific to the synthesis of the Processk and Composek predicate variables of the divide-and-
conquer schema.

The Synthesis Method assumes that there is a single sub-case of the recursive case (w=1),
and that procComp1(HX,TY,Y), which is hereafter denoted procComp(HX,TY,Y), is defined
by a full-fledged recursive logic algorithm. The synthesis of LA(procComp) may thus be
achieved by the following sequence of tasks:

• Task S’: Inference of E(procComp) from LA5(r) and EP(r);
• Task T’: Inference of P(procComp) from LA5(r) and EP(r);
• Task U’: Synthesis of LA(procComp) from EP(procComp).

Let’s explain these tasks one by one, then illustrate them on two sample problems, and finally
assess this new method.

Task S’: Inference of an Example Set

The inference of an example set would be identical to the method of Task S of Step 6 (Syn-
thesis of the Processk and Composek) if the synthesis mechanism were able to handle general
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examples. Such is however not the case. But we can exploit the fact that the Synthesis Meth-
od is only invoked upon “dislike” of the result produced by the MSG Method. Indeed, re-
member that the non-ground case of the MSG Method proceeds by invoking its other case
for every atom set of adm(G(procComp)), and then selecting a “best” solution. So if the logic
algorithm resulting from the MSG Method is judged to be “not good enough”, then it would
be most reasonable to give the corresponding atom set a “second chance” (provided it is an
example set), rather than to take any other atom set that corresponds necessarily to a “less
good” solution of the MSG Method. Let E(procComp) be the chosen set.

Task T’: Inference of a Property Set

The inference of a property set is based on the observation that the properties of the original
predicate are “inherited” by the properties of the procComp/3 predicate. This can be formal-
ized as follows.

For every property:
r(si,ti) ⇐ Bi (1)

such that:
nonMinimal(si) (2)

decompose(si,hsi,tsi) (3)
where nonMinimal/1 is the instance of NonMinimal/1 selected at Step 2, and decompose is
the deterministic instance of Decompose selected at Step 3,
find variants of examples or body-less properties:

r(tsij,ttij) (4)
and infer the following property of procComp:

procComp(hsi,tti,ti) ⇐ Bi (5)
This can be justified as follows. By unfolding the head of (1) according to the necessarily
unique recursive disjunct of LA6(r), as it will be, we obtain:

nonMinimal(si) ∧ decompose(si,HS,TS) ∧ r(TS,TT) ∧ procComp(HS,TT,ti) ⇐ Bi
By (2), (3), and the determinism of decompose, this simplifies into:

r(tsi,TT) ∧ procComp(hsi,tti,ti) ⇐ Bi
By (4), this effectively reduces to (5).

Moreover, the resulting properties can often be generalized, for instance by replacing
base-case constants by variables. Such a generalization process should be interactive, and
should yield new properties that are consistent with the examples.

Task U’: Synthesis of LA(procComp)

A logic algorithm LA(procComp) can now be synthesized from the inferred specification by
examples and properties. We use the synthesis mechanism described in the two previous
chapters for doing so. The predicate procComp is assumed to be a new primitive.

This completes Step 6, and the synthesis of LA(r) proceeds to Step 7 (Synthesis of the Dis-
criminatek), where a true discriminant is added because the information of the properties of
r/n is “inherited” by the properties of procComp, and thus already accounted for.

Illustration

Let’s illustrate the described method on two sample problems.
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Example 14-1: The synthesis of LA(permutation-int-L) leads to the rejection of the first
LA(pcPermutation) that is synthesized by the MSG Method. This is shown in Example 13-4.
The Synthesis Method is thus invoked. The specification EP(permutation) is as in
Example 6-8. The logic algorithm LA6(permutation) will be:

permutation(L,P) ⇔
L=[] ∧ P=[] {E1}

∨ L=[_|_] ∧ L=[HL|TL]
∧ permutation(TL,TP)
∧ pcPermutation(HL,TP,P) {E2-E10}

At Task S’, the inferred example set is the one corresponding to that first solution of the MSG
Method, namely:

E(pcPermutation)={ pcPermutation(a,[],[a]) (F2)
pcPermutation(b,[c],[b,c]) (F3)
pcPermutation(b,[c],[c,b]) (F4)
pcPermutation(d,[e,f],[d,e,f]) (F5)
pcPermutation(d,[f,e],[d,f,e]) (F6)
pcPermutation(d,[e,f],[e,d,f]) (F7)
pcPermutation(d,[e,f],[e,f,d]) (F8)
pcPermutation(d,[f,e],[f,d,e]) (F9)
pcPermutation(d,[f,e],[f,e,d]) } (F10)

where example Fi corresponds to example Ei. Note that F5 and F6 are “variants”. The same
holds for F7 and F9, and for F8 and F10. But we cannot eliminate “variants” because we can-
not know that pcPermutation/3 effectively is a structural-manipulation problem.

At Task T’, the inference of a property set goes as follows:
• from property P1 of P(permutation):

permutation([X],[X])
infer property Q1 of P(pcPermutation):

pcPermutation(X,[],[X])
because example E1 of E(permutation) shows that a permutation of [] is [];

• similarly, from property P2 of P(permutation):
permutation([X,Y],[X,Y])

infer property Q2 of P(pcPermutation):
pcPermutation(X,[Y],[X,Y])

because property P1 of P(permutation) shows that a permutation of [Y] is [Y];
• finally, from property P3 of P(permutation):

permutation([X,Y],[Y,X])
infer property Q3 of P(pcPermutation):

pcPermutation(X,[Y],[Y,X])
because property P1 of P(permutation) shows that a permutation of [Y] is [Y].

All three properties could be generalized by replacing all occurrences of the constant nil by
the same new variable, but this isn’t even necessary here.

At Task U’, the entire synthesis mechanism of the two previous chapters is used to syn-
thesize LA(pcPermutation) from EP(pcPermutation) as generated by the two previous tasks.
Supposing an induction on the second parameter and an intrinsic decomposition thereof, plus
a detection that the first parameter necessarily is an auxiliary parameter, the result is:
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pcPermutation(E,L,R) ⇔
L=[] ∧ E=_ ∧ R=[E] {F2}

∨ L=[_|_] ∧ L=[HL|TL]
∧ true
∧ E=_ ∧ R=[E|L] {F3,F5,F6}

∨ L=[_|_] ∧ L=[HL|TL]
∧ true
∧ pcPermutation(TE,TL,TR)
∧ E=TE ∧ R=[HL|TR] {F4,F7,F8,F9,F10}

Note that EP(pcPermutation) and LA(pcPermutation) indicate that the underlying problem is
the one described in the informal specification of stuff/3.

The synthesis of LA(permutation) proceeds to Step 7 (Synthesis of the Discriminatek),
where LA7(permutation) is found to be equivalent to LA6(permutation). This resulting logic
algorithm for permutation/2 is correct, but yields redundant solutions if some element has
multiple occurrences in L. The usage of efface(HL,P,TP), as in LA(permutation-L)
(LA 5-14), which is stronger than stuff(HL,TP,P), remedies to such redundancy. This version
may be obtained by our synthesis mechanism if the condition X≠Y is added to property P3 of
EP(permutation). ♦

Example 14-2: The synthesis of LA(compress-int-C) leads to the rejection of
LA(pcCompress) as synthesized by the MSG Method. Indeed, the msgs are:

pcCompress(A,1,T,[A|T])
pcCompress(A,2,T,[A,A|T])
pcCompress(e,3,T,[e,e,e|T])

There are thus as many cliques as properties, and Heuristic 13-2 applies. The Synthesis
Method is thus invoked. The specification EP(compress) is as in Example 6-1. The logic al-
gorithm LA6(compress) will be:

compress(L,C) ⇔
C=[] ∧ L=[] {E1}

∨ C=[_,_|_] ∧ C=[HC1,HC2|TC]
∧ compress(TL,TC)
∧ pcCompress(HC1,HC2,TL,L) {E2-E8}

where HC1 is a value and HC2 is a counter.
At Task S’, the inferred example set is the one corresponding to the solution of the MSG

Method, namely:
E(pcCompress) = { pcCompress(a,1,[],[a]) (F2)

pcCompress(b,2,[],[b,b]) (F3)
pcCompress(c,1,[d],[c,d]) (F4)
pcCompress(e,3,[],[e,e,e]) (F5)
pcCompress(f,2,[g],[f,f,g]) (F6)
pcCompress(h,1,[i,i],[h,i,i]) (F7)
pcCompress(j,1,[k,m],[j,k,m]) } (F8)

where example Fi corresponds to example Ei.
At Task T’, the inference of a property set yields:
P(pcCompress) = { pcCompress(X,1,[],[X]) (Q1)

pcCompress(X,2,[],[X,Y]) ⇐ X=Y (Q2)
pcCompress(X,1,[Y],[X,Y]) ⇐ X≠Y } (Q3)
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where property Qi results from property Pi. All three properties could be generalized by re-
placing all occurrences of the constant nil by a new variable, but this isn’t even necessary.

At Task U’, the entire synthesis mechanism of the two previous chapters is used to syn-
thesize LA(pcCompress) from EP(pcCompress) as generated by the two previous tasks. Sup-
posing an induction on the second parameter, and an intrinsic decomposition, the result is:

pcCompress(E,N,L,R) ⇔
N=s(0) ∧ E=_ ∧ L=_ ∧ R=[E|L]

∧ (L=[]) ∨ (L=[HL|_] ∧ HL≠E) {F2,F4,F7,F8}
∨ N=s(s(_)) ∧ N=s(TN) ∧ HN=N

∧ pcCompress(TE,TN,TL,TR)
∧ E=TE ∧ L=TL

∧ R=[E|TR] ∧ TR=[E|_] {F3,F5,F6}

Note that V and L are auxiliary parameters. The synthesis of LA(compress) proceeds to Step 7
(Synthesis of the Discriminatek), where LA7(compress) is found to be equivalent to
LA6(compress). ♦

Assessment

The Synthesis Method allows us to overcome the preliminary restriction of Section 11.2 to
the synthesis of single-loop logic algorithms only. Indeed, if the instance of ProcComp is de-
fined by a full-fledged recursive logic algorithm, then LA(r) is a multiple-loop logic algo-
rithm. The synthesis mechanism is thus recursively defined, and there should be no limit to
the number of nested loops it could support.

But why not immediately use the Synthesis Method? The reason is that both methods
tackle different classes of problems. The MSG Method and the Synthesis Method are a joint
answer to the same problem: how to infer, from a finite set of general examples of an un-
known relation that is however known to feature a given construction pattern between its pa-
rameters, a logic algorithm that is correct wrt a natural extension of the given examples. The
MSG Method is the “base case” of the answer, because it doesn’t look for recursion, and the
Synthesis Method is the “structure case” of the answer, because it does look for recursion.

Note that the instances of ProcComp that are synthesized by the Synthesis Method are of-
ten one of the following:

• partially evaluated versions of logic algorithms that a human algorithm designer would
have (re-)used; for instance, a version of LA(append) where the first parameter is al-
ways a non-empty list;

• (loop-)mergers of several logic algorithms that a human algorithm designer would have
(re-)used; for instance, LA(pcCompress) above is the loop-merger of the conjunction
used in LA(compress-int-C) (LA 5-2):

plateau(N,E,HL) ∧ firstPlateau(L,HL,TL)
which a human algorithm designer would probably even have generalized to:

plateau(N,E,HL) ∧ append(HL,TL,L)
by relaxing, if not “forgetting”, the fact that HL must be a plateau;

• a combination of the above.
This clearly shows the impeccable precision of automated synthesis compared to manual
construction.

In terms of related research, other synthesis systems (such as CYPRESS [Smith 85]) are
recursively defined, and hence infer their own specifications for appearing sub-problems.
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The Synthesis Method is currently too closely entangled with the divide-and-conquer
schema, with the synthesis mechanism described in the two previous chapters, and with the
objective of Step 6 of that mechanism. In order to make it a full-fledged stand-alone method
that can be added to our general tool-box, some future research is needed to make it schema-
independent. It will of course still rely on the MSG Method for the inference of an example
set. But the inference of a property set could probably be made predicate-variable-indepen-
dent and schema-independent by some theorem proving task that exploits the integrity con-
straints of a schema.

Moreover, even the <MSG Method, Synthesis Method> couple isn’t the complete answer
to the synthesis of instances of the ProcCompk predicate variables. Indeed, some instances
might be defined neither in terms of =/2 only (and hence the MSG Method is inappropriate),
nor by recursion (and hence the Synthesis Method is inappropriate).
Example 14-3: A good illustration of this phenomenon is the minimum(L,M) relation,
which may be defined by the following divide-and-conquer logic algorithm:

minimum(L,M) ⇔
L=[_] ∧ L=[E] ∧ M=E

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ minimum(TL,TM)
∧ pcMinimum(HL,TM,M)

where pcMinimum/3 is specified as follows:
pcMinimum(A,B,M) iff M is the minimum of A and B,

where A, B, and M are integers.
which is defined by the following logic algorithm:

pcMinimum(A,B,M) ⇔
A≤B ∧ M=A

∨ A>B ∧ M=B
which is clearly not producible by either the MSG Method, or the Synthesis Method. ♦

This shows the need for even more methods to complement the existing ones. Good can-
didates would be a Reuse Method (looking for instances of atoms listed in a database of typ-
ical composition predicates), and an Analogy Method (looking for analogies between the
examples in order to infer instances of the ProcCompk). In the absence of “good” answers,
the last straw is to ask the specifier.

14.2.5 The Computational Contents of Properties

It is very important to understand that the MSG Method (as an inductive technique that is
based on examples) and the Proofs-as-Programs Method (as a deductive technique that is
based on properties) are not at all tied to Steps 5+6 and 7, respectively. As general methods
of a tool-box, they are actually often interchangeably applicable for the instantiation of any
predicate variable (of any schema).

For instance, the Proofs-as-Programs Method could be invoked right after Step 4 (Syntac-
tic introduction of the recursive atoms) in order to instantiate Solve, the SolveNonMink, the
ProcCompk, and the Discriminatek from P(firstPlateau) and LA4(firstPlateau), and thus do
the work of Steps 5 and 6 as well.

Of course, appropriate generalization heuristics would have to be devised. But the point
is that this is sometimes possible, and sometimes even desirable.

The fundamental observation underlying such “cross-uses” of methods is the following.
Given a problem and the decision to perform a divide-and-conquer design, there are different
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kinds of information to be conveyed in the specification, namely solving, discrimination, pro-
cessing, and composition information. These kinds of information are such-named because
their contents wind up in the instantiations of the similar-named predicate variables. So, with
specifications by examples and properties, the specifier has many alternatives about which
kind of information to make explicit in the bodies of properties. These kinds of information
are (often) independent of the selected induction parameter and the selected decomposition
strategy.

For instance, in EP(firstPlateau) as listed in Example 6-2, property P1 carries solving in-
formation, while P2 and P3 carry discrimination information in their bodies: these particular
contents justify the particular choice of methods at Steps 5 to 7.

The so far implicit assumption behind the presented synthesis mechanism is that proper-
ties only carry solving information, or discrimination information, or both. But given the in-
terchangeability of methods and this variability of specifications, it is obvious that the results
presented here are highly adaptable to different assumptions. However, in order to support
properties with processing or composition information, the generalization heuristics need to
be adapted. Moreover, ways of detecting the presence of such extended computational con-
tents of properties need to be devised.

Handling Properties with Processing Information

The following example illustrates the need for properties with processing information.
Example 14-4: Consider the following informal specification:

triples(L,R) iff R is the elements of L multiplied by 3,
where L and R are integer lists.

A sample specification by examples and properties is:
E(triples) = { triples([],[]) (E1)

triples([1],[3]) (E2)
triples([3,2],[9,6]) (E3)
triples([5,3,6],[15,9,18]) } (E4)

P(triples) = { triples([X],[Y]) ⇐ mult(X,3,Y) } (P1)

where mult(A,B,P) holds iff P is the product of the integers A and B. Property P1 obviously
carries processing information.

Assuming a synthesis by intrinsic induction on L, at Step 6 (Synthesis of the Processk and
Composek), the targeted logic algorithm is:

triples(L,R) ⇔
L=[] ∧ R=[] {E1}

∨ L=[_|_] ∧ L=[HL|TL]
∧ triples(TL,TR)
∧ pcTriples(HL,TR,R) {E2-E4}

where LA(pcTriples) is yet to be synthesized. The informal specification is that R is TR pre-
ceded by HL multiplied by 3. The corresponding examples are:

E(pcTriples)= { pcTriples(1,[],[3]) (F2)
pcTriples(3,[6],[9,6]) (F3)
pcTriples(5,[9,18],[15,9,18]) } (F4)

The MSG Method finds a single clique, whose msg is pcTriples(A,T,[B|T]). So LA6(triples)
is defined as follows (after some rewriting):
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triples(L,R) ⇔
L=[] ∧ R=[] {E1}

∨ L=[_|_] ∧ L=[HL|TL]
∧ triples(TL,TR)
∧ R=[HR|TR] {E2-E4}

Note that HR is not yet linked to the computations acting on L. This holds because the instan-
tiation of pcTriples/3 found by the MSG Method is in fact too general: R=[HR|TR] correctly
performs the composition part, but also incorrectly assumes that HR=_ does the job for the
processing part.

The synthesis proceeds to Step 7 (Synthesis of the Discriminatek). Property P1 is found
to be a logical consequence of clause C2, which is generated from the second disjunct of
LA6(triples):

triples([X],[Y]) ← mult(X,3,Y)

DCI: C2 ↓ {}
[X]=[?_|?_] & [X]=[?HL|?TL] & triples(?TL,?TR) &

[Y]=[?HR|?TR] ← mult(X,3,Y)

3 × DCI: LA(=) ↓ {HL/X, TL/[], TR/[], HR/Y}
triples([],[]) ← mult(X,3,Y)

DCI: E1 ↓ {}
← mult(X,3,Y)

The extracted clause is:
discTriples2(L,R,HL,TL,TR,HR) ←

L=[X],R=[Y],
HL=X,TL=[],TR=[],HR=Y,
mult(X,3,Y)

However, the extracted clause defines Process2 rather than Discriminate2. The generalization
heuristics of Section 13.3.2 should thus not be used here, because they are tailored for the
generalization of discriminating clauses. An adaptation of these heuristics to the generaliza-
tion of processing clauses is straightforward, and yields here:

procTriples2(HL,HR) ← mult(HL,3,HR)
Hence LA7(triples) is defined as follows (after some rewriting):

triples(L,R) ⇔
L=[] ∧ R=[] {E1}

∨ L=[_|_] ∧ L=[HL|TL]
∧ triples(TL,TR)
∧ mult(HL,3,HR)
∧ R=[HR|TR] {E2-E4}

This brings HR into the flow of computations acting on L, and thus corrects the instantiation
of pcTriples/3. ♦

Handling Properties with Composition Information

On the other hand, one might argue that properties with composition information would prej-
udice over choices that should rather be made by the synthesis mechanism, such as the selec-
tion of an induction parameter and of its decomposition strategy. This is however not always
the case, as illustrated by the following two sample syntheses.
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Example 14-5: Consider the following property:
permutation([X,Y],R) ⇐ stuff(X,[Y],R)

Partial evaluation of LA(stuff) and unfolding of the stuff/3 atom transform the property into
the following statement:

permutation([X,Y],R) ⇐ R=[X,Y] ∨ R=[Y,X]
This statement is no longer a property (because of the disjunction in the body), but it is equiv-
alent to the conjunction of properties P2 and P3 of EP(permutation), as in Example 6-8.
There is thus no extra information in the above property, and it doesn’t force at all the selec-
tion of the first parameter as induction parameter, nor its intrinsic decomposition. ♦

Example 14-6: Consider the following specification:
E(sum) = { sum([],0) (E1)

sum([7],7) (E2)
sum([4,5],9) (E3)
sum([2,3,1],6) } (E4)

P(sum) = { sum([X],X) (P1)
sum([X,Y],R) ⇐ add(X,Y,R) } (P2)

where sum(A,B,S) holds iff S is the sum of the integers A and B. Property P2 obviously carries
composition information. There is no possible partial evaluation of P2.

Suppose a synthesis with induction on L and intrinsic decomposition. We now show the
usefulness of P2.

First, the omission of P2 would, at Step 4 (Syntactic introduction of the recursive atoms),
lead to the need for specifier intervention, because the deductive oracle (based on EP(sum))
cannot compute TS for example E4. Indeed, no example or property can infer that TS=4 for
TL=[3,1], such that sum(TL,TS) holds.

Second, supposing P2 is present, then at Step 6 (Synthesis of the Processk and Composek)
the targeted logic algorithm LA6(sum) is:

sum(L,S) ⇔
L=[] ∧ S=[] {E1}

∨ L=[_|_] ∧ L=[HL|TL]
∧ sum(TL,TS)
∧ pcSum(HL,TS,S) {E2-E4}

where LA(pcSum) is yet to be synthesized. The intended instantiation for pcSum/3 obviously
is add/3. The corresponding examples are:

E(pcSum)= { pcSum(7,0,7) (F2)
pcSum(4,5,9) (F3)
pcSum(2,4,6) } (F4)

The MSG Method finds 3 cliques, each containing one example. Heuristic 13-2 suggests re-
jecting this result, and invoking the Synthesis Method. The following properties are inferred:

P(pcSum)= { pcSum(X,0,X) (Q1)
pcSum(X,Y,R) ⇐ add(X,Y,R) } (Q2)

The synthesis of LA(pcSum) by intrinsic induction on the second parameter yields at Step 6:
pcSum(A,B,R) ⇔

B=0 ∧ R=A {F2}
∨ B=s(_) ∧ B=s(TB) ∧ B=HB

∧ pcSum(TA,TB,TR)
∧ pcPcSum(HB,TA,TR,A,R) {F3-F4}
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where LA(pcPcSum) is yet to be synthesized. The corresponding examples are actually con-
strained general examples (whose handling is also considered future work):

C(pcPcSum) = { pcPcSum(5,TA1,TR1,4,9) [add(TA1,4,TR1)] (C3)
pcPcSum(4,TA2,TR2,2,6) [add(TA2,3,TR2)]} (C4)

These examples have admissible alternatives under the following type constraints:
0 ≤ TA1 ≤ 4 and 0 ≤ TR1 ≤ 9
0 ≤ TA2 ≤ 2 and 0 ≤ TR2 ≤ 6

Under all these constraints, C3 has 5 admissible alternatives, while C4 has 3 admissible al-
ternatives. Among the 5 × 3 = 15 admissible alternatives of C(pcPcSum), the MSG Method
locates 1 that has 1 clique (namely when TA1=4, TR1=8, TA2=2, and TR2=5), whereas the
other 14 have 2 cliques. Selecting the solution with the least number of cliques, the MSG
Method infers the following logic algorithm for pcPcSum/5:

pcPcSum(HB,TA,TR,A,R) ⇔
HB=_ ∧ A=TA ∧ R=s(TR) ∧ TA≥2 ∧ TR≥5

where the last two atoms should obviously be generalized away. Hence LA6(pcSum) looks as
follows (note that A turns out to be an auxiliary parameter):

pcSum(A,B,R) ⇔
B=0 ∧ R=A {F2}

∨ B=s(_) ∧ B=s(TB) ∧ B=HB
∧ pcSum(TA,TB,TR)
∧ A=TA ∧ R=s(TR) {F3-F4}

The synthesis of LA(pcSum) proceeds to Step 7 (Synthesis of the Discriminatek). Property
Q1 is a logical consequence of the first disjunct of LA6(pcSum), but the extracted discriminant
is redundant with the already existing atoms in that disjunct. Property Q2 may be proven by
an inductive proof (which is also considered future work) to be a logical consequence of
LA6(pcSum). Again, the extracted discriminant is redundant with the already existing atoms.
Hence LA7(pcSum) is equivalent to LA6(pcSum).

Note that if property P2 were expressed as an equivalence statement, then property Q2
would also be an equivalence statement, and no synthesis would be needed. But our synthesis
mechanism doesn’t exploit such opportunities: it rather prefers to re-invent the wheel and
then verify whether it is a wheel.

This completes the synthesis of LA(pcSum). The synthesis of LA(sum) proceeds to Step 7
(Synthesis of the Discriminatek). Both properties P1 and P2 are found to be logical conse-
quences of LA6(sum), and the extracted discriminants are redundant with the already existing
atoms. Hence LA7(sum) is equivalent to LA6(sum).

This completes the synthesis of LA(sum). However, the re-discovery of add/3 for pcSum/3
is quite tedious. It would have been more elegant to immediately invoke the Proofs-as-Pro-
grams Method at Step 6 (Synthesis of the Processk and Composek), instead of the MSG
Method first. This would go as follows.

Property P1 is a logical consequence of clause C2, which is generated from the second dis-
junct of LA6(sum), but the extracted discriminant is redundant with the already existing at-
oms. Property P2 is also found to be a logical consequence of clause C2:

sum([X,Y],R) ← add(X,Y,R)

DCI: C2 ↓ {}
[X,Y]=[?_|?_] & [X,Y]=[?HL|?TL] & sum(?TL,?TS) ← add(X,Y,R)

2 × DCI: LA(=) ↓ {HL/X, TL/[Y]}
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sum([Y],?TS) ← add(X,Y,R)

DCI: P1 ↓ {TS/Y}
← add(X,Y,R)

The extracted clause is:
discSum2(L,S,HL,TL,TS) ←

L=[X,Y],S=R,
HL=X,TL=[Y],TS=Y,
add(X,Y,R)

However, the extracted clause defines ProcComp2 rather than Discriminate2. The generali-
zation heuristics of Section 13.3.2 should thus not be used here, because they are tailored for
the generalization of discriminating clauses. An adaptation of these heuristics to the gener-
alization of processing and composition clauses is straightforward, and yields here:

pcSum2(HL,TS,S) ← add(HL,TS,S)

Hence LA6(sum) is defined as follows (after some rewriting):
sum(L,S) ⇔

L=[] ∧ S=[] {E1}
∨ L=[_|_] ∧ L=[HL|TL]

∧ sum(TL,TS)
∧ add(HL,TS,S) {E2-E4}

There is no reason to re-invoke the Proofs-as-Programs Method at Step 7 (Synthesis of the
Discriminatek), because if there were a need for discriminants, they would have been synthe-
sized at Step 6. Hence LA7(sum) is equivalent to LA6(sum), which completes the synthesis of
LA(sum). ♦

14.3 A Methodology for Choosing “Good” Examples and Properties
In Section 6.2, we informally showed how to choose “good” properties, given a set of exam-
ples. The intuition was that such “good” properties are some form of disambiguating gener-
alizations of the examples. More generally, an investigation of what constitutes a “good”
example or a “good” property would lead to the formulation of a methodology for choosing
such examples and properties. Following such a methodology should cut down on the
amount of time spent on elaborating specifications, should possibly reduce to zero the
amount of interaction between the specifier and the synthesis system, and should diminish
the synthesis time, as less examples and properties have to be handled.

The formulation of such a methodology is of course influenced by the actual language for
properties, and by the actual synthesis mechanism. We here stick to the corresponding deci-
sions taken throughout Part III of this thesis: properties are here non-recursive Horn clauses
whose heads involve the specified predicate.

There naturally is a nice analogy between such a methodology for choosing examples and
the techniques of black-box test-data selection that are used in software validation. For in-
stance, [Goodenough and Gerhart 75] suggest partitioning the domain of an algorithm into a
finite number of equivalence classes (that are identified by the characteristics of the parame-
ters of the algorithm), such that the correct behavior of the algorithm on one representative
of each class will, “by induction”, test the entire class, and hence establish the correctness of
the algorithm. A more powerful technique is to choose boundary-case test-data of each
equivalence class. For instance, rather than picking the empty list and any list of length >0 as
representatives of a parameter of type list, one should pick three lists, of lengths 0, 1, and >1,
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as its boundary-cases. But both techniques still suffer from the same drawback that they sep-
arately consider each characteristic of the parameters for the identification of the equivalence
classes. So the idea is to consider all possible causality links between the characteristics of
the parameters, and to actually construct a decision table, whose columns represent more
meaningful equivalence classes, for which boundary-case test-data may then be picked.

The following is a first step towards such a methodology for choosing examples and prop-
erties. It is not formalized, and is thus reduced to a mere collection of informal guidelines
that have been discovered through experimentation with the synthesis mechanism, as well as
through our understanding of that mechanism. The methodology assists the specifier in the
choice of a complete and minimal set of examples of the intended relation, and in the gener-
alization of these examples into a complete and minimal set of properties of the intended re-
lation R:

(1) Select some inductively defined parameter (let’s call it X) among the parameters of
predicate r/n. (Note that the synthesis mechanism need not necessarily select the
same parameter as the induction parameter.)

(2) Choose examples for each legal size of X up to some size m. Whenever possible, use
different constants across the various examples. Make sure that the possible non-de-
terminism of R (given a ground value of X) is apparent in the examples. The value
of m may be determined by co-routining with the next step, but making sure that ex-
amples are chosen at least for all boundary cases.

(3) Generalize into properties, if possible, the examples where X is of a size equal to or
less than some integer n, where n is the largest size whose examples lead to proper-
ties without recursion and without repetition of information in their bodies. Set m to
n+d, where d is the decomposition decrement for X. The most useful generalization
technique is the maximally repeated application of the replacing-a-constant-by-a-
variable inductive inference rule to an example; this often requires a subsequent spe-
cialization by introduction of a body to the resulting unit clause.

This methodology abstracts away the internal apparatus of the synthesis mechanism, but al-
gorithmic and mathematical concepts such as induction parameter, size, decomposition dec-
rement, and so on, are hard to avoid in its formulation.

Note the interesting role of constants in examples: constants almost act like variables.
More precisely, within an example, the use of different constants at different positions should
reflect non-unifiability of the variables into which these constants could be turned. And the
use of the same constant at different positions should reflect unifiability, if not identity, of the
variables into which these constants could be turned. However, across several examples, the
use of different constants at the same positions should reflect their value-irrelevance, and
hence unifiability of the variables into which these constants could be turned. But unifiability
(if not identity) and non-unifiability are not all there is to say about the variables into which
the constants could be turned, because otherwise properties would have no different seman-
tics than the examples they generalize. Indeed, properties have more disambiguating expres-
sive power, in the sense that predicates other than =/2 and ≠/2 may be used in their bodies.

The methodology for choosing properties, as outlined here and in Section 6.2, shows that
it is difficult to find “good” properties without actually having to reject recursive ones. Al-
though being able to craft such recursive properties probably amounts to being able to design
the final algorithm, recursive properties should thus be allowed in specifications, especially
as an extreme case of incomplete specifications is a complete specification. Fortunately, our
synthesis mechanism is able to handle recursive properties: we have only rejected them so as
to show that they are not needed for successful algorithm synthesis, thus picking up a tougher
challenge.
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Given our perspective on formal specifications (see Section 1.2), we would like to call the
act of choosing examples and properties an act of programming by examples and properties.

14.4 The SYNAPSE System
A prototype implementation of our synthesis mechanism is being developed: it is called
SYNAPSE (short for SYNthesis of logic Algorithms from PropertieS and Examples), and is
written in portable Prolog. In Section 14.4.1, we discuss the architecture of SYNAPSE,
whereas Section 14.4.2 depicts some target scenarios of SYNAPSE at-work.

14.4.1 The Architecture of SYNAPSE

The architecture of SYNAPSE is very obvious from the technical details of the underlying
synthesis mechanism (see Chapter 12 and Chapter 13): synthesis is achieved by a sequence
of seven (mostly) non-deterministic procedures, each implementing one of the seven synthe-
sis steps. The implementation is actually based on version 4 of the divide-and-conquer sche-
ma (page 114), unlike the theoretical presentation in this thesis, which is restricted to
version 3. This means that arbitrary n-ary relations can be handled, rather than only binary
ones.

The initial input to the synthesizer is a procedure declaration (consisting of the name of
the specified predicate, and the names of the parameters), a set of examples, and a set of prop-
erties for that predicate. The theoretical aim of non-deterministically synthesizing all possi-
ble logic algorithms (by iterating over all possible induction parameters and decomposition
predicates) is rather undesirable in practice, namely because the specifier might want to hint
at personal preferences for these selections. Synthesis thus always stops at Step 2 (Synthesis
of Minimal and NonMinimal) for letting the specifier select an induction parameter, its min-
imal form, and its non-minimal form. It also always stops at Step 3 (Synthesis of Decompose)
for letting the specifier select a decomposition predicate. Of course, an entry of the corre-
sponding database that hasn’t been selected yet constitutes the default selection. For conve-
nience, synthesis also always stops at Step 4 (Syntactic introduction of the recursive atoms),
so that the specifier may declare which parameters are auxiliary parameters. A correct dec-
laration indeed tremendously speeds up the computations at Step 6 (Synthesis of the Processk
and the Composek). If the declaration is correct, but not complete (in the sense that some, if
not all, auxiliary parameters are not declared as such), then synthesis proceeds correctly, but
doesn’t acquire the maximal possible speed-up. If the declaration is incorrect, then synthesis
fails at some later step. The default is that only the parameters of non-inductively defined
types are auxiliary parameters. All these optional specifier interventions may be cut off by
switching from the default manual mode to the automatic mode.

The synthesis mechanism, as described in the previous two chapters, does not prescribe
any mandatory dialogue with the specifier. But we concluded with the recommendation that
any serious implementation of that mechanism should interact with the specifier whenever it
applies one of the listed heuristics, or whenever all the mechanized methods yield unsatis-
factory results on a specific task. The corresponding dialogues have however not yet been ful-
ly worked out (according to the guidelines of Section 11.1), and should be the object of future
research for extending the current SYNAPSE implementation. Moreover, in order to quickly
complete this first prototype implementation, several mechanizable computations have been
replaced by queries to the specifier, although these interactions do not at all follow the men-
tioned guidelines. For instance, the computation (at Steps 4 to 6) of substitutions that render
3-tuples admissible is currently oracle-based, rather than automated. But these are restric-
tions of the implementation, not of the power of the underlying synthesis mechanism.
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The output of the synthesizer is (besides the questions to the specifier) a possibly empty
set of successfully designed logic algorithms. Indeed, the non-determinism of some synthe-
sis steps makes the whole synthesis mechanism a non-deterministic mechanism. For debug-
ging purposes, or for otherwise motivated inspections, SYNAPSE may even be switched to
the think-aloud mode, where it prints out all the taken decisions, as well as all intermediate
logic algorithms (of Steps 1 to 6). The default is the quiet mode. The printed-out logic algo-
rithms are in canonical representation with respect to (version 4 of) the divide-and-conquer
schema. Whereas the universal variables have the names given to them by the specifier in the
procedure declaration (and are thus meaningful to the specifier), the existential variables
have names invented by the synthesizer. However, the underlying divide-and-conquer strat-
egy suggests a very useful naming scheme for these existential variables: the names of the
heads (respectively, tails) of some parameter are prefixed by the letter “H” (respectively,
“T”), and suffixed by a running number. The synthesized logic algorithms are thus actually
in human-readable form, even though a machine-readable form would be sufficient in an ide-
al automatic programming setting where the output is only executed, but not inspected or de-
bugged. Logic algorithms are not executable, but they are easily translated into, say, Prolog
programs, so that they may be executed and thus tested. However, the synthesized logic al-
gorithms are subject to many transformation and optimization opportunities before they
should undergo such an implementation step: SYNAPSE is but a component of the software
engineering chain, and should thus not be seen as a stand-alone system.

Particular care was taken to make SYNAPSE a clean meta-program (a program that ma-
nipulates or generates programs). Object-level variables (the variables of the designed logic
algorithms) thus have a representation that is different from the one of meta-level variables
(the variables of the synthesizer), even though this is a quite hard decision to stick to in most
Prolog dialects. Indeed, the price to pay is the re-implementation of many Prolog features
such as resolution, unification, the application and composition of substitutions, and so on,
and hence a significant slowdown of synthesis. But the benefit would be that no use is made
of Prolog’s “impure” predicates, such as var/1, ==/2, call/1, assert/1, retract/1, clause/2, …,
and hence the existence of a clean semantics of the meta-program. The chosen representation
of object-level variables is a ground representation, because a typed representation would be
insufficient here, if not even harder to achieve. However, for reasons of speeding up the SYN-
APSE implementation process, we have sometimes preferred to take a leave from this strict
objective (namely by writing procedures that translate object-level formulas into meta-level
formulas, so that predicates such as call/1 and setof/3 may be used). A better solution than
fixing this would definitely be to re-implement the entire SYNAPSE system in a (logic) pro-
gramming language that does have clean second-order programming facilities, such as Gödel
[Hill and Lloyd 91].

The current SYNAPSE prototype features type inference for proposing default instances
at Steps 2 and 3. It has fully automatic implementations of Step 1, of the ground case of the
MSG Method (Step 6), and of the Proofs-as-Programs Method (Step 7). It provides semi-au-
tomatic implementations of Steps 4 and 5, and of the non-ground case of the MSG Method
(Step 6).

14.4.2 Target Scenarios for SYNAPSE

We now list a few synthesis scenarios that SYNAPSE was targeted to reproduce. Pending the
future extensions of the current prototype, these scenarios may not all already be obtained,
but the synthesis mechanism is powerful enough to handle these problems. The used prob-
lems range from easy (plateau/3) to moderately difficult (efface/3) to intricate (sort/2). All
the given syntheses are in quiet and manual mode.
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Example 14-7: As a reminder, plateau(N,E,P) holds iff P is a plateau of N elements equal
to E, where N is a positive integer, E a term, and P a non-empty list. The synthesis dialogue
proceeds as follows (the actual dialogue is printed in the Courier font: synthesizer output
precedes colons, whereas user input follows colons; the default answers to questions are
between curly braces; comments on the synthesis are printed in the Times font):
Procedure declaration: plateau(N,E,P)
Example:  plateau(1,a,[a])
Example:  plateau(2,b,[b,b])
Example:  plateau(3,c,[,c,c,c])
Example:
Property: plateau(1,X,[X])
Property: plateau(2,Y,[Y,Y])
Property:

This ends the specification acquisition. Synthesis now starts with the expansion phase
(Steps 1 to 4), and asks for the specifier’s preferences (because the manual mode is on):
Induction parameter {N}: N
Minimal {N=s(0)}: N=s(0)
NonMinimal {N=s(s(_))}: N=s(s(_))
Decompose {N=s(TN) ∧ HN=N}: N=s(TN) ∧ HN=N
List of auxiliary parameters {[E]}: [E]

The specifier accepts all the default selections. Synthesis now goes fully automatically
through the reduction phase (Steps 5 to 7), and yields:
LA(plateau) is
plateau(N,E,P) ⇔

N=s(0) ∧ E=_ ∧ P=[E]
∨ N=s(s(_)) ∧ N=s(TN) ∧ HN=N

∧ true
∧ plateau(TN,E,TP)
∧ P=[E|TP] ∧ HN=s(s(_)) ∧ TP=[_|_]

This logic algorithm is totally correct wrt the intended relation. Quite a few atoms can be sim-
plified away (the last two, for instance). ♦

Example 14-8: As a reminder, efface(E,L,R) holds iff R is L without its first (existing)
occurrence of E, where E is a term, L is a non-empty list, and R is a list. The synthesis
dialogue proceeds as follows:
Procedure declaration: efface(E,L,R)
Example:  efface(a,[a],[])
Example:  efface(b,[b,c],[c])
Example:  efface(e,[d,e],[d])
Example:  efface(f,[f,g,h],[g,h])
Example:  efface(j,[i,j,k],[i,k])
Example:  efface(p,[m,n,p],[m,n])
Example:
Property: efface(X,[X],[])
Property: efface(X,[X,Y],[Y])
Property: efface(X,[Y,X],[Y]) ⇐ X≠Y
Property:
Induction parameter {L}: L
Minimal {L=[_]}: L=[_]
NonMinimal {L=[_,_|_]}: L=[_,_|_]
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Decompose {L=[HL|TL]}: L=[HL|TL]
List of auxiliary parameters {[E]}: [E]
LA(efface) is

efface(E,L,R) ⇔
L=[_] ∧ L=[HL] ∧ HL=E ∧ R=[]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ HL=E
∧ R=TL

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ HL≠E
∧ efface(E,TL,TR)
∧ R=[HL|TR]

This logic algorithm is totally correct wrt the intended relation. The main obstacle is the de-
tection that recursion is useless in the second disjunct. ♦

Example 14-9: As a reminder, sort(L,S) holds iff S is an ascendingly ordered permutation
of L, where L, S are integer lists. The synthesis dialogue proceeds as follows:
Procedure declaration: sort(L,S)
Example:  sort([],[])
Example:  sort([1],[1])
Example:  sort([2,3],[2,3])
Example:  sort([3,2],[2,3])
Example:  sort([4,5,6],[4,5,6])
Example:  sort([4,6,5],[4,5,6])
Example:  sort([5,4,6],[4,5,6])
Example:  sort([5,6,4],[4,5,6])
Example:  sort([6,4,5],[4,5,6])
Example:  sort([6,5,4],[4,5,6])
Example:
Property: sort([X],[X])
Property: sort([X,Y],[X,Y]) ⇐ X≤Y
Property: sort([X,Y],[Y,X]) ⇐ X>Y
Property:
Induction parameter {L}: L
Minimal {L=[]}: L=[]
NonMinimal {L=[_|_]}: L=[_|_]
Decompose {L=[HL|TL]}: L=[HL|TL]
List of auxiliary parameters {[]}: []
LA(sort) is

sort(L,S) ⇔
L=[] ∧ S=[]

∨ L=[_|_] ∧ L=[HL|TL]
∧ true
∧ sort(TL,TS)
∧ insert(HL,TS,S)

where
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insert(E,L,R) ⇔
L=[] ∧ E=_ ∧ R=[E]

∨ L=[_|_] ∧ L=[HL|TL]
∧ HL≥E
∧ E=_ ∧ R=[E|L]

∨ L=[_|_] ∧ L=[HL|TL]
∧ HL<E
∧ insert(E,TL,TR)
∧ R=[HL|TR]

This is the so-called Insertion-Sort algorithm. It is non-trivial in the sense that a new predi-
cate, here for convenience called insert/3, needs to be invented from scratch. Moreover, this
sub-synthesis needs to be done in totally automatic mode, as the specifier is not supposed to
be able to answer questions about such invented predicates.

Synthesis then backtracks to the last choice-point (at Step 3 in this case), in its search for
alternative logic algorithms:
Backtracking...
Decompose {firstPlateau(L,HL,TL)}:

L=[HL|T] ∧ partition(T,HL,TL1,TL2)
List of auxiliary parameters {[]}: []
LA(sort) is

sort(L,S) ⇔
L=[] ∧ S=[]

∨ L=[_|_] ∧ L=[HL|T] ∧ partition(T,HL,TL1,TL2)
∧ true
∧ sort(TL1,TS1) ∧ sort(TL2,TS2)
∧ pcSort(HL,TS1,TS2,S)

where

pcSort(A,L1,L2,R) ⇔
L1=[] ∧ R=[A|L2]

∨ L1=[_|_] ∧ L1=[HL1|TL1]
∧ true
∧ pcSort(A,TL1,TL2,TR)
∧ L2=TL2 ∧ R=[HL1|TR]

This is the so-called Quick-Sort algorithm. It is non-trivial in the sense that a new predicate,
called pcSort/3, needs to be invented from scratch. It is however obvious that:

pcSort(A,L1,L2,R)⇔ append(L1,[A|L2],R)

Again, this sub-synthesis needs to be done in totally automatic mode. Hence, the fact that L2
actually also is an auxiliary parameter of pcSort/3, just like A, cannot be declared, and is only
detected as such after this sub-synthesis has been completed.

Synthesis then backtracks to the last choice-point (again at Step 3 in this case), in its
search for alternative logic algorithms:
Backtracking...
Decompose {firstPlateau(L,HL,TL)}: split(L,TL1,TL2)
List of auxiliary parameters {[]}: []
LA(sort) is
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sort(L,S) ⇔
L=[] ∧ S=[]

∨ L=[_|_] ∧ split(L,TL1,TL2)
∧ true
∧ sort(TL1,TS1) ∧ sort(TL2,TS2)
∧ merge(TS1,TS2,S)

where
merge(A,B,C) ⇔

C=[] ∧ A=[] ∧ B=[]
∨ C=[_|_] ∧ C=[HC|TC]

∧ (TC=[]) ∨ (TC=[HTC|_] ∧ HC≤HTC)
∧ merge(TA,TB,TC)
∧ A=TA ∧ B=[HC|TB]

∨ C=[_|_] ∧ C=[HC|TC]
∧ (TC=[]) ∨ (TC=[HTC|_] ∧ HC>HTC)
∧ merge(TA,TB,TC)
∧ A=[HC|TA] ∧ B=TB

This is the so-called Merge-Sort algorithm. It is non-trivial in the sense that a new predicate,
here conveniently called merge/3 rather than pcSort/3, needs to be invented from scratch. ♦

14.5 Evaluation
Our synthesis mechanism builds upon a wide variety of ideas found in algorithm design, in-
ductive inference, deductive inference, theorem proving, and so on. Thus, as the sections on
related work have shown, specifications by examples and properties (see Chapter 6), the use
of algorithm schemas (see Chapter 8), and the use of theorem proving and constructive logics
for inferring preconditions (see Chapter 9) are not necessarily new ideas (to algorithm syn-
thesis). But they are here combined in a novel way, and this together with some other new
results. The main contributions of this thesis are thus the formulation of a general framework
for the stepwise synthesis of logic algorithms (see Chapter 7), the development of a new
method for inferring (in a specific setting) non-recursive logic algorithms from examples (see
Chapter 10), and the combination of all these ideas for the development of a schema-guided
logic algorithm synthesis mechanism from examples and properties (see Chapter 12 and
Chapter 13).

First, in Section 14.5.1, we provide a loose collection of insights into our synthesis mech-
anism, and then, in Section 14.5.2, we compare its performance to some related systems.

14.5.1 Insights

The planned use of our synthesis mechanism is for situations where only fragmentary infor-
mation is available about the intended relation, or where the specifier is unwilling (if not un-
able) to come up with a more precise description of the intended relation. By the phrase
“incomplete specifications”, we thus mean specifications where some information about the
intended relation is deliberately withheld, but where the synthesis expected to extrapolate
that information. We thus exclude incomplete specifications in the sense of evolutionary
specifications, where one also deliberately withholds some information, but without expect-
ing any extrapolation. The idea there is to gradually refine an algorithm by adding function-
alities to its specification, hence continuously upgrading the intentions.

Although our synthesis mechanism is non-incremental in its handling of the examples and
properties, it may of course be used in an incremental fashion. This amounts to presenting
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increasingly large specifications of the same intended relation to the synthesis mechanism.
In our case, the latter always starts from scratch, for fear of missing a possibly more elegant
or efficient algorithm by patching the previous one. However, incremental handling of exam-
ples and properties need not always amount to a patchwork approach, so this non-conserva-
tive attitude is not always justified. Replay information should thus be gathered during
synthesis, so as to allow quicker decision-taking during a new synthesis.

With our specification approach, a single problem is specified, and a single logic algo-
rithm is synthesized, at each time. The other predicates used in the specification are assumed
to be primitives and to have correct logic algorithms available. This is an assumption that is
not made systematically by the machine learning and inductive logic programming commu-
nities, where multiple related concepts may sometimes be learned simultaneously. Of course,
the invention of new sub-problems and the synthesis of logic algorithms therefore (see
Section 14.2.4) slightly alleviate this apparent drawback.

Even in programming-in-the-small, it is sometimes necessary to compose several small
algorithms of different schemas before obtaining an algorithm for the overall problem. In this
sense, the solution proposed by this thesis (namely focus on the divide-and-conquer schema)
seems somewhat restricted. However, our vision of a synthesis system as a collection of sev-
eral schema-dedicated systems or, even better, as a workbench with a schema-driven system
coupled to a tool-box of schema-independent methods, shows a way of tackling this restric-
tion. Moreover, there seems to be very little knowledge about how to automate such algo-
rithm decomposition and composition anyway. So this aspect seems a likely candidate for
human very-high-level intervention, and our synthesis mechanism should be seen as a com-
ponent of such a global solution to algorithm synthesis. The here targeted class of algorithms,
namely divide-and-conquer algorithms, is a very important and large class.

Another restriction of our synthesis mechanism is that no parameters (such as accumula-
tors) can be added to the specified predicate, and that the types of parameters cannot be gen-
eralized. For instance, the reverse(L,R) relation cannot be generalized into the reverse(L,R,A)
relation (where R is the concatenation of A and the reversed list of L), although this would
lead to a more efficient algorithm than the so-called naive one. Or the flatTree(T,L) relation
(where L is a list containing the elements of binary-tree T traversed in an infix manner) can-
not be generalized into the flatTree(Ts,L) relation (where L is a list containing the concatena-
tion of the flattened elements of the binary-tree-list Ts), although this would lead to a more
efficient algorithm. These generalization processes are called computational generalization
and structural generalization, respectively. The motivation behind such generalization pro-
cesses is that, somewhat paradoxically, the generalized relation is often easier to implement,
and that the resulting generalized algorithm is often more efficient on the initial relation than
an algorithm directly designed for this initial relation. Our synthesis mechanism cannot per-
form such a generalization. However, it seems possible to acquire a specification by exam-
ples and properties of the generalized relation by (semi-)automatic derivation from the
specification of the initial relation, using generalization schemas. See [Deville 90] for a dis-
cussion of such schemas, and for ways of automating the discovery of the needed “eureka”.

An extreme case of incomplete specifications are complete specifications! And our syn-
thesis mechanism is actually able to handle such complete specifications (such as properties
with recursion). However, given a complete specification under the form of a correct definite
logic program, our synthesis mechanism is only likely to rediscover the corresponding logic
algorithm if the selected decomposition predicate is available to it. Pushing the idea of allow-
ing (almost-)complete specifications further, one could even imagine using our synthesis
mechanism for some form of “redundant (logic) programming”, where the specifier provides
examples plus any kind of properties (possibly including a correct definite program), and
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where synthesis either yields an algorithm or detects an inconsistency within the specifica-
tion (and is thus unable to design an algorithm).

The use of the logic programming framework, and hence its preference over other pro-
gramming frameworks (such as the functional, object-oriented, or imperative paradigms), is
justified by its enabling a semantic and syntactic continuity from the specification language
(relational facts and Horn clauses) to the logic algorithm language (equivalence statements
with disjunctive normal form formulas in the right-hand side) to the logic program language
(definite clauses, in the case of Prolog). Moreover, especially the Proofs-as-Programs Meth-
od has a particularly elegant formulation in the logic programming framework.

14.5.2 Comparison with Related Systems

We have no empirical data (synthesis times, example consumption, …) yet about a compar-
ison between SYNAPSE and its related systems, such as MIS [Shapiro 82], CLINT [de Raedt
and Bruynooghe 89], FOIL [Quinlan 90], or the other model-based systems of the ILP com-
munity (see Section 3.4), or the trace-based systems of the LISP community (see
Section 3.3). But we may make some predictions by comparing the underlying synthesis
mechanisms instead. This requires some analysis first.

The big advantage of ILP systems is their flexibility: literally any logic program can be
learned20 from examples alone. Sometimes, for instance in MIS, the price to pay is however
the development of a new clause refinement operator for each new class of programs. The
existing systems have greatly varying voraciousness in terms of example consumption, (hu-
man) oracle solicitation, and time complexity. But the main point is that their generality of
scope is at the same time their limitation. Indeed, these learning mechanisms have no under-
standing of what they are learning, and the learning process thus often resembles a rather un-
disciplined patchwork approach. For instance, when MIS (equipped with the eager search
strategy) synthesizes the Insertion-Sort algorithm (including the synthesis of the insert/3
predicate), a total of 238 clauses is reported by [Shapiro 82] to be tested before identifying
the 5 correct ones. And it must be said that the search space is well-organized. More recent
systems have of course improved upon these figures, but the search is still rather blind.

It also appears that these ILP learners are mostly used in what we would like to call the
teacher/learner setting, where a teacher provides a learner with examples and (almost) ex-
actly the background knowledge that is necessary for successful learning. This requires the
teacher to know the targeted logic program, or to at least suspect which predicates might be
useful (otherwise, s/he wouldn’t be a teacher after all). For instance, in the above-mentioned
synthesis of the Insertion-Sort algorithm, the choice of the examples seems to be very much
guided by insights about what is wrong with the currently designed algorithm, rather than by
what would be universally “good” examples, whatever the obtained sorting algorithm. Or,
even worse, the synthesis of the Quick-Sort algorithm is often “forced” by the provision of
the partition/4 predicate as the only background knowledge to the specification by examples
for the sorting problem. The search space is thus pre-enumerated. However, this setting is not
always realistic, and the reported performances of the developed learners are greatly biased
by it. Indeed, these performances would simply crumble away in what we would like to call
the specifier/synthesizer setting, where a specifier provides a synthesizer with any examples
and with a lot of background knowledge. In this setting, the synthesizer is expected to come
up with algorithms, as the specifier may have no, or little, ideas about how to do this (other-
wise, s/he wouldn’t use a synthesizer after all). Constructive induction (predicate invention)
is then crucial, rather than an option. If the Quick-Sort algorithm is synthesized from a sort-
20. For ILP systems, we prefer “learning” over “synthesis”, as we reserved the latter terminology for the learn-

ing of (recursive) algorithms/programs.
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ing specification, that’s great; and if it’s “only” the Insertion-Sort algorithm, that’s still fine.
Ideally, a whole family of equivalent algorithms should however be synthesized from a given
specification.

Although the ILP community has tremendously improved the quality of machine learning
research (because the underlying logic framework is much cleaner than most custom-made
frameworks, and because of the use of a very small set of inductive inference rules, rather
than of a large arsenal of custom-made rules), we recommend breaking up ILP research into
several domains. One of these domains is recursive logic program synthesis, and is the object
of this dissertation. This domain is very important, and is, as shown by Table 3-1, sufficiently
more specific than the general setting to deserve some very dedicated research. The objective
of this separation of concerns is to get a tighter theoretical grip on the learning of the targeted
class of concepts (relations in our case), and the introduction of more discipline into the
learning process.

A few researchers have tackled the lack of discipline in the synthesis of recursive logic
programs from examples: for instance, [Tinkham 90] and [Sterling and Kirschenbaum 91]
investigate the use of schemas to guide synthesis. Curiously, the now virtually defunct re-
search on trace-based synthesis of functional programs from examples [Summers 77] [Bier-
mann 78] did not suffer from such a marked lack of discipline, even though this research
preceded ILP research.

The idea of this thesis was to introduce discipline into the synthesis of recursive logic pro-
grams (the chosen sub-domain of ILP), and this by making knowledge available to the syn-
thesizer in a well-structured way. This is clearly within the recent trend of cross-fertilizing
empirical and analytical learning. First, algorithms knowledge is provided by means of an
algorithm schema; this aspect is usually missing in ILP research. Second, more algorithms
knowledge is made available by databases of useful instances for some of the predicate vari-
ables of a schema; this is roughly equivalent to the background knowledge used in ILP, but
our structured approach doesn’t suffer from a performance degradation in the specifier/syn-
thesizer setting. Third, problem-related knowledge is given by the specifier under the form
of properties, which are disambiguating generalizations of examples; this is again roughly
equivalent to background knowledge, but our approach directly links this knowledge to the
specified predicate, and thus allows the preservation of such associations.

As a conclusion, our synthesis mechanism has by construction a much smaller scope than
the more general ILP systems (recursive logic programs rather than logic programs), but due
to the thus possible usage of a very disciplined approach based on schema-guidance, and due
to the availability of disambiguating properties, it is to be expected that our synthesis mech-
anism behaves better than ILP systems on the class of recursive logic programs. The im-
provement should be especially dramatic in the specifier/synthesizer setting. Considering
that ILP systems are known to have an example consumption similar to trace-based systems
(except for Biermann’s system, which usually makes do with a single example) and to exhibit
an improvement in terms of time complexity over these systems, it is by transitivity also to
be expected that our synthesis mechanism improves upon these older systems as well. In oth-
er words: SYNAPSE does less, but it does it better!
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Conclusion

In this thesis, we tackled the problem of logic algorithm synthesis from specifications by ex-
amples and properties, so as to illustrate our claim that program synthesis can be effectively
performed by successively filling in the place-holders of some algorithm schema, each such
instantiation being done by deploying the best-suited method of a generic tool-box of (induc-
tive, deductive, …) methods.

Synthesis here started from incomplete specifications, in the sense that we deliberately ad-
mitted a lack of information in the specification with respect to the intentions: synthesis was
meant to extrapolate these intentions. The developed specification formalism was a compro-
mise between specifications by examples and axiomatic specifications, because examples of
the intended relation were required, as well as properties (a specialized form of axioms, but
also a generalized form of examples). These properties were added to disambiguate the ex-
amples. This specification approach was predicted to allow faster and more reliable synthesis
than from examples alone, but also shown to allow more natural and understandable specifi-
cations than first-order logic axiomatizations.

The chosen programming paradigm was logic programming, but we were only interested
in synthesizing recursive logic programs, which we called logic algorithms. Moreover, the
focus was on the actual algorithm synthesis, and on the declarative semantics of such logic
algorithms, but not at all on their transformation, optimization, or implementation.

In order to have a firm theoretical grip on the effectiveness of the synthesis, we developed
a set of correctness criteria and algorithm comparison criteria, so as to have a framework for
the elaboration of stepwise synthesis strategies. A particular such strategy, based on a non-
incremental presentation of the examples and properties, was then discussed in detail.

The aim of decomposing algorithm synthesis into a succession of well-defined software
engineering tasks brought us to the notion of algorithm schemas, because schema-guidance
is a very powerful way to inject algorithm knowledge into synthesis, and hence to reduce
search spaces. We exclusively focussed on the divide-and-conquer schema, and identified its
place-holders.

We then suggested that synthesis need not be done by a unique mechanism in one pass,
nor by a decomposition into sub-tasks that are all performed using the same kind of reason-
ing. Therefore, we developed a generic tool-box of methods for instantiating place-holders
of algorithm schemas: one method performs inductive reasoning, another method performs
deductive reasoning, yet another method simply retrieves instances from a database of
known-to-be-useful instances. The input to these methods is (a part of) the specification as
well as the algorithm synthesized so far.

We finally illustrated our claim of effective stepwise algorithm synthesis via schema-guid-
ance and tool-box usage by finding a convenient mapping between the identified place-hold-
ers of the divide-and-conquer schema and the methods of the developed tool-box. This
mapping is at the heart of our mechanism for synthesizing logic algorithms from specifica-
tions by examples and properties.

Compared to related systems, such as those of ILP (Inductive Logic Programming) re-
search, our synthesis mechanism features a smaller scope (recursive logic programs rather
than any logic programs), but also a much more disciplined approach, due to its schema-
guidance, well-structured knowledge provision, augmented specifications, and use of the
best-suited method of a tool-box for each sub-task. In other words, the pragmatic restriction
of scope allowed us to achieve better results on the class of recursive logic programs.
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Conventions
Here follows the complete list of the used typographic conventions, abbreviations, and pre-
defined symbols.

Typographic conventions

Function symbols (functors) and predicate symbols start with a lower-case letter. We often
write them out followed by a slash “/” and their arity. Examples are a/0, f/2, and p/3. Excep-
tions are some primitive symbols, such as =/2, </2, and •/2. Functors of arity 0 are called con-
stants. By abuse of language, we often say “predicate” instead of “predicate symbol”.
Variable symbols, function variable symbols, and predicate variable symbols start with an
upper case letter. Examples are X, F, and P. An anonymous variable is denoted by an under-
score “_”. Schema variable symbols and notation variable symbols consist of a lower-case
letter. Examples are i, j, k, m, and n. The distinction with one-letter constants should always
be obvious from context. By abuse of language, we often say “variable” instead of “variable
symbol”.

Terms and atoms are usually written in prefix notation. If no ambiguity arises, unary terms
and atoms are sometimes written without parentheses, while binary terms and atoms are
sometimes written in infix notation.

A constructed list with head H and tail T is denoted H•T, whereas nil denotes the empty
list. Another notation for a constructed list with head H and tail T is [H|T], whereas [] is an-
other notation for the empty list. These alternative notations allow shorthands such as
[H1,H2,…,Hn] for •(H1,•(H2,•(…,•(Hn,nil)…))), and [H1,H2,…,Hn|T] for
•(H1,•(H2,•(…,•(Hn,T)…))), where n>0.

Non-negative integers are successors of the constant zero, which is denoted 0. The se-
quence of integers is 0, s(0), s(s(0)), …, sn(0), …, where s/1 is called the successor functor.
Shorthands are 0, 1, 2, …, n, …, respectively.

Variable symbols, predicate variable symbols, functors, and predicate symbols within text
paragraphs are written in Times-italics. However, entirely formalized paragraphs, such as
specifications, (logic) algorithms, and (logic) programs, are written in Courier.

Term vectors and variable vectors of indeterminate, but finite, length are denoted by bold-
face symbols. Examples are t and X. Vectors of vectors of indeterminate, but finite, length
are denoted by underlined boldface symbols. Examples are t and X. Given an integer n, an
n-tuple of length n is written using angled brackets. An example is <t1,t2,…,tn>. Note that an
n-tuple is a term, whereas a vector is not a term.

Names of sets or relations start with an upper-case letter, and are written in Zapf. An ex-
ample is R. Exceptions are some primitive symbols, such as =/2, </2, and ∈/2. The predicate
symbol corresponding to a relation is the name of the relation, but it then starts with a lower-
case letter, and is written in Times-italics. For instance, r is the predicate symbol for relation
R. The complement of a relation has the same name as the relation itself, but crossed out by
a slash “/”, if the name is a primitive symbol, and overlined, otherwise.

The binding of a term t to a variable X is denoted X/t. Substitutions are denoted by Greek
lower-case letters. Examples are σ, ρ, and θ.

The construct F[X] denotes a well-formed formula F whose free variables are X. The con-
struct F[t] then denotes F[X] where the free occurrences of X are replaced by the terms t. The
boldface construct r(s,t) denotes a finite conjunction r(s1,t1) ∧ r(s2,t2) ∧ … ∧ r(sn,tn).

The end of a multi-paragraph example is indicated by a black diamond: ♦.
The end of a proof is indicated by a quad: ❏.
Emphasized words are underlined. Defined words are in italics.
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Abbreviations

General abbreviations
iff if and only if
N/A non-applicable
wrt with respect to
v(n):p–q volume v, number n, pages p–q

Scientific abbreviations
AI Artificial Intelligence
BNF Backus-Naur Form
DCI Definite Clause Inference
EBG Explanation-Based Generalization
EBL Explanation-Based Learning
gci greatest common instance
glb greatest lower bound
ILP Inductive Logic Programming
LA Logic Algorithm
LP Logic Program
lub least upper bound
mgu most general unifier
ML Machine Learning
msg most specific generalization
NF Negation-as-Failure
NFI Negation-as-Failure Inference
Sim Simplification inference
SL resolution Linear resolution with Selection Function
SLD resolution SL resolution for Definite clauses
SLDNF resolution SLD resolution with the NF rule
Spec specification
SYNAPSE SYNthesis of logic Algorithms from PropertieS and Examples
wff well-formed formula
wfr well-founded relation

Glossary of Symbols

Sets
A the set of atoms constructed from Q and T
B the Herbrand base (that is the set of ground atoms constructed

from Q and U); B ⊆ A
C the set of predefined base case constants of inductively defined

data types; C ⊆ F; C is here assumed to be {0, nil}
E(r) a set of examples of predicate r
F the set of functors
G(r) a set of general examples of predicate r
ℑ the intended interpretation
I, J, K, L index sets
L(r) the set of logic algorithms for predicate r; L(r) ⊆ W
M(r) the set of possibly infinite logic algorithms for predicate r
P(r) a set of properties of predicate r
Q the set of predicate symbols (F ≠ Q)
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R the intended relation
T the set of terms constructed from F and V
U the Herbrand universe (that is the set of ground terms constructed

from F); U ⊆ T
V the set of variable symbols
W the set of wff constructed from A and V

Constants
f the number of steps of a synthesis mechanism
m the number of (general) examples: m = #E(r), or m = #G(r)
nil or [] the empty list
p the number of properties: p = #P(r)
ω infinity
0 the integer zero
∅ or {} the empty set

Functors of arity n, where n>0
cons(E) the set of constants occurring in expression E
dom(r) the domain of a procedure for predicate r: dom(r) ⊆ U
dom(σ) the domain of substitution σ: dom(σ) ⊆ V
funct(E) the set of functors occurring in expression E
msg(s,t) the most specific generalization of terms s and t
P(S) the set of subsets of set S
range(σ) the range of a substitution σ: range(σ) ⊆ T
s(i) the successor of integer i
vars(E) the set of variables occurring in expression E
#S the number of elements of set S, or of vector S
H•T the list constructed of head H and tail T
S1 ∪ S2 the union of the sets S1 and S2
S1 ∩ S2 the intersection of the sets S1 and S2
S1 \ S2 the difference of the sets S1 and S2

First-order variables of (version 3 of) the divide-and-conquer schema
X the induction parameter
Y the other parameter
HX the heads of X
HY the heads of Y
TX the tails of X
TY the tails of Y

Schema variables of (version 3 of) the divide-and-conquer schema
c the number of sub-cases of the non-minimal case: c = v + w
d the decomposition decrement: d ≥ 1
h the number of heads of X: h = #HX
h' the number of heads of Y: h' = #HY
n the arity of r
t the number of tails of X and Y: t = #TX = #TY
u the position of the induction parameter within an atom of r/n
v the number of sub-cases of the non-recursive case
w the number of sub-cases of the recursive case

Primitive predicates
false/0 never holds
true/0 always holds
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s = t term s is unifiable with term t
s ≤ t term s is less general than term t, or integer s is less than or equal

to integer t (according to context)
e ∈ S term e is an element of set S
S1 ⊆ S2 set S1 is a subset of set S2

Connectives for logic algorithms, logic algorithm schemas, properties, and implicative goals
∀ for all (universal quantification)
∃ there is (existential quantification)
¬ not (negation)
∨ inclusive or
∨⋅ exclusive or
∧ and
⇒ implies
⇐ if
⇔ if-and-only-if
∨a≤i≤b Fi Fa ∨ Fa+1 ∨ … ∨ Fb, if b ≥ a, and false otherwise
∧a≤i≤b Fi Fa ∧ Fa+1 ∧ … ∧ Fb, if b ≥ a, and true otherwise

More conventions for implicative goals
❏ the empty implicative goal
?X an undecided variable X
Y a free variable Y

Connectives for logic programs
, and
← if

Logic algorithms
⊥r , Tr bottom, top of the logic algorithm lattice (M(r), ≤)
≤, ≥, ≅ is semantically less general than, more general than, equivalent to
«, », ≈ is syntactically less general than, more general than, equivalent to
exp/3 expansion function, relative an example set and an oracle
gen/2 syntactic generalization relation
spec/2 syntactic specialization relation

Meta-logical connectives
|== Herbrand-logical consequence
|— derivability

Precedence hierarchy (highest-to-lowest) of the wff connectives

 ¬, ∀, ∃
∨, ∨⋅
∧
⇐, ⇒, ⇔
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