
O P T I M I Z AT I O N A P P R O A C H E S F O R V E H I C L E
R O U T I N G P R O B L E M S W I T H B L A C K B O X

F E A S I B I L I T Y

florence massen

Thesis submitted in partial fulfillment of the requirements for the Degree of
Doctor in Applied Sciences

August 2013

Institute of Information and Communication Technologies,
Electronics and Applied Mathematics

Louvain School of Engineering
Louvain-la-Neuve

Belgium

Thesis Committee:

Yves Deville (director) Université catholique de Louvain, Belgium

Karl Dörner Johannes Kepler Universität, Austria

Charles Pecheur Université catholique de Louvain, Belgium

Pascal Van Hentenryck University of Melbourne, Australia

Peter Van Roy (president) Université catholique de Louvain, Belgium

A B S T R A C T

Vehicle Routing Problems are concerned with determining how a set
of vehicles can visit a set of customers while minimizing some ob-
jective. Rich Vehicle Routing Problems combine different real-world
constraints in a same problem. In a subclass of these rich problems, a
simple Vehicle Routing Problem is rendered more difficult by adding
a complicated side-problem that must be solved in order to verify the
feasibility of a route. Examples of such problems are Vehicle Rout-
ing Problems with loading constraints, where for each route a loading
problem must be solved. Another example are Vehicle Routing Prob-
lems with Time Windows and scheduling constraints, where for each
route a scheduling problem must be solved.

Existing optimization approaches for such problems make use of
very specific knowledge of the side-problem that is to be solved for
each route. The goal of this thesis is to devise optimization meth-
ods for this type of Vehicle Routing Problems, which are as indepen-
dent as possible from the side-problem being solved per route. This
is achieved, by introducing an abstract problem, the Vehicle Routing
Problem with Black Box Feasibility. In this problem, each route must
satisfy a set of hidden constraints. A black box function is provided, to
test whether a given route respects the hidden constraints. No insight
into this function is possible.

This thesis proposes three different optimization approaches for the
Vehicle Routing Problem with Black Box Feasibility. They are all based

iii

on the principle of reformulating the problem as a Set Partitioning
Problem. This means that a set of feasible routes must be generated. A
final feasible solution to the Vehicle Routing Problem with Black Box
Feasibility is obtained by selecting a subset of these routes. This must
be done such that the selected routes can be combined into a feasible
solution to the Vehicle Routing Problem with Black Box Feasibility and
such that the resulting solution minimizes the given objective.
The first approach, Pheromone-based Heuristic Column Generation,
combines concepts from Ant Colony Optimization and Column Gen-
eration. The idea is to use the information from intermediary non-
integral solutions of the Set Partitioning Problem to learn which arcs
are more likely to appear in high-quality, feasible routes. This infor-
mation is then employed in the generation of new feasible routes. A
definitive solution to the Vehicle Routing Problem with Black Box Fea-
sibility is obtained using a standard solver.
The second approach, Dive & Generate, combines the ideas of Back-
tracking, Heuristic Pruning and Restarts with a known primal heuris-
tic. Here a set of solutions to the Vehicle Routing Problem with Black
Box Feasibility is obtained by traversing a tree. At each level of this
tree a specific route is added to the current partial solution. At selected
nodes, the dual information from intermediary non-integral solutions
to the Set Partitioning Problem is used to generate feasible routes that
have the potential to improve this same solution.
The third approach, Heuristic Branch & Price also uses dual informa-
tion in the process of generating feasible routes. Again, a set of so-
lutions is obtained in the traversal of a binary tree. At each level a
specific route feature is selected and will be forced to appear in the
current partial solution on one node, and forbidden to do so on the
sibling node.
Finally the use of these three methods in a decomposition-based ap-
proach is proposed.

Iterated F-Race, an automatic algorithm configuration procedure,
has been used on the Pheromone-based Heuristic Column Generation
approach, allowing to identify high-performing configurations and to
do a basic impact analysis of the different components and parameters
of this method.

The proposed approaches have been implemented into a coherent
system which is available for download under the LGPL license at

iv

http://becool.info.ucl.ac.be/resources/VRPBB. They are evalua-
ted on two concrete instantiations of the Vehicle Routing Problem with
Black Box Feasibility from the literature, the 3L-CVRP and the MP-
VRP. The state-of-the-art approaches for these problems all make use
of some kind of knowledge about the side-problem being solved for
each route. The black box functions used for each of the problems cor-
respond to algorithms used in the relevant state-of-the-art.
The results show that the Pheromone-based Heuristic Column Gen-
eration method is highly competitive on both the 3L-CVRP and MP-
VRP. It is able to improve the best known solutions on a majority of
benchmark instances, this while being completely agnostic w.r.t. the
side-problem being solved for each route. Also, the Pheromone-based
Heuristic Column Generation method allows to improve the average
solution costs from state-of-the-art approaches on a great number of in-
stances. The Dive & Generate and Heuristic Branch & Price approaches
perform less well. The performance gap with the Pheromone-based
Heuristic Column Generation procedure is more distinct on the MP-
VRP. This can be explained by the problem size of the benchmark in-
stances in this latter application.

Finally the Pheromone-based Heuristic Column Generation is also
applied to variations of the 3L-CVRP and the MP-VRP where a differ-
ent objective is considered. These variations haven’t been considered
in the literature so far, and first results are published here.

v

http://becool.info.ucl.ac.be/resources/VRPBB

A C K N O W L E D G M E N T S

First of all I’d like to thank my supervisor Yves for his patience, his
steady support and the guidance he provided over the last years. His
ability to quickly grasp ideas, to discern vagueness and to always ask
the relevant questions has been extremely useful for my work and
keeps astonishing me. Many thanks also to Pascal for his interest in
my work and the fruitful discussions. I am also very grateful he in-
vited me to visit his research group in Melbourne.

A big thank you to my office mates Vianney and Jean-Baptiste. I
enjoyed coming to work these past years, knowing there’d be interest-
ing conversations, whether they would be of scientific, philosophical
or general nature. The numerous jokes and sometimes random dis-
cussions (where do paradigms go when they die?) were also much
appreciated. Thanks guys! Thanks also to the other former and cur-
rent beCool members, Pierre, Jean-Noël, Dung, Julien, Sébastien, Viet,
Trung, Cyrille, Sascha and Renaud. It has been fun sharing time and
beers with you on conferences, getting deeper insights into your work
and your lifes. It has always been a pleasure to engage in funny and
interesting conversations with Tania, Benjamin, Stéphane and Vanessa
during our little breaks, thank you for that! Thank you also to every-
body at INGI! Thanks to the NICTA researchers in Melbourne, espe-
cially to Carleton and Victor for welcoming me in their office. Many
thanks also to Alessandra for her helpfulness and kindness. I am very
grateful to the INGI department for giving me the opportunity to visit
the NICTA lab in Melbourne.

vii

Thanks to the jury for reading this thesis, asking intelligent ques-
tions and providing helpful comments.
Thanks to Fabien Tricoire for having provided us with his implemen-
tation of the feasibility check for the MP-VRP.
Thanks also to Manuel and Thomas for our collaboration and for
Manuel’s help with the R scripts which have come in handy for this
thesis.

Finally many thanks go to my family and friends for their support
during these last years. I am especially grateful to my parents who
always encouraged me, supported me and offered kind words when
things looked grim. They both invested a great deal of time and pa-
tience to help me through my first years of studies, for which I am
infinitely thankful.

Last but not least, my deep gratitude goes to my husband Ronny
who has supported me, and bore with me, during these last years. He
listened to my explanations, to my presentations and reread my thesis
with patience. Thanks for offering comfort when necessary, motivating
me the rest of the time and for being just plain awesome!

I gratefully acknowledge the support from the Fonds National de la
Recherche, Luxembourg.

viii

C O N T E N T S

i background 1

1 introduction 3

1.1 Vehicle Routing Problems 3

1.2 Problem Statement . 4

1.3 Contributions . 4

1.4 Outline . 6

1.5 Publications . 7

2 vehicle routing problems 9

2.1 Problem Notions . 9

2.2 The Capacitated VRP . 11

2.3 Notations and Operations on routes 16

2.4 Construction Heuristics 18

2.5 Local Search . 23

2.6 Ant Colony Optimization 29

2.7 Branching Search . 32

2.8 Branch & Bound . 35

2.9 Column Generation . 38

2.10 Branch & Propagate . 47

3 vrps with complex side-constraints 55

3.1 Rich Vehicle Routing Problems 55

3.2 VRPs with complicated side-problems 56

3.3 Generic/high-level approaches for Rich VRPs 57

ix

x Chapter 0 contents

ii contributions 61

4 the vrp with black box feasibility 63

4.1 Problem Formulation . 63

4.2 Examples of VRPBB instantiations 65

4.3 Features of an optimization approach 65

4.4 VRPBBs considered in this thesis 66

4.5 Solving the CVRPBB . 66

5 cvrpbb as set partitioning problem 69

5.1 Notations . 70

6 pheromone-based heuristic col. gen. 71

6.1 Principles . 72

6.2 Generating feasible routes 72

6.3 Pheromone update . 75

6.4 Post-optimization of feasible routes 76

6.5 Solving the integer problem 79

7 dive & generate 83

7.1 Branch & Generate . 84

7.2 Principles . 85

7.3 Initialization of R∗ . 89

7.4 Restarts . 90

7.5 Node exploration . 90

7.6 Generating feasible routes 91

7.7 Branching heuristic . 93

7.8 Search strategy . 95

8 heuristic branch & price 97

8.1 Principles . 98

8.2 Initialization of R∗ . 101

8.3 Node exploration . 102

8.4 Subproblem creation . 103

8.5 Branching heuristics . 106

8.6 Generating feasible routes 107

8.7 Search strategy . 112

9 decomposition-based approach 115

9.1 Principles . 115

9.2 Initialization of R∗ . 117

9.3 Selection of set of routes T 118

10 implementation 119

10.1 Branch & Bound Tree . 119

10.2 Column Pool . 121

contents xi

10.3 Solver and Solutions . 121

10.4 Column Generation . 122

10.5 Black Box and Feasibility Store 122

10.6 Implementation of the proposed approaches 124

iii applications 127

11 parameter setting with irace 129

11.1 Principles . 129

11.2 Iterated F-race . 130

11.3 Training instances . 131

11.4 Considered parameters and their ranges 132

11.5 Automatic parameter setting 133

11.6 Exp. analysis of ACO-HCG parameters 135

12 vrp with 3d loading constraints 143

12.1 Problem Description . 143

12.2 Existing Approaches . 145

12.3 3L-CVRP as a VRPBB . 149

12.4 Problem Instances . 149

12.5 Experimental Results . 150

13 multi-pile vehicle routing problem 183

13.1 Problem Description . 183

13.2 Existing Approaches . 185

13.3 MP-VRP as a VRPBB . 187

13.4 Problem Instances . 188

13.5 Experimental Results . 189

14 vrpbb with minmax objective 219

14.1 Problem description . 219

14.2 Adaptation of ACO-HCG to the MinMax Obj. 220

14.3 Experimental Results . 222

iv conclusions and future work 227

15 conclusion 229

15.1 Future Work . 232

v appendix 237

a 3l-cvrp: additional material 239

a.1 Pheromone-based HCG 240

a.2 Dive & Generate . 244

a.3 Heuristic Branch & Price 250

b mp-vrp: additional material 263

xii Chapter 0 contents

b.1 Pheromone-based HCG 263

b.2 Dive & Generate . 268

b.3 Heuristic Branch & Price 274

bibliography 287

Part I

B A C K G R O U N D

1
I N T R O D U C T I O N

The original Vehicle Routing Problem has been stated in 1959. Even
after 60 years of research, large-scale instances or complicated variants
of the problem still constitute a challenge for the scientific community.
Research over the last decades has focused on so-called Rich Vehicle
Routing Problems, where different complicating real-world constraints
must be handled at the same time. This thesis is concerned with opti-
mizing Vehicle Routing Problems where complicated side-constraints
need to be satisfied by every route and no insight except for a feasi-
bility check into these constraints is possible. A new generic type of
Vehicle Routing Problem is introduced and different optimization ap-
proaches for this problem are designed, implemented and evaluated
on concrete examples.

1.1 vehicle routing problems

Vehicle Routing Problems are basically concerned with finding a way
to visit a given set of customer locations using a given set of vehicles in
such a way that a cost function, often the total distance, is minimized.
In the most basic version of this problem, each customer must be vis-
ited by exactly one vehicle and each vehicle performs one trip, starting
and ending at a depot location. The question is thus to decide for each
vehicle which set of customer locations it visits, and in which order it

3

4 Chapter 1 introduction

visits them. Typically a set of operational constraints must be fulfilled.
These can limit the number or set of possible locations a given vehicle
can visit, the exact time at which a given location is visited, the order
in which a set of locations must be visited and so on. In Rich Vehicle
Routing Problems many complicating constraints must be handled in
one same problem. Among such Rich Vehicle Routing Problems are
also problems which correspond to a "basic" problem where a set of
complex side-constraints must be fulfilled by each individual route.
Verifying the feasibility of a route in these problems necessitates the
resolution of a complex side-problem. This is the type of problems
considered in this thesis.

1.2 problem statement

Recent literature on Vehicle Routing Problems is concerned with Rich
problems where for each route, in order to verify the feasibility, a com-
plex side-problem needs to be solved. Examples are problems combin-
ing routing and loading, as well as routing and scheduling. Often the
methods proposed to tackle this type of problems are very problem-
specific and make wide use of knowledge of the side-problem being
solved for each route.

The aim of this thesis is to propose methods able to tackle such
problems using no further knowledge on the side-problem than a
provided feasibility function to check the feasibility of a route. To
do this a generalized reformulation for this type of problem is pro-
posed. Different optimization procedures, all based on the idea of
column generation, are designed and implemented in a coherent sys-
tem. This system is available for download under the LGPL license
at http://becool.info.ucl.ac.be/resources/VRPBB. The procedures
are tested on two concrete example problems and compared to existing
problem-specific approaches.

1.3 contributions

Several contributions are proposed in this thesis:

1. The formulation of a new generic problem, the Vehicle Routing
with Black Box Feasibility is proposed. This problem embraces

http://becool.info.ucl.ac.be/resources/VRPBB

1.3 contributions 5

any Vehicle Routing Problems where each route must verify a
set of complicated side constraints, the satisfaction of which can
only be checked in non-linear time complexity in the length of
the route.

2. The combination of Ant Colony Optimization and Mixed Integer
Programming in a novel way. Ants are used to generate routes,
while information from the continuous relaxation of the Set Par-
titioning Problem formulated over all routes is used to update
the pheromone matrix.

3. The design of a method using Ant Colony Optimization in a
Column Generation context, of a Branch & Generate method as
well as of a Heuristic Branch & Price method (the latter two based
on the use of a randomized savings heuristic to do the pricing)
for the Vehicle Routing Problem with Black Box Feasibility.

4. The implementation of the proposed approaches in a coherent
system.

5. The evaluation of the proposed approaches on concrete examples
of Vehicle Routing Problems with Black Box Feasibility. The con-
crete examples considered are the Three-dimensional Loading
Capacitated Vehicle Routing Problem (3L-CVRP) and the Multi-
Pile Vehicle Routing Problem (MP-VRP), both combining Vehi-
cle Routing with Loading. The methods are executed on bench-
mark instances from the literature and compared to the problem-
specific methods from the state-of-the-art.

6. The use of the Iterated F-Race procedure for the automatic pa-
rameter setting of one of the proposed methods. The resulting
optimized configuration is used as a starting point to carry out
a systematic analysis of the impact and effect of each of the con-
sidered parameters.

7. A variant of the concrete examples of Vehicle Routing Problems
with Black Box Feasibility is considered. Instead of the classi-
cal objective a MinMax objective is optimized. Both problems
haven’t been studied under this aspect in the literature. First re-
sults on these variants are published in this thesis.

6 Chapter 1 introduction

1.4 outline

The remainder of this thesis is organized as follows. Chapter 2 in-
troduces the necessary background. The Vehicle Routing Problem is
explained and a basic variant, the Capacitated Vehicle Routing Prob-
lem is formally introduced. Different optimization approaches are pre-
sented in an abstract way, and for each approach it is explained how it
can be adapted to the Capacitated Vehicle Routing Problem.
The notion of Rich Vehicle Routing Problems is introduced in chap-
ter 3. Then examples of Vehicle Routing Problems with complicated
side-problems, such as these considered in this thesis, are given. An
overview of existing libraries and frameworks designed for Rich Vehi-
cle Routing Problems follows. A brief explanation of how the reviewed
frameworks and libraries can be used to solve the problems considered
in this thesis is provided.

Chapter 4 introduces the generic Vehicle Routing Problem with
Black Box Feasibility. The advantages of using this generic problem for-
mulation are explained. Each of the optimization methods presented
in chapter 2 is reconsidered for application to this new problem.
Chapter 6 presents the Pheromone-based Heuristic Column Genera-
tion approach specifically designed for the Vehicle Routing Problem
with Black Box Feasibility. A Branch & Generate and Heuristic Branch
& Price approach for this same problem are proposed in chapters 7

and 8. Finally chapter 9 explains how all these methods can be used in
cooperation with spatial decomposition.
The implementation of the proposed methods in a coherent system is
described in chapter 10.

In chapter 11 the use of the Iterated F-Race approach to find an
optimal parameter setting for the Pheromone-based Heuristic Column
Generation method is detailed. The results obtained with the improved
parameter setting are presented and a systematic analysis of the im-
pact of each of the considered parameters is performed.
Chapters 12 and 13 introduce the reader to the Three-dimensional
Loading Capacitated Vehicle Routing Problem and the Multi-Pile Vehi-
cle Routing Problem, both instantiations of the Vehicle Routing Prob-
lem with Black Box Feasibility. In each chapter a review of existing
work on the respective problem is presented; furthermore explanations
on how the problem can be considered as a Vehicle Routing Problem

1.5 publications 7

with Black Box Feasibility and on how existing approaches make use
of problem-specific knowledge, are provided. Each of the approaches
considered in chapters 6 to 8 are applied to these problems. Their per-
formance is evaluated on benchmark instances from the literature and
compared to the state-of-the-art for the concrete problem.
Chapter 14 considers the problems from chapters 12 and 13 under a
MinMax objective. It is explained how the Pheromone-based Heuristic
Column Generation method is adapted to this problem and results are
presented.

Finally a general conclusion of this thesis along with perspectives
for future work is given in 15.

1.5 publications

The Vehicle Routing Problem with Black Box Feasibility and the Phe-
romone-based Heuristic Column Generation method have been pre-
sented at CPAIOR’12 [MDVH12]. The use of Iterated F-Race for param-
eter setting and the parametrical analysis of Pheromone-based Heuris-
tic Column Generation has been presented at the Hybrid Metaheuris-
tics conference (HM2013) [MLISD13].

The major publications are thus the following:

[MDVH12] F. Massen, Y. Deville, and P. Van Hentenryck, Pheromone-
based heuristic column generation for vehicle routing prob-
lems with black box feasibility, Integration of AI and OR
Techniques in Constraint Programming for Combinato-
rial Optimization Problems (2012), 260–274.

[MLISD13] F. Massen, M. López-Ibáñez, T. Stützle and Y. Deville,
Experimental analysis of pheromone-based heuristic column
generation using irace, Hybrid Metaheuristics (2013),
92–106.

Extended abstracts and preliminary versions of this work have been
presented at:

• Local Search for Constraint Satisfaction (LSCS) Workshop, Perugia,
Italy, 2011

8 Chapter 1 introduction

• Annual Meeting of the EURO Working Group on Vehicle Routing
and Logistics Optimization (Verolog), Bologna, Italy, 2012

• Annual Meeting of the Belgian Operational Research Society (OR-
BEL), Brussels, Belgium, 2012

• Journées francophones de la programmation par contraintes (JFPC),
Toulouse, France, 2012

2
V E H I C L E R O U T I N G P R O B L E M S

Vehicle Routing Problems (VRPs) constitute a class of combinatorial
optimization problems concerned with the delivery of goods to cus-
tomers. The original problem has been proposed in [DR59] where the
authors present a real-world problem in which gasoline needs to be
delivered to service stations. Given a certain number of trucks with
a given tank size the authors want to find the routes to be served
by these trucks such that every service station is visited once, such
that the amount of gasoline to deliver on a route does not exceed the
truck’s tank size and such that the total distance traveled by all the
trucks is minimized. This problem constitutes the simplest problem of
the VRP class. It is formally introduced in Section 2.2. A brief overview
of different well-known variants is also given in this section. Different
methods for producing solutions to VRPs are presented in sections 2.4
to 2.10. First high-level notions relevant to VRPs are explained in 2.1.

2.1 problem notions

Vehicle Routing Problems are concerned with the distribution or collec-
tion of goods or services to customers situated in different geographi-
cal locations. This collection or distribution is ensured by visiting the
customers at their location. VRPs ask how to execute these visits such
as to minimize and/or maximize some quantity while respecting a set

9

10 Chapter 2 vehicle routing problems

of constraints. This section introduces a high-level description of the
different elements encountered in VRPs.

Customers Customers represent the geographical locations that
must be visited in order to perform some action.
Such an action typically corresponds to a service or
the delivery or pick-up of some goods.

Vehicles Vehicles are the entities traveling to the customers
in order to perform the needed action. It is com-
mon to have further properties attached to vehicles,
delimiting the number or the set of customers a spe-
cific vehicle may visit.

Depot Depots are geographical locations that differ in
some way from customers. Often no action needs
to be performed at the depot. In many basic VRPs,
depots represent the "home" of the vehicles. That is
the vehicles start from the depot in order to visit
customers and return to the depot after having fin-
ished this task.

Road network Vehicles use the road network in order to travel
between locations. This network is usually repre-
sented by a graph, where customers and depots are
represented by vertexes and the different road seg-
ments by edges linking the vertexes. Typically a cost
is associated with traveling from one location to an-
other in the road network, and thus also with travel-
ing from one vertex to another in the corresponding
graph.

Routes A route corresponds to a sequence of locations vis-
ited by one vehicle. In many VRP variants routes
start and end at a depot, visiting only customers in
between.

Fleet The fleet corresponds to the set of vehicles available
to perform the visits to the customers. This fleet can

2.2 the capacitated vrp 11

be homogeneous (all vehicles in the fleet share the
same properties) or heterogeneous (different types
of vehicles are available).

Objective The objective of VRPs is typically the minimization
and/or maximization of some quantity. The most
basic objective is the minimization of the total dis-
tance traveled by all vehicles. Another possible ob-
jective is the maximization of a profit incurred by
visiting only a subset of the customers.

Solution In the more basic VRP variants a solution corre-
sponds to a set of routes with a mapping from each
route to a vehicle in the fleet. In more complex vari-
ants additional information may be necessary to
characterize a solution, as for example a time sched-
ule for each vehicle. Each solution allows to evalu-
ate the objective and thus to assign a cost or gain to
the solution.

Constraints Constraints are conditions that need to be met in a
solution to the problem. Such constraints can apply
to the shape and the number of the routes, but of-
ten additional properties associated with customers
and vehicles give rise to further constraints, limiting
for example the possible combinations of customers
a vehicle can visit.

2.2 the capacitated vehicle routing problem

The most basic Vehicle Routing Problem is the Capacitated Vehicle
Routing Problem (CVRP). The CVRP is also the problem underlying
to all VRP variants considered in the contributions of this thesis. This
section describes the problem and gives the relevant notions.

12 Chapter 2 vehicle routing problems

2.2.1 Problem Description

The Capacitated Vehicle Routing Problem is occupied with visiting a
set of customers with associated demands using a given number of
vehicles of limited capacity. Vehicles are kept at a depot and start and
end their routes at this depot. The goal is to find a route for each ve-
hicle such that all customers are visited, the capacity of the vehicles is
not exceeded and such that the total distance traveled by all the vehi-
cles is minimized.

The problem is defined on a simple, complete and weighted graph
G = (V, A) representing the road network. The set of vertexes
V = {0, . . . , n} represents the different locations and the set of arcs
A represents the different roads in the network. The set of outgoing
(incoming) arcs from vertex i ∈ V is denoted by δ−i (δ+i). Vertexes
i = 1, . . . , n are called customers, while vertex 0 is called depot. The
weight cij of an arc (i, j) ∈ A equals the distance on the road network
between the locations matching vertexes i and j and thus represents the
cost of including this arc in a solution. The distances are considered to
be symmetric (cij = cji ∀i, j ∈ V) and to respect the triangle inequality
(cij ≤ cip + cpj ∀i, j, p ∈ V). With each customer i ∈ V\{0} is associ-
ated a demand qi. A set of homogeneous vehicles K, each of limited
capacity Q, is available to perform the visits to the customers. Each
vehicle may execute at most one route. Each route starts from the de-
pot to visit a number of customers and then returns back to the depot.
Since by definition the first and last vertexes in a route are the depot
vertex, a route r can be seen as a tuple (S, σ) where r.σ = 〈e1, . . . , em〉
(
⋂m

i=1{ei} = ∅) is a sequence of customers ({e1, . . . , em} ⊆ V\{0}) and
r.S = {e1, . . . , em}. The customer visited in the sth (1 ≤ s ≤ |r.S|) po-
sition of route r is given by r[s]. For any route r, r[0] and r[|r.S|+ 1]
represent the depot. Note that if for any route r we have r[s] = i and
r[s+ 1] = j (0 ≤ s ≤ |r.S|), this means that arc (i, j) is used in this route.

Finally the goal is to devise a solution Sol = {r1, . . . , rm} amounting to
a set of routes such that:

1. |Sol| ≤ |K|
the solution does not use more vehicles than available

2.
⋂

ri∈Sol ri.S = ∅ and
⋃

ri∈Sol ri.S = V\{0}
each customer is visited exactly once

2.2 the capacitated vrp 13

7

c1

30

c2

16

c3

9

c4
21

c5

15

c6

19

c7

23

c8

11

c9

5

c10

19

c11

29

c12

23

c13

21

c14

10

c15

(a)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(b)

Figure 2.1: A CVRP instance with |K| = 4 and Q = 90 (a) and one of its
feasible solutions (b). The customer demands are indicated below
each customer vertex in the instance. In order to improve visibility
the customer demands are not indicated in the solution.

3. ∑j∈r.S qj ≤ Q ∀r ∈ Sol,
the sum of the customer demands on a route does not exceed the
vehicle capacity Q

4. min Dist(Sol) = ∑r∈Sol(∑
|r.S|
s=0 cr[s]r[s+1])

the total distance is minimized

A solution respecting constraints 1-3 is called feasible. A solution
respecting only part of, or none of these constraints is called infeasible.
The quality of a solution Sol is evaluated using Dist(Sol). Constraint
4 means that a solution Sol′ is considered of higher quality than a
solution Sol if Dist(Sol′) < Dist(Sol).
A solution Sol∗ is called optimal if it is feasible and no other feasible
solution Sol′′ s.t. Dist(Sol′′) < Dist(Sol∗) exists.
Deciding whether a feasible solution for a given CVRP instance exists
is NP-complete, while the problem of finding the optimal solution is
NP-hard ([TV02]). Note that the Traveling Salesman Problem ([Coo11])
corresponds to a CVRP with |K| = 1 and Q = ∞. An example of a
CVRP instance and of a feasible solution for this instance are given in
Fig. 2.1.

14 Chapter 2 vehicle routing problems

2.2.2 Variations of the CVRP

A number of variants of the CVRP have been covered in the scientific
literature see e.g. [GRW08]. One can consider three types of variations
on the CVRP resulting in a new problem:

1. modifications to the structure of the routes

2. modifications to the objective function

3. additional constraints to be respected by the routes

In the following for each modification three examples of problems
resulting from the considered variation are given.

Modifications to the structure of the routes

• Multi-depot Vehicle Routing Problem Instead of a single depot
multiple depots are available. Routes start from any of the depots
but must end at the same depot. See e.g. [CGL97].

• Capacitated Vehicle Routing Problem With Split Delivery Cus-
tomers can be visited more than once by different vehicles. Their
demand is split between different routes. It has to be determined
which vehicle delivers which quantity of product to customers vis-
ited in several routes. See e.g. [ASH06].

• Capacitated Vehicle Routing Problem With Multiple Trips Vehi-
cles may execute more than one route. Each route starts and ends at
the depot. See e.g. [TLG96].

Modifications to the objective function

• Vehicle Routing Problem with Profits A profit is associated with
visiting each customer. Not all customers must be visited in this
problem. The goal is to find a solution that maximizes the total
profit, defined as difference between the profit collected at the vis-
ited customers and the total distance covered by the fleet. See e.g.
[ASV13].

• MinMax Vehicle Routing Problem Instead of minimizing the total
distance the goal is to minimize the distance of the route with the
highest distance (i.e. of the ’longest’ route). See e.g. [GLT97].

2.2 the capacitated vrp 15

• Vehicle Routing Problem with Minimization of the vehicle fleet
Often the minimization of the number of vehicles necessary to ex-
ecute all routes is stated as a primary objective in a lexicographic
objective function. The secondary objective is the minimization of
the total distance. See e.g. [BVH04]

Additional constraints to be respected by the routes

• Capacitated Vehicle Routing Problem with Time Windows Time
Windows are associated with the depot and the customers. The ser-
vice at each customer must start inside the customer’s time window.
The vehicle may however arrive early at a customer and wait for
the start of the customer’s time window. The service at each cus-
tomer uses up a predefined amount of time. Vehicles must return to
the depot by the end of the depot’s time window. The time needed
to travel between locations is relative to the distance between these
locations. See e.g. [Sol87].

• Capacitated Vehicle Routing with Pick-up and Delivery With each
customer is associated a pick-up and a delivery location. Some com-
modity is gathered at the pick-up location and must then be drop-
ped off at the corresponding delivery location in the same route.
This introduces precedence constraints between pick-up and deliv-
ery locations. Furthermore the currently used vehicle loading space
will not steadily decrease or increase during the execution of the
route. See e.g. [PDH08].

• Capacitated Vehicle Routing Problem with Loading Constraints
The customers’ demands are expressed as a set of multi-dimensional
items. The loading space of the vehicle takes the same number of
dimensions and is limited in each of those dimensions. For each
route, a feasible loading of the items belonging to the customers
visited on this route must exist in the loading space of the vehicle.
See e.g. [GILM08].

This thesis focuses on VRPs that result from adding additional non-
structural constraints to the vehicle routes that concern these routes in-
dividually. Further examples of such problems and the methods used
to solve them are given in chapter 3.

16 Chapter 2 vehicle routing problems

2.2.3 Optimization of the CVRP

The goal of optimization methods is to find a good quality solution
for a given optimization problem. Good quality solution means a solu-
tion that optimizes the value of the problem’s objective function. Such
approaches can either be complete or incomplete. Complete approaches
are guaranteed to find an optimal solution and prove that this solu-
tion is an optimum. Incomplete approaches can find optimal solutions
but are not guaranteed to do so and are not able to prove the opti-
mality of a solution. The approaches presented here can also be split
into constructive and perturbative approaches. Constructive approaches
construct solutions from scratch while perturbative approaches modify
a current solution in order to obtain a new solution.

Before entering the topic of optimization methods recurring nota-
tions used in the rest of this thesis are presented in the next section
2.3. The following sections 2.4 to 2.7, 2.9 and 2.10 will review the most
common optimization methods. For each approach its basic principles
will be outlined first. Then additional elements on how to apply the
given method to the CVRP are given. In the following it is assumed
that the considered optimization problems are minimization problems.

2.3 notations and operations on routes

As mentioned earlier a route r can be seen as a tuple (S, σ) where r.S
represents the set of customers visited by r and r.σ the sequence in
which they are visited.

Positions of customers in a route
For each route r, r.σ = 〈e1, . . . , em〉 represents the sequence in which
customers in {e1, . . . , em}(= r.S) are visited. The vertex visited in the
sth position (i.e. es, 1 ≤ s ≤ |r.S|) can be obtained by r[s], i.e. r[s] = es.
Furthermore r[0] and r[|r.S| + 1] default to 0, the depot vertex. The
other way around, the position of a customer v in r s.t. v ∈ r.S (the
position corresponds to index s s.t. es = v) is obtained via pos(v, r).
Thus r[pos(v, r)] = v ∧ epos(v,r) = v ∀v ∈ r.S. Finally the first and
last customers visited in r are retrieved using f irst(r) and last(r). If
|r.S| ≥ 1, f irst(r) = r[1] and last(r) = r[|r.S|], else if |r.S| = 0 the

2.3 notations and operations on routes 17

route is "empty" and f irst(r) = last(r) = 0.

Example: Let route rex where rex.S = {va, vb, vc} and rex.σ = 〈va, vb, vc〉.
The second customer in the route is vb, rex[2] = vb and pos(vb, rex) = 2.
Furthermore rex[0] = 0 and rex[3 + 1] = 0. Finally f irst(r) = va and
last(r) = vc.

Accumulated demand on a route
Given route r the accumulated demand on r is given by
demand(r) = ∑i∈r.S qi.

Distance of a route
Given route r the distance of r is given by distance(r) = ∑|r.S|

i=0 cr[i]r[i+1].

Operations on routes
Many solution and optimization approaches modify routes in some
way or another. The most basic operations are defined here.

Inserting a customer in a route

Consider a route r with r.σ = 〈e1, . . . , e|r.S|〉. The insertion of cus-
tomer i (i /∈ r.S ∧ i 6= 0) into route r at position p
(1 ≤ p ≤ |r.S| + 1) is denoted by insert(i, r, p). Let r be the original
route and r′ = insert(i, r, p). Then r′.S = r.S ∪ {i} and r′[t] = r[t]
∀ 1 ≤ t < p and r′[p] = i and r′[h] = r[h− 1] ∀ p + 1 ≤ h ≤ |r′.S|.
Analogously r′.σ = 〈r.σp−1

1 , i, r.σ|r.S|
p 〉 where r.σt

i denotes the possibly
empty subsequence 〈ei, . . . , et〉 of r.σ.

Example: Let route rex with rex.S = {va, vb, vc} and rex.σ = 〈va, vb, vc〉,
the insertion of i in the 2nd position in rex results in r′ex = insert(i, rex, 2)
where r′ex.S = {va, vb, vc, i} and r′ex.σ = 〈va, i, vb, vc〉. Similarly the inser-
tion of i in the 4th position in rex results in r′′ex = insert(i, rex, 4) where
r′′ex.S = {va, vb, vc, i} and r′′ex.σ = 〈va, vb, vc, i〉.

Removing a customer from a route

The removal of a customer i (i ∈ r.S) from route r is denoted by
remove(i, r). Let r be the original route and r′ = remove(i, r). Then
r′.S = r.S\{i} and r′[t] = r[t] ∀ 1 ≤ t < pos(i, r), and r′[h] = r[h + 1]

18 Chapter 2 vehicle routing problems

∀ pos(i, r) ≤ h ≤ |r′.S|. Analogously r.σ′ = 〈r.σpos(i,r)−1
1 , r.σ|r.S|

pos(i,r)+1〉.

Example: The removal of vb from route rex results in
r′ex = remove(vb, rex) where r′ex.S = {va, vc} and r′ex.σ = 〈va, vc〉.

Merging two routes

Consider two routes r1 and r2 such that r1.S ∩ r2.S = ∅ and where
r1.σ = 〈e11, . . . , e1|r1.S|〉 and r2.σ = 〈e21, . . . , e2|r2.S|〉. Merging r1 with r2

is denoted by r = r1 × r2 where r.S = r1.S ∪ r2.S and
r.σ = 〈e11, . . . , e1,|r1.S|, e21, . . . , e2|r2.S|〉.
Analogously r[i] = r1[i] ∀ i ∈ 1, . . . , |r1.S| and r[j+ r1.|S|] = r2[j] ∀ j ∈
1, . . . , |r2.S|. Note that the merge operator × is not commutative, i.e.
r1 × r2 6= r2 × r1.

Example: Given two routes route rx and ry where rx.S = {va, vb, vc},
rx.σ = 〈va, vb, vc〉 and ry.S = {vg, vh, vi, }, ry.σ = 〈vg, vh, vi〉 the merge
of rx and ry results in r = rx × ry where r.S = {va, vb, vc, vg, vh, vi}
and r.σ = 〈va, vb, vc, vg, vh, vi〉. The merge of ry and rx results in route
r′ = ry × rx where r′.S = {va, vb, vc, vg, vh, vi} and
r′.σ = 〈vg, vh, vi, va, vb, vc〉.

2.4 construction heuristics

Construction heuristics are incomplete and constructive methods. The
goal of a construction heuristic is to build a solution to a problem.
This is done by iteratively adding features to an initially empty solu-
tion until a complete solution is obtained. Heuristics aim at obtaining
good quality solutions.
Construction heuristics for VRPs construct a set of routes. During con-
struction they try to keep the total distance of the solution as small as
possible. In order to achieve this, the best possible way to extend the
current route or solution is chosen (this is called greedy behavior) at
each step. Such decisions are myopic as they consider only the current
situation, taking decisions that might be good now but bad in the big-
ger picture. Note that while Construction heuristics for the VRP are
guaranteed to provide a set of feasible routes, it is possible that these
routes cannot be combined into a feasible solution if the number of
routes obtained is higher than the number of available vehicles. In the

2.4 construction heuristics 19

following, three commonly encountered construction heuristics for the
CVRP are presented.

2.4.1 Savings Heuristic

Clarke and Wright’s Savings Heuristic [CW64] is one of the most well-
known and oldest construction heuristics. In the original paper a par-
allel and a sequential version are proposed. Here the parallel version
is presented. The heuristic starts by computing for every ordered pair
(i, j) (i, j ∈ V\{0}, i 6= j) a savings value as sij = ci0 + c0j − cij. This
value corresponds to the distance that can be saved by merging two
routes r1 and r2 s.t. last(r1) = i and f irst(r2) = j. The heuristic then
puts each individual customer in a route of its own, such that we have
Sol = {r1, ..., rn} (n = |V\{0}|) and ri.S = {i} (1 ≤ i ≤ n). The heuris-
tic then starts merging the routes in Sol.
At each iteration the ordered pair (i,j) maximizing sij and such that
∃ ra, rb ∈ Sol with last(ra) = i and f irst(rb) = j and with demand(ra) +

demand(rb) ≤ Q is determined. Route ra is then merged with route rb.
That is a new route r′ = ra × rb is created and used to replace ra and rb
in Sol. The new set of routes Sol thus becomes Sol = (Sol\{ra, rb}) ∪
{r′}.
The heuristic continues merging routes until no further merge is possi-
ble given the current set of routes in Sol. It is this set of routes obtained
at the end of the heuristic that is returned as solution. As mentioned
before, if this set contains more routes than available vehicles in the
problem instance (i.e. |Sol| > |K|), the solution is not feasible. See Fig-
ure 2.2 for a visualization of the savings heuristic.

2.4.2 Insertion Heuristics

Several insertion heuristics have been proposed in the literature. The
idea of these heuristics is to build a solution by inserting customers
one after another into open routes. A route is said to be "open" if it
is to be considered for insertion of new customers, "closed" if it isn’t.
Insertion heuristics can be sequential, that is there is always only one
open route, or parallel, where several routes are open at the same time.
Initially no customer is routed. At each iteration the heuristic needs
to decide which customer to insert at which position in which route.
In the simplest case, there is only one open route and among the cus-

20 Chapter 2 vehicle routing problems

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(a)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(b)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(c)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(d)

. . .

(e)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(f)

Figure 2.2: Execution of the savings heuristic on a CVRP.

tomers that can be feasibly inserted in the open route the customer
closest to the currently last visited customer in the open route is in-
serted at the end of this route (Nearest Neighbor Heuristic). More so-
phisticated versions consider inserting customers in different spots in
the open routes.
Here the sequential Insertion Heuristic proposed in [MJ76] is presen-
ted in order to show the spirit of these heuristics. The following expla-
nation is based on the one given in [TV02].

The Mole and Jameson heuristic starts with an empty route rcur

(rcur.S = ∅) as the current open route and an initially empty set of
routes Sol = ∅. At each iteration the profit of inserting in rcur each
non-routed customer i s.t. qi + demand(rcur) ≤ Q is computed. This is
done in two steps.
First the minimal detour αip of visiting the customer in the current
open route is determined. To do this the cost of inserting i in every
position p (1 ≤ p ≤ |rcur.S|+ 1) in rcur is computed as αip = crcur [p−1]i +

circur [p] − λcrcur [p−1]rcur [p] where λ is a parameter. This αip value is mini-
mal for some p, and this minimized value corresponds to the smallest
possible detour. Next the distance that is saved by visiting i in rcur

rather than in a route of its own is evaluated. This is done along the
formula βi = µc0i + αip where µ is a parameter. Finally the customer i

2.4 construction heuristics 21

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(a)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(b)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(c)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(d)

. . .

(e)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(f)

Figure 2.3: Execution of the Mole and Jameson Heuristic on a CVRP.

maximizing βi is selected and inserted in the position p of rcur causing
the minimal detour (rcur = insert(i, r, p)). The resulting route is then
post-optimized using a 3-exchange (3-opt) optimization (see 2.5). Once
no more customers can be feasibly added to the open route rcur, rcur is
closed and added to Sol (Sol = Sol ∪ {rcur}) and a new empty route
rcur is opened. This procedure continues until all customers have been
included in a route and the routes have been added to Sol. As for the
Savings Heuristic, Sol can, at the end of the procedure, contain more
routes than available vehicles. The execution of the Mole and Jameson
Heuristic is visualized in Fig. 2.3.

2.4.3 Sweep Heuristic

The Sweep Heuristic is an instance of a so-called Cluster first, route sec-
ond heuristic. These heuristics work in two phases. In a first phase the
customers are partitioned into sets (clusters). In a second phase one
route per cluster, visiting all the customers in the cluster is computed.
This latter step is typically implemented by solving a Traveling Sales-
man Problem per cluster.

The Sweep Heuristic supposes the vertexes in V are distributed on a
plane. With each customer i ∈ V\{0} are associated its polar coordi-

22 Chapter 2 vehicle routing problems

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(a)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(b)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(c)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(d)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(e)

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(f)

Figure 2.4: Intermediate steps in the execution of the Sweep Heuristic on a
CVRP. Note that the Sweep heuristic is designed for instances
where the customers are distributed in clusters.

nates w.r.t. the depot (θi, ρi), with for some customer j ∈ V\{0} θj = 0.
The heuristic starts with a current empty route rcur (rcur.S = ∅). A ray
centered at the depot performs a full rotation, sweeping over the cus-
tomer vertexes, in such a way that customer j ∈ V\{0} s.t. θj = 0 is
encountered first by the ray. The moment customer v is swept over by
the ray, if demand(rcur) + qv ≤ Q it is added to the set of customers
visited in the currently open route rcur (rcur.S = rcur.S ∪ {v}). If the
customer v cannot be added to rcur.S then rcur is closed and added to
Sol (Sol = Sol ∪ {rcur}), a new empty route rcur is opened and v is
added to this new route. Once a full rotation has been performed the
current route rcur is added to Sol and all customers are visited in Sol.
Then for every route r in Sol a Traveling Salesman Problem is solved
to decide on the optimal sequence in which to visit the vertexes in the
set r.S ∪ {0}. Once this sequence has been determined r.σ is adapted
accordingly.
As for the previous heuristics, Sol may use more vehicles than avail-
able at the end. An example of the execution of the Sweep Heuristic
on a CVRP instance is given in Fig. 2.4.

2.5 local search 23

2.5 local search

Local Search is an incomplete and perturbative method. In the follow-
ing only main concepts are presented, for a more exhaustive overview
please refer to [HS04].
The basic idea of local search is fairly simple. The search considers
solutions one by one and records the best quality feasible solution
ever encountered. The space containing all possible solutions (feasible
and infeasible) to a problem is called the solution space. Local Search
is based on the observation that by modifying a given (feasible or in-
feasible) solution a new, different (feasible or infeasible) solution is
obtained. Local Search thus moves through the solution space, each
step corresponding to a perturbation of the current solution. Local
Search will analyze each solution it encounters to check its feasibility
(if needed) and records the best quality feasible solution encountered
so far (called the incumbent solution). The process is stopped once a
given stopping criterion is reached (e.g. execution time or iterations
without improvement to the incumbent).
Given a current solution Sol the set of solutions that can be obtained by
performing an operation op on Sol is called the neighborhood Nop(Sol)
of Sol. The operation op is performed by applying a neighborhood op-
erator ηop(. . . , Sol) to the current solution. Such an operator typically
takes several parameters indicating which parts of the current solu-
tion will intervene in the perturbation. The size of the neighborhood
Nop(Sol) of Sol depends on the different parameters considered for
ηop(. . . , Sol). At each iteration in Local Search the neighborhood of the
current solution is constructed and evaluated. One of the neighboring
solutions is then selected as the new current solution. Note that often
more than one neighborhood operator is used in Local Search. A visu-
alization of the different concepts is given in Fig. 2.5.

The selection of the neighboring solution to move to is typically
done using either a First Improvement or a Best improvement strategy. In
First Improvement the search evaluates the neighboring solutions dur-
ing the construction of the neighborhood and as soon as a neighbor-
ing solution improving the quality of the current solution is found, the
search moves to it. In Best improvement the complete neighborhood is
constructed and evaluated. The solution improving the solution qual-
ity the most is selected as new current solution. In a randomized Best
improvement strategy one out of the ω best neighboring solutions is se-

24 Chapter 2 vehicle routing problems

current
Solution

Local
optimum

Global
optimum

(a)

Neighborhood

(b)

(c) (d)

Figure 2.5: Local Search moving through the solution space towards a local
optimum.

lected at random (ω being a parameter).

Two important concepts in Local Search are Intensification and Diver-
sification. The solution space may contain optimal solutions and locally
optimal solutions. Optimal solutions are called globally optimal to dif-
ferentiate from locally optimal solutions. A local optimum is a solution
that is optimal only in its neighborhood (i.e. none of the neighboring
solutions improves it).
Intensification means that the search is concentrated in a specific area
of the solution space as this area seems most promising (typically with
the goal of ending up at a local optimum). Diversification means that
the search is forced to explore different parts of the solution space in
order to make sure different areas are covered and the search does not
keep returning to the same local optimum. Intensification and Diver-
sification measures are commonly implemented in the evaluation and
selection of neighboring solutions.

2.5 local search 25

Finally random decisions play a big role in the efficiency of Local
Search approaches. Random decisions can be included in the choice of
the neighborhood operator to use in the current iteration, the parame-
ters used to construct this neighborhood, the selection of the neighbor-
ing solution or the restart from a randomly generated solution.

2.5.1 Application to the CVRP

When implementing a Local Search algorithm for a specific problem
the following points need to be considered:

A) How is the initial solution constructed?

B) How is the quality of solutions evaluated?

C) How is the neighborhood of a solution computed?

Local Search has been extensively applied to Vehicle Routing Prob-
lems and has been proven to be efficient especially on large-scale in-
stances where exact methods are intractable. In the remainder of this
section examples of how the main local search steps are handled for
CVRP are given.

(A) Construction of the initial solution
The initial solution is commonly built using construction heuristics
such as for example the ones presented in 2.4. Sometimes random de-
cisions are included in these heuristics, in order to be able to generate
number of different initial solutions. An important decision that has
to be taken is whether the initial solution should be forced to be feasi-
ble or not. An infeasible solution could for example use more vehicles
than available in the fleet, or not respect the capacity constraints.

(B) Solution evaluation
In the most common cases the evaluation of a solution corresponds to
the evaluation of the objective function on this solution. However when
the search is allowed to visit infeasible solutions often a modified ob-
jective function is used for the evaluation. Infeasibility for the CVRP
could correspond to using more vehicles than available or exceeding
the capacity of the vehicles. The modified objective function includes
then a measure of infeasibility, as for example the sum of the excess

26 Chapter 2 vehicle routing problems

demands per vehicle. The idea is to guide the search towards feasible
solutions by penalizing infeasible solutions (the higher the infeasibil-
ity the higher the resulting objective value). Note that the violation of
structural constraints such as the number of visits to a customer or
routes starting and ending at the depot is usually not allowed.

(C) Construction of the neighborhood
There are typically three major decisions that need to be taken when
constructing the neighborhood:

• are infeasible solutions considered?

• is the full neighborhood or only a portion computed?

• which neighborhood operator to use?

If the initial solution is allowed to be infeasible it makes sense to allow
the search to move to infeasible neighboring solutions as it might be
impossible to find a feasible solution in the neighborhood of the initial
infeasible solution. Sometimes the search is not allowed to visit infea-
sible solutions anymore once a feasible solution has been encountered.
In such cases the first focus of the search (and thus also of the neigh-
borhood operators) is to find a feasible solution and once a feasible
solution has been found, the focus shifts on the solution quality. The
decision on whether or not a neighborhood should contain infeasible
solutions is enforced through the choice of parameters for the corre-
sponding neighborhood operator.

Computing the full neighborhood means considering all possible
parts of the current solution for perturbation by a neighborhood oper-
ator. To construct a reduced neighborhood only a subset (possibly se-
lected at random) of such parts is considered. Of course constructing
the full neighborhood comes with a higher computation cost compared
to constructing a reduced neighborhood, but potentially contains more
improving solutions.

Neighborhood operators constitute the core of Local Search proce-
dures. Typically one out of several neighborhood operators is selected
at random to compute the neighborhood of the current solution. In the
following, several well-known neighborhood operators for the CVRP
are presented.

2.5 local search 27

Relocate operator The relocate operator ηreloc(i, r1, p, r2, Sol) (r1, r2 ∈
Sol) takes a customer i currently visited in r1 (i ∈ r1.S), removes it
from r1 and reinserts it at position p in route r2 (1 ≤ p ≤ |r2.S|+ 1).
The size of Nreloc(Sol) is determined by the different routes, customers
and positions considered for ηreloc.

Example: Let Sol = {r1, r2, r3, r4} with r1.σ = 〈va, vb, vc〉 and
r2.σ = 〈vd, ve, v f 〉. Then ηreloc(vb, r1, 2, r2, Sol) results in the modified
solution Sol′ = {r′1, r′2, r3, r4} with modified routes r′1.σ = 〈va, vc〉 and
r′2.σ = 〈vd, vb, ve, v f 〉.

Swap operator The swap operator ηswap(i, r1, j, r2, Sol) (r1, r2 ∈ Sol)
takes two customers i and j visited in different routes r1 and r2 (r1 6=
r2, i ∈ r1.S, j ∈ r2.S) and exchanges them. The size of Nswap(Sol) is de-
termined by the different routes and customers considered for ηswap.

Example: Let Sol = {r1, r2, r3, r4} with r1.σ = 〈va, vb, vc〉 and
r2.σ = 〈vd, ve, v f 〉. Then ηswap(vb, r1, vd, r2, Sol) results in the modified
solution Sol′ = {r′1, r′2, r3, r4} with modified routes r′1.σ = 〈va, vd, vc〉
and r′2.σ = 〈vb, ve, v f 〉.

k-exchange operators The k-exchange operator ηkex(r1, A1, A2, Sol)
(r1 ∈ Sol and A1 ∩ A2 = ∅) partitions a route r1 into k + 1 seg-
ments by dropping all arcs in A1 from r1 (A1 ⊆

⋃|r.S|
j=0 {(r[j], r[j + 1])})

and reconnecting the resulting segments using the arcs in A2 (A2 ⊆⋃|r.S+1|
j=0 (δ−r[j] ∩

⋃|r.S+1|
l=0 δ+r[l])}). Note that some of the route segments may

be reversed in the resulting route. The size of Nswap(Sol) is determined
by the different routes and arc sets considered for ηswap.

Example: Let r1.σ = 〈va, vb, vc, vd, ve〉, A1 = {(va, vb), (vd, ve)} and
A2 = {(va, vd), (vb, ve)}. Then η2ex(r1, A1, A2, Sol) results in the modi-
fied solution Sol′ = {r′1, r2, r3, r4} with modified route
r′1.σ = 〈va, vd, vc, vb, ve〉.

Cross operator The cross operator ηcross(i, r1, j, r2, Sol) (r1, r2 ∈ Sol) ex-
changes the segments starting with i and j and ending at the depot, in
routes r1 and r2 (r1 6= r2, i ∈ r1.S, j ∈ r2.S). The size of Ncross(Sol) is
determined by the different routes and customers considered for ηcross.

28 Chapter 2 vehicle routing problems

Example: Let r1.σ = 〈va, vb, vc〉 and r2.σ = 〈vd, ve, v f 〉 then
ηcross(vb, r1, vd, r2, Sol) results in the modified solution Sol′ with modi-
fied routes r′1.σ = 〈va, vd, ve, v f 〉 and r′2.σ = 〈vb, vc〉.

2.5.2 Metaheuristics

Metaheuristics extend basic Local Search with additional decision cri-
teria, as for example in the decision on which neighbor solution to
select, the evaluation of neighboring solutions and the neighborhoods
to use in a given situation. The idea is to improve the performance of
Local Search by taking more intelligent decisions. Metaheuristics have
widely been applied to VRPs. In this section two common metaheuris-
tics Tabu Search and Variable Neighborhood Search will be sketched out.

Tabu Search [GL98]
Tabu Search has been designed in order to help Local Search to escape
from local optima. An additional structure called a Tabu List is added.
In this list, aspects of solutions (complete solutions being intractable)
that have already been encountered by the search are stored over a
given number of iterations (corresponding to the length of the list).
Every time the search wants to move to a neighboring solution, this so-
lution is first scanned for forbidden aspects that are in the tabu list. If
the neighboring solution is tabu (i.e. it contains aspects in the tabu list)
then it is evaluated to verify whether it does improve the incumbent
solution. If it does, the tabu criterion is overridden and the search may
move to the neighboring solution even though it is tabu (this is called
the aspiration criterion). If the neighboring solution is tabu and does not
improve the best known solution then the search may not move to it
and must select a different neighboring solution. Often the length of
the tabu list is adapted dynamically in order to enhance intensification
and diversification. If the search moves to a solution improving over the
previous one, the length of the list is increased in order to intensify the
search in the current area of the solution space. On the other hand if
the solution quality deteriorates with respect to the previous solution
the length of the list is reduced in order to allow the search to move
on quickly, or even allow it to go back to the better solution after some
iterations.

2.6 ant colony optimization 29

There are numerous examples of Tabu Search applied to CVRP and
other variants of the VRP, see e.g. [CLM01, GHL94, Ba09]. A typical
aspect that can be set tabu is which customer is visited in which route.
If the search moves to a new solution by moving customer i from r1 to
r2, moving i back to r1 is set tabu.

Variable Neighborhood Search [MH97]
Instead of moving linearly as in classical Local Search, Variable Neigh-
borhood Search (VNS) jumps through the solution space. This is done
by using a set of k different Neighborhoods. Often these neighbor-
hoods are ordered from 1 to k by increasing size. At each iteration of
the search one neighborhood Ni(Sol) (1 ≤ i ≤ k) of the current solu-
tion Sol is computed. A neighboring solution Sol′ in this neighborhood
is selected at random. Sol′ then figures as the initial solution for a basic
Local Search procedure, which moves the search to a local optimum
Sol′′. If Sol′′ improves the best known solution so far, the search moves
there and it serves as the initial solution for a new VNS iteration using
neighborhood N1. If Sol′′ doesn’t improve the best known solution, Sol
is kept as the current solution and the next neighborhood (if available)
is selected (by doing i = i + 1) to be used in the next iteration.

Variable Neighborhood Search has been used on the CVRP but also
other complex VRP variants, see e.g. [KNBG07, PDH10]. The neigh-
borhoods used are typically similar to these seen in this section. Often
the neighborhood operator used over several neighborhoods stays the
same, but it is the size of the neighborhood that increases.

2.6 ant colony optimization

Ant Colony Optimization (ACO) is a incomplete and constructive me-
thod. For a more exhaustive overview of ACO please refer to [DBS06].
The idea of ACO is to mimic the foraging behavior of ants. Each indi-
vidual ant deposits pheromones on its way from the nest to the food
source and back. When choosing between several possible ways the
ants tend to favor the ways with higher pheromone deposits. If the
ants are confronted with a long and a short path between nest and
food source, the pheromone quantity on the shorter path will increase
more quickly, as the time needed to traverse it is shorter than for the
longer path. This will cause the ants to favor the shorter path and to
deposit even more pheromones, leading the majority of ants to con-

30 Chapter 2 vehicle routing problems

verge towards traveling on the shorter path.
In Ant Colony Optimization, agents, called ants, construct solutions
to the problem being optimized. An ant starts from an empty solu-
tion and extends it in several steps such as to reach a full solution. At
each step the ant needs to decide how to further extend the current
partial or empty solution into a new (possibly) partial solution. This
means that at each step the ant needs to choose one among several
ways to extend the current partial (or empty) solution by choosing one
out of several alternative paths. This decision will be influenced by the
pheromone quantity already deposed on the different paths the ants
can choose from. Each ant in the colony will continue execution until
it has built a full solution or fails to extend the current solution in a
feasible way. Often these solutions are then optimized using a Local
Search. In each iteration of ACO, an entire colony containing ` ants
is executed. At the end of such an iteration, the incumbent solution
is possibly updated and pheromones are deposited on the paths the `

ants took to build their solutions. This is done in a way that is propor-
tional to the quality of the given solutions.
Graph-based problems such as the VRP are particularly well-suited to
Ant Colony Optimization. This is because solutions to these problems
correspond to sets of paths in the problem graph. An ant will select at
each step an arc in the problem graph to add to the current solution
Solpar. Pheromones will then finally be deposited on the arcs appear-
ing in the solutions constructed by the ants.

2.6.1 Adaptation to the CVRP

When adapting an Ant Colony Optimization approach to a particular
problem the following choices need to be adapted:

A) How do the ants construct a solution?

B) How do the ants choose the next step to take?

C) How is the solution post-optimized?

D) How is the pheromone deposit updated?

There are numerous examples of CVRP and variants being handled
using Ant Colony Optimization algorithms, see e.g. [RSD02, GTA99,

2.6 ant colony optimization 31

FDHI10]. Note also that there are several variants of Ant Colony Opti-
mization (AS, MinMax, etc.) differing most importantly on when and
how pheromones are updated. The examples given in the rest of this
section are based on a basic Ant System where the ants execute a sim-
ple Insertion heuristic.

(A) Construction of a solution
Each ant executes a construction heuristic. Again the heuristics seen
in section 2.4 are appropriate choices. An ant executing a simple Inser-
tion Heuristic will start at the depot and then at each step select the
next vertex to move to. This means the ant builds one route at a time.
At each step it will either choose to move to a customer vertex that
hasn’t been visited so far, or choose to move back to the depot, thereby
closing the current route and opening a new current route with its next
move. Using this heuristic, the ant can end up constructing a solution
using more vehicles than available. There are two options in this case,
either it is considered that the ant has failed to build a feasible solution,
or the constructed solution is post-optimized by a Local Search with
the objective of rendering the solution feasible.

(B) Selection of the next step
At each step the ant will choose which vertex to visit next, which corre-
sponds to choosing an arc to add to its path. The ant’s choice is random
but biased towards arcs with a higher pheromone deposit and locally
more attractive (based on some heuristic information). Let Solcur be
the current set of closed routes, rcur the current open route and vcur

the vertex the ant last added to its path. Ex(Solcur ∪ rcur) is the set
of vertexes that can be feasibly used to extend rcur. Ex(Solcur ∪ rcur)

is then defined as {j ∈ V\Vis(Solcur ∪ rcur)|demand(rcur + qj ≤ Q)},
where Vis(R) =

⋃
r∈R{r.S} is the set of vertexes already visited in the

routes in R.
The probability associated with visiting vertex j next is then given by

pvcur j =


τα

vcur j·η
β
vcur j

∑s∈Ex(Solcur∪rcur) τα
vcurs·η

β
vcurs

if j ∈ Ex(Solcur ∪ rcur)

0 otherwise

where τvcur j corresponds to the pheromone deposit on arc (vcur, j)
and ηvcur j to heuristic information. This information can be for example

32 Chapter 2 vehicle routing problems

the inverse of the distance associated with arc (vcur, j), i.e. ηvcur j =
1

cvcur j
.

(C) Post-optimization of a solution The solution built by an ant is com-
monly post-optimized using a Local Search approach. It thus has to
be decided how to compute neighborhoods and select neighbors etc.
as seen in section 2.5. Common operator choices correspond to these
seen in said section.

(D) Update of the pheromone deposit
At the end of a complete iteration, the pheromone deposit on the prob-
lem graph will be updated. The pheromone quantity on every arc in
the problem graph will be evaporated in order to avoid the system to
converge too rapidly to a solution. Then the solutions produced by all
the ants during this iteration are used to update the pheromone de-
posit on the arcs of the problem graph. The pheromone deposit on arc
(i,j) is updated according the following formula:

τij = ρ · τij +
`

∑
k=1

σk
ij

where ρ (0 ≤ ρ ≤ 1) is called the trail persistence and corresponds
to the fraction of the current pheromone quantity τij that remains on
(i, j); where σk

ij corresponds to the quantity of pheromones deposed
by ant k. This latter quantity is 0 if arc (i, j) doesn’t appear in the
solution constructed by ant k and else depends on to the total cost
of the solution.

2.7 branching search

Methods based on Branching Search [Hoo11] are constructive and can
be complete or incomplete. In the following, Branching Search is intro-
duced as an abstract method. Concrete examples of optimization tech-
niques employing Branching Search are given at the end of this section.
Two of these methods are presented in a more detailed fashion in the
following sections 2.8 to 2.10.
Branching search is used to solve problems of the form P(X, C, . . .)
(denoted P in short-hand notation), where X = {x1, . . . , xn} is a set
of variables and C = {c1, . . . , cm} is a set of constraints on these vari-
ables. The original problem P(X, C, . . .) is divided into a set of smaller
subproblems {P1(X, C1, . . .), . . . , Ps(X, Cs, . . .)} which are then solved

2.7 branching search 33

individually. A subproblem Pi(X, Ci, . . .) is created from problem P
by adding µi new constraints to problem P(X, C, . . .). Thus a subprob-
lem Pi is created from the original problem P by imposing further
constraints. Note that this means that any feasible solution for the sub-
problem Pi is feasible for the original problem P as well. The idea is to
choose the new constraints in such a way that the set of feasible solu-
tions to Pi, S(Pi), is smaller than the set of feasible solutions to P, S(P),
i.e. |S(Pi)| < |S(P)|. At the same time the constraints must ensure
that the set of feasible solutions to Pi, denoted by S(Pi) is completely
included in the set of feasible solutions of the original problem S(P),
i.e. S(Pi) ⊂ S(P). Finally the different subproblems P1, . . . , Ps partition
S(P) in such a way that

⋂s
i=1 S(Pi) = ∅ and that

⋃s
i=1 S(Pi) = S(P).

A search tree (Branching search tree) is constructed by applying the
division into subproblems recursively to each new subproblem Pi de-
rived from some problem P, see Fig. 2.6 for an example of such a tree.
At the root node (level 0) of the Branching search tree the original
problem P can be found. P is then divided into s1 subproblems, there-
fore creating s1 child nodes at level 1. This action is called Branching.
The branching action is repeated at every level and for each of the
newly created subproblems until resulting in subproblems of the form
Pu(X, Cu, . . .) where constraints Cu allow only one feasible value for
each x ∈ X. Such subproblems correspond to leaf nodes in the Branch-
ing search tree. They furthermore correspond to a feasible solution to
the original problem P. In the following Pi will be used to designate
problem Pi(X, Ci, . . .) as well as the node in the Branching search tree
associated with this problem.

Methods that build and explore the entire Branching Search tree ac-
tually enumerate all assignments of values to the variables in X that
are feasible for P. Even though the set of possible values for the vari-
ables may be limited, such an enumeration is not tractable for most
problems. Therefore Branching Search must be sped up by pruning,
that is cutting off, parts of the Branching search tree without exploring
them.

34 Chapter 2 vehicle routing problems

P (X,C, . . .)

P3(X,C3, . . .)

P33(X,C33 , . . .)P32(X,C32, . . .)P31(X,C31, . . .)

P2(X,C2, . . .)

P23(X,C23 , . . .)P (X22 , C22 , . . .)P21(X,C21 , . . .)

P1(X,C1, . . .)

P13(X,C13 , . . .)P12(X,C12 , . . .)P11(X,C11 , . . .)

Figure 2.6: Branching search tree with associated Problem indicated at each
node. In this tree each of the considered "non-leaf" problems is
divided into 3 subproblems.

2.7.1 Search strategies

Complete methods, while pruning some parts, explore the remainder
of the Branching search tree in its entirety. Different strategies for the
tree traversal exist. At each point in the tree exploration there is a (pos-
sibly empty) set of open nodes (or subproblems) called the frontier.
Nodes in the frontier are scheduled for exploration, that is, a node Pi
is in the frontier if no attempts to derive further subproblems from
problem Pi have been made so far.
The most basic search strategy is Depth First Search (DFS). In DFS the
next node to be explored is the leftmost unexplored node (note that the
decision as to which node is the leftmost one depends upon the branch-
ing heuristic, see below). Contrary to DFS, Best First Search associates
a value h(Pi) with each node Pi in the frontier. The node minimizing
this value is greedily selected as next node to explore. Finally Discrep-
ancy Search corresponds to a DFS with "wrong turns". With each leaf
node is associated a value called discrepancy. This value corresponds
to the number of times the DFS strategy must be "disobeyed" in order
to travel from the root node to the considered leaf node. The tree is
then explored in such a way that the leaf nodes are visited by non-
decreasing discrepancy value.

2.7.2 Branching Search in Optimization

Integer Programming and Constraint Programming adapt Branching
Search to solve optimization problems resulting in Branch & Bound and
Branch & Propagate. The methods differ in several points:

• How is a problem represented? (Problem representation)

2.8 branch & bound 35

• Which constraints are added to create subproblems? (Subproblem
creation)

• How is the Branching search tree pruned? (Pruning)

• How are nodes in the Branching search tree ordered? (Branching
heuristic)

• How is the Branching search tree explored? (Search strategy)

Both Branch & Bound and Branch & Propagate are explained in further
detail in the following sections. Finally note that Construction Heuris-
tics can be seen as special cases of Branching Search where only one
branch of the Branching search tree is explored. In Ant Colony Opti-
mization each ant explores a branch of a Branching search tree, the
tree varies however from one ant to the other.

2.8 branch & bound

Branch & Bound is a complete and constructive method for solving,
among others, integer linear programming problems based on Branch-
ing Search. Integer linear programming problems are modeled as fol-
lows:

Minimize oTx

subject to Ax = b

x ∈ Zn

where x is a vector of variables of size n, c is a vector of costs as-
sociated with these variables and A and b are matrices of sizes m× n
and m× 1. The problem is thus to find a value for each variable in x (a
solution) s.t. oTx is minimized and the constraints given by Ax = b are
respected (feasible solution). For simplicity only binary integer linear
programming problems where x ∈ {0, 1} are considered here.
The underlying idea of Branch & Bound is to enumerate all feasible so-
lutions to the problem, while keeping track of the best feasible solution
(the incumbent). Once all feasible solutions have been enumerated the
incumbent corresponds to an optimal solution for the problem.

The following notations are used in this section:

36 Chapter 2 vehicle routing problems

• a solution corresponds to an assignment of values to each variable
in x

• the set of feasible solutions to a problem P is denoted Sol(P)

• the set of optimal feasible solutions to problem P is denoted Sol∗(P)

• the cost or value of sol ∈ Sol(P) corresponds to the evaluation of oTx
and is denoted by Obj(sol)

• d ∈ D, where D is a m× n matrix means
d ∈ {D11, . . . , D1n, D21 . . . , D2n, . . . , Dm1, . . . , Dmn}

While different implementations and uses of Branch & Bound may
exist, the given descriptions focus on Integer Linear Programming. The
following explains how Branching Search can be adapted to result in
Branch & Bound.

Problem Representation An integer linear programming problem is
defined by its variables, the vector x, the vector of cost coefficients as-
sociated with these variables o and the constraints of the problem given
by the equalities Ax = b. Note that the constraints on the bounds of
the x variables are needed as well to define a problem. Since only bi-
nary problems are considered here, these bounds are not included ex-
pressively in the problem notation for readability reasons. The original
problem is thus P(x, Ax = b, o) and its decomposition into s subprob-
lems results in P1(x, A1x = b1, o), . . . , Ps(x, Asx = bs, o). As previously
seen subproblems in Branching search are created by adding new con-
straints to the original problem. In the case of a linear program adding
new constraints corresponds to adding new rows to the A and b ma-
trices. Matrix Ai is thus of size (m + µi) × n and Ai

u,v = Au,v u ∈
1, . . . , m and v ∈ 1, . . . , n and Ai

u,v with u ∈ m + 1, . . . , m + µi and
v ∈ 1, . . . , n correspond to the additional constraints added. The same
holds analogously for bi.

Subproblem Creation Branching search can be easily applied to bi-
nary integer programming problems when creating subproblems by
fixing a variable to a value. That is, given the original problem
P(x, Ax = b, o) some variable xk ∈ x is selected. Then two subprob-
lems Pk0(x, Ak0x = bk0, o) and Pk1(x, Ak1x = bk1, o) are created. In these
subproblems Ak0x = bk0 (Ak1x = bk1) corresponds to the original con-
straints Ax = b with the additional constraint xk = 0 (xk = 1). For each

2.8 branch & bound 37

new branching decision at problem Pi only variables that are not yet
fixed to a given value by a constraint are considered for the subprob-
lem creation.

Pruning Obviously, in order to maintain completeness, only subtrees
not containing the optimal solution may be cut off from the tree, and
therefore a method allowing to predict with certainty that a certain
part of the tree does not contain an optimal solution to the original
problem P is needed. In Branch & Bound this is done using upper and
lower bounds. At each node (i.e. subproblem) Pi in the branching tree
the global upper bound (UB) gives a cost that an optimal solution
sol∗ to P (sol∗ ∈ Sol∗(P)) cannot exceed (Obj(sol∗) ≤ UB). The lower
bound (LBi) gives at each node Pi a minimal cost that a globally op-
timal solution (sol∗i ∈ Sol∗(Pi)) to the node’s associated subproblem
Pi cannot undermatch (Obj(sol∗i) ≥ LBi). If problem Pi has no feasible
solution, then LBi = ∞. If at a certain node Pi, LBi ≥ UB or LBi = ∞,
then it can be deduced that no solution improving the incumbent (and
therefore no new optimum) can be found in the subtree of the current
node Pi. The subtree can therefore be pruned without losing the com-
pleteness of the approach.
Thus when designing the pruning mechanisms for a Branch & Bound
method for solving integer linear programming problems the follow-
ing decisions need to be taken:

A) How is the upper bound computed?

B) How is the lower bound computed?

(A) Upper bound The upper bound corresponds to the cost of the in-
cumbent solution. The incumbent solution can be initialized using a
feasible solution obtained using appropriate construction heuristics.
Alternatively, UB is initialized to ∞ and the first feasible solution en-
countered in the Branch & Bound tree can be used to initialize the
incumbent and update UB. Each time the incumbent solution is up-
dated, so is UB.

(B) Lower bound The lower bound of a problem is obtained by relaxing
some constraints in this problem. Often the linear programming relax-
ation is used, where the constraints stating that the x variables must
take integer values (integrality constraints) are relaxed. That is in a
solution to this relaxation the x variables may take any value in Rn

+.

38 Chapter 2 vehicle routing problems

The linear programming relaxation of the integer linear programming
problem P is denoted Relax(P). On the other hand a relaxed problem
P′ on which integrality constraints are imposed is denoted Int(P′).
Thus Int(Relax(P)) = P. The cost Obj(sol∗rel) of an optimal feasible
solution sol∗rel of Relax(P) (sol∗rel ∈ Sol∗(Relax(P))), is a lower bound
on the cost Obj(sol∗) of the optimal feasible solutions sol∗ ∈ Sol∗(P).
Therefore for each node, the linear programming relaxation of the cor-
responding subproblem is optimally solved in order to provide a lower
bound on the optimal solution value of the subproblem. If Relax(Pi)

is infeasible, then so is Pi and Sol∗(Relax(Pi)) = Sol∗(Pi) = {⊥} and
Obj(⊥) = ∞. For more information on how to solve Relax(Pi) please
refer to [Dan98].

Branching heuristic Assume that a linear programming relaxation is
used to compute LBi at each node Pi. The branching heuristic decides
at each node Pi on which variable xk ∈ x to branch next. A common
heuristic is to consider the set of variables Y (⊆ x) that take a fractional
value in Sol∗(Relax(Pi)) and to select the variable xk ∈ Y that takes the
value closest to 0.5 [Ach05].

Search strategy Two common heuristics are Depth-First Search (DFS)
and Best First Search (BFS) ([Wol98]). The advantage of DFS is that is
plunges down a branch in the tree allowing it to quickly find poten-
tially feasible solutions. Since UB is used to prune parts of the search
tree, it is important to initialize it with a feasible solution value as early
as possible in the search. On the other hand, DFS has the tendency to
get stuck in parts of the search tree and possibly lose time and effort
exploring a subtree containing no improving or even no feasible solu-
tions.
Best Bound Search, an implementation of BFS, uses the lower bound
LBi associated with each node Pi in the frontier as a heuristic means
to select the next node to be explored. The node Pi minimizing LBi is
greedily selected as next node to explore. The reasoning is that this
branch may contain feasible solutions of cost lower than any of the
other nodes in the frontier. By discovering such solutions as early as
possible UB can be tightened as early as possible and allow to prune
a high number of subtrees later in the search.

2.9 column generation 39

2.9 column generation for set partitioning

problems

Given a set of elements U called the universe and a set of sets called R
such that

⋃
I∈R I = U and oI the cost associated with set I ∈ R. The

Set Partitioning Problem asks to identify the least cost combination of
sets from R that contain all elements of U exactly once. The integer
linear programming problem formulation is as follows:

Minimize ∑
I∈R

oIxI (2.1)

subject to ∑
I∈R

auIxI = 1 ∀u ∈ U (2.2)

xI ∈ {0, 1} ∀I ∈ R (2.3)

auI =

{
1 if u ∈ I
0 otherwise

∀u ∈ U , ∀I ∈ R (2.4)

With each set I ∈ R is associated a binary variable xI indicating
whether the set I ∈ R is selected in the solution. To each set I ∈ R is
furthermore linked a column in matrix a. This problem formulation is
referred to as SPP(R) in the remainder of this section.

It often happens that in such set partitioning problems the set R is
extensive, and adding one variable xI per set I ∈ R would result in
a problem formulation containing too many variables to be efficiently
solved using standard methods such as the Branch & Bound method
using Linear Programming Relaxations described earlier. Therefore
the problem is initially only formulated on a restricted set R∗0 ⊂ R,
resulting in SPP(R∗0). New sets, considered meaningful in the pro-
cess of finding an optimal solution to the original problem, are iter-
atively added to the restricted set R∗i , resulting in the extended set
R∗i+1. Adding a new set I to R∗i corresponds to adding a new vari-
able xI , its associated cost oI as well as a new column to matrix a in
the problem formulation SPP(R∗i), resulting in the extended problem
SPP(R∗i+1). This procedure in the large sense is called Column Genera-
tion and adding a new set I to R∗i (i.e. new variable, associated cost

40 Chapter 2 vehicle routing problems

and new column) is called adding a column to the problem.

The difficulty in Column Generation is to identify new sets I to add
to SPP(R∗i) that can help to find an optimal solution to the original
problem SPP(R). Only such sets should be added. The identification
of such sets is not directly possible on an integer problem such as
SPP(R∗i). It is however possible to identify sets for Relax(SPP(R∗i))
that can help to find an optimal solution to
problem Relax(SPP(R)). Relax(SPP(R)) is also called the Master Prob-
lem (MP). The restriction to a strict subset R∗i of R (Relax(SPP(R∗i)))
is called the Restricted Master Problem (RMP).

When an optimal feasible solution solrel ∈ Sol∗(Relax(SPP(R∗i)) is
available, the dual of this solution and the associated dual costs πi are
available as well. The dual costs associate via the constraints 2.2 a dual
cost πi

u with each element u ∈ U . Using these dual costs the reduced
cost rcI of a set I ∈ R can be computed as follows:

rcI (πi) = oI − ∑
u∈U

auIπi
u

For sets I already included in R∗i (I ∈ R∗i), the reduced cost will be
greater or equal to 0 (rcI (πi) ≥ 0). For sets I /∈ R∗i the reduced cost
can take any value. If the reduced cost of a set I is negative (rcI (πi) <

0) this indicates that adding I to R∗i (resulting in R∗i+1) could lead
to finding an optimal solution sol′rel ∈ Sol∗(Relax(SPP(R∗i+1)) such
that Obj(sol′rel) < Obj(solrel). When no set I ∈ R s.t. rcI (πi) < 0
exists, then the current optimal solution sol ∈ Sol∗(Relax(SPP(R∗i))
is optimal for Relax(SPP(R)) (i.e. sol ∈ Sol∗(Relax(SPP(R∗i))) and
sol ∈ Sol∗(Relax(SPP(R))). Searching for new sets of negative re-
duced cost is called pricing.

2.9.1 Branch & Price for Set Partitioning Problems

Column Generation can be included in the Branch & Bound frame-
work resulting in Branch & Price. In Branch & Price the original integer
problem corresponds to SPP(R). As before the problem is however
formulated on a restricted set R∗0 resulting in SPP(R∗0). This prob-
lem is then attacked using a Branch & Bound method combined with
Column Generation. Each node SPPj in the Branch & Price tree is as-

2.9 column generation 41

sociated with a current restricted set R∗j (and with constraints intro-
duced through branching). The initial problem at node SPPj is thus
problem SPPj(R∗j , . . .) (where . . . designs additional branching con-
straints). The problem Relax(SPPj(R∗j , . . .)) is solved and the resulting
dual costs π j are used to generate new sets I s.t. rcI (π j) < 0. Note
that care has to be taken that those new sets respect the constraints of
problem SPPj(R∗j , . . .). The new sets are then added to R∗j , resulting
in a new problem. These steps of solving and pricing are repeated it-
eratively until at some point set R∗′j (R∗j ⊆ R∗′j) is obtained and no
further sets I s.t. rcI (π′j) < 0 are proven to exist. Thus at the end
of the procedure the problem associated with node SPPj is problem
SPPj(R∗′j , . . .) and a solution sol ∈ Sol∗(Relax(SPPj(R∗′j , . . .))) is opti-
mal for the non-restricted problem (sol ∈ Sol∗(Relax(SPPj(R, . . .)))).
Furthermore Obj(Sol∗(Relax(SPPj(R∗′j , . . .)))) ≤ Obj(SPPj(R, . . .))
(the optimal solution gives a lower bound on the optimal solution of
SPPj(R, . . .)).

In the remainder of this thesis R∗i will be used to denote the initial
set of elements associated with node SPPi and R∗′i is used to denote
the final set of elements associated with node SPPi.

2.9.2 Application to the CVRP

The Capacitated Vehicle Routing Problem can be formulated as a Set
Partitioning Problem (called SPPCVRP) as follows:

Minimize ∑
r∈R

orxr

subject to ∑
r∈R

airxr = 1 ∀i ∈ V\{0} (2.5)

∑
r∈R

xr = K (2.6)

xr ∈ {0, 1} ∀r ∈ R (2.7)

air =

{
1 if customer i is visited in route r

0 otherwise
∀i ∈ V\0, ∀r ∈ R

In this formulation the universe corresponds to the set of customers
U = V\{0} and set R is the set of all feasible routes, along with
K− 1 empty routes to allow a solution using less routes than vehicles

42 Chapter 2 vehicle routing problems

available. A binary variable xr is thus associated with every route r ∈
R. Furthermore a constraint 2.6 is added to restrict the number of
routes used in the solution. The set R contains all possible routes such
that for each route:

• no customer is visited more than once in the route

• the sum of the customers visited on the route does not exceed the
vehicle capacity

• the route starts and ends at the depot

Since it is intractable to generate all feasible routes for most problem
instances, column generation procedures are used to solve this prob-
lem. Thus only a restricted set of feasible routes R∗ is used. Adding a
new column to this problem means adding a new route r into R∗. This
of course also corresponds to adding to the problem formulation a new
variable xr, its associated cost or which is the total distance of route r
and finally also a column in matrix a indicating which customers are
visited in r.

The only point in the previously described Column Generation and
Branch & Price methods that needs to be adapted to the problem
at hand is how the Pricing subproblem is solved. Note that in prac-
tice the way subproblems are created in the Branch & Price tree is
adapted as well, see e.g. [Fei10]. There are numerous examples of Col-
umn Generation or Branch & Price applied to Vehicle Routing see e.g.
[Sal05, CRS09, BBMR10].

2.9.2.1 Pricing for the CVRP

Here, a brief overview of pricing for the CVRP is given. For simplicity,
in the following it is assumed that no further constraints, introduced
by branching, need to be respected by the generated routes.
Pricing for the CVRP corresponds to finding new feasible routes of
negative reduced cost. With each customer i ∈ V\{0} will be associ-
ated a dual cost πi and furthermore a dual cost π0 is associated with
constraint 2.6. The reduced cost of a route r is thus computed as:

rcr(π) = or − ∑
i∈V\{0}

airπi − π0

2.9 column generation 43

With or = distance(r). This formula can be reformulated as:

rcr(π) = ∑
(i,j)∈A

bijr(cij − πi)

where

bijr =

{
1 if route r uses arc (i, j)

0 otherwise
∀i, j ∈ V, ∀r ∈ R

The problem of finding feasible routes of negative reduced cost is the
problem of finding elementary paths of negative cost respecting the
capacity constraints from source node s to sink node t in an adapted
graph G′′ = (V ′′, A′′). Source and sink nodes correspond to replica-
tions of the depot, thus V ′′ corresponds to V where the original depot
node has been replaced by two of its copies, V ′′ = V\({0}) ∪ {s, t}.
The set of arcs is adapted as A′′ = A\(δ−0 ∪ δ+0)∪ (δ−s ∪ δ+s)∪ (δ−t ∪ δ+t)

where δ−s is the set of arcs (i, j) s.t. i = s ∧ j ∈ V\{0} and δ+s is the
set of arcs (i, j) s.t. j = s ∧ i ∈ V\{0}, and analogously for δ−t and δ+t .
The weight of the arcs in A′′ is adapted as c′′ij = cij − πi ∀(i, j) ∈ A′′

where πs = πt = π0.
The problem of finding the elementary path of lowest cost and respect-
ing the capacity constraints in G′′ corresponds to an Elementary Short-
est Path Problem with Resource Constraints (ESPPRC). Note that as
arc weights in G′′ may be negative, the elementary constraint is neces-
sary to avoid cycles. The problem is NP-hard, but when dropping the
elementary constraint, pseudo-polynomial algorithms exist. [ID05].
These problems can be solved using labeling algorithms. The basic
idea is to explore all feasible paths from the source s to the sink t by
progressively extending partial paths from s to nodes i (i ∈ V ′′) until
reaching t. However different paths from s to the same node i are con-
stantly compared to each other and dominance between these paths
is established. Only non-dominated partial paths will be further ex-
tended since dominated partial paths can not be part of the shortest
path from s to t. With each path from node s to node i is associated a
label indicating for each considered resource the amount consumed on
the partial path from s to i. In the CVRP the resources considered cor-
respond to the accumulated arc costs and demands. Thus with a given
path p from s to i is associated a resource variable Rcost

pi and a resource
variable Rdemand

pi . Both resource variables are initialized to 0 at node s,

44 Chapter 2 vehicle routing problems

i.e. Rcost
p0s

= 0 and Rdemand
p0s

= 0 where p0 is considered the unique possi-
ble empty path from s to s. Each time a path p from s to i is extended to
j, the values of the corresponding resource variables Rcost

pj and Rdemand
pj

are computed as Rcost
pj = Rcost

pi + c′′ij and Rdemand
pj = Rdemand

pi + qj. Of
course paths p from s to some node j such that Rdemand

pj > Q are dis-
carded.
The resources are used to establish dominance between two paths. A
path p′ from s to i dominates a path p′′ from s to i if and only if
Rcost

p′i ≤ Rcost
p′′i and Rcapacity

p′i ≤ Rcapacity
p′′i and one of these inequalities is

strict.
For information on how this approach can be extended to guaran-
tee elementary paths and further information on Resource-constrained
Shortest Path Problems see [ID05].

It is sufficient to solve the ESPPRC heuristically to determine new
feasible routes of negative reduced costs. It needs to be solved exactly
only once per Column Generation to ensure no further feasible routes
of negative reduced cost exist.

In heuristic Column Generation schemes, as the resulting method
does not need to be complete, heuristics and metaheuristics such as
those seen in previous sections can be used to generate feasible routes
of negative reduced cost. This is done by either heuristically modify-
ing routes currently in the optimal solution of the RMP [XCRA03], or
(meta-) heuristically solving a Shortest Path Problem [PR09].

2.9.2.2 A note on the Consecutive-Ones Property

It can be shown that an optimal feasible solution to a bounded lin-
ear programming problem with integer right-hand side coefficients b,
such as the Linear Programming relaxation of problem 2.1, is integral
if the constraint matrix A is totally unimodular [GP10]. Note that the
integrality or non-integrality of the optimal feasible solution is thus
independent from the cost coefficients associated with the problem
variables. If it is known that the matrix A for some integer problem
is totally unimodular, then this means that the problem can be solved
more efficiently. It is sufficient to solve the problem’s Linear Program-
ming relaxation, no Branch & Bound is necessary to obtain the optimal
integral solution from the optimal fractional solution.
We call APCVRP the constraint matrix associated with the Set Parti-

2.9 column generation 45

tioning reformulation of the CVRP. It corresponds to the left-hand
side coefficients of constraints Eqs. 2.5 and 2.6. Note also that for the
CVRP the right-hand side coefficients are always integer. Thus if for
some set of routes R+ the corresponding matrix APCVRP(R+) is to-
tally unimodular then an optimal feasible solution sol is integral (sol ∈
Sol∗(Relax(SPPCVRP(R+)))) and thus sol ∈ Sol∗(SPPCVRP(R+)).
In the case of a Set Covering Problem (SCPCVRP, the equalities in con-
straints 2.5 and 2.6 are replaced by inequalities (≥)), an optimal feasi-
ble solution to the LP relaxation of that problem is integral if and only
if the corresponding constraint matrix ACCVRP is totally unimodular
[GP10].

One way to detect total unimodularity in binary matrices is via the
Consecutive-Ones Property (C1P), as it is known that a matrix that has
this property is totally unimodular (the inverse is not true). A matrix
containing only entries in {0,1} (called 0/1-matrix) is said to have C1P
if its columns can be permuted such that in every row the 1s appear
consecutively. Furthermore a 0/ ± 1 matrix is said to have C1P if (i)
the entries in every row belong to either {0, 1} or {0,−1} and (ii) the
matrix columns can be permuted in such a way that in every row the
1s (or the −1s respectively) appear consecutively [Dom09].
Let’s first consider the case of problem SPPCVRP(R+). As each route
inR+ needs exactly one vehicle, all coefficients in matrix APCVRP(R+)

in the row corresponding to constraint 2.6 are 1, and thus C1P is auto-
matically respected for this row. Condition (i) is thus always respected.
It depends on the nature of the routes (i.e. the combination of cus-
tomers visited in these routes) in R+ whether matrix APCVRP(R+)

has C1P. With problem SCPCVRP the row in matrix ACCVRP(R+) cor-
responding to constraint 2.6 (with inequality sign) will contain only
−1 entries, thus again it will depend on the set of routes R+ whether
matrix ACCVRP has C1P.
Finally note that Set Covering Problems with C1P can be solved faster
by using matrix A to represent a weighted graph and solving a mini-
mum cost flow problem on this graph (see [Dom09]).

46 Chapter 2 vehicle routing problems

Example

Assume a CVRP with a central depot and four customers called
c1, c2, c3 and c4. Assume furthermore 4 routes ra = 〈1, 4, 2〉,
rb = 〈2, 3, 1〉, rc = 〈3, 4〉 and rd = 〈3〉. With each of the routes is associ-
ated an x variable. Matrix M depicts the constraint matrix correspond-
ing to constraints 2.5 for this problem.

M =


xa xb xc xd

c1 1 1 0 0
c2 1 1 0 0
c3 0 1 1 0
c4 1 0 1 1


Matrix M does not have C1P as there is no way to arrange its columns
in such a way that the 1s appear in blocks in each of its rows.
If we assume all distances equal to 1, the optimal solution to the LP
relaxation of problem SCPCVRP formulated over these routes will se-
lect all routes with xa = 0.5, xb = 0.5, xc = 0.5 and have a cost 5.5. The
optimal integral solution selects xa = 1 and xd = 1 with an optimal
solution cost of 6.

If we now assume routes ra = 〈1, 2〉, rb = 〈2, 3, 1〉, rc = 〈3, 4〉 and
rd = 〈3〉 the corresponding matrix M′ corresponds to:

M’ =


xa xb xc xd

c1 1 1 0 0
c2 1 1 0 0
c3 0 1 1 0
c4 0 0 1 1


Clearly this matrix has C1P and the optimal solution to the LP relax-
ation of problem SCPCVRP formulated over these routes selects xa =

1, xc = 1. It is integral and has cost 6.

2.10 branch & propagate 47

2.10 branch & propagate

Branch & Propagate is a complete and constructive method to solve Con-
straint Satisfaction Problems of the form CSP(X,C,D) based on Branch-
ing Search. Such a problem is defined over a set of variables X =

{x1, . . . , xn}, the domains of these variables D = {D(x1), . . . , D(xn)}
and a set of constraints C = {c1, . . . , cm} over the variables in X.
The domain D(xi) of a variable xi corresponds to the set of values
{v1, . . . , vd} the variable can take. Each constraint c ∈ C involves a set
of variables V(c) (V(c) ⊆ X) and limits the allowed combinations of
values that can be assigned to these variables. A complete assignment
A maps to each variable x a value A(xi) = v s.t. v ∈ D(xi). A fea-
sible solution to a CSP is a complete assignment A such that every
constraint c ∈ C is respected in this assignment. A CSP is said to be
unsatisfiable or infeasible if no feasible solution exists.
Note that CSPs are not optimization but satisfaction problems. Thus
the exploration of the search tree stops once a feasible solution has
been found, or the entire search tree has been explored. See section
2.10.2 for explanations of how optimization problems can be solved
using CSPs and Branch & Propagate. While different implementations
and uses of Branch & Propagate may exist the descriptions given here
focus on Constraint Programming. The following explains how Branch-
ing Search can be adapted to result in Branch & Propagate.

Problem representation A Constraint Satisfaction Problem is defined
by its variables, the set X = {x1, . . . , xn}, the domains of these variables
D = {D(x1), . . . , D(xn)} and the constraints on these variables C =

{c1,cm}. The original problem is thus P(X, D, C) and its decom-
position into s subproblems results in P1(X, C1, D1), . . . , Ps(X, Cs, Ds).
Subproblems are created by adding new constraints to the original
problem. In the case of a CSP P(X, C, D) a subproblem Pi(X, Ci, Di)

is created by adding µi new constraints to problem P(X, C, D) s.t.
Ci = {c1, . . . , cm, cm+1, . . . , cm+µi} and by reflecting the impact of these
new constraints on the domains, i.e. Di(xj) ⊆ D(xj) ∀xj ∈ X. For
further information on how the domains are adapted see Pruning.

Subproblem creation Different types of constraints can be added to P
in order to create subproblems. Usually the same types of constraints
are used throughout the construction of the Branching Search Tree.
Three common ways ([RVBW06]) to create subproblems in Branch &

48 Chapter 2 vehicle routing problems

Propagate are given now. A common choice for creating subproblems
for P(X, C, D) is to select some variable xk ∈ X s.t. |D(xk)| > 1 and
create one subproblem for each of the d values in the domain of xk by
adding the constraint xk = vi (i = 1, . . . , d, vi ∈ D(xk)) to the original
problem. Thus d subproblems Pkv1(X, Ckv1 , Dkv1), . . . , Pkvd(X, Ckvd , Dkvd)

are created and Ckvi = C ∪ {xk = vi}. This strategy is known as Enu-
meration.
Another possibility is to split the domain of some variable xk ∈ X
around some value vi (vi ∈ D(xk)), thus creating two subproblems:
one with the new constraint xk < vi and one with the new constraint
xk ≥ vi (Domain Splitting).
Finally in the Binary Choice points strategy two subproblems are cre-
ated for some variable xk ∈ X and some value v ∈ D(xk), one where
constraint xk = v is added and one where constraint xk 6= v is used.

Pruning Even though the search stops at the first feasible solution it is
possible that no such solutions exists and a complete enumeration of
all possible assignments A is intractable in most cases. Again the idea
is to speed up the search by pruning. Obviously only parts not contain-
ing a feasible assignment may be cut from the search tree. Therefore a
method allowing to predict with certainty that a certain subtree does
not contain a feasible solution is needed. This is done using constraint
propagation. At each node Pi, constraint propagation removes values
from the domains of variables if these values cannot be part of a feasi-
ble solution to subproblem Pi(X, Ci, D), resulting in Pi(X, Ci, Di). If for
some variable xk we have Di(xk) = ∅, then the subtree rooted at Pi is
proven to contain no feasible solution and can be pruned.
In practice, propagation is done for each of the constraints cj ∈ Ci.
The propagation algorithm for cj considers each of its variables xk ∈
V(cj) in turn and detects which values in D(xk) may not participate
in a feasible solution given the domains D(y) of the other variables
(y ∈ V(c), y 6= xk). The detected values are then removed from D(xk).
Removing a value from the domain of D(xk) may cause values from
the domains of other variables y s.t. ∃c ∈ Ci s.t. {xk, y} ⊆ V(c) to be
removed as well. Thus all constraints in C and all their variables may
be treated several times, and this until each constraint c ∈ Ci reaches
some level of consistency, such as domain consistency.
A constraint c is considered domain consistent if for each of its vari-
ables x ∈ V(c) and for every value in D(x) a value exists in the domain
D(y) of every variable y ∈ V(c) ∧ y 6= x s.t. those values are part of

2.10 branch & propagate 49

an assignment A respecting c. Other common consistencies are Bound
consistency and Forward Checking consistency.
Choosing the level of desired consistency for each of the original and
also the added constraints is a trade-off between reducing the number
of explored nodes in the Branch & Propagate tree and the time spent
at each node. The higher the consistency level, the higher the temporal
complexity of the propagation algorithm, but also the higher the num-
ber of potentially pruned nodes. This decision is typically dependent
on the constraint at hand.

Branching Heuristic The branching decision consists in deciding on
which variable and possibly value(s) to impose the new constraint. A
common heuristic is the dom heuristic [RVBW06]. It chooses to first im-
pose constraints on the variable having the least values in its domain.
The intuition behind this is that this allows to detect infeasibility as
soon as possible, and thus allows to prune the biggest possible parts of
the Branch & Propagate tree. Other heuristics (deg, dom+deg, dom/deg)
furthermore use the number of constraints in which each variable ap-
pears in order to select the next variable on which to branch.
As seen in Subproblem creation the constraints imposed on a variable to
create subproblems usually involve some value. Heuristics to choose
these values can be problem-dependent or use some type of approxi-
mation of the pruning performed when posting the constraint impli-
cating the given variable and value.

Search strategy Two common strategies used in Branch & Propagate
are Depth-First Search (DFS) and Discrepancy Search. Since complete as-
signments are located in leaf nodes and the goal is to find a feasible
assignment it makes sense to quickly descend in the search tree as is
done with DFS. However if a bad branching decision has been taken at
a low level in the Branch & Propagate tree, time and effort will be lost
exploring a subtree that may not contain a feasible solution. Discrep-
ancy Search remedies this. As the discrepancy w.r.t. the DFS strategy
may be taken at any level in the search tree different distant parts of
the search tree are explored in sequence.

2.10.1 Branch & Propagate for Optimization

A Constraint Optimization Problem COP(X, C, D, Obj) is a CSP where
instead of only finding a feasible solution, the goal is to find a fea-

50 Chapter 2 vehicle routing problems

sible solution minimizing some function Obj(x1, . . . , xn). An optimal
solution is a complete assignment A∗ such that every constraint c ∈ C
is respected and such that Obj(A∗(x1), . . . ,A∗(xn)) is minimized. This
means that no other complete assignmentA′ such that every constraint
c ∈ C is respected and such that
Obj(A′(x1), . . . ,A′(xn)) < Obj(A∗(x1), . . . ,A∗(xn)) exists.

COPs can be solved by repetitively solving the underlying CSP. A
variable o constrained to take the value of the objective function (o =

Obj(x1, . . . , xn)) is added to the underlying CSP. Furthermore a con-
straint of the form o < UB is added and UB is initialized to ∞. The
resulting CSP is then called CSPoUB0 and solved using Branch & Prop-
agate. If no feasible assignment is found the COP is infeasible.
If a feasible assignment A is found then UB is updated to
Obj(A(x1), . . . ,A(xn)) resulting in CSPoUB1 . These steps are repeated
until no further feasible assignment can be found for some CSPoUBi .
In that case the current value of UB gives the optimal solution value
and the last feasible assignment A corresponds to the optimal solu-
tion. Thus this method is complete. This is due to two facts: Branch &
Propagate is guaranteed to find a feasible to CSPoUBi if one exists; UB
is initialized to ∞ but then steadily decreases as it is updated with the
cost of solutions feasible in the current CSP.

2.10.2 Application to the CVRP

Usually Constraint Programming is not applied as is to Vehicle Rout-
ing Problems. Hybrid, often incomplete, methods combining Cons-
traint Programming with other optimization techniques such as Lo-
cal Search ([Sha98]), Ant Colony Optimization ([Sol10]), Mixed Integer
Programming ([Tho01]) and Column Generation ([RGP02, Cha06]) ex-
ist.

To adapt Branch & Propagate to the CVRP it is sufficient to model
it as a Constraint Optimization Problem COP(X, D, C, Obj). In order
to simplify the modelization, the depot vertex is duplicated in G re-
sulting in the problem graph G′ = (V ′, A′). That is for each vehicle
k ∈ {1, . . . , K} a new start depot vertex SDk and a new end depot
vertex EDk are created. The sets SD = {SD1, . . . , SDK} and ED =

{ED1, . . . , EDK} are used to refer to the entirety of start depot and

2.10 branch & propagate 51

end depot vertexes in G′. The set of vertexes V ′ is adapted from V
as follows: V ′ = (V\{0}) ∪ SD ∪ ED and the set of arcs becomes
A′ = (A\(δ−0 ∪ δ+0) ∪ SD × V\{0} ∪ ED × V\{0} ∪ V\{0} × SD ∪
V\{0} × ED. In the following a modelization of the CVRP as COP
is given. Variables, domains, constraints and objective function are de-
fined followed by a description of the resulting model.

Variables X

nexti : vertex following vertex i in the route visiting i (∀i ∈ V ′\{ED})
preci : vertex preceding vertex i in the route visiting i (∀i ∈ V ′\{SD})
vehiclei : vehicle visiting i (∀i ∈ V ′)

Ni : set of vertexes visited after vertex i by same vehicle (∀i ∈ V ′)

Domains D

D(nexti) = V ′\(SD ∪ {i}) ∀i ∈ V ′\ED (2.8)

D(preci) = V ′\(ED ∪ {i}) ∀i ∈ V ′\SD (2.9)

D(Ni) ⊆ V ′\(SD ∪ {i}) ∀i ∈ V ′ (2.10)

D(vehiclei) = {1, . . . , K} ∀i ∈ V ′ (2.11)

Constraints C

nexti 6= nextj ∀i, j ∈ V ′, i 6= j (2.12)

i = precnexti ∀i ∈ V ′\ED (2.13)

vehicleSDk = k ∀k ∈ K (2.14)

vehicleEDk = k ∀k ∈ K (2.15)

vehiclei = vehiclepreci ∀i ∈ V ′\SD (2.16)

Ni = ∅ ∀i ∈ ED (2.17)

Ni = Nnexti ∪ {nexti} ∀i ∈ V ′\ED (2.18)

∑
i∈V′\(SD∪ED)

(vehiclei = k) ∗ qi ≤ Q ∀k ∈ {1, . . . , K} (2.19)

Objective Obj

Obj(next) = ∑
i∈V′\ED

dinexti (2.20)

In this model four different types of variables are used. Only the
nexti variables are actually necessary to describe a solution, these are

52 Chapter 2 vehicle routing problems

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

Figure 2.7: A subtour visiting customers c1, c3, c8, c7 and c6

A subtour is a cycle in the problem graph not containing the depot
vertex.

the so-called decision variables. The other variables allow to model
and constrain the problem more easily. A solution to this COP does
not directly represent a set of routes as seen in 2.2.1. However such a
set can be easily extracted from the values of the next variables.

Constraints 2.12 ensure no vertex (and thus no customer) is visited
more than once while constraints 2.13 are responsible for consistency
between the nexti and preci variables. One vehicle is associated with
each start and end depot vertex in constraints 2.14 and 2.15. With con-
straints 2.16 all vertexes visited on the path from start depot SDk to
end depot EDk will be visited by the same vehicle. In combination
with the Ni variables (see below) this allows to ensure that each vehi-
cle may only be used once, and thus that the number of routes in a
solution does not exceed the number of available vehicles. Constraints
2.18 link the Ni and nexti variables. As, per definition of its domain the
set Ni may not contain vertex i, subtours such as the one depicted in
Fig. 2.7 are impossible. Thus only routes starting at a start depot and
ending at an end depot are feasible in this model. Finally constraints
2.19 force the accumulated demands of customers visited by a same
vehicle to respect the capacity limit of the vehicle.

2.10 branch & propagate 53

2.10.2.1 Adaptation of model using Global Constraints

Global Constraints are constraints expressing complicated relations be-
tween a non-fixed number of variables ([RVBW06]). Such relations
could also be expressed in a set of simpler constraints. However ef-
ficient propagation algorithms are associated with global constraints,
which allows to achieve a better pruning of the implied variables’ do-
mains when compared to the pruning achieved with the conjunction
of simpler constraints.

Pruning could be improved by using global constraints in the COP
model for the CVRP. The following parts would be modified.

• Constraints 2.12 could be replaced by one alldifferent ([Lau78]) con-
straint over all the next variables.

alldi f f erent(next1, . . . , nextn+K)

where next1, . . . , nextn are the next variables associated with cus-
tomer nodes v1, . . . , vn and nextn+1, . . . , nextn+K are the next vari-
ables associated with vertexes SD1, . . . , SDK.

• Constraints 2.19 could be expressed using a bin packing ([Sha04])
constraint.

bin_packing(q1, . . . , qn, vehicle1, . . . , vehiclen, l1, . . . , lk)

where vehiclei is the bin (vehicle) associated with customer i ∈
V\{0} and lj is an additional variable representing the load of bin
(vehicle) j ∈ K with D(lj) = [0..Q] ∀j ∈ K.

• Constraints 2.17 and 2.18 could be replaced by a directed acyclic graph
([DDD05]) constraint.

DAG(next1, . . . , nextn+K)

where next1, . . . , nextn are the next variables associated with cus-
tomer nodes v1, . . . , vn and nextn+1, . . . , nextn+K are the next vari-
ables associated with vertexes SD1, . . . , SDK. This would make the
Ni variables superfluous.

3
V E H I C L E R O U T I N G P R O B L E M S W I T H C O M P L E X
S I D E - C O N S T R A I N T S

In this chapter, existing high-level or generic approaches to tackle
Rich Vehicle Routing Problems are reviewed. Then examples of Vehicle
Routing Problems with complicated side-problems are given and the
application of existing generic approaches (for Rich Vehicle Routing
Problems) to these problems are considered.

3.1 rich vehicle routing problems

The term rich is used in the literature to describe complicated Vehi-
cle Routing Problems, combining number of real-world constraints
into one problem. These additional constraints often impact the struc-
ture of routes and solutions (multiple depots, split deliveries, . . .) on
one hand and on the other hand add additional (non-structural) con-
straints, such as the respect of time windows, to routes. Objective func-
tions more complex than a basic distance minimization are common
as well.

In the broad class of Rich Vehicle Routing Problem a specific sub-
class of problems can be identified. These are problems based on sim-
ple VRP variants where a set of additional constraints must be re-
spected by each route. Verifying whether a route respects these con-

55

56 Chapter 3 vrps with complex side-constraints

straints is a complicated problem by itself. The most notable examples
of (more or less) basic VRPs with complicated side-problems in the
literature are VRPs where for each route a loading problem must be
solved, and VRPs with Time Windows where for each route a schedul-
ing problem must be solved. They are briefly reviewed in the next
section.

3.2 vrps with complicated side-problems

There are several examples of problems combining routing and load-
ing: in the 2L-CVRP ([ISGV07]) and the 3L-CVRP ([GILM06]) a two-,
respectively three-dimensional, bin packing problem with complicat-
ing constraints must be solved for each route. In the case of the MP-
VRP ([DFH+

07]) a one-dimensional loading problem must be solved
to verify the feasibility of a route. Recently ([ZTK12]) presented a
problem where three-dimensional items must first be loaded unto pal-
lets before loading the pallets into the truck. For each pallet a three-
dimensional loading problem must be solved first. A further well-
known problem combining routing and loading is the Auto carrier
transportation problem [ABM98], where cars must be loaded onto spe-
cialized trucks and loading and unloading operations must be consid-
ered. For a recent overview of problems combining vehicle routing and
loading the reader is referred to [IM10].

A second class of VRPs with complicated side-constraints are prob-
lems combining routing and scheduling. Here the feasibility of a route
is verified by solving a scheduling problem (note that the one-dimen-
sional loading problem of the MP-VRP can also be considered a sche-
duling problem). In these problems each customer must be visited in
a given time window (thus we have a VRPTW) and breaks for the
truck drivers must be scheduled in order to comply with a given set of
rules (often corresponding to a specific legislation on working time of
drivers). The exact problem depends on the rules considered. Recent
work considers the European ([PGDDR10], [Goe09]) and the Ameri-
can legislation ([RCL13]). A comprehensive overview of work in this
domain can be found in [MKKS11].

Most approaches for both types of problems integrate some kind
of specific knowledge other than a basic feasibility check about the
side-problem to be solved for each route (existing approaches for the

3.3 generic/high-level approaches for rich vrps 57

3L-CVRP and the MP-VRP will be reviewed in detail in the Appli-
cations part of this thesis). However the Large Neighborhood Search
proposed in [Goe09] should be pointed out. The author proposes a
Large Neighborhood Search based on the removal and reinsertion of
customers. Customers may be removed from their route only if the
resulting reduced route remains feasible. Reinsertion of customers is
handled using an auction system, and is also only acceptable if the re-
sulting route is feasible. In this method the only side-constraint specific
information used is the feasibility check.

3.3 generic/high-level approaches for rich vehicle

routing problems

The majority of approaches proposed in the literature for addressing
Rich VRPs are metaheuristic or mathematical programming-based ap-
proaches (or combinations of both). These approaches are often very
problem-specific and tailored to exactly fit the problem at hand. How-
ever efforts have been made to develop libraries and frameworks that
can be used to model and solve broader classes of Rich Vehicle Routing
Problems. The most recent approaches are reviewed here and consid-
ered for adaptation to VRPs with complicated side-problems.

The authors in [BBMR10] present an exact solution framework for
Vehicle Routing Problems with additional constraints that can be re-
formulated as Set Partitioning Problems. The problem considered in
this thesis falls into that category. The presented framework is based
on dual ascent heuristics which are used to compute a near-optimal
dual solution (to the Set Partitioning Problem) and on Column Gener-
ation. They show how their framework can be specialized to a range
of problems (CVRP, VRP with Time windows (VRPTW), and Pick-up
and Delivery Problem with Time Windows (VRPPDTW)) by provid-
ing problem-specific pricing algorithms. The fact that this framework
is exact entails that the pricing problem needs to be solved exactly.
Typically this is done by solving a Resource-constrained Shortest Path
Problem (RCSPP) which then needs to be adapted to the side-problem
to be solved. If the adaptation is to remain as generic as possible w.r.t.
the side-problem, a feasibility check can be provided. This check must
then be executed on each partial path considered in the RCSPP. Such
an approach was tested in [Bon08] for the 2L-CVRP and shown to be

58 Chapter 3 vrps with complex side-constraints

intractable.

A unified modeling and solution framework for vehicle routing has
been proposed in [Irn08]. The framework is based on the assumption
that any constraints can be expressed as resources on paths or on
segments. Efficient means of evaluating neighborhoods based on pre-
processing are proposed. The authors apply their framework on the
VRPTW, the multi-depot VRPTW and pick-up and delivery problems.
They further on show how to model a set of recurring VRP variants in
their framework. Expressing the constraints of the side-problem as re-
source is not possible without specific knowledge of the side-problem
being solved per route.

In [GGW10] the authors propose a library of local search heuristics
for the capacitated vehicle routing problem. Well-known construction
heuristics and a large set of local search operators are implemented. A
set of rules allows to easily adapt the core local search algorithm. It is
also possible to interface the presented library with the SYMPHONY
mixed-integer programming package. The authors show how the meta-
heuristics in the framework can be used to generate solutions, of which
the individual routes are then added to a pool of routes on which a
Set Partitioning Problem is then solved. As explained by the authors,
it would be necessary to overwrite the evaluate method (used to evalu-
ate a move in the neighborhood) of the local search part to adapt the
libraries to a problem with side-problems. The approach being based
on local search, it is not clear how it would perform on a problem
where the feasible solution space is possibly not connected (and only
a feasibility check for the side-problem provided).

In [DD08] it is shown how the (general-purpose) Greedy-Indirect
Search Framework can be applied to VRPPDTW. In this framework
the feasibility checker for a given solution is used as a black box, and
can be interchanged easily with a different checker in order to adapt
the framework to a different set of side-constraints. The framework is
based on the concept of performing Local Search on a simplified rep-
resentation (encoding) of a solution and then greedily decoding this
simplified representation in order to construct a fully feasible solution
for the original problem. In the case of the considered VRPPDTW an
encoded solution corresponds to a sequence of vertexes. The greedy
decoder executes a greedy insertion heuristic, where the vertexes are

3.3 generic/high-level approaches for rich vrps 59

inserted in order of the given sequence to construct the corresponding
solution. The black box feasibility checker is used to verify the feasibil-
ity of the partial solution resulting from each insertion. The approach
being based on local search, it is not clear how it would perform on
a problem where the feasible solution space is possibly not connected
(and only a feasibility check for the side-problem provided).

Finally a metaheuristic framework for Rich Vehicle Routing Prob-
lems has been implemented in [Vog12]. The framework provides cus-
tomizable implementations of standard construction heuristics, local
search neighborhoods, and destruction and repair operators to be used
in a Large Neighborhood Search context. Furthermore metaheuristic
control mechanisms for Steepest Descent, Attribute-based Hill Climb-
ing and Record-to-Record travel are provided. The framework can be
adapted to specific problems by modifying the feasibility checks and
different heuristic measures. The author shows for example how tem-
plate classes can be customized to provide additional information on
time windows (in a VRPTW context) to be used as guidance in the so-
lution process. The framework is tested on the VRPTW, the VRP with
split deliveries, the VRP with compartments, the Periodic VRP and a
Truck and Trailer Problem. The author explains that the framework
can be adapted to problems with complicated side-constraints (such
as loading constraints) by providing external procedures to efficiently
verify feasibility. The framework being heavily based on metaheuris-
tics, the concerns w.r.t. its application to the problem considered in
this thesis are the same as with local search. Does the framework al-
low to obtain good results on a problem where the feasible solution
space is not connected?

Part II

C O N T R I B U T I O N S

4
T H E V E H I C L E R O U T I N G P R O B L E M W I T H B L A C K
B O X F E A S I B I L I T Y

In this chapter an abstraction for Vehicle Routing Problems with com-
plex side-problems is presented. This abstraction is called the Vehicle
Routing Problem with Black Box Feasibility (VRPBB). First, the prob-
lem formulation is presented. Different examples of how the abstrac-
tion can be instantiated to a concrete problem are given next. Then
the features of a hypothetical optimization approach for the VRPBB
are highlighted and the restriction of the VRPBB covered in this thesis
is explained. Finally classical techniques for solving VRPs are briefly
considered for adaptation to the VRPBB.

4.1 problem formulation

The Vehicle Routing Problem with Black Box Feasibility is an abstrac-
tion of Vehicle Routing Problems with complex intra-route side-cons-
traints. It is based on a basic Vehicle Routing Problem.

The VRPBB is defined on a simple complete weighted graph G =

(V, A). In the set of vertexes V = {0, . . . , n} vertex 0 represents the de-
pot, while vertexes 1 . . . , n represent the customers to be visited. Each

63

64 Chapter 4 the vrp with black box feasibility

arc (i, j) ∈ A, (i, j ∈ V) has an associated weight cij. A set of homoge-
neous vehicles K is available to perform the visits to all customers.

In order to be feasible a route must respect two sets of non-structural
intra-route constraints Fwb and Fbb. Let f eas(r, c) = true indicate that
route r respects constraint c.

• Set Fwb contains so-called white box constraints. These constraints are
known in detail and the evaluation of f eas(r, c) is done in O(|r.S|)
time complexity for every constraint c ∈ Fwb.

• Set Fbb contains black box constraints. These constraints are unknown
and the evaluation of

∧
c∈Fbb

f eas(r, c) is done in Ω(|r.S|) time com-
plexity. A function f easbb(r), called black box function, to evaluate
the feasibility of route r w.r.t Fbb is provided. However f easbb(r)
possibly only provides a non-exact verification of

∧
c∈Fbb

f eas(r, c),
resulting in false negatives (i.e. route r is considered infeasible even
though an exact verification of

∧
c∈Fbb

f eas(r, c) would prove its fea-
sibility).

Finally the goal is to devise a solution (set of routes)
Sol = {r1, . . . , rn} such that:

1. |Sol| ≤ |K|
the solution does not use more vehicles than available

2.
⋂

ri∈Sol ri.S = ∅ and
⋃

ri∈Sol ri.S = V\{0}
each customer is visited exactly once

3.
∧

cwb∈Fwb
f eas(r, c) ∀r ∈ Sol

each route in the solution respects the white box constraints

4.
∧

cbb∈Fbb
f eas(r, c) ∀r ∈ Sol

each route in the solution respects the black box constraints

5. min Obj(Sol)
the objective function is minimized

In the following a route is called wb-feasible if it respects constraints
Fwb and bb-feasible if it respects constraints Fbb. A route is called feasible
if it is both wb- and bb-feasible. A solution is called VRP-feasible if con-
straints 1 and 2 hold. It is called wb-feasible (bb-feasible) if all its routes
are wb-feasible (bb-feasible). Finally a solution that is VRP-feasible and
wb-feasible and bb-feasible is called feasible.

4.2 examples of vrpbb instantiations 65

4.2 examples of vrpbb instantiations

The VRP with Black Box Feasibility is an abstraction, different parts
(white box constraints, black box constraints, objective function) need
to be instantiated in order to obtain a concrete routing problem. Exam-
ples of common instantiations of the abstract features of the VRPBB
are given below:

White box constraints Fwb These constraints will typically corre-
spond to the "classical" VRP constraints such as for example capac-
ity constraints over the vehicles, constraints on the maximal length
of a route or time window constraints for each customer.

Black box constraints Fbb These will typically correspond to some
combinatorial problem. The black box function will need to solve
the combinatorial problem in order to verify the feasibility of the
route. Examples of such problems could be the loading of multi-
dimensional items into the loading space of the vehicle or the sched-
uling of driver breaks.

Objective function Obj In the simplest case the objective function
may correspond to the total distance of the solution or the num-
ber of vehicles. In the case of time windows it could, for example,
correspond to accumulated waiting time or lateness.

4.3 features of an optimization approach

for the vrpbb

Any optimization approach for the VRPBB will exhibit the following
inter-dependent properties:

• Independence

• Flexibility

• Genericity

Independence Since only a black box function is provided to evaluate
the feasibility w.r.t Fbb and no further insight is possible into Fbb, the
optimization approach can not integrate or make use of any other in-
formation than the feasibility information provided by f easbb(r) for

66 Chapter 4 the vrp with black box feasibility

each route r. This means that the optimization approach is as indepen-
dent as possible from the black box constraints.

Flexibility The optimization approach is flexible in the sense that it
can be applied to a fundamentally different problem by plugging a
different black box function.

Genericity As the optimization approach is independent of the black
box constraints it is also as generic as possible w.r.t. to the constraints
in Fbb.

4.4 vrpbbs considered in this thesis

In this thesis a restriction of the VRPBB is considered. This restriction
is called CVRPBB henceforth.

• the objective function Obj(Sol) corresponds to the minimization of
the total distance

• Fwb correspond to capacity constraints. With each customer i ∈
V\{0} is associated a non-negative demand qi. The vehicles all have
a restricted capacity of Q. A route r is considered wb-feasible if and
only if ∑i∈r.S qi ≤ Q.

4.5 solving the cvrpbb

A method for solving CVRPBBs is needed. This method need not
be complete, the solution should however be of high quality and of
course feasible. Different optimization approaches for the CVRP could
be adapted to the CVRPBB.

Construction Heuristics Construction heuristics can be used to con-
struct solutions to Vehicle Routing Problems. Some of the heuristics
presented for the CVRP can be easily extended, such that they are
allowed to build only bb-feasible routes. In the case of Insertion heuris-
tics, one can for example choose to accept the insertion of a customer
i in route r at position p only if f easbb(insert(i, r, p)) = true. Since
the decisions taken in construction heuristics are myopic, this could of
course result in a solution infeasible because of the number of vehicles

4.5 solving the cvrpbb 67

it uses.

Local Search In the same way Local Search could be adapted to accept
the move to a neighboring solution only if this neighboring solution is
feasible. However it is possible that for some solution Sol no bb-feasible
solution Sol′ exists in the neighborhood of Sol. Also it might be diffi-
cult to find an initial solution that is completely feasible. This means
that it would be beneficial to allow the search to move to bb-infeasible
solutions. Since however only the black box function is available to
evaluate the bb-feasibility of a solution, there is no means to measure
the degree of violation of Fbb for a given solution. Thus providing guid-
ance to Local Search to move away from bb-infeasibility is impossible.

Ant Colony Optimization Since Ant Colony Optimization methods
are built on repetitive executions of construction heuristics they can be
adapted in the same way construction heuristics can. The issue with
the ants building solutions using a too high number of vehicles re-
mains.

Branch & Propagate Constraint Programming-based Branch & Prop-
agate depends on propagators for the constraints appearing in the
model. Since the constraints in Fbb are unknown only generic con-
straint propagators can be used. These generic propagators are based
on a check method, which allows to test the feasibility of a given assign-
ment. This can of course be implemented using the black box function.
However these check methods can in the worst case, be called for ev-
ery possible assignment, which, given the worst-case time complexity
of the black box function becomes intractable.

Branch & Price In Branch & Price the VRP is reformulated as a Set
Partitioning Problem. The goal is then to choose among a set of fea-
sible routes the ones that can be combined into a VRP-feasible solu-
tion, such that this solution minimizes the objective. In the case of the
CVRPBB this would mean to choose among a set of feasible (w.r.t. Fwb
and Fbb) routes the ones that minimize the objective function. Column
generation would be necessary to generate feasible routes, thus the
problem of coming up with routes respecting Fwb and Fbb would be
deferred to the pricing problem. The intuition is that it is simpler to
generate a big set of feasible routes, and then select the ones that can
be combined into a VRP-feasible solution, than to generate |K| (or less)

68 Chapter 4 the vrp with black box feasibility

feasible routes that also correspond to a VRP-feasible solution.

Based on these reflections a combination of construction heuristics
and Branch & Price seems appropriate.

5
C V R P B B A S S E T PA RT I T I O N I N G P R O B L E M

All the methods presented in this chapter are based on the reformu-
lation of the CVRPBB as a Set Partitioning/Covering Problem. The
reformulation as a SPP is as follows:

Min ∑
r∈R

orxr (5.1)

s.t. ∑
r∈R

airxr = 1 ∀i ∈ V\0 (5.2)

∑
r∈R

xr ≤ K (5.3)

xr ∈ {0, 1} ∀r ∈ R (5.4)

air =

{
1 if customer i is visited in route r

0 otherwise
∀i ∈ V\0, ∀r ∈ R

Set R corresponds to the set of all feasible routes. The set of corre-
sponding variables is denoted by XR. The cost or associated with route
r ∈ R is given by distance(r) = ∑|r.S|

s=0 cr[s]r[s+1].

69

70 Chapter 5 cvrpbb as set partitioning problem

For efficiency reasons constraints 5.2 will be replaced by constraints
of the form

∑
r∈R

airxr≥1 ∀i ∈ V\0

This results in a Set Covering Problem (SCP) in which a customer
may be visited more than once. In the case of the CVRPBB it may be
necessary to solve the Set Partitioning Problem (SPP) in order to ob-
tain the real solution, where each customer is visited exactly once (note
that, given that R corresponds to the set of all feasible routes this is
not the case for the CVRP). Both problems are denoted SPP(R) and
SCP(R) whereas their restricted versions over a restricted set of feasi-
ble routes R∗ is denoted by SPP(R∗) and SCP(R∗).

5.1 notations

In the following two functions solveIP(SPP(R∗)) and
solveLP(Relax(SPP(R∗))) will be used to solve problem SPP(R∗) and
its linear programming (LP) relaxation Relax(SPP(R∗)).
Function solveIP(SPP(R∗)) evaluates to a solution sol with sol ∈
Sol(SPP(R∗)) if problem SPP(R∗) can be feasibly solved. In the other
case it evaluates to sol = ⊥. Function solveLP(Relax(SPP(R∗))) al-
lows to retrieve a solution solrel ∈ Sol∗(Relax(SPP(R∗))) and the asso-
ciated dual costs π. Should problem Relax(SPP(R∗)) be infeasible it
evaluates to solrel = ⊥ and π = ⊥.

A solution sol ∈ Sol(SPP(R∗)) (or solrel ∈ Sol∗(Relax(SPP(R∗))))
corresponds to an assignment of values to the variables in XR∗ . The
value of variables xr ∈ XR∗ in solution sol (or solrel) is given by Asol(xr)

(Asolrel (xr)). Note that if sol = ⊥ then Asol(xr) = ∞ ∀r ∈ R∗.
In the case of sol 6= ⊥, Asol(xr) ∈ {0, 1} ∀r ∈ R∗, whereas in the case
of solrel 6= ⊥, Asolrel (xr) ∈ R+ ∀r ∈ R∗. The set of variables taking a
non-zero value in solution sol (solrel) is given by
Z sol =

⋃
r∈R∗{xr|Asol(xr) > 0} (Z solrel =

⋃
r∈R∗{xr|Asolrel (xr) > 0}).

The same notations and properties hold for problem SCP.

Finally a solution solrel ∈ Sol∗(Relax(SPP(R∗))) can be integer. A
function isInteger(solrel) is provided to test this. It evaluates to true
(isInteger(solrel) = true) if and only if Asolrel (xr) ∈ {0, 1} ∀xr ∈ R∗.

6
P H E R O M O N E - B A S E D H E U R I S T I C C O L U M N
G E N E R AT I O N

As stated previously, Branch & Price is appropriate for solving the
CVRPBB. The CVRPBB may however be too complex to be solved in
an exact way in a reasonable amount of time. Also, while Branching
subdivides the original problem into smaller, easier subproblems, this
may not be necessary for smaller problem sizes. The presented me-
thod, called Pheromone-based Heuristic Column Generation (ACO-
HCG) corresponds to a pure Heuristic Column Generation method,
it is incomplete and constructive.
A paper describing this method was published and presented at the
CPAIOR’12 conference ([MDVH12]).

This chapter is structured as follows. In section 6.1 the principles
of the proposed approach are illustrated and the high-level algorithm
is presented. Then the so-called Collector Ants used to generate fea-
sible routes are introduced in section 6.2. Section 6.3 explains how
pheromones are used to guide the collector ants in their process. Fi-
nally sections 6.4 and 6.5 detail how feasible routes are post-optimized
and how an integer solution to the CVRPBB is obtained.

71

72 Chapter 6 pheromone-based heuristic col. gen.

6.1 principles

The idea of Pheromone-based Heuristic Column Generation (ACO-
HCG) is to generate feasible routes using ants (as in Ant Colony Op-
timization). Feasible routes are collected in a set R∗ and each itera-
tion the LP relaxation of the Set Covering Problem formulated over
this set is solved. The resulting solution is then used to update the
pheromones which will be used by the ants during the next route gen-
eration.
The overall algorithm for the Pheromone-based Heuristic Column Gen-
eration for the CVRPBB is given in Figure 6.1.1. At each iteration a
varying number of feasible routes is generated using so-called Collector
Ants (lines 5 – 7). For more information on Collector Ants see section
6.2. The generated routes are post-optimized (section 6.4) and added
to R∗ resulting in an augmented problem formulation (line 8). The
relaxation of the new Set Covering Problem is then solved optimally
over R∗, providing an optimal solution solrel and the associated dual
costs π (line 9). The strict flag is used to set the Collector ants into a
special strict mode (as opposed to liberal mode) until a feasible solution
to the relaxation of the resulting Set Covering Problem has been found
for a first time (line 11). Finally solrel is used to update the pheromone
matrix of the ants (line 12), see section 6.3 for more details on this.
After a certain stopping criterion has been reached the integer Set Cov-
ering Problem is solved over the current set R∗ (line 15). Some cus-
tomer might be visited more than once in the resulting solution sol.
This must be checked, and possibly fixed in order to obtain the final
set of routes Rsol (line 16) (more details in section 6.5) which is then
returned.
Note that the bb-feasibility information of routes that have been tested
is stored in the feasibility store Ψ throughout the optimization proce-
dure.

6.2 generating feasible routes

Heuristic executions, called Collector ants, generating feasible routes
are proposed (see Algorithm 6.2.1). Collector ants are based on the
savings-based ants from [RSD02], which themselves are based on the
Savings heuristic (see section 2.4.1). Each of the ` ants starts from an
initial state where each customer is visited in a route of its own (line
1). At each iteration the ant will build a set Ω of wb-feasible and pos-

6.2 generating feasible routes 73

Algorithm 6.1.1 : Pheromone-based Heuristic Column Generation

1 initialize τ, π, Ψ;
2 strict← true; R∗, collected,Rsol ← ∅; sol, solrel ,← ⊥;
3 while ¬ stopping criterion do
4 collected← ∅;
5 repeat ` times
6 collected ← collected ∪ CollectorAnt(strict, τ, π, Ψ);
7 end
8 R∗ ← R∗ ∪ post-optimize(collected, Ψ);
9 solrel , π ← solveLP(Relax(SCP(R∗)));

10 if solrel 6= ⊥ then
11 strict← false;
12 τ ← updatePheromones(solrel , τ);
13 end
14 end
15 sol ← solveIP(SCP(R∗));
16 Rsol ← extractSolution(sol,R∗, Ψ);
17 return Rsol

sibly bb-feasible route merges (lines 4 – 16). A merge m implicates two
routes r1 and r2. Merge m is considered feasible if route r = r1 × r2 is
feasible. Note that in Algorithm 6.2.1 a merge m is considered to con-
tain the following information: the arc (i, j) to be added to the current
state and the associated savings value sij. One of the merges in Ω is
selected and executed (line 17). The execution of a merge corresponds
to replacing, in the current state, the routes implicated in the merge
by the route resulting from the merge. The ant merges pairs of routes
until no further merge is possible (lines 3 – 20).

To build the set Ω of potential merges, the ant will first gather the
set of all wb-feasible merges M given the current state S (lines 2 and
18). The ant will also compute the attractiveness value for each of these
merges as follows:

attractiveness(m, τ) = sβ
ij · τ

α
ij

where (i, j) is the arc to be introduced in merge m, sij is the savings
value associated with the merge and τij is the pheromone deposit on
arc (i, j). The ant then considers all the merges in M by non-increasing

74 Chapter 6 pheromone-based heuristic col. gen.

Algorithm 6.2.1 : Collector ant
Input : strict, τ, π, Ψ
Output : collected

1 initialize S to state with shuffle routes visiting all custs. ∈ V\{0};
2 i← 0; collected← ∅; Ω← ∅; M← wbFeasibleMerges(S);
3 while M 6= ∅ do
4 foreach m ∈ M by - attractiveness(m, τ) do
5 route r ← getRouteFromMerge(m);
6 if strict ∨ rcr(π) < 0∨ r /∈ Ψ then
7 if r /∈ Ψ then Ψ[r]← f easbb(r);
8 if Ψ[r] then
9 Ω← Ω ∪m; i← i + 1;

10 collected← collected ∪ r;
11 end
12 if i ≥ ν then break;
13 else
14 Ω← Ω ∪m
15 end
16 end
17 select m ∈ Ω; S← executeMerge(m, S);
18 M← wbFeasibleMerges(S);
19 i← 0; Ω← ∅;
20 end
21 return collected

attractiveness value (line 4). An important decision for the ant is which
merges to accept into Ω and which ones to refuse. The decision de-
pends on the strict flag, the reduced cost of the route resulting from the
tentative merge, the fact whether the resulting route is known to the
feasibility store Ψ and finally the feasibility of the route (lines 6 – 15).
The rationale behind this approach is to keep a balance between diver-
sification (from one ant execution to the next), extending the feasibility
store and intensification towards feasible routes. Note that, depending
on the black box constraints, an infeasible route might contribute to
a feasible merge. When the ants are in strict mode, only merges that
are bb-feasible are accepted into Ω. The construction of Ω stops once
ν bb-feasible routes have been included, or all possible merges in M
have been considered. Then, the merge from Ω to be executed is se-

6.3 pheromone update 75

lected using roulette wheel selection based on the attractiveness of all
the merges in Ω (line 17).
Since the focus is shifted on feasible routes, rather than on feasible
solutions, the Collector ants will collect all the feasible routes they en-
counter while executing the Savings heuristic (line 10). This means that
not only routes that were part of the current state S at some point are
collected by the ants, but also routes resulting from merges that were
included into Ω but never actually selected for execution.
Finally note that both routes r s.t. rcr(π) < 0 and routes rcr(π) ≥ 0
are tested using black box function f easbb. The reasoning is that while
routes r s.t. rcr(π) ≥ 0 may not improve the lower bound (i.e. the qual-
ity of solrel ∈ Sol∗(Relax(SCP(R∗)))) when added to R∗, they may
very well improve sol ∈ Sol∗(SCP(R∗)), given the highly combinato-
rial nature of the CVRPBB.

6.3 pheromone update

Each collector ant disposes of the pheromone matrix τ, indicating the
amount of pheromones on every arc (i, j). The pheromones influence
the attractiveness of an arc, and thus the probability of a merge intro-
ducing the arc to enter Ω and to be executed by an ant. The pheromone
matrix is updated based on solution solrel ∈ Sol∗(Relax(SCP(R∗))).
The idea behind the pheromones is to guide the ants towards routes
of good quality and with higher probability of being bb-feasible. Since
routes in solrel are known to be optimal (w.r.t. Relax(SCP(R∗))), as
well as bb-feasible, the idea is to get the ants to produce routes similar
to those in solrel , in the hope of producing routes of similar qualities.
Once solrel 6= ⊥ is available, the pheromone matrix is updated as fol-
lows:

τij = ρτij + σijε ∀(i, j)(i, j ∈ V, i 6= j)

where ρ (0 ≤ ρ ≤ 1) is the trail persistence, ε is a small constant and
σij is the number of routes r ∈ R∗ such that Asolrel (xr) > 0 and s.t.
i, j ∈ r.S and pos(i, r) = pos(j, r)− 1. Simpler put, σij corresponds to
the number of times arc (i, j) appears in solrel .
The first term thus corresponds to pheromone evaporation, while the
second is the deposit. Note that the pheromone deposit of any arc
(i, j) ∈ A is not allowed to fall below τmin.

76 Chapter 6 pheromone-based heuristic col. gen.

6.4 post-optimization of feasible routes

Collector ants are used to generate feasible routes. Before being added
to the set of feasible routes R∗, the generated routes are first post-
optimized. This is done using local search. A local search is thus ap-
plied to each feasible route collected by the Collector ants. The goal
is, given a route r to find a feasible route r′ such that r.S = r′.S and
distance(r′) < distance(r). Two different local search methods have
been considered : a Tabu Search (TS) and an Iterated Local Search-
style method (ILS).

6.4.1 Tabu Search

The algorithm is given in 6.4.1. It corresponds to a deterministic tabu
search without aspiration criterion and with a tabu list Ξ of infinite
length. Every iteration, the neighborhood N of the current route rcur is
built (line 7) using neighborhood operator η. N corresponds to a set of
neighboring routes. These neighboring routes are then analyzed one
by one in order of non-decreasing distance. As soon as a neighboring
route that hasn’t been visited so far is found, the search moves to this
new route (lines 9 and 10) which becomes the current route. The cur-
rent route is added to the list of visited routes (line 11). If the current
route improves the best route so far, the bb-feasibility of the current
route is checked (lines 13 – 15). If it is found to be feasible the best
known route and distance are updated (lines 16 – 17). The procedure
stops once there are no unvisited neighbors in the current neighbor-
hood or once a global stopping criterion has been reached.

This tabu search is applied twice, first with η = ηreloc and then with
η = η2ex on the resulting route. The rationale is that since the relocation
moves have a smaller impact on a route, the probability that the bb-
feasibility is retained is higher. Thus the relocation neighborhood is
used first on route r in the hope of obtaining an improved route r′. The
idea is that using the 2-exchange neighborhood on this route r′ only
few routes further improving r′ will be discovered, and thus only few
bb-feasibility tests (with higher probability to fail) will be necessary.

The relocation neighborhood is built using algorithm 6.4.2 while
the 2-exchange neighborhood is built using algorithm 6.4.3. The cor-
responding operators were already defined in section 2.5. Note that
both neighborhoods are complete.

6.4 post-optimization of feasible routes 77

Algorithm 6.4.1 : Tabu Search
Input : route r, Ψ, η

Output : route rbest

1 N ← ∅; Ξ← ∅;
2 rbest ← r; rcur ← r;
3 bestDistance← distance(rcur);
4 found← true;
5 while found = true ∧¬ stopping criterion do
6 found← false;
7 N ← buildNeighborhood(rcur, η);
8 foreach n ∈ N by distance(n) do
9 if r /∈ Ξ then

10 rcur ← n;
11 Ξ← Ξ ∪ rcur;
12 found← true;
13 if distance(rcur) < bestDistance then
14 if rcur /∈ Ψ then Ψ[rcur]← f easbb(rcur);
15 if Ψ[rcur] then
16 bestDistance← distance(rcur);
17 rbest ← rcur

18 end
19 end
20 end
21 end
22 end
23 return rbest

To construct the relocation neighborhood of route r every customer
i ∈ r.S and every possible position p 6= pos(i, r) is considered (lines 1 –
2 in algorithm 6.4.2). In the case of the 2-exchange neighborhood every
possible pair of arcs (i, j) and (u, v) is considered (lines 1 – 4 in algo-
rithm 6.4.3). Note also that only wb-feasible routes are accepted into
the respective neighborhoods (lines 4–6 in algorithm 6.4.2 and lines 6

– 8 in algorithm 6.4.3).

78 Chapter 6 pheromone-based heuristic col. gen.

Algorithm 6.4.2 : Neighborhood construction using ηreloc

Input : route r
Output : Nreloc

1 foreach i ∈ r.S do
2 foreach p ∈ 1, . . . , |r.S|+ 1 do
3 r′ ← ηreloc(i, r, p, {r});
4 if

∧
c∈Fwb

f eas(r′, c) then
5 Nreloc ← Nreloc ∪ r′;
6 end
7 end
8 end
9 return Nreloc

6.4.2 Iterated Local Search-style approach

The basic idea of this approach is to collect a list of good (and possibly
wb- and/or bb-infeasible) routes found over several iterations. Each
iteration a hill-climbing method and a random perturbation are exe-
cuted. The routes collected are then considered by increasing distance
and tested for feasibility. The algorithm is given in 6.4.4.

Lines 5 – 11 correspond to the hill-climbing procedure. Here a com-
plete neighborhood N is built by merging the complete wb-feasible
Nreloc and the complete wb-feasible N2ex neighborhoods (lines 6 and
7, see algorithms 6.4.2 and 6.4.3). The neighbors that do not improve
the distance of the current route rcur are removed from the neighbor-
hood (line 8). The search then moves to the best route in the neigh-
borhood (line 9) and stores this new route in list Ξ (line 10). Once no
further improving moves can be found a random perturbation is ap-
plied to the current route (lines 12 – 20). If the current routes visits
less than 4 customers, a random relocation move is applied (possibly
resulting in a wb-infeasible route, lines 12 – 14). In the other case a
random 4-exchange move is applied, removing arcs in set Aout and re-
placing them by arcs Ain (lines 15 –20, again possibly resulting in an
wb-infeasible route). Hill-climbing and random perturbations are exe-
cuted until a stopping criterion is met.
At this point the routes stored in list Ξ are then considered individ-
ually by non-decreasing distance (line 22). Each route is checked for
wb-feasibility and bb-feasibility (lines 23 – 25). Once a feasible route

6.5 solving the integer problem 79

Algorithm 6.4.3 : Neighborhood construction using η2ex

Input : route r
Output : N2ex

1 foreach i ∈ 0, . . . , |r.S| − 2 do
2 j← i + 1;
3 foreach u ∈ j + 1, . . . , |r.S| do
4 v← u + 1;
5 r′ ← η2ex(r, {(i, j), (u, v)}, {(i, u), (j, v)}, {r});
6 if

∧
c∈Fwb

f eas(r′, c) then
7 N2ex ← N2ex ∪ r′;
8 end
9 end

10 end
11 return N2ex

is found, this must be the best feasible route in Ξ. The procedure is
stopped and this route is returned.

6.5 solving the integer problem

The final solution is obtained by solving SCP(R∗), where R∗ is the
set of feasible routes that have been generated throughout the process.
A time limit is imposed on this process, thus the resulting solution
sol ∈ Sol(SCP(R∗)) may not be optimal for the set R∗. Furthermore
some customers may be visited more than once in sol. Given the collec-
tor ant algorithm, it is not possible for a customer to be visited more
than once in a same route. Also given the nature of the function solveIP
a customer i that is visited more than once in sol will never appear in
a route r s.t. r.S = {i}. However, a customer might appear in different
routes r s.t. |r.S| > 1 of a given solution. If this is the case, the solution
must be fixed. Else it is sufficient to extract the set of selected routes
from sol. Both is done using algorithm 6.5.1.

First the routes currently selected in sol are extracted into set Rsol
(line 1). Then each customer i is considered in turn (line 2) and the
number of visits to the customer in the solution is counted (line 4). If i
is visited more than once, this situation needs to be fixed. Each of the
routes in which customer i is visited are considered. Routes where re-

80 Chapter 6 pheromone-based heuristic col. gen.

Algorithm 6.4.4 : Iterated Local Search
Input : route r, Ψ
Output : route rbest

1 N ← ∅; Ξ← ∅;
2 rbest ← r; rcur ← r;
3 bestDistance← distance(rcur);
4 while ¬ stopping criterion do
5 repeat
6 N ← buildNeighborhood(rcur, ηreloc);
7 N ← N ∪ buildNeighborhood(rcur, η2ex);
8 N ← N\{rbad ∈ N|distance(rbad) ≥ distance(rcur)};
9 rcur ← argminr′∈N distance(r′);

10 Ξ← Ξ ∪ rcur;
11 until N 6= ∅;
12 if |rcur.S| < 4 then
13 select random p, p′ ∈ 1, . . . , |rcur.S| s.t. p 6= p′;
14 rcur ← ηreloc(rcur[p], rcur, p′, {rcur});
15 else
16 select random p1, p2, p3, p4 ∈ 1, . . . , |rcur.S| s.t.

p1 6= p2 6= p3 6= p4;
17 Aout ← {(p1, p1 + 1), (p2, p2 + 1), (p3, p3 + 1), (p4, p4 + 1)};
18 Ain ← {(p1, p3 + 1), (p4, p2 + 1), (p3, p1 + 1), (p2, p4 + 1)};
19 rcur ← η4ex(rcur, Aout, Ain, {rcur});
20 end
21 end
22 foreach r ∈ Ξ by distance(r) do
23 if

∧
c∈Fwb

f eas(r′, c) then
24 if rcur /∈ Ψ then Ψ[rcur]← f easbb(rcur) ;
25 if Ψ[rcur] then
26 bestDistance← distance(rcur);
27 rbest ← rcur;
28 break;
29 end
30 end
31 end
32 return rbest

6.5 solving the integer problem 81

moving i results in a higher loss of distance are considered first (line 6).
For each route r the route r′ resulting from removing customer i from
r is examined for feasibility (lines 8 – 9). If r′ is feasible it is used to re-
place r in the set of selected routes (line 11). The process for customer i
stops once all but one visits to customer i have been removed (lines 15 –
17) or all routes have been treated. If not all excess visits could be feasi-
bly removed the fixing failed and the exact problem needs to be solved
(lines 19 – 23). Note that the solution fixing algorithm is heuristic and
is not guaranteed to find a way to fix a solution if one exists. Depend-
ing on the Fbb constraints, the order in which visits are removed from
a route might have an impact on the bb-feasibility of the intermediary
route. More clearly, assume that customers i and j must be removed
from some route r (i, j ∈ |r.S|). Assume further that removing customer
i from route r results in r′ = remove(i, r), and that r′ is infeasible. In
such a case the heuristic fixing procedure will fail. It is possible how-
ever that removing customer j, resulting in route r′′ = remove(j, r) and
then removing customer i from the resulting route r′′′ = remove(i, r′′)
would have resulted in a feasible route r′′′.

82 Chapter 6 pheromone-based heuristic col. gen.

Algorithm 6.5.1 : Extract solution
Input : sol,R∗, Ψ
Output : set of routes Rsol

1 Rsol ← {xr|Asol(xr) = 1};
2 foreach i ∈ V\{0} do
3 done← false;
4 visits← |{r ∈ Rsol |i ∈ r.S}|;
5 if visits > 1 then
6 foreach r ∈ Rsol s.t. i ∈ r.S by distance(remove(i, r)) do
7 r′ ← remove(i, r);
8 if

∧
c∈Fwb

f eas(r′, c) then
9 if r′ /∈ Ψ then Ψ[r′]← f easbb(r′);

10 if Ψ[r′] then
11 Rsol ← Rsol\{r} ∪ {r′};
12 visits← visits− 1;
13 end
14 end
15 if visits = 1 then
16 break;
17 end
18 end
19 if visits > 1 then
20 sol ← solveIP(SPP(R∗));
21 Rsol ← {xr|Asol(xr) = 1};
22 break;
23 end
24 end
25 end
26 return Rsol

7
D I V E & G E N E R AT E

This chapter presents an approach combining Heuristic Column Gen-
eration with the heuristic exploration of a Branching search tree. This
method is based on the hope, that when solving problems that are
more restricted than the original Set Covering Problem (correspond-
ing to the original CVRPBB), the chances are higher that routes of
negative reduced cost are also part of high quality integer solutions to
this same restricted problem.
Restricted problems are created by fixing routes in the solution. To
each node in the Branching search tree thus corresponds a Set Cover-
ing Problem formulated over a current set of feasible routes, and also a
set of variables that are forced to appear in the solution to this problem.
This problem is solved and the resulting solution is used to determine
the set of variables to be fixed at the child nodes of the current node.
Moreover Heuristic Column Generation is executed at selected nodes.
The approach is called Dive & Generate (DING). It is an incomplete and
constructive method based on Branch & Generate, which is itself based
on Branch & Price.

The following chapter is structured as follows. First an overview of
the Branch & Generate scheme is provided in section 7.1. Then sec-
tion 7.2 explains how the Branch & Generate scheme is extended into
Dive & Generate. In the latter section the overall algorithm is provided

83

84 Chapter 7 dive & generate

and the main design choices to be taken are underlined. These choices
are then considered in their respective sections; the way an initial set
of feasible routes is obtained is explained in section 7.3. Section 7.4
provides details on the restart policy. Section 7.5 explains how nodes
in the Dive & Generate tree are explored and how decisions such as
whether to generate columns, to prune the subtree or to compute the
child nodes are taken. The algorithm used to generate feasible routes
is detailed in section 7.6. Finally the branching heuristic and search
strategy are covered in sections 7.7 and 7.8.

7.1 branch & generate

Branch & Generate has been proposed to quickly find feasible (inte-
gral) solutions to Set Covering (or Partitioning) Problems. The idea of
Branch & Generate is to directly descend to leaf nodes in the Branch &
Price tree in order to find a feasible solution and to generate new sets
I (routes in the case of VRPs) only when considered necessary. Thus
it combines a diving heuristic with column generation.

Branch & Generate has been proposed by R. Marsten but has never
been officially published. Due to this the technique may appear un-
der different names in the literature. It is used in [GBLJ03] to solve a
Duty Scheduling Problem. A heuristic called Rapid Branching that can
be seen as a Branch & Generate heuristic is developed in [BLR+

12].
Branch & Generate is also acknowledged in [MO11], an overview of
heuristics based on mathematical programming. The authors of
[GKL+

06] consider a Branch & Generate scheme for their Vehicle Rout-
ing and Staffing problem, but this under the name of Fix & Price.
Finally the heuristics proposed in [JMS+10] are also in the spirit of
Branch & Generate.

The idea of Branch & Generate is to create only one subproblem (as
opposed to multiple ones as is done in Branch & Bound and Branch &
Price) per original Set Covering Problem. This is done by fixing some
(binary) variable(s) in the original problem to 1. Using this method, a
tree, corresponding to one branch, i.e. a single path from root node to
a leaf node, is constructed. As in Branch & Price the original problem
is formulated over a restricted set of sets called R∗. At some nodes
column generation is used to enrich this R∗.

7.2 principles 85

In this section, a node i in the Branch & Generate tree will be desig-
nated by SCPi. With each node SCPi is associated Fi, a set of variables
forced to take value 1, an initial set R∗i and a final set R∗′i . Naturally
Fi ⊆ R∗i . The associated problems are then called SCP(R∗i ,Fi) and
SCP(R∗′i ,Fi) respectively. Note that if column generation is executed
at node SCPi then R∗i ⊆ R∗′i , in the other case R∗i = R∗′i .

As stated before, given some original problem SCP(R∗,F) only one
subproblem SCP(R∗,F ∪U) is created. This is done by choosing a set
of variables U, s.t. U ⊆ XR∗\F and forcing them to take value 1 in the
subproblem. To do this, solution solrel ∈ Sol∗(Relax(SCP(R∗,F))) is
considered and only variables xr ∈ Z solrel\F are considered to be fixed
to 1 in the subproblem. Thus a set U of non-zero variables, that are not
already fixed (forced to 1) in the original problem, is chosen in solrel .
In the subproblem the variables in U will be fixed, in addition to those
already fixed in the original problem.
The process is repeated for each subproblem until reaching either a
feasible solution or an infeasible subproblem. Branch & Generate only
constructs a single path from a root node (original problem) to a leaf
node (feasible solution or infeasible subproblem).

At some nodes SCPj on this path, column generation is used to selec-
tively generate new sets I (routes in the case of VRPs) s.t. rcI (π j) < 0
(where π j are the dual costs associated with
solrel ∈ Sol∗(Relax(SCP(R∗j ,Fj)))). The decision on whether to exe-
cute column generation depends on LBj = Obj(solrel). A trust region
is defined for the LBj value, and once LBj falls outside this region,
new sets (or routes) are generated. The pricing, that is the generation
of such new sets, is generally done in a heuristic manner, thus the
problem Relax(SCP(R,Fj)) is not solved to optimality (R being the
set of all possible sets).

7.2 principles

In this thesis Branch & Generate is combined with Backtracking, Heu-
ristic Pruning and Restarts (called Dive & Generate (DING)). Note that
Dive & Generate is quite similar to Rapid Branching [BLR+

12] where
the concepts of Backtracking and Heuristic Pruning are used as well.
Rapid Branching combines Branch & Generate with a sophisticated
branching strategy called Perturbation Branching and a Binary Search-

86 Chapter 7 dive & generate

based backtracking strategy, both of which are not considered here.

In the Dive & Generate tree, each non-leaf node SCPi will have
|Z solrel\Fi| children, with solrel ∈ Sol∗(Relax(SCP(R∗′i ,Fi))). Thus,
each non-leaf node will have one child node per variable (that is route)
that can be fixed. The root node corresponds to SCP0 with F0 = ∅.
Set R∗0 is initialized such that Relax(SCP(R∗0 , ∅)) and SPP(R∗0 , ∅) are
feasible. The solution sol ∈ Sol(SPP(R∗0 , ∅)) will be used to initialize
a global upper bound UB.

As seen in Branch & Generate, heuristic column generation will be
used at some nodes SCPi. This is the case if at some non-root node
SCPi the lower bound LBi = Obj(solrel) lies outside a trust region
(solrel ∈ Sol∗(Relax(SCP(R∗i ,Fi)))). In the case of the root node, col-
umn generation will always be executed.
Generating new feasible routes at some node SCPi means enriching
set R∗i , resulting in set R∗′i . Thus the set of routes associated with the
node SCPi is augmented.
When exploring some node SCPi the final set R∗′i corresponds to the
initial set of routes for the next node to be explored SCPi+1. Thus if
node SCPi+1 is explored directly after node SCPi, R∗i+1 = R∗′i . This
means that if nodes SCP0, SCP1, . . . , SCPw are visited in that order, then
R∗0 ⊆ R∗′0 ⊆ R∗1 ⊆ R∗′1 ⊆ · · · ⊆ R∗w ⊆ R∗′w , given that column gen-
eration may add new feasible routes at each node. This is usual in a
Branch & Price context.
Let two solutions, sol ∈ Sol∗(Relax(SCP(R∗′0 , ∅))) and
solw ∈ Sol∗(Relax(SCP(R∗′w , ∅))) with R∗′0 ⊆ R∗′w , then the following
holds: Obj(solw) ≤ Obj(sol) and 0 ≤ |Z sol ∩ Z solw | ≤ |Z sol |. Thus, as
the set of routes has a higher cardinality for the latter problem, the
non-zero variables in solw might be partially or completely different
from the non-zero variables in sol.

The candidate routes considered for fixing (to compute the child
nodes) at the root node will be decided based on the solution of
Relax(SCP(R∗′0 , ∅). Should this initial set of candidates be a bad choice
then time will be lost exploring the corresponding tree to no avail. It
is for this reason that the construction and exploration of the Dive &
Generate tree is stopped and restarted from time to time. Each restart
possibly results in a fundamentally different tree.

7.2 principles 87

Design Decisions

The following decisions must be taken when designing the Dive &
Generate approach for the CVRPBB:

1. How to initialize R∗? (Initial set of routes, section 7.3)

2. When to restart? (Restarts, section 7.4)

3. How are non-root nodes explored? (Node exploration, section
7.5)

• when to prune?

• when to generate new routes?

4. How to generate new routes? (Pricing, section 7.6)

5. How to order nodes in the tree? (Branching heuristic, section 7.7)

6. How to explore the Dive & Generate tree ? (Search strategy, sec-
tion 7.8)

These concerns are addressed in the indicated sections.

Algorithm

The high-level Dive & Generate algorithm is given in 7.2.1. A feasibil-
ity store Ψ is used to store the bb-feasibility of tested routes.

First an initial set of feasible routes is generated (line 3) and the
current and incumbent solutions, the dual costs associated with the
current solution, as well as the upper bound UB are initialized, see
section 7.3 on details on how this is done. Note that this initialization
must ensure that sol0 6= ⊥ and solinc 6= ⊥. Lines 5 – 17 correspond
to the construction and exploration of one Dive & Generate tree. First
new feasible routes are generated using the dual costs π0 (line 6, see
section 7.6) and added to R∗. Then the LP relaxation of the problem
SCP(R∗, ∅) is solved (updating solution sol0 and dual costs π0) in
line 7. Should sol0 be an integer solution, it could possibly be used to
update the upper bound UB and the incumbent solution solinc (line
8). Route generation and problem resolving are repeated until sol0 be-
comes fractional or the overall stopping criterion is met.
Once the root solution sol0 is available, one child node is created for

88 Chapter 7 dive & generate

Algorithm 7.2.1 : Dive & Generate

1 Frontier,R∗, Ψ← ∅;
2 sol0, solinc ← ⊥; UB← ∞;

3 initialize R∗, sol0, π0, solinc and UB // see section 7.3

4 while ¬ stopping criterion do
5 repeat

6 R∗ ← R∗∪ doPricing(∅, π0, Ψ) // see section 7.6

7 sol0, π0 ← solveLP(Relax(SCP(R∗, ∅)));

8 if isInteger(sol0) then update(sol0, solinc, UB, Ψ,R∗);
9 until ¬isInteger(sol0)∨ stopping criterion;

10 if stopping criterion then break;

11 foreach xk ∈ X∗R s.t. Asol0(xk) > 0 do
12 Frontier ← Frontier ∪ {xk};
13 end

14 while Frontier 6= ∅ ∧ ¬ time to restart ∧¬ stopping criterion
do

15 select F ∈ Frontier;

16 /* perform exploration of node (R∗,F), see section

7.5 */

17 end

18 if stopping criterion then break;

19 R∗ ← R∗∪ strictGeneration(Ψ) // see section 7.6

20 sol0, π0 ← solveLP(Relax(SCP(R∗, ∅)));

21 end
22 return {r|Asolinc(xr) = 1};

each non-zero variable in sol0 (lines 11 – 13). Since R∗ is global to the
tree and the problem being solved is always a Set Covering Problem, it
is sufficient to store the set of variables to fix to 1 in the frontier. Next
the nodes in the frontier are explored either until the entire tree has
been explored, or until the process should be restarted, or until the
global stopping criterion is reached (lines 14 – 17). Of course the ex-
ploration of a node may add further nodes to the frontier and further

7.3 initialization of R∗ 89

routes to R∗. The exploration process of a node is explained in detail
in section 7.5.
After the exploration of a Dive & Generate tree has finished, an in-
tensified route generation procedure is started (line 18). Here feasible
routes are generated, without taking any dual costs into account. The
idea behind this is to enrich set R∗ with feasible routes that might not
improve the current solution, but might be necessary to find good solu-
tions at a later point. Finally the LP relaxation of problem SCP(R∗, ∅)

is solved to initialize sol0 and π0 for the next Dive & Generate iteration
(line 20).

As said previously, should sol0 ∈ Sol∗(Relax(SCP(R∗, ∅))) be inte-
gral, it can possibly be used to update the incumbent and upper bound.
This is however only possible if no customer is visited more than once
in sol0. Method update(sol0, solinc, UB, Ψ,R∗) must thus check sol0 and
possibly fix it heuristically. This is done in a way that is conceptually
similar to the one described in section 6.5. Each customer is consid-
ered individually. If the customer is visited more than once, each of
the routes visiting it are considered one by one. The customer is re-
moved from all but one of these routes. Of course this is only possible
if the resulting routes are wb- and bb-feasible. If the heuristic fails, the
incumbent solinc (and upper bound UB) cannot be updated. If it suc-
ceeds the incumbent solinc and upper bound UB are updated with the
fixed solution and its cost. Note that new feasible routes discovered
using the fixing process are added to R∗.

7.3 initialization of R∗

The method used to initializeR∗ is exactly the same as the one used in
Pheromone-based Heuristic Column Generation (chapter 6). A number
` of collector ants in strict mode (see 6.2.1) is repeatedly executed to ac-
cumulate routes in R∗ (no pheromones are used) which are then post-
optimized. Problems Relax(SCP(R∗, ∅)) and SCP(R∗, ∅) are then sol-
ved and the resulting solutions are stored in sol0 and solinc. These steps
are repeated either until the overall stopping criterion is met, or until
sol0 and solinc are feasible and sol0 is fractional. Solution solinc is fixed
if necessary which allows to initialize UB with the cost of solinc.

90 Chapter 7 dive & generate

7.4 restarts

Let sol0 ∈ Sol∗(Relax(SCP(R∗′0 , ∅))) be the solution at the root node
of the current Dive & Generate tree, and let π0 the corresponding dual
costs. Throughout the tree traversal, every time new feasible routes
are generated, the number imp0 of routes r s.t. rcr(π0) < 0 is up-
dated. Once imp0 reaches a limit φ the tree exploration is aborted
and restarted. Thus condition time to restart in algorithm 7.2.1 is
fulfilled as soon as imp0 ≥ φ.

7.5 node exploration

A decision scheme telling us when to prune a particular node SCPi
and when to generate new feasible routes at node SCPi is needed. Let
R∗i the initial set of feasible routes associated with SCPi.
If Relax(SCP(R∗i ,Fi)) turns out to be infeasible, node SCPi is a leaf
node. If the problem is feasible and solution soli is integral
(soli ∈ Sol∗(Relax(SCP(R∗i ,Fi))) , then SCPi is considered a leaf node
as well. On the other hand if soli is fractional and the lower bound
LBi (LBi = Obj(soli)) lies outside a trust region, column generation is
entered. The trust region is defined based on the current global upper
bound UB and a parameter θ (0 ≤ θ ≤ 1). If LBi ≥ θ ·UB it is consid-
ered that LBi lies outside the trust region.
Generating feasible routes at node SCPi will result in final set R∗′i
with R∗i ⊆ R∗′i . Once feasible routes have been generated, the fi-
nal lower bound LB′i is computed as LB′i = Obj(sol′i)) with sol′i ∈
Sol∗(Relax(SCP(R∗′i ,Fi)))). If LB′i is greater or equal to the global up-
per bound UB (LB′i ≥ UB) then SCPi is pruned.
The intuition behind this is the following: either new routes of negative
reduced cost have been added, but the new lower bound LB′i does not
sufficiently improve over LBi to fall below UB, or the pricing heuristic
failed to generate routes of negative reduced cost (not a proof of their
non-existence!). In both cases the assumption is that LB′i is a reason-
able approximation of Obj(Relax(SCP(R,Fi))), and that probably no
solution improving UB will be found in the subtree of SCPi. Again, if
sol′i is integer, SCPi is considered a leaf node.

The complete (non-root) node exploration algorithm is given in 7.5.1.
It takes number of inputs. Note that some of these are modified
throughout the node exploration.

7.6 generating feasible routes 91

• R∗ the current node’s initial set of feasible routes

• F the set of variables fixed in the current node

• solinc the incumbent solution

• UB the global upper bound

• π0, the dual costs associated with the final root node solution

• imp0 the counter of routes of negative reduced cost w.r.t. π0

• Frontier the frontier of unexplored nodes

• Ψ the feasibility store

First the LP relaxation of the current problem is solved resulting in
solution solcur and dual costs πcur (line 2). If the subproblem turns out
to be infeasible, the node is pruned (line 3). If solution solcur is integer
and improves the upper bound UB, then the latter and the incumbent
solution are possibly updated (as explained previously) and the explo-
ration of the node finishes since it is a leaf node (lines 4 – 7). Next it
is tested whether the lower bound LBcur corresponding to solcur lies
outside the trust region (line 9). If LBcur lies outside the trust region
then feasible routes r s.t. rcr(πcur) < 0 should be generated. The gener-
ated routes are inserted into R∗ (line 11) and imp0 is updated (line 12).
Then the LP relaxation of the current subproblem formulated on the
(possibly) augmented R∗ is solved, updating solcur (line 13). If the re-
sulting lower bound is equal to or exceeds the global upper bound the
node is pruned (line 18). Finally the solution solcur is used to compute
the child nodes which are added to the frontier. One node is created
for each variable xk taking a non-zero value in solcur, not already fixed
by a constraint (i.e. not already in the current F) (lines 20 – 22).

7.6 generating feasible routes

Two different column generation schemes are used in Dive & Generate.
The strictGeneration(...) scheme is used to generate additional ran-
dom feasible routes at root nodes. This corresponds to the execution of
` collector ants (no pheromones are used) in strict mode (see algorithm
6.2.1) and the post-optimization of the generated feasible routes.

92 Chapter 7 dive & generate

Algorithm 7.5.1 : Dive & Generate - explore Node

Input : F , π0, imp0

Inout : R∗, Frontier, Ψ, imp0, solinc, UB

1 L ← ∅;
2 solcur, πcur ← solveLP(Relax(SCP(R∗,F)));
3 if solcur = ⊥ then return;
4 if isInteger(solcur) ∧Obj(solcur) < UB then
5 update(solinc, UB, Ψ,R∗);
6 return;
7 end

8 LBcur ← Obj(solcur);
9 if LBcur ≥ θ ·UB then

10 L ← doPricing(F , πcur, Ψ) // see section 7.6

11 R∗ ← R∗ ∪ L;

12 imp0 ← imp0 + |{r ∈ L|rcr(π0) < 0}|;
13 solcur ← solveLP(Relax(SCP(R∗,F)));
14 if isInteger(solcur) ∧Obj(solcur) < UB then
15 update(solinc, UB, Ψ,R∗);
16 return;
17 end

18 if LBcur ≥ UB then return;
19 end

20 foreach xk ∈ XR∗\F s.t. Asolcur(xk) > 0 do
21 Frontier ← Frontier ∪ {xk};
22 end
23 return;

The second scheme (doPricing(...)) is used to generate feasible
routes of negative reduced cost at different nodes SCPi in the Dive
& Generate tree. The goal is to generate new feasible routes r s.t.
rcr(πi) < 0 where πi are the dual costs associated with solution soli ∈
Sol∗(Relax(SCP(R∗i ,Fi))). To do this, ` randomized executions of the
savings heuristic are used. The idea is to test bb-feasibility only for
routes r s.t. rcr(πi) < 0, since only these nodes may improve the cur-
rent lower bound.

7.7 branching heuristic 93

Since at node SCPi the customers in routes r s.t. xr ∈ Fi are already
visited, no new routes visiting any customer c ∈ ⋃

xr∈Fi
{r.S} should

be generated. This can be easily handled by considering customers in
set Fi as not belonging to the current problem instance.

The algorithm is given in 7.6.1. The initial one-customer routes are
created only for customers c /∈ ⋃

xr∈F{r.S} (line 1). Then the arc costs
are updated w.r.t. the dual costs πcur (line 2). The cost cij of each arc
(i, j) ∈ A is updated as

ccur
ij = cij −

πcur
i
2
−

πcur
j

2

in order to facilitate the generation of routes r s.t. rcr(πcur) < 0. These
arc costs are then used in the remainder of the algorithm.
At each iteration the heuristic constructs a set M of wb-feasible merges
in the current state (lines 3 and 19). The most attractive of these merges
are then compiled into a list Ω (lines 5 – 17). One of the merges in Ω
is finally selected and executed at the end of each iteration (line 18).
To construct Ω, the merges in M are considered by decreasing sav-
ings value (based on the updated arc costs). The savings value sm of a
merge m corresponding to r = r1 × r2 is computed as sm = ccur

0last(r1)
+

ccur
0 f irst(r2)

− ccur
last(r1) f irst(r2)

.
If the current merge m would result in a route r s.t. rcr(πcur) < 0 (line 8)
the route is tested for bb-feasibility, and if feasible is collected (line 11).
Merges resulting in routes r s.t. rcr(πcur) ≥ 0 as well as bb-infeasible
merges are accepted into Ω by default. Routes that are bb-infeasible
could be extended into bb-feasible routes (depending on constraints
Fbb of course). In the same spirit routes of positive reduced cost could
be extended into routes of negative reduced cost. The entire process is
repeated until no further wb-feasible merges are possible given the cur-
rent state S. Finally the feasible routes produced are post-optimized as
explained in chapter 6 (line 22). (Of course the cost associated with the
produced columns is computed based on the original arc costs.)

7.7 branching heuristic

Different approaches are possible to order nodes in a Dive & Gener-
ate tree. At each non-leaf node SCPi in the tree, child nodes are cre-
ated. One child node SCPr is created for each variable xr ∈ XR∗′i \Fi

94 Chapter 7 dive & generate

Algorithm 7.6.1 : Dive & Generate - doPricing
Input : F , πcur

Inout : Ψ
Output : collected

1 initialize S to state using shuffle routes visiting all customers in
V\(⋃xr∈Fi

{r.S} ∪ {0});
2 update arc costs w.r.t. πcur;

3 i← 0; collected← ∅; Ω← ∅;
4 M← wbFeasibleMerges(S);

5 while M 6= ∅ do
6 foreach m ∈ M by - sm do
7 route r ← getRouteFromMerge(m);
8 if rcr(πcur) < 0 then
9 if r /∈ Ψ then Ψ[r]← f easbb(r);

10 if Ψ[r] then
11 collected← collected ∪ r;
12 i← i + 1;
13 end
14 end
15 if i ≥ ν then break;
16 Ω← Ω ∪m;
17 end

18 select m ∈ Ω; S← executeMerge(m, S);
19 M← wbFeasibleMerges(S);
20 i← 0; Ω← ∅;
21 end
22 collected ← post-optimize(collected, Ψ);
23 return collected

s.t. Asoli(xr) > 0, with soli ∈ Sol∗(Relax(SCP(R∗′i ,Fi))). These child
nodes are ordered in increasing order by the heuristic value h(SCPr).

Different possibilities to compute h(SCPr) exist:

• Value-based ordering The child nodes SCPr are ordered by the
value they take in the parent node solution, h(SCPr) = −Asoli(xr).
This is the approach taken in [JMS+10].

7.8 search strategy 95

• Problem-specific ordering The authors of [CRS09] propose prob-
lem-specific values for h(SCPr) for a complicated vehicle routing
problem (to be used in a diving heuristic). While their computations
are based on items to be delivered rather than on customers to be
visited, they can be easily adapted to a classical Vehicle Routing
Problem. They propose two problem-specific possible computations
for h(SCPr):

– h(SCPr) =
distance(r)

|V\({0} ∪ Fi) ∩ r.S|

– h(SCPr) = (1−Asoli(xr)) · distance(r)
|V\({0} ∪ Fi) ∩ r.S|

Both of these heuristics weigh the distance of route r against the
number of customers visited in r and not visited so far in the fixed
routes.

7.8 search strategy

The obvious search strategy for Branch & Generate-based methods is
Depth First Search since the goal of the heuristic is to descend to leaf
nodes as quickly as possible. Since however a bad branching decision
at a low level in the Dive & Generate tree may lead to a lot of effort
being lost in the exploration of a subtree without feasible leaf-node,
Limited Discrepancy Search is a reasonable alternative.

Limited Discrepancy Search is a Discrepancy Search where a limit
is imposed on the maximum number of allowed discrepancies. Thus,
depending on the limit and the number of nodes in the search tree, not
the entire tree is explored. It has also been decided to take discrepan-
cies as early as possible in the search tree such as done in [PU11].
In Limited Discrepancy Search for Dive & Generate a new tree is con-
structed and explored for each value of allowed discrepancies. Thus
once the tree corresponding to a number of allowed discrepancies d
has been completely explored (or search is restarted as explained in
section 7.4), the strictGeneration(...) scheme will be executed and
construction of a new tree begins with the number of allowed discrep-
ancies set to d + 1. Exploring a new tree also means that, when neces-
sary, column generation will be executed at nodes in this new tree.
Let a node SCPd

i in the tree with the number of allowed discrepan-
cies set to d. With this node are associated a final set of routes R∗′d
and a set of fixed routes F d

i . Now assume a node SCPd+1
i in the tree

96 Chapter 7 dive & generate

with the number of allowed discrepancies set to d + 1. This node has
associated a final set of routes R∗′d+1 and a set of fixed routes F d+1

i .
Assume that F d

i = F d+1
i . As set R∗ is enriched throughout the explo-

ration of each tree, we have R∗′di ⊆ R∗′d+1
i . Therefore it is possible

that sold
i ∈ Sol∗(Relax(SCP(R∗′di ,F d

i))) obtained at a node SCPd
i is

different from the solution sold+1
i ∈ Sol∗(Relax(SCP(R∗′d+1

i ,F d+1
i)))

obtained at node SCPd+1
i , even though F d

i = F d+1
i . Thus it is possible

that the subtree of SCPd+1
i will be fundamentally different from the

subtree of SCPd
i .

8
H E U R I S T I C B R A N C H & P R I C E

This chapter presents an approach combining Heuristic Column Gen-
eration with the heuristic exploration of a Branch & Price tree. To each
node in this tree corresponds a Set Covering Problem formulated over
a current set of feasible routes, as well as a set of route features that are
forced or forbidden to appear in the solution to this restricted problem.
This solution is then used to derive new subproblems. For each node
two such subproblems are created by selecting a route feature in the
current solution and then enforcing it in one subproblem and forbid-
ding it in the other. Heuristic Column Generation is executed at all
non-leaf nodes of the tree. The approach is incomplete and constructive.

The chapter presents itself as follows. First the basic principles of the
Heuristic Branch & Price (HBP) method are presented in 8.1. This sec-
tion provides the overall algorithm and the main design decisions to be
taken are emphasized. The options chosen for these decisions are then
explained in their respective sections. Section 8.2 elaborates on how the
initial set of feasible routes is created. Section 8.3 gives an overview of
the different actions and decisions taken during the exploration of a
node in the Heuristic Branch & Price tree. Next, section 8.4 explains
which kinds of features are considered for subproblem creation, and
how the resulting constraints are enforced in the Set Covering Prob-
lem. The way the features are selected is detailed in section 8.5. The

97

98 Chapter 8 heuristic branch & price

algorithms used to generate feasible routes are explained in section
8.6. Finally the search strategy used to explore the tree is covered in
section 8.7.

8.1 principles

In practice when Branch & Price is applied to Vehicle Routing Prob-
lems the constraints added to an original problem SCP(R∗) in order
to create subproblems, are not directly imposed on the variables in
XR∗ . The reasoning is that by selecting a variable xr ∈ XR∗ and cre-
ating two subproblems, one with xr = 0 and one with xr = 1 (as is
usually done in Branch & Bound) an unbalanced tree is created (see
e.g. [Fei10]). This is because forbidding a route r (by fixing xr = 0
(xr ∈ R∗)) often only very slightly restricts the number of feasible so-
lutions to the problem. Also it is difficult to impose such a constraint
in the pricing problem, the goal of which becomes then to generate all
routes of negative reduced cost, except route r.
Branch & Price thus creates subproblems by selecting some route fea-
ture in the current fractional solution and creating one subproblem
where this route feature is forced to appear in all feasible solutions,
and one subproblem where this route feature is forbidden to appear
in all feasible solutions. The same type of route feature is used through-
out the construction of the heuristic Branch & Price tree.

In this section, a node i in the Branch & Price tree will be designated
by SCPi. With each node SCPi are associated two sets of route features
Y−i (forbidden route features) and Y+

i (enforced route features) as well
as an initial set R∗i and a final set R∗′i of routes. The associated prob-
lems are then called SCP(R∗i ,Y−i ,Y+

i) and SCP(R∗′i ,Y−i ,Y+
i) respec-

tively. Heuristic Column Generation is executed at all non-leaf nodes,
and thus for node SCPi we have R∗i ⊆ R∗′i . Note that new feasible
routes must be generated in such a way that they respect the enforced
or forbidden route features.

When solving problem SCP(R∗i ,Y−i ,Y+
i) at node SCPi the cons-

traints Y−i and Y+
i must be somehow enforced. To enforce or for-

bid route features, the Set Covering Problem is not modified directly.
Rather, at each node SCPi, routes not respecting the constraints corre-
sponding to Y−i and Y+

i are temporarily removed from R∗i .

8.1 principles 99

Finally in the Heuristic Branch & Price tree, each non-leaf node will
thus have two child nodes. One where a given route feature is en-
forced and one where the same feature is forbidden. With root node
SCP0 is associated problem SCP(R∗0 , ∅, ∅). Set R∗0 is initialized such
that Relax(SCP(R∗0 , ∅, ∅)) is feasible, the corresponding solution is
fractional and such that SPP(R∗0 , ∅, ∅) is feasible. The solution
sol ∈ Sol(SPP(R∗0 , ∅, ∅)) will be used to initialize a global upper
bound UB.
Note that it is not strictly necessary to have a non-fractional solution
at the root node in the current context, however imposing this allows
to consider nodes SCPi with an integral solution solrel as leaf nodes.
(solrel ∈ Sol∗(Relax(SCP(R∗i ,Y−i ,Y+

i)))).
Note that nodes SCPi s.t. Relax(SCP(R∗i ,Y−i ,Y+

i))) is infeasible, are
considered as leaf nodes as well.

As for Dive & Generate, given a node SCPi and the node SCPi+1

visited next, we have R∗′i = R∗i+1 and R∗i ⊆ R∗′i ⊆ R∗i+1 ⊆ R∗′i+1 (i.e.
same relationship as in the Dive & Generate tree). The same arguments
for restarts as in the Dive & Generate approach could thus be made
at this point. However Restarts are not included in Heuristic Branch
& Price since the constraints imposed by fixing or forbidding route
features are less restrictive than fixing a route. However once a tree
has been completely explored, the exploration and construction of a
new tree is started should the overall stopping criterion not have been
reached yet.

Design Decisions

The following decisions must be taken when designing the heuristic
Branch & Price approach for the CVRPBB:

1. How to initialize R∗? (Initial set of routes, section 8.2)

2. How are nodes explored? (Node exploration, section 8.3)

• when to prune?

3. Which type of route feature is used for branching? (Subproblem
creation, section 8.4)

• how is the set of routes adapted for compliance?

100 Chapter 8 heuristic branch & price

4. How are the features to branch on selected? (Branching heuristic,
section 8.5)

5. How to generate new routes? (Pricing, section 8.6)

6. How to explore the Heuristic Branch& Price tree? (Search strat-
egy, section 8.7)

These concerns are addressed in the indicated sections.

Algorithm

The high-level Heuristic Branch & Price algorithm is given in algo-
rithm 8.1.1. A feasibility store Ψ is used to store the bb-feasibility infor-
mation of tested routes.

First an initial set of feasible routes is generated (line 3) and the
current and incumbent solutions, the dual costs associated with the
current solution, as well as the upper bound UB are initialized, see
section 8.2 on details on how this is done. Note that this initialization
must ensure that sol0 6= ⊥ and solinc 6= ⊥. Lines 4 – 17 correspond
to the construction and exploration of a Heuristic Branch & Price tree.
First the dual costs π0 are used to generate new feasible routes (line
7). These route are added to R∗ and problem Relax(SCP(R∗, ∅, ∅)) is
solved, updating the current solution sol0 and the associated dual costs
π0. If sol0 is integral an attempt at updating the current best solution
solinc and the global upper bound UB is made (the attempt succeeds
if sol0 can be fixed such that no customer is visited more than once)
(line 8). These steps are repeated until sol0 is fractional or the overall
stopping criterion is reached.
Solution sol0 is then used to select some feature f , appearing in one
of its routes (line 11). Two child nodes are created, one where the use
of f is forbidden (line 12) and one where f must be used (line 13). As
R∗ is global to the tree and the problem being solved is always a Set
Covering Problem, it is sufficient to store the set of desired and unde-
sired route features in the frontier. Next the nodes in the frontier are
explored either until the entire tree has been explored, or the stopping
criterion is reached (lines 14 – 17). The exploration process of a node is
explained in detail in section 8.3. Finally once an entire tree has been
explored feasible routes are generated at random, to enrich setR∗ (line
19) and the root problem is solved once more (line 20).

8.2 initialization of R∗ 101

Algorithm 8.1.1 : Heuristic Branch & Price

1 Frontier,R∗, Ψ← ∅;
2 sol0, solinc ← ⊥; UB← ∞;

3 initialize R∗, sol0, π0, solinc and UB // see section 8.2

4 while ¬ stopping criterion do
5 repeat

6 R∗ ← R∗∪ doPricing(∅, ∅, π0, Ψ) // see section 7.6

7 sol0, π0 ← solveLP(Relax(SCP(R∗, ∅, ∅)));

8 if isInteger(sol0) then update(sol0, solinc, UB, Ψ,R∗);
9 until ¬isInteger(sol0)∨ stopping criterion;

10 if stopping criterion then break;

11 Select feature f in some route in {r|Asol0(xr) > 0} // see

sections 8.4 and 8.5

12 Frontier ← Frontier ∪ ({ f }, ∅);
13 Frontier ← Frontier ∪ (∅, { f });
14 while Frontier 6= ∅ ∧ ¬ stopping criterion do
15 select (Y−,Y+) ∈ Frontier;

16 /* perform exploration of node (R∗,Y−,Y+), see

section 8.3 */

17 end

18 if stopping criterion then break;

19 R∗ ← R∗∪ strictGeneration(Ψ) // see section 8.6

20 sol0, π0 ← solveLP(Relax(SCP(R∗, ∅, ∅)));

21 end
22 return {r|Asolinc(xr) = 1};

8.2 initialization of R∗

The method used to initializeR∗ is exactly the same as the one used in
Pheromone-based Heuristic Column Generation (chapter 6) and Dive
& Generate (chapter 7). A number ` of collector ants (no pheromones
are used) in strict mode (see 6.2.1) is repeatedly executed to accumulate
routes inR∗ (no pheromones are used) which are then post-optimized.

102 Chapter 8 heuristic branch & price

Problems Relax(SCP(R∗, ∅, ∅)) and SCP(R∗, ∅, ∅) are then solved
and the resulting solutions are stored in sol0 and solinc. These steps are
repeated either until the overall stopping criterion is met, or until sol0
and solinc are feasible and sol0 is fractional. Solution solinc is fixed if
necessary which allows to initialize UB with the cost of solinc.

8.3 node exploration

Again a decision scheme telling us when to prune a node is needed.
Let R∗i the initial set associated with node SCPi.
If Relax(SCP(R∗i ,Y−i ,Y+

i)) is infeasible, node SCPi is a leaf node. The
same holds if solution soli ∈ Sol∗(Relax(SCP(R∗i ,Y−i ,Y+

i))) is inte-
gral. If the problem is feasible and the solution fractional, column gen-
eration is executed.
In column generation, the dual costs πi associated with soli are used
in the generation of feasible routes respecting also the constraints cor-
responding to Y−i and Y+

i . These new routes are added to R∗i to result
in the final set R∗′i . If then, the new lower bound LB′i = Obj(sol′i)
with (sol′i ∈ Sol∗(Relax(SCP(R∗′i ,Y−i ,Y+

i)))) is greater or equal to the
global upper bound (LB′i ≥ UB), node SCPi is pruned. This means, it
is assumed that LB′i is a reasonable approximation of
Obj(Relax(SCP(R,Y−i ,Y+

i))) and that no solution improving UB will
be found in the subtree of SCPi. Again if sol′i is integer, SCPi is consid-
ered a leaf node.

The complete non-root node exploration algorithm is given in 8.3.1.
It takes number of inputs. Some of these are modified throughout the
node exploration.

• R∗ the current node’s initial set of feasible routes

• Y− and Y+ the set of features forbidden and enforced in the current
node

• solinc the incumbent solution

• UB the global upper bound

• Frontier the frontier of unexplored nodes

• Ψ the feasibility store

8.4 subproblem creation 103

First a temporary set R∗temp is created by removing from the current
set of routes R∗ the ones that do not comply with this node’s con-
straints (line 2) (see section 8.4 on how this is done). Then the LP relax-
ation of the subproblem corresponding to the current node is solved re-
sulting in solution solcur and dual costs πcur (line 3). If the subproblem
turns out to be infeasible (given the current R∗temp) we have reached a
leaf node (line 4). If solution solcur is integral and improves the upper
bound UB, then the latter and the incumbent solution may possibly be
updated (lines 5 – 6) and the node is a leaf node (line 7).
Next, feasible routes r s.t. rcr(πcur) < 0 (and r feasible w.r.t. Y− and
Y+) should be generated (line 10). The generated routes are inserted
into R∗ and R∗temp (lines 11 and 12). Then the LP relaxation of the cur-
rent subproblem, formulated on the (possibly) augmented R∗temp, is
solved, updating solcur (line 13). If the resulting lower bound exceeds
the global upper bound the node is pruned (line 18). Finally the solu-
tion solcur is used to compute the child nodes which are added to the
frontier. To do this a feature f is selected (line 19). The child nodes
corresponding to the subproblems resulting from forbidding and en-
forcing f are then created, and added to the frontier (lines 20 and 21).

8.4 subproblem creation

One single type of route feature is used to branch on in the entire
heuristic Branch & Price tree. In this thesis two types of features are
considered: customer pairs and arcs. Both are classical ways to create
subproblems in the context of routing problems [BJN+

94].

8.4.1 Branching on customer pairs

Here two customers i and j (i, j ∈ V\{0}) are selected, and forced to
be visited in different routes on one subproblem, and forced to be vis-
ited in a same route in the other subproblem. Thus sets Y− and Y+

correspond to sets of customers pairs.

104 Chapter 8 heuristic branch & price

Algorithm 8.3.1 : Heuristic Branch & Price - explore Node
Input : Y−,Y+

Inout : R∗, Frontier, Ψ, solinc, UB

1 L ← ∅;
2 R∗temp ← R∗\noncomply(Y−,Y+,R∗);
3 solcur, πcur ← solveLP(Relax(SCP(R∗temp)));

4 if solcur = ⊥ then return;

5 if isInteger(solcur) ∧Obj(solcur) < UB then
6 update(solinc, UB, Ψ,R∗);
7 return;
8 end

9 LBcur ← Obj(solcur);

10 L ← doPricing(Y−,Y+, πcur, Ψ) // see section 8.6

11 R∗ ← R∗ ∪ L;
12 R∗temp ← R∗temp ∪ L;

13 solcur ← solveLP(Relax(SCP(R∗temp)));

14 if isInteger(solcur) ∧Obj(solcur) < UB then
15 update(solinc, UB, Ψ,R∗);
16 return;
17 end

18 if LBcur ≥ UB then return;

19 Select feature f in some route in {r|Asolcur(xr) > 0} // see

sections 8.4 and 8.5

20 Frontier ← Frontier ∪ (Y− ∪ { f },Y+);
21 Frontier ← Frontier ∪ (Y−,Y+ ∪ { f });
22 return;

8.4 subproblem creation 105

Enforcing constraints

As previously seen, the constraints corresponding to Y− and Y+ are
enforced by temporarily removing routes not respecting these con-
straints from the current set of routes R∗. Such routes are collected
in a set by function noncomply(Y−,Y+,R∗) = noncomply(Y−,R∗) ∪
noncomply(Y+,R∗). If Y− and Y+ correspond to sets of customer
pairs then the routes to be removed correspond to:

• noncomply(Y−,R∗) = ⋃
{i,j}∈Y−{r ∈ R∗|i ∈ r.S ∧ j ∈ r.S}

all routes visiting both i and j must be removed

• noncomply(Y+,R∗) = ⋃
{i,j}∈Y+{r ∈ R∗|(i ∈ r.S⊕ j ∈ r.S)}

all routes visiting either i or j but not both must be removed

8.4.2 Branching on arcs

Here an arc (i, j) ∈ A is selected and is forbidden to appear in routes
in one subproblem, and must appear in some route in the other sub-
problem. Thus sets Y− and Y+ correspond to sets of arcs.

Enforcing constraints

The constraints corresponding to Y− and Y+ are enforced by tem-
porarily removing routes not respecting these constraints from the cur-
rent set of routes R∗. This is done using function
noncomply(Y−,Y+,R∗) = noncomply(Y−,R∗) ∪ noncomply(Y+,R∗).
If Y− and Y+ correspond to sets of arcs then the routes to be removed
correspond to:

• noncomply(Y−,R∗) =
⋃

(i,j)∈Y−{r ∈ R∗|(∃p = 0 . . . |r.S| s.t. r[p] =
i ∧ r[p + 1] = j)
all routes visiting j immediately after i must be removed

• noncomply(Y+,R∗) =⋃
(i,j)∈Y+s.t.i 6=0{r ∈ R∗|(∃p = 1 . . . |r.S| s.t. r[p] = i ∧ r[p + 1] 6= j)} ∪⋃
(i,j)∈Y+s.t.j 6=0{r ∈ R∗|(∃p = 1 . . . |r.S| s.t. r[p] = j ∧ r[p − 1] 6= i)}

all routes visiting j not immediately after i and i not immediately
before j must be removed (special case if i or j is the depot)

106 Chapter 8 heuristic branch & price

8.5 branching heuristics

Different approaches are possible to select the feature to branch on at
a non-leaf node SCPi. They depend obviously on the type of feature
used.

8.5.1 Customer Pairs

The idea given in [VBJN94] is used.
Let soli ∈ Sol∗(Relax(SCP(R∗′i ,Y−i ,Y+

i))). The idea is then to select a
pair {i, j} (i, j ∈ V\{0}) such that ∃xr ∈ XR∗′i

s.t. 0 < Asoli(xr) < 1 ∧
i, j ∈ r.S and ∃xr′ ∈ XR∗′i

s.t. 0 < Asoli(xr′) < 1 ∧ i ∈ r.S ∧ j /∈ r.S.
That is a pair of customers is selected such that in the current frac-
tional solution there exists a route visiting both customers, and there
exists a route visiting only one of the two. For each pair of customers
{i, j} value fij is computed as ∑r∈R∗′i s.t.i,j∈r.S xr and the pair minimizing
| fij − 0.5| is selected to branch on.

Alternatively, information from Fwb could be used as a branching
heuristic. For the CVRPBB considered here, where Fwb corresponds to
capacity constraints, the heuristic employed would be to select the pair
{i, j}maximizing the sum of the demands qi + qj. The reasoning is that
these are the customers with the biggest impact (as far as can be told
given the black box nature of Fbb) since forcing them into one route
leaves only a limited amount of vehicle capacity in that route. This ap-
proach has however been discarded due to the fact that the same pair
of customers tend to be selected even over multiple restarts.

The node forcing a pair of customers is considered as the left-most
node. The reasoning is that the decision of forcing a pair of customers
to be visited in a same route has a stronger impact than forbidding
this, and may lead to a leaf-node faster.

8.5.2 Arcs

Arcs are selected based on the current solution soli
(soli ∈ Sol∗(Relax(SCP(R∗′i ,Y−i ,Y+

i)))) using the methodology for arc
selection explained in [Fei10].

8.6 generating feasible routes 107

Let Wij = {r|0 < Asoli(xr) < 1 ∧ ∃ a s.t. 0 ≤ a ≤ |r.S| ∧ r[a] = i ∧
r[a + 1] = j}. An arc (i, j) is then selected such that fij = ∑r∈Wij

xr

and 0 < fij < 1. That is, an arc (i, j) is chosen such that in the current
solution we can find a route employing this arc, but we can also find
a route employing arc (i, t) with t 6= j. Since there might be multiple
candidate arcs, the arc (i, j) s.t. | fij − 0.5| is minimized is chosen.
Again the node enforcing arc (i, j) is considered the left-most node
with the same reasoning as given previously for customer pairs.

8.6 generating feasible routes

Again two different schemes are used for generating new feasible
routes. The strictGeneration(...) scheme corresponds to the exe-
cution of ` collector ants (no pheromones are used) in strict mode (see
algorithm 6.2.1) and the post-optimization of the generated feasible
routes.

The second scheme (doPricing(...)) is used to generate feasible
routes of negative reduced cost at different nodes SCPi in the Branch
& Price tree. These routes must be feasible with respect to the route fea-
tures forced or forbidden at the current node. The way this is handled
depends on the route feature. Again ` executions of a randomized sav-
ings heuristic are used. Feasibility w.r.t. Fbb is tested only for routes r
s.t. rcr(πi) < 0.

8.6.1 Customer Pairs

As seen before, the branching decisions correspond to forcing a pair of
customers to be visited in the same route in one branch, and forcing
them to be visited in different routes in the second branch. If a pair of
customers is forbidden in a same route, this can be simply enforced by
considering as infeasible the merges resulting in a route where both
customers are visited. On the other hand, forcing a pair of customers
to be visited in a same route is not as straight-forward. The fact that
a pair of customers must be visited in a same route does not imply
that the customers are visited in sequence. Thus there is no direct way
to force the savings heuristic to produce such routes. The idea is thus
to "fix" produced routes not respecting this type of constraints. Thus
if the heuristic produces a route (wb-feasible, bb-feasible, and respect-

108 Chapter 8 heuristic branch & price

ing constraints derived from Y−) visiting only one customer out of a
forced customer pair, the routes will be fixed by trying to insert the
remaining customer(s). The respective algorithms are given below.

Algorithm 8.6.1 describes how the randomized savings heuristic is
used to generate bb-feasible routes of negative reduced cost and re-
specting the constraints corresponding to Y− and Y+. The algorithm
starts by creating a state where each customer is visited in a route of
its own (line 1). Then the arc costs are updated w.r.t. the current dual
costs as was described in section 7.6 (line 2). Next the set of wb-feasible
merges is created (line 4). This set is then filtered to remove merges im-
plying routes r1 and r2 such that ∃i ∈ r1.S, j ∈ r2.S s.t. {i, j} ∈ Y− (line
5). The remaining merges are then considered by decreasing savings
value (given the updated arc costs) (line 7) to construct candidate list
Ω. For each considered merge the reduced cost of the resulting route
is computed (line 9). Should this reduced cost be found to be negative
the bb-feasibility of the route is checked and if bb-feasible the route
is stored (line 10). The process stops once ν bb-feasible merges have
been introduced into candidate list Ω, or once all merges have been
considered. All considered merges may enter the candidate list. The
reasoning is that two routes of positive reduced cost (or a feasible and
a bb-infeasible route) could be combined to a negative reduced cost
route (and/or a bb-feasible route). Finally one merge in Ω is selected
and executed (line 19) and the set of possible merges is recomputed
(lines 20 and 21). The process stops once no further possible merges
exist. At this point the set of collected bb-feasible routes must be an-
alyzed, and some routes must possibly be fixed (line 23). Finally the
feasible routes are post-optimized using either the TS (see algorithm
6.4.1) or ILS (see algorithm 6.4.4) post-optimization method (line 25).

The algorithm used for fixing routes is given in 8.6.2. Each route is
considered individually (line 2). Then the set of customers that should
be visited, but aren’t is computed (line 3). Note that a customer j miss-
ing from route r may imply further missing customers. The missing
customers are then considered one by one (line 5). Each customer is
inserted in the best position given the (modified) arc costs that results
in a feasible route w.r.t. Fwb. If all missing customers have been in-
serted, and if the resulting route r is of negative reduced cost (line 9)
its feasibility w.r.t. Fbb is checked. If it is feasible, it is inserted into the
collection of routes to return (line 12). Finally the set of accumulated

8.6 generating feasible routes 109

routes is returned (line 16).

Two things should be pointed out. First the algorithm fixing routes
might fail at fixing a route even though it could have been fixed. One
could imagine a set of constraints Fbb where the order in which cus-
tomers are inserted is important, or where several customers have to
be inserted at once to result in a bb-feasible route.
Second, as the savings heuristic produces new routes by merging two
routes, and as feasible routes are stored at each heuristic step, the
routes produced will have very different lengths. Thus the routes to
be fixed by inserting missing customers will have different lengths as
well. It might be complicated for longer routes (or shorter depending
on Fbb) to retain bb-feasibility while inserting further customers. How-
ever as there will also be shorter (or longer) routes to be fixed, the
probability is high that some bb-feasible routes will result from this
procedure.

8.6.2 Arc

Here the branching decisions correspond to forcing and forbidding an
arc (i, j) to appear in feasible routes. The case where either i = 0 or
j = 0 must be handled specifically.

Let arc (i, j) with i, j ∈ V\{0}. Forcing the arc is simple. Instead of
initializing the heuristic with an initial state with a separate route for
i and j, one initial route 0− i− j− 0 is created. Forbidding the arc can
be done by not considering any merge introducing (i, j) as part of the
possible set of merges.
Now consider arc (0, i). Forcing this arc is done by simply forbidding
any merges introducing an arc (j, i) (j ∈ V\{0}). On the other hand
forbidding the arc is more complicated, since initially arc (0, i) will be
part of i’s shuffle route. The idea is then to set the cost of arc (0, i) to
∞, in order to guide the heuristic to execute merges removing (0, i).
Routes where arc (0, i) is used are furthermore not checked for bb-
feasibilty. The same approach is taken with forbidden arcs of the form
(i, 0).

Algorithm 8.6.3 describes how the randomized savings heuristic is
used to generate bb-feasible routes of negative reduced cost when
branching is done on customer arcs. First the current state is initial-

110 Chapter 8 heuristic branch & price

Algorithm 8.6.1 : Heuristic B&P - doPricing - branching on pairs
Input : Y−,Y+, πcur

Inout : Ψ
Output : collected

1 initialize S to state using shuffle routes visiting all customers;
2 update arc costs w.r.t. πcur;

3 i← 0; collected← ∅; Ω← ∅;
4 M← wbFeasibleMerges(S);
5 M← filter(Y−,M);
6 while M 6= ∅ do
7 foreach m ∈ M by - sm do
8 route r ← getRouteFromMerge(m);
9 if rcr(πcur) < 0 then

10 if r /∈ Ψ then Ψ[r]← f easbb(r);
11 if Ψ[r] then
12 collected← collected ∪ r;
13 i← i + 1;
14 end
15 end
16 if i ≥ ν then break;
17 Ω← Ω ∪m;
18 end
19 select m ∈ Ω; St← executeMerge(m, S);
20 M← wbFeasibleMerges(S);
21 M← filter(Y−,M);
22 i← 0; Ω← ∅;
23 end
24 collected← fixInfeasible(collected, Y−,Y+, πcur, Ψ);
25 collected ← post-optimize(collected, Ψ);
26 return collected

ized with routes as described above (line 1). Then the cost of forbidden
depot arcs is set to infinite (lines 2 and 3). Next the set of wb-feasible
merges is computed (line 5). This set is then filtered to remove merges
adding forbidden arcs or removing an enforced arc outgoing from the
depot (line 6). Next the possible merges are considered by increas-
ing savings value (line 8) to construct candidate list Ω. If the route
does not use any forbidden arcs (incident to the depot) and if it has a

8.6 generating feasible routes 111

Algorithm 8.6.2 : Heuristic B&P - Fix routes w.r.t. pairs in Y+

Input : collected,Y−,Y+, πcur, Ψ
Output : f ixed

1 f ixed← ∅;
2 foreach r ∈ collected do
3 missing← getMissingCustomers(r,Y+);
4 r′ ← r;
5 foreach v ∈ missing do
6 select pos ∈ 1, . . . , |r.S|+ 1 such that∧

c∈Fwb
f eas(c, insert(v, r′, pos));

7 r′ ← insert(v, r′, pos);
8 end
9 if rcr′(π

cur) < 0 then
10 if

∧
c∈Fwb

f eas(c, r′) then
11 if r′ /∈ Ψ then Ψ[r′]← f easbb(r′);
12 if Ψ[r′] then f ixed← f ixed ∪ r′;
13 end
14 end
15 end
16 return f ixed

negative reduced cost, its bb-feasibility is checked (lines 10 – 13). The
process stops once ν bb-feasible merges have been introduced into can-
didate list Ω, or once all merges have been considered. All considered
merges may enter the candidate list. The reasoning is that two routes
of positive reduced cost (or a feasible and a bb-infeasible route) could
be combined to a negative reduced cost route (and/or a bb-feasible
route). Finally one merge in Ω is selected and executed (line 22) and
the set of possible merges is recomputed (lines 23 and 24). The pro-
cess stops once no further possible merges exist. Finally the feasible
routes are post-optimized using either the TS (see algorithm 6.4.1) or
ILS (see algorithm 6.4.4) post-optimization method (line 27). Note that
the neighborhoods used need to be adapted in order to respect en-
forced and forbidden arcs.

112 Chapter 8 heuristic branch & price

Algorithm 8.6.3 : Heuristic B&P - doPricing - branching on arcs
Input : Y−,Y+, πcur, Ψ
Output : collected

1 initialize S to state with shuffle routes and non-shuffle routes
using arcs in Y+;

2 foreach (0, j) ∈ Y− do c0j ← ∞;
3 foreach (i, 0) ∈ Y− do ci0 ← ∞;
4 i← 0; collected← ∅; Ω← ∅;
5 M← wbFeasibleMerges(S);
6 M← filter(Y−,Y+,M);
7 while M 6= ∅ do
8 foreach m ∈ M by - sm do
9 route r ← getRouteFromMerge(m);

10 if ¬({0, r[1]} ∈ Y− ∨ {r[|r.S|], 0} ∈ Y−) then
11 if rcr(πcur) < 0 then
12 if r /∈ Ψ then Ψ[r]← f easbb(r);
13 if Ψ[r] then
14 collected← collected ∪ r;
15 i← i + 1;
16 end
17 end
18 end
19 if i ≥ ν then break;
20 Ω← Ω ∪m;
21 end
22 select m ∈ Ω; St← executeMerge(m, S);
23 M← wbFeasibleMerges(S);
24 M← filter(Y−,Y+,M);
25 i← 0; Ω← ∅;
26 end
27 collected ← post-optimize(collected, Ψ);
28 return collected

8.7 search strategy

Both Depth First Search and Limited Discrepancy Search are considered
for exploring the heuristic Branch & Price tree. Note that a Best First
strategy might give good results too. It was however discarded due to

8.7 search strategy 113

its memory requirements. In the case of Limited Discrepancy Search
discrepancies are taken as early as possible in the search tree. The same
method of creating a new tree for each number of allowed discrepan-
cies, such as done for Dive & Generate, is used. The explanations given
in section 7.8 hold here as well.

9
D E C O M P O S I T I O N - B A S E D A P P R O A C H

This chapter proposes a method that can be employed on top of any
of the previously presented approaches. The idea is to randomly de-
compose the problem instance into smaller instances that are solved
individually. The feasible routes identified during this process are then
used to enrich an overall set of feasible routes R∗.

9.1 principles

The idea to decompose a given problem instance into several detached
problem instances is not new, see e.g. [Tai93]. The decomposition sche-
me used here is based on the one proposed in [BVH07] for the VRP
with Time Windows. The authors propose to start from a feasible so-
lution Solinit (corresponding to a set of routes). Then a set of routes
T ⊆ Solinit is selected, and a new problem instance is created where
the goal is to find a high-quality solution Sold visiting all the customers
in

⋃
r∈T{r.S}, using at most |T| vehicles. Once such a solution Sold is

found, the original routes are replaced with the routes in Sold to create
a new solution Sol′ (Sol′ = (Solinit\T) ∪ Sold).

This latter decomposition scheme can be easily adapted to the
CVRPBB. The idea is to start from an initial set of feasible routes R∗i
and an initial solution soli ∈ SCP(R∗i) s.t. soli 6= ⊥. As in [BVH07]

115

116 Chapter 9 decomposition-based approach

a subset of routes T is selected based on soli and a new problem in-
stance is created from T. Next, either ACO-HCG, DING or HBP are
used to solve the resulting problem instance. At the end of this pro-
cess, feasible routes for the new problem instance have been gener-
ated, and they are then added to R∗i resulting in R∗i+1. A new solution
soli+1 ∈ SCP(R∗i+1) is then computed to figure as initial solution of
the next iteration.

Note that the steps consisting in the selection of set T, the creation
of a new problem instance from set T and the resolution of the re-
sulting problem can be seen as steps of a Large Neighborhood Search
(LNS) in the broad sense. A part of the current solution (restricted to
a set of routes) is destroyed, freeing a set of customers, and the result-
ing neighborhood is explored either using ACO-HCG, DING or HBP
(in the case of [BVH07] the neighborhood is explored using LNS it-
self). However here, contrary to Large Neighborhood Search, the goal
of the repair phase is not to repair the destroyed solution, but rather
to generate new feasible routes visiting the free customers. Given the
employed methods both augment to the same. The updated overall so-
lution is thus not obtained by repairing the initial solution, but rather
by resolving the Set Covering Problem on the augmented set of feasi-
ble routes.

The algorithm is given in 9.1.1. First the set R∗ is initialized in such
a way that problem SCP(R∗) is feasible (line 3). This problem is then
solved, producing solution sol (line 5). A set of routes T is extracted
from this solution (line 6) and a new problem graph is created. In this
new problem graph the set of vertexes corresponds to the customers
visited in the routes in set T and the depot. The set of arcs is reduced
to arcs incident to these same vertexes (lines 7 – 9). Next a new prob-
lem, defined on this reduced graph, and with the number of vehicles
reduced to |K| = |T| is created (line 10). This problem is then solved
(line 11). Here any of the approaches described in chapters 6, 7, 8 can
be used. However instead of returning the solution found using these
approaches, the set of feasible routes accumulated during the resolu-
tion process is returned. These routes are then added to the set of
routes R∗ and the resulting problem is solved the next iteration. The
process is repeated until some stopping criterion is reached. To obtain
a final solution, problem SCP(R∗) is solved and the routes chosen in
this solution are extracted (and possibly fixed as explained in chapter

9.2 initialization of R∗ 117

6) (lines 14 –15).

Algorithm 9.1.1 : Decomposition for the VRPBB
Input : CVRPBB defined on G=(V,A)

1 R∗, Ψ,L, T, V ′, A′ ← ∅;
2 sol ← ⊥;
3 initialize R∗ s.t. SCP(R∗) is feasible;
4 while ¬ stopping criterion do
5 sol ← solveIP(SCP(R∗));
6 select set T ⊆ {r|Asolinit(xr) = 1};
7 V ′ ← ⋃

r∈T{r.S} ∪ {0};
8 A′ ← V ′ ×V ′;
9 create problem graph G′ = (V ′, A′);

10 create problem CVRPBB(G’,|T|);
11 L ← solve(CVRPBB(G′, |T|), Ψ);
12 R∗ ← R∗ ∪ L;
13 end
14 sol ← solveIP(SCP(R∗));
15 Rsol ← extractSolution(sol,R∗, Ψ);
16 return Rsol

Two design choices remain to be made:

• How is the initial set of routes generated? (Initial set of routes, sec-
tion 9.2)

• How is set T selected? (Subproblem creation, section 9.3)

9.2 initialization of R∗

The method used to initialize R∗ is exactly the same that is used in
Pheromone-based Heuristic Column Generation (section 6). A number
` of collector ants in strict mode (see 6.2.1) is repeatedly executed to
accumulate routes in R∗ and problem SCP(R∗) is solved after each
execution. As soon as a feasible solution to the problem can be found
the process is stopped.

118 Chapter 9 decomposition-based approach

9.3 selection of set of routes T

The approach described in [BVH07] is used. As in the Sweep heuristic
the polar coordinates (θ, ρ) of customers w.r.t. the depot are computed.
A wedge W described by a pair of angles α and β is selected. A cus-
tomer i is said to belong to wedge W if θi ∈ [α, β] (or θi ∈ [α, 359]∪ [0, β]

iff α > β). Once a wedge has been selected, all customers belonging to
this wedge are collected in set CW . The set of routes T is then extracted
from the current solution sol using CW as follows: T = {r|Asol(xr) =

1∧ CW ∩ r.S 6= ∅}. The principle is depicted in Figure 9.1.
To select W angle α is chosen randomly, angle β is then chosen as the
smallest angle, s.t. the number of customers in the corresponding set
T is greater or equal to parameter N.

Due to the combinatorial nature of the problem it is possible that
good solutions may include routes where distant customers are vis-
ited in a same route. If no such route appears in the initial solution sol
no such routes will ever be produced due to the way customers are
selected based on spatial proximity. In order to alleviate this, a diversi-
fication mechanism is employed. At each iteration, if the best solution
so far has not improved, the number of wedges #wed is increased by
one. Each of the wedges will have a size greater or equal to N. Set CW
then corresponds to the set of customers belonging to all #wed wedges.
As soon as the best solution has improved #wed is set back to 1.

c1
c2

c3

c4

c5

c6

c7 c8

c9

c10

c11

c12

c13

c14

c15

(a)

c1
c2

c3

c5

c6

c7 c8

c9

c10

c11

c4

c12

c15

c13

c14

(b)

Figure 9.1: A wedge selected in a CVRPBB solution (a). The routes (and their cus-
tomers) extracted using this wedge are shown in (b).

10
I M P L E M E N TAT I O N

The approaches presented in Part II of this thesis have been imple-
mented as a coherent system in C++ which can be downloaded un-
der the LGPL license at http://becool.info.ucl.ac.be/resources/

VRPBB. The approaches have all been implemented in such a way that
they can be considered as the construction and exploration of a Branch
& Bound tree. The implementation follows the object-oriented design
principle. The proposed approaches are included in the system via the
template design pattern. This means they are implemented by overrid-
ing the functions provided in different partially or completely abstract
classes. The approach-specific functions are then automatically called
by the system (following the Hollywood principle). The most impor-
tant high-level classes are depicted, regrouped in packages by respon-
sibility in Fig. 10.1. The links between packages and classes indicate
the communication streams.

In the following, high-level classes of the system and approach-in-
dependent implementations of different parts of the system are de-
scribed.

10.1 branch & bound tree

A node in the B&B Tree corresponds to an instance of the BBTreenode

class. Upon the visit of a node three actions are performed:

119

http://becool.info.ucl.ac.be/resources/VRPBB
http://becool.info.ucl.ac.be/resources/VRPBB

120 Chapter 10 implementation

Branch & Bound Tree

Column Management
Feasibility Management

Pricing

BBTreenode Subproblem

ColumnPoolColumn

ColumnAllowanceChecker

ColumnGenerator PostProcessor Black Box Feasibility Store

ColumnGenerationManager
Solver

BlackBoxLink

Figure 10.1: Visualization of the most important classes and their responsibil-
ities. Links indicate communication streams.

• Opening action: The subproblem associated with the current node
is solved and the current solution is updated accordingly.

• Visiting action: The decision whether to execute column generation
is taken (and column generation is possibly executed). Furthermore
the decisions whether to backtrack up to the parent node, to back-
track up to the root node, or to compute the children of the current
node is taken.

• Closing action: The closing action is empty in the class BBTreenode.

The exploration of the subtree of a given node is implemented in
class DFSTreenode, which is the base class (i.e. superclass) of class
BBTreenode. It takes the list of computed child nodes and explores
them in order, by performing the opening, visiting actions, possibly the
exploration of the subtree, and the closing action. Note that this class
could be modified easily to ensure a non-Depth First Search-based tree
exploration.

Each instance of BBTreenode is associated with an instance of the
Subproblem class. The decision to separate treenode and subproblem
in different classes was made in order not to limit the possible uses of
the system.

As previously explained the approaches proposed in part II of this
thesis are implemented by deriving the (i.e. inheriting from or sub-

10.2 column pool 121

classing) basic system classes and overriding their default behavior.
Derived classes of BBTreenode are allowed to override the opening, vis-
iting and closing actions. However more fine-grained behavior modifi-
cations can be obtained by overriding:

• the computation and ordering of child nodes and their associated
subproblems

• the decision whether to enter the column generation phase

• actions taken before or after the column generation phase

• the decision whether to backtrack

• the decision whether to backtrack up to the root node (restart)

10.2 column pool

All along the exploration of the Branch & Bound tree, feasible routes
are generated and stored in the column pool. A class Column is used to
represent a route r along with its cost distance(r).
The class ColumnWrapper is used to envelop a column with additional
information such as an unique identifier. It can be subclassed in order
to associate further information with a Column instance.
An abstract class ColumnPool stores ColumnWrapper instances along
with the associated Column instance. The ColumnPool class can be sub-
classed in order to provide a concrete implementation of the column
pool. In this work it has been decided to implement the column pool
using a map from the standard C++ library. The route r is used as key
and the value is the corresponding ColumnWrapper instance. Finally the
ColumnPool can be asked to return the ids associated with columns that
do, or do not, pass a test implemented in the ColumnAllowanceChecker

class. Again behavior of this class can be overridden by inheritance in
order to comply with different subproblem restrictions.

10.3 solver and solutions

Columns (i.e. feasible routes) correspond to variables and coefficients
in the Set Covering/Partitioning Problem. IBM CPLEX is used to
model and solve the SCP/SPP and their continuous relaxations. The
link between columns in the column pool and the variables in the

122 Chapter 10 implementation

solver is maintained using the unique identifier associated with each
Column instance via the ColumnWrapper. This allows to modifiy the
bounds of the variables in the solver, in order to fix or forbid certain
columns in the SCP/SPP. Each time the SCP/SPP (or their continuous
relaxation) is solved, the selected columns, their value in the solution,
and the dual costs associated with the constraints are stored in an in-
stance of the Solution class. A function of this class allows to verify
whether some customer is visited more than once in the represented
solution (assuming the latter is integer). If this is the case an attempt
at heuristically fixing this situation is made by the Solution instance
itself.

10.4 column generation

New classes can be derived from the abstract ColumnGenerator class
in order to implement different methods of generating feasible routes.
Since all heuristics used in the proposed approaches are based on
a randomized version of the savings heuristic (a heuristic construct-
ing routes by concatenating smaller routes), a template class called
RandomizedSavings has been implemented. Its behavior can be modi-
fied by overriding:

• the computation of the initial state

• the computation of the attractiveness of a merge

• the decision to consider a given merge for execution

• the decision to verify the feasibility of a given merge

• the decision to register the route resulting from a given merge as
column

The ColumnGenerationManager class is responsible for setting up the
column generation heuristic, executing it and calling the post-optimi-
zation methods on the produced routes. Of course this class can be
adapted by subclassing to allow setting up approach-specific heuris-
tics.

10.5 black box and feasibility store

Finally the class BlackBoxLink provides an interface to the black box
function f easbb, used to check the feasibility of a route r w.r.t Fbb. It also

10.5 black box and feasibility store 123

5

3?

2f

8?

1f

6

8 ?

7 ?

3 ?

2 ¬f

4?

5f

Figure 10.2: Feasibility Store implementation. The shown store contains fea-
sible routes 〈5, 3, 2〉, 〈5, 3, 2, 8, 1〉,〈6, 8, 5, 4〉 and infeasible route
〈6, 8, 7, 3, 2〉. The feasibility status of the other routes contained
in the store remains unknown.

provides an interface to the class FeasibilityStore where the feasibil-
ity of routes already tested using f easbb is stored. This class represents
a tree. With each node, except the root node in this tree is associated a
customer. The customers encountered on the path from a given node
c up to the root node constitute a route, where the customer associ-
ated with node c constitutes the end-point of the route. It is with these
end-points that the feasibility information of the route corresponding
to the path up to the root node is associated. The concept is illustrated
in Fig. 10.2. This store contains 12 routes. Route 〈5, 3, 2, 8, 1〉 is known
to be feasible, which is why f (for feasible) is associated with the corre-
sponding node 1. However not all of subroutes of this route (appearing
in the store) are known to be feasible. For example route 〈5, 3〉 hasn’t
been tested for feasibility so far, thus its feasibility status is unknown
(denoted by ?). On the other hand, route 〈5, 3, 2〉 is already known to
be feasible. Note that depending on the black box constraints Fbb, it is
possible for a feasible route to contain an infeasible subroute.

In the implementation of the proposed optimization approaches a
given route r is always checked for feasibility (in the black box and the
feasibility store) in both directions. That is, first the feasibility store is

124 Chapter 10 implementation

searched for the feasibility status of route r. Should the status of r be
unknown the store is searched for reverse(r). If the feasibility status
for both r and reverse(r) is unknown, route r is verified using f easbb.
If it is feasible, route r is stored as feasible in the feasibility store. If
it is infeasible, reverse(r) is checked using f easbb. If this should be
infeasible as well, route r is stored as infeasible in the feasibility store,
else it is stored as feasible. Note that this means that a route is stored as
feasible in the store as soon as it has been proven to be feasible in one
direction. It is stored as infeasible once it has been proven infeasible in
both directions. For Heuristic Branch & Price where branching is done
on arcs, routes are checked in only one direction. This is to comply
with the fact that branching fixes or forbids arcs (as opposed to edges).
Thus only routes that are found to be feasible will be added to the
feasibility store in this case.

10.6 implementation of the proposed approaches

Pheromone-based Heuristic Column Generation (ACO-HCG)
Each iteration in the ACO-HCG approach corresponds to the explo-
ration of a root node in the Branch & Bound Tree. Column Genera-
tion is always entered and a restart is always decided. The behavior
of the system is modified using subclasses of the classes BBTreenode,
RandomizedSavings and ColumnGenerationManager. The subclasses of
the latter implement the strict and liberal Collector ants described in
chapter 6. Furthermore class PheromoneManager has been added to pro-
vide the pheromone matrix. The subclass of ColumnGenerationManager
updates the pheromone matrix w.r.t. the current solution and calls the
collector ants and post-optimization methods.

Dive & Generate (DING)
Adaptation of the BBTreenode class for DING is straight-forward given
the description provided in chapter 7. The Subproblem class needs to
be adapted in order to include the set F of fixed variables (i.e. columns,
i.e. feasible routes). The RandomizedSavings class is subclassed, modi-
fying its behavior in terms of all points underlined in section 7.6.

Implementation of Heuristic Branch & Price (HBP)
Again the adaptation of BBTreenode is straight-forward. As however
the setup of the ColumnAllowanceChecker depends on the type of
branching decisions taken, separate adaptations of template classes

10.6 implementation of the proposed approaches 125

BBTreenode and ColumnAllowanceChecker are necessary for the HBP
where the branching is done on customer pairs and the one where
branching is done on arcs. The same holds obviously for the adapta-
tions of the Subproblem class. In the same spirit different specializa-
tions of class ColumnGeneratioManager are needed. In the case of the
HBP where branching is done on arcs, certain arcs need to be forbid-
den. This is done by adapting the arc costs using the DistanceManager

class. The pricing for both cases is handled by different classes, each
subclassing RandomizedSavings, and implementing the behavior as de-
scribed in chapter 8.

Decomposition-based approach
The decomposition-based approach is executed on top of any of the
proposed approaches. For facility of implementation a new instance
is created from the customers appearing in set T. A mapping between
the new and the original instance is done when accessing the black box
and the feasibility store. Note that the feasibility store remains global
to the approach and is not reinitialized for each new set T.

Part III

A P P L I C AT I O N S

11
PA R A M E T E R S E T T I N G W I T H I RACE

The method proposed in chapter 6 makes use of multiple parameters.
However as the number of possible configurations of values for these
parameters is huge, it is impossible to experimentally validate or inval-
idate all these configurations. It is for this reason that an automatic al-
gorithm configuration procedure called iterated racing was used to de-
termine high-performing parameter configurations for the Pheromone-
based Heuristic Column Generation approach. This was done in joint
work with researchers of the Iridia department at the Université Libre
de Bruxelles. The results have been published in [MLISD13]. Two opti-
mized configurations have been obtained, one per concrete application
of the Vehicle Routing Problem with Black Box Feasibility. These con-
crete applications, the Three-dimensional Loading Capacitated Vehicle
Routing Problem (3L-CVRP) and the Multi-Pile Vehicle Routing Prob-
lem (MP-VRP), are introduced in detail later in this thesis (chapters 12

and 13).

11.1 principles

The Iterated F-Race method considers all possible parameter value con-
figurations and uses statistical information to exclude bad configura-
tions early on. In order to use the method, the configurable parameters

129

130 Chapter 11 parameter setting with irace

and their possible values need to be clearly defined. This is done in sec-
tion 11.4. The iterated F-Race procedure itself is described in section
11.2. The automatic configuration procedure was done separately for
each of the sets of black box constraints Fbb (corresponding to the side-
problems from 3L-CVRP and MP-VRP) considered in this thesis. To
do this training instances were used, they are described in section 11.3.
The "optimized" configurations were then used to do a parametrical
analysis (on each set of black box constraints) to evaluate the impact
of each parameter individually. The "optimal" configurations obtained
and their experimental evaluation are given in the applications section
11.6.

11.2 iterated f-race

A good overview of the Iterated F-Race approach can be found in
[BYBS10]; the explanations given here are based on this paper. A de-
scription of the irace package implementing the Iterated F-Race ap-
proach, used here, can be found in [LIDLSB11].
Iterated F-Race is based on three concepts: the Racing approach, F-race
and Iterative Racing.
The goal of the Racing approach is, given an initial set of candidate
configurations Θ0 and a set of training problem instances I, to identify
a subset of configurations in Θ0 that outperform the other configura-
tions. The approach proceeds in steps, each step k resulting in a set
Θk ⊆ Θk−1. Step k consists in applying all the configurations in set
Θk−1 to problem instance ik ∈ I and then discarding the configurations
for which enough statistical evidence of their sub-optimality has been
gathered over steps 1 to k. The "surviving" configurations are gathered
in set Θk. The procedure stops once a predefined computation budget
has been reached. Such a computation budget can for example corre-
spond to a maximum number of evaluations (one evaluation being the
application of some configuration to some problem instance).
The F-race approach prescribes how the statistical evidence for discard-
ing sub-optimal configurations is computed. It uses a non-parametrical
Friedman test (see [BYBS10]) to verify whether the configurations have
performed differently in the past (in a statistical significant way). If
this is the case, each configuration is compared to the current best
configuration, and those that have performed significantly worse are
discarded.
Finally Iterated F-Race applies the racing procedure iteratively to sets

11.3 training instances 131

of configurations. With each parameter value in the space of possible
parameter values is associated a probability. Initially this probability
is the same for each parameter value. A set of configurations is then
sampled from the parameter space using these probabilities. F-Race
is then applied to this set, returning a set of elite configurations. The
probabilities associated with the parameter values appearing in these
elite configurations are increased. Using these adapted probabilities a
new set of configurations is sampled, serving, together with the set of
elite configurations from the previous iteration, as the initial set for the
next F-Race procedure. The overall procedure is stopped once a given
computation budget has been used up.

11.3 training instances

As mentioned before the method is applied on a set of representative
training instances. This set is different from the set of instances for
which a high-performing configuration should be produced. The idea
behind this is to avoid overtuning the configuration to a small set of
instances, but rather to achieve a configuration performing well even
on previously unknown instances. A set of such training instances was
created by perturbing the original set of unseen instances (correspond-
ing to the benchmark instances from the literature). Only slight per-
turbations were allowed in order to not destroy the underlying prob-
lem structure. Each customer property was perturbed with a proba-
bility of 95%. A perturbation replaces the value of the property by
current value + r ·maxprop, where r is a number selected uniformly at
random in the interval [−δ, δ] and maxprop is the maximal value for
the considered property in the original instance. Different values for δ

were considered (δ ∈ {0.05, 0.1, 0.15} for MP-VRP, and δ ∈ {0.1, 0.15}
for 3L-CVRP). In the case of the MP-VRP instances the demand of a
customer corresponds to the number of items demanded per type (see
chapter 13). The following customer properties were considered for
perturbation: x-coordinate and demand of one randomly selected type
of item. For the 3L-CVRP, the following customer properties were con-
sidered: x-coordinate, demand, randomly selected dimension of ran-
domly selected item, fragility of randomly selected item (see chapter
12). Five different combinations of these properties were considered.
The time limits used on the perturbed instances correspond to those

132 Chapter 11 parameter setting with irace

used on the original instances (1800 CPU seconds for MP-VRP and
1800, 3600 or 7200 CPU seconds for 3L-CVRP).

11.4 considered parameters and their ranges

The numerical and configurational parameters optimized appear in
different parts of the Pheromone-based Heuristic Column Generation
approach. For each part, the parameters are explained next. An over-
view, as well as the parameter ranges and types is given in table 11.1.
The ranges used were based on an initial intuitive parameter configu-
ration.

11.4.1 Parameters of the collector ant algorithm

Collector ants are used to generate wb- and bb-feasible routes. To do
this they execute a randomized version of the savings heuristic. All
possible merges are considered and added, based on their attractive-
ness to a candidate list. Once ν bb-feasible merges haven been gathered
in the candidate list one of the candidate merges is selected and exe-
cuted.

The following parameters have been considered for configuration:

ν the number of bb-feasible merges that need to be
gathered in the candidate list Ω before one of the
merges in the list is selected and executed

α,β the exponential factors used for the pheromones (α)
and the savings (β) value to compute the attractive-
ness of a merge

op the operator used to compute the attractiveness of a
merge. op corresponds either to a multiplication or
summation.

11.4.2 Parameters of the main algorithm

The main algorithm repetitively executes ` collector ants to generate
wb- and bb-feasible routes, post-optimizes these routes and adds them
to the set of feasible routesR∗. It then solves problem Relax(SCP(R∗))

11.5 automatic parameter setting 133

and uses the resulting solution to update the pheromone matrix. In the
following, besides numerical parameters, configurational parameters
modifying the described behavior of the algorithm are considered:

` the number of ants executed per iteration of Phero-
mone-based Heuristic Column Generation

ρ, ε and τmin the trail persistence, pheromone update constant and
minimum pheromone deposit used in the update of
pheromones

strictness indicating whether to use strict or liberal ants (see
section 6.2, the initialization of R∗ is always done
with strict ants)

post-opt indicating whether to use the Tabu Search (TS) or Iter-
ated Local Search (ILS) for post-optimization

useint and f parameter useint indicates whether instead of solving
problem Relax(SCP(R∗)), problem SCP(R∗) should
be solved (possibly not to optimality), and the corre-
sponding integer solution be used for the pheromone
update. Note that when problem SCP(R∗) is solved,
the corresponding dual costs π are considered zero.
Parameter useint can take 3 possible values:

1. always : problem SCP(R∗) is solved all the time,
problem Relax(SCP(R∗)) is never solved

2. never : problem Relax(SCP(R∗)) is solved all
the time, problem SCP(R∗) is never solved (ex-
cept to obtain the final solution)

3. freq : problem SCP(R∗) is solved instead of
problem Relax(SCP(R∗)) every f iterations

11.5 automatic parameter setting

The automatic configuration of ACO-HCG was done with irace using
the parameter domains given in Table 11.1, and the described set of
training instances. The computational budget corresponded to 5000
runs of ACO-HCG. irace was executed two times, once for the MP-
VRP training instances and another time for the 3L-CVRP training in-
stances. Thus, two automatic configurations of ACO-HCG result. For

134 Chapter 11 parameter setting with irace

Table 11.1: Parameters considered for automatic configuration ([MLISD13])

Parameter Domain Description

ν [10, 50] ∈N #bb-feasible merges in Ω

α [0, 20] ∈N exp. factor for τ in merge
attractiveness (Eq. 21)

β [0, 20] ∈N exp. factor for s in merge
attractiveness (Eq. 21)

op {+, ·} use addition/multiplication
operator in Eq. 21

` [1, 10] ∈N #ants executed per iteration

ρ [0, 1] ∈ R trail persistence

ε [0.0, 1.0] ∈ R pheromone update constant

τmin [0, 1] ∈ R lower bound on pheromone level

strictness { strict, liberal } strict / liberal ants

post-opt { ILS, TS } ILS / TS for post-optimization

useint {never, always, freq} solve SCP(R∗) instead of
SCP(Relax(R∗))

f [2, 10] ∈N if useint == freq, solve SCP(R∗)
instead of SCP(Relax(R∗)) every
f iterations

the experiments in this chapter ACO-HCG was compiled using gcc
4.4.6 and CPLEX 12.4 was used as the MILP solver. Experiments were
run on a single core of an AMD Opteron 6272 CPU (2.1 GHz, 16 MB
L2/L3 cache size) running under Cluster Rocks Linux version 6/Cen-
tOS 6.3, 64bits. Table 11.2 shows the automatic configurations and
the two manual configurations that were originally used. The manual
configurations were based on preliminary experiments and standard
ACO parameters, and were found to be competitive with existing ap-
proaches.

Some notable differences between the settings of the automatic con-
figurations and the manual ones are that the former have larger values
of β, a larger number of ants (`), a lower pheromone trail persistence

11.6 exp. analysis of aco-hcg parameters 135

(ρ), they solve SCP(R∗) instead of SCP(Relax(R∗)) in some iterations
(f), and the ants are strict instead of liberal.

The quality of a given configuration is measured in terms of mean
relative percentage deviation (%-deviation) from the best known solu-
tion cost reached using the same black box functions (including results
from [MDVH12]). For the MP-VRP this corresponds to the %-deviation
from the best solution costs presented in [TDHI09], while for the 3L-
CVRP it corresponds to the %-deviation of the best solution costs pre-
sented in [Bor12]. The automatic and manual configurations of ACO-
HCG are compared in Fig. 11.1. Each point in the plot shows the mean
%-deviation over 20 independent runs (with different random seeds)
on the same test instance. The two configurations perform equally on
the same instance if the point is on the diagonal, the automatic con-
figuration performs better if the point is under the diagonal, and the
manual configuration performs better if the point is above the diago-
nal. Moreover, the symbols denote whether the differences observed
are statistically significant (decided using a Wilcoxon signed-rank test
with confidence level 95%).

For the MP-VRP (Fig. 11.1a), the improvement of the automatic con-
figuration over the manual one is considerable. In particular, all the dif-
ferences are statistically significant. Moreover, for many instances, the
automatic configuration obtains an average result that is better than
the best known solution among those considered. For the 3L-CVRP
(Fig. 11.1b), the improvement is smaller. Nonetheless, the automatic
configuration is never worse than the manual configuration and it is
significantly better on a few instances. In Tables 11.3 and 11.4 the man-
ual and automatic configuration are compared to the best known solu-
tions in literature using all kinds of loading algorithms (and thus pos-
sibly obtained using loading algorithms different from the ones used
as black box functions in this thesis). The automatic configuration is
able to find new best solutions for 14 out of the 21 MP-VRP instances
and 8 out of the 27 3L-CVRP instances.

11.6 experimental analysis of the aco-hcg

parameters

Based on the automatic configuration obtained in the previous section
several of the parameters of ACO-HCG are analysed in a systematic

136 Chapter 11 parameter setting with irace

Table 11.2: Parameter configurations of ACO-HCG.

Problem Config. ν ` α β ε ρ τmin useint (f) strict. post-opt op

MP-VRP Manual 13 1 5 5 0.15 0.95 0.20 never liberal TS mult

Automatic 10 9 1 10 0.69 0.34 0.79 f = 7 strict TS mult

3L-CVRP Manual 13 5 5 5 0.15 0.95 0.20 never liberal TS mult

Automatic 41 10 3 9 0.66 0.45 0.29 f = 6 strict TS mult

manner. Note that a fully-factorial experimental design is intractable
given the number of parameters and the computation time required
by each run. Instead the high-performing parameter configuration au-
tomatically obtained in the previous section is used and parameter
settings that disable or replace one algorithmic component at a time
are considered.

Pheromone information (α). By setting α = 0, the influence of the
pheromone information is disabled. The result is a noticeable dete-
rioration in quality in most MP-VRP instances (Fig 11.2a) and some
3L-CVRP instances (Fig 11.2e). This suggests that the pheromone in-
formation plays a positive role in the performance of the algorithm.

Savings heuristic (β). By setting β = 0 the use of the savings heuris-
tic value s in the attractiveness equation is disabled. The savings heuris-
tic guides the ants to build cost-efficient routes, and, hence, disabling
it leads to a substantial quality deterioration in both problems (MP-
VRP, Fig. 11.2b, and 3L-CVRP, Fig. 11.2f). For small instances of the
3L-CVRP, however, the differences are typically minor. This is due to
the high value for parameter ν. In fact, for small instances with only
few customers, setting ν, that is, the number of feasible merges in can-
didate list Ω, to a high value, results in most possible merges being
included in Ω. These are then checked for feasibility and added to R∗.
However, for large instances, the setting of parameter ν excludes many
interesting merges that would have a high heuristic value if β 6= 0. In
summary, the savings heuristic remains essential for the generation of
high-quality routes.

Learning mechanism (ρ). By setting ρ = 0, the pheromones are re-
set at every iteration, and only the amount deposited in the current
iteration has an effect. Hence, this setting disables the learning mech-
anism of ACO and forces the ants to focus on the solution found in

11.6 exp. analysis of aco-hcg parameters 137

0 1 2 3

0
1

2
3

Manual, % deviation

A
ut

om
at

ic
, %

 d
ev

ia
tio

n

(a) MPVRP

−2 0 2 4

−
2

0
2

4

Manual, % deviation
A

ut
om

at
ic

, %
 d

ev
ia

tio
n

−0.5 0.5

−
0.

5
0.

5

(b) 3L-CVRP

Figure 11.1: Comparison between manual and automatic configuration. Each
point gives the mean %-deviation from the best-bb solution over
20 runs with different random seed on the same test instance.
The symbols denote whether there is a statistically significant
difference (5) or not (2), or all the runs obtained the same cost
(O).

the current iteration. Given that the results do not show a clear effect
of the learning mechanism (Fig. 11.2d and 11.2h), but that completely
disabling the pheromone information (α = 0, as discussed above) does
deteriorate quality, it can be concluded that the pheromone informa-
tion provides a diversification mechanism rather than learning the best
arcs over time.

Strict vs. liberal ants. Whereas strict ants may only execute merges
resulting in bb-feasible routes, liberal ants may also execute merges re-
sulting in only wb-feasible routes. The rationale of liberal ants is that
bb-infeasible routes might be merged with bb-feasible routes in order
to produce bb-feasible routes. This, of course, depends on the black box
at hand. In the case of the MP-VRP, such a situation cannot arise and,
hence, strict ants produce much better results (Fig. 11.2c). While for the
3L-CVRP an infeasible and a feasible route can theoretically be con-
catenated to produce a feasible route, such a situation does not seem
to occur frequently in the benchmark instances available (Fig. 11.2g).
Thus, the choice of strict ants rather than liberal ants in the automatic
configuration seems to be justified.

138 Chapter 11 parameter setting with irace

Sum vs. multiplication in attractiveness equation. The results clear-
ly worsen when using a sum (op = +) in the attractiveness equa-
tion. Since the values of the savings heuristic are much larger than
the pheromone values, summing both neglects the effect of the phero-
mones. In fact, the plots (Fig. 11.3a and 11.3e) are almost identical to
those where the pheromone information is disabled (α = 0, Fig 11.2a
and 11.2e). Therefore, the use of multiplication is recommended.

Solving SCP(R∗) instead of Relax(SCP(R∗)). Parameter useint
controls whether the solution used to update the pheromone infor-
mation is obtained by solving SCP(R∗) or Relax(SCP(R∗)). For the
MP-VRP, while never using the integer solution does not have a sig-
nificant effect on most instances, always using it slightly deteriorates
the quality in some instances (see Fig. 11.3b) For the 3L-CVRP, it does
not matter whether the solutions of SCP(R∗) or Relax(SCP(R∗)) are
used to update the pheromones (see Fig. 11.3f). Thus it does not matter
whether the pheromones are deposed in such a way that the collector
ants are more likely to construct new routes similar to the optimal
routes in the solution sol ∈ Sol(Relax(SCP(R∗))) (having a zero re-
duced cost).

Post-optimization using TS vs. ILS When comparing TS vs. ILS as
the post-optimization method, we observe that, in the MP-VRP, solu-
tion quality does deteriorate in some instances when using ILS instead
of TS, and in the 3L-CVRP, a slight deterioration can be observed on a
couple of instances (Fig. 11.3c and 11.3g). This indicates that in most
cases the TS is able to find the improvements that can be found using
ILS, or possibly that in the majority of cases neither TS nor ILS can
find a feasible improvement to a given feasible route.

Number of ants Finally, if the number of ants is set to one (` = 1),
results improve slightly on a few instances and get slightly worse in
others for the MP-VRP (Fig. 11.3d). In the case of the 3L-CVRP, set-
ting ` = 1 slightly deteriorates quality in a majority of the instances
(Fig. 11.3h). This could indicate that in the case of the 3L-CVRP the col-
lector ants converge too rapidly towards a set of routes, the pheromone
matrix being updated each time only one (` = 1) ant has finished gen-
erating feasible routes.

11.6 exp. analysis of aco-hcg parameters 139

MP-VRP

−
0.

5
0.

0
0.

5
1.

0
1.

5

−0.50.00.51.01.5

α
=

0,
 %

 d
ev

ia
tio

n

Automatic, % deviation

(a
)

0
20

40
60

80
10

0

020406080100

β
=

0,
 %

 d
ev

ia
tio

n

Automatic, % deviation

(b
)

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

−0.50.00.51.01.52.0

li
b

e
ra

l,
 %

 d
ev

ia
tio

n

Automatic, % deviation

(c
)

−
0.

5
0.

0
0.

5

−0.50.00.5

ρ
=

0,
 %

 d
ev

ia
tio

n

Automatic, % deviation

(d
)

3L-CVRP

−
2

−
1

0
1

2
3

4

−2−101234

α
=

0,
 %

 d
ev

ia
tio

n

Automatic, % deviation

(e
)

0
10

20
30

40
50

60

0102030405060

β
=

0,
 %

 d
ev

ia
tio

n

Automatic, % deviation

0
1

2
3

4
5

012345

(f
)

−
2

−
1

0
1

2
3

4

−2−101234

li
b

e
ra

l,
 %

 d
ev

ia
tio

n

Automatic, % deviation

−
0.

4
0.

0
0.

4

−0.40.00.4

(g
)

−
2

−
1

0
1

2
3

4

−2−101234

ρ
=

0,
 %

 d
ev

ia
tio

n

Automatic, % deviation

−
0.

3
0.

0
0.

3

−0.30.00.3

(h
)

Fi
gu

re
1

1
.2

:E
ac

h
pl

ot
sh

ow
s

th
e

ef
fe

ct
of

ch
an

gi
ng

on
e

pa
ra

m
et

er
of

th
e

"a
ut

om
at

ic
”

co
nfi

gu
ra

ti
on

.R
es

ul
ts

fo
r

th
e

M
P-

V
R

P
ar

e
in

th
e

up
pe

r
ro

w
;r

es
ul

ts
fo

r
3
L-

C
V

R
P

in
th

e
lo

w
er

ro
w

.E
ac

h
po

in
tg

iv
es

th
e

m
ea

n
%

-d
ev

ia
ti

on
fr

om
th

e
be

st
-b

b
so

lu
ti

on
ov

er
2

0
ru

ns
w

it
h

di
ff

er
en

tr
an

do
m

se
ed

on
th

e
sa

m
e

te
st

in
st

an
ce

.T
he

sy
m

bo
ls

de
no

te
w

he
th

er
th

er
e

is
st

at
is

ti
ca

lly
si

gn
ifi

ca
nt

di
ff

er
en

ce
(5

)
or

no
t

(2
),

or
al

lt
he

ru
ns

ob
ta

in
ed

th
e

sa
m

e
co

st
(O

).

140 Chapter 11 parameter setting with irace

MP-VRP

−
0.

5
0.

0
0.

5
1.

0

−0.50.00.51.0

o
p

=
+

, %
 d

ev
ia

tio
n

Automatic, % deviation

(a
)

−
0.

6
−

0.
2

0.
2

0.
6

−0.6−0.20.20.6

u
s

e
in

t
=

ne
ve

r,
 %

 d
ev

ia
tio

n

Automatic, % deviation

(b
)

−
0.

6
−

0.
2

0.
2

0.
6

−0.6−0.20.20.6

IL
S

, %
 d

ev
ia

tio
n

Automatic, % deviation

(c
)

−
0.

6
−

0.
2

0.
2

0.
6

−0.6−0.20.20.6

l=
1,

 %
 d

ev
ia

tio
n

Automatic, % deviation

(d
)

3L-CVRP

−
2

−
1

0
1

2
3

4

−2−101234

o
p

=
+

, %
 d

ev
ia

tio
n

Automatic, % deviation

(e
)

−
2

0
2

4

−2024

u
s

e
in

t
=

ne
ve

r,
 %

 d
ev

ia
tio

n

Automatic, % deviation

−
0.

3
0.

0
0.

3

−0.30.00.3

(f
)

−
2

−
1

0
1

2
3

4

−2−101234

IL
S

, %
 d

ev
ia

tio
n

Automatic, % deviation

−
0.

4
0.

0
0.

4

−0.40.00.4

(g
)

−
2

0
2

4

−2024

l=
1,

 %
 d

ev
ia

tio
n

Automatic, % deviation

−
0.

4
0.

0
0.

4

−0.40.00.4

(h
)

Fi
gu

re
1

1
.3

:E
ac

h
pl

ot
sh

ow
s

th
e

ef
fe

ct
of

ch
an

gi
ng

on
e

pa
ra

m
et

er
of

th
e

"a
ut

om
at

ic
”

co
nfi

gu
ra

ti
on

.R
es

ul
ts

fo
r

th
e

M
P-

V
R

P
ar

e
in

th
e

up
pe

r
ro

w
;r

es
ul

ts
fo

r
3
L-

C
V

R
P

in
th

e
lo

w
er

ro
w

.E
ac

h
po

in
tg

iv
es

th
e

m
ea

n
%

-d
ev

ia
ti

on
fr

om
th

e
be

st
-b

b
so

lu
ti

on
ov

er
2

0
ru

ns
w

it
h

di
ff

er
en

tr
an

do
m

se
ed

on
th

e
sa

m
e

te
st

in
st

an
ce

.T
he

sy
m

bo
ls

de
no

te
w

he
th

er
th

er
e

is
st

at
is

ti
ca

lly
si

gn
ifi

ca
nt

di
ff

er
en

ce
(5

)
or

no
t

(2
),

or
al

lt
he

ru
ns

ob
ta

in
ed

th
e

sa
m

e
co

st
(O

).

11.6 exp. analysis of aco-hcg parameters 141

Best Manual Conf. Automatic Conf.

zbest zmin zavg sectt gavg zmin zavg sectt gavg

CMT01-1 587.29 590.45 599.38 1820 2.06 587.29 590.54 1833 0.55

CMT01-2 615.12 617.82 628.99 1807 2.25 615.11 615.88 1811 0.12

CMT01-3 623.45 623.91 632.06 1807 1.38 623.44 624.35 1806 0.14

CMT02-1 978.66 976.70 984.47 1811 0.59 974.47 975.53 1848 -0.32

CMT02-2 897.62 901.91 911.51 1826 1.55 897.51 900.63 1825 0.34

CMT02-3 888.38 895.49 903.79 1813 1.73 889.26 890.39 1814 0.23

CMT03-1 1188.18 1198.09 1218.03 1833 2.51 1180.21 1184.93 1819 -0.27

CMT03-2 1218.96 1229.23 1241.71 1833 1.87 1219.13 1221.68 1926 0.22

CMT03-3 1156.84 1170.63 1186.82 1836 2.59 1154.11 1159.52 1814 0.23

CMT04-1 1624.98 1631.73 1660.10 1881 2.16 1607.63 1615.64 1900 -0.57

CMT04-2 1552.27 1564.80 1578.23 1864 1.67 1543.37 1548.54 1940 -0.24

CMT04-3 1541.81 1563.87 1578.30 1862 2.37 1541.35 1545.32 1899 0.23

CMT05-1 2035.77 2052.01 2074.49 1950 1.90 2019.80 2027.90 2029 -0.39

CMT05-2 1833.41 1866.50 1892.65 1909 3.23 1832.18 1840.55 2022 0.39

CMT05-3 1948.84 1974.25 1996.54 1946 2.45 1946.30 1952.23 1907 0.17

CMT06-1 2240.57 2242.65 2292.50 2072 2.32 2238.56 2249.97 2111 0.42

CMT06-2 2070.04 2107.45 2142.76 2021 3.51 2089.17 2096.93 2000 1.30

CMT06-3 2154.19 2169.29 2189.78 1870 1.65 2153.45 2164.11 1847 0.46

CMT07-1 1136.55 1151.85 1160.34 1855 2.09 1140.14 1144.25 1835 0.68

CMT07-2 1217.45 1226.17 1232.51 1855 1.24 1214.58 1216.23 1854 -0.10

CMT07-3 1157.67 1171.37 1188.00 1894 2.62 1152.16 1161.79 1847 0.36

AVG 2.08 0.19

Table 11.3: Comparison of "manual" and "automatic" configuration with best-known
results on MP-VRP. zmin/avg=best and average solution value, sectt=total
execution time in seconds, gapavg=average relative percentage deviation
w.r.t. best published solution. All results over 20 independent runs. The
relative percentage deviation for one run is computed as 100 · z−zbest

zbest
where z is the solution value for the given run and zbest the best published
solution value. For the automatic configuration results in bold indicate a
tie or improvement over the best published solution value, results in italic
indicate a tie or improvement over the average solution value obtained
using the manual configuration. Note that small variations such as these
for instances CMT01-2 and CMT01-3 are to be attributed to rounding.

142 Chapter 11 parameter setting with irace

Best Manual Conf. Automatic Conf.

zbest zmin zavg sectt gavg zmin zavg sectt gavg

3l-cvrp01 291.00 302.02 302.13 1800 3.82 302.02 302.02 1800 3.79

3l-cvrp02 334.96 334.96 334.96 1800 0.00 334.96 334.96 1800 0.00

3l-cvrp03 392.46 385.53 392.23 1800 -0.06 385.53 391.49 1800 -0.25

3l-cvrp04 437.19 437.19 437.19 1800 0.00 437.19 437.19 1800 0.00

3l-cvrp05 443.61 447.73 447.73 1800 0.93 447.73 447.73 1800 0.93

3l-cvrp06 498.16 498.16 498.27 1800 0.02 498.16 498.16 1800 0.00

3l-cvrp07 768.85 769.68 769.68 1800 0.11 769.68 769.68 1800 0.11

3l-cvrp08 805.35 845.50 851.01 1800 5.67 845.50 848.12 1800 5.31

3l-cvrp09 630.13 630.13 630.67 1800 0.09 630.13 630.13 1800 0.00

3l-cvrp10 817.38 826.66 827.52 3601 1.24 826.66 826.66 3603 1.14

3l-cvrp11 778.10 776.19 778.03 3600 -0.01 776.19 777.72 3600 -0.05

3l-cvrp12 612.25 612.25 612.88 3600 0.10 612.25 612.25 3600 0.00

3l-cvrp13 2645.95 2661.62 2670.06 3600 0.91 2661.62 2667.32 3601 0.81

3l-cvrp14 1368.42 1392.06 1405.56 3602 2.71 1385.00 1402.58 3604 2.50

3l-cvrp15 1341.14 1336.21 1343.34 3611 0.16 1336.21 1339.46 3618 -0.13

3l-cvrp16 698.61 698.61 698.61 3600 0.00 698.61 698.61 3600 0.00

3l-cvrp17 866.40 866.40 866.84 3600 0.05 866.40 866.40 3600 0.00

3l-cvrp18 1207.72 1205.11 1222.25 3612 1.20 1205.11 1211.46 3614 0.31

3l-cvrp19 741.74 741.31 743.59 7203 0.25 741.31 741.47 7203 -0.04

3l-cvrp20 586.92 581.13 586.12 7236 -0.14 577.39 581.19 7215 -0.98

3l-cvrp21 1042.72 1080.24 1089.93 7272 4.53 1075.16 1080.22 7217 3.60

3l-cvrp22 1147.80 1154.12 1161.89 7220 1.23 1148.82 1154.18 7211 0.56

3l-cvrp23 1119.05 1104.06 1118.14 7229 -0.08 1101.47 1110.60 7213 -0.76

3l-cvrp24 1096.88 1112.49 1117.60 7225 1.89 1107.15 1111.89 7225 1.37

3l-cvrp25 1407.36 1389.35 1402.02 7346 -0.38 1373.24 1387.27 7240 -1.43

3l-cvrp26 1430.15 1553.04 1568.21 7291 9.65 1544.40 1555.92 7216 8.79

3l-cvrp27 1455.27 1493.33 1503.80 7316 3.33 1483.59 1489.56 7235 2.36

AVG 1.38 1.03

Table 11.4: Comparison of "manual" and "automatic" configuration with best-known
results on 3L-CVRP. zmin/avg=best and average solution value, sectt=total
execution time in seconds, gapavg=average relative percentage deviation
w.r.t. best published solution. All results over 20 independent runs. The
relative percentage deviation for one run is computed as 100 · z−zbest

zbest
where z is the solution value for the given run and zbest the best published
solution value. For the automatic configuration results in bold indicate a
tie or improvement over the best published solution value, results in italic
indicate a tie or improvement over the average solution value obtained
using the manual configuration.

12
V R P W I T H T H R E E - D I M E N S I O N A L L O A D I N G
C O N S T R A I N T S

The Three-dimensional Loading Capacitated Vehicle Routing Problem
(3L-CVRP) was first introduced in [GILM06]. To verify the feasibility
of a route a three-dimensional loading problem needs to be solved.
Customers request a set of three-dimensional boxes. These boxes must
then be loaded into the back of the delivery truck, which is itself rectan-
gular and limited in three dimensions as well as in maximal weight. A
feasible route must respect the capacity constraint, and a feasible load-
ing, respecting typical bin-packing constraints as well as some compli-
cating real-world constraints, must exist.

12.1 problem description

The 3L-CVRP is defined on top of the basic CVRP. A limited, ho-
mogeneous fleet of vehicles is available to perform the deliveries of
items to customers. Each vehicle corresponds to a rectangular con-
tainer of width W, height H and length L. The loading space is ac-
cessible only from the rear of the vehicle. The vehicles also have a
maximum capacity (read maximum weight) limited to Q. Each cus-
tomer i ∈ V\{0} demands a set Ii of mi items of total weight qi. Each
item Iiz(z = 1, ..., mi , i ∈ V\{0}) is a box of width wiz, height hiz and
length liz, and is either fragile or non-fragile. See Figure 12.1 for the

143

144 Chapter 12 vrp with 3d loading constraints

5
6

1

2

4

3

d	=	5
4

d	=	10
d	=	8

d	=	12

d	=	6

d	=	4

5

6

1

2

3

d	=	2
7

7

Figure 12.1: 3L-CVRP instance with routes. Demand of customer i is denoted
di

depiction of an 3L-CVRP instance with routes. The goal is to find a set
of at most |K| routes each starting and ending at the depot, visiting
every customer exactly once such that the total cost is minimized and
the following conditions hold for every route r:

• ∑i∈r.S qi ≤ Q (capacity constraint)

• a feasible orthogonal loading exists for
⋃

i∈r.S
⋃mi

z=1{Iiz}

A loading of a route r is the assignment of coordinates to the lower
left corner of each item Iiz(z = 1, ..., mi), i ∈ r.S. The origin of the coor-
dinate system is assumed in the lower left back corner of the vehicle.
The following conditions must be fulfilled over the items

⋃
i∈r.S{Ii} for

a loading to be considered feasible:

• Containment All items fit completely into the loading space of the
vehicle.

• Non-overlapping None of the items overlap in all three dimensions at
the same time.

• Fragility No non-fragile item is placed on top of a fragile item.

• Support An item must be supported from below by at least α% of its
bottom surface.

12.2 existing approaches 145

1

2

3d	=	12

d	=	6

d	=	41

2

3

w

h

l

Figure 12.2: Feasible loading for a 3L-CVRP route

• LIFO When visiting a customer i ∈ r.S no item Ijz(z = 1, . . . , mj) s.t.
pos(j, r) > pos(i, r) may be placed between the items of i and the
rear of the vehicle, nor between the items of i and the top of the
vehicle.

Note that items may be rotated by 180◦ but may not be flipped. A
feasible loading for a given route is depicted in Figure 12.2.

12.2 existing approaches

In [GILM06] the authors propose a deterministic Tabu Search (TS) al-
lowing visits to capacity- and loading-infeasible solutions. The loading
subproblem is addressed using a Tabu Search itself using two greedy
heuristics adapted from well-known loading heuristics.
Two initial solutions are computed. They are computed using adapta-
tions of the savings and an insertion heuristic. The produced solutions
may violate the capacity and the loading constraints. The solutions
with the smallest number of infeasible routes is used as the initial solu-
tion. A measure of infeasibility is included in the objective function as
the excess weight and excess length. This means that all loading pro-
duced must respect all the loading constraints, except for the contain-
ment constraint, which may be violated in one dimension. The weights

146 Chapter 12 vrp with 3d loading constraints

used for these measures in the objective function are adapted through-
out the search. The search constructs a restricted neighborhood using
ηreloc. The routes implicated in a move are reoptimized using 4-opt
insertion. The best of these moves, taking into account the objective
of the resulting solution and a penalty term used to enhance diversi-
fication, is chosen. Each time a new best solution is found, the size
of the neighborhood Nreloc is increased during the next iteration. Fi-
nally, when a solution improving the total distance of the incumbent
is encountered, and if this new solution is capacity-feasible but not
feasible in terms of loading, the excess length of the loading is recom-
puted, while allowing more iterations to the Tabu Search handling the
loading. The TS algorithm is tested on benchmark instances generated
from known CVRP benchmark instances.

The authors in [TZK09] propose a Guided Tabu Search (GTS). They
propose a bundle of packing heuristics to consider the loading prob-
lem. The 6 heuristics are always applied in increasing order of complex-
ity. This is stopped as soon as one of the heuristics is able to produce
a feasible loading.
An initial solution is constructed using an adapted parallel insertion
heuristic. Customers are inserted in the route that currently has the
lowest non-occupied volume. All routes in the initial solution must be
completely feasible, however the number of vehicles in the initial solu-
tion might exceed the actual fleet size. The GTS uses three restricted
neighborhoods, one of which is selected at random each iteration. The
neighborhoods, including only feasible solutions (but possibly using
more vehicles than available), are constructed using ηreloc, ηswap and a
combination of ηcross and η2ex. The best neighbor is chosen. The guid-
ing mechanism works by selecting a long (cost-intensive) arc in the
current best solution, and penalizing it over a given number of itera-
tions by doubling its cost. This penalty may however be overridden if
a new best solution using the penalized arc is found. Using the best
solutions found over all runs the authors are able to improve the costs
over 21 instances out of 27 compared to [GILM06].

In [FDHI10] (ACO) an adapted version of the Savings-based ants
introduced in [RSD02] is proposed. The loading subproblem is consid-
ered by using lower bounds derived from bin-packing, and if these
do not prove infeasibility, the heuristics from [GILM06] are applied
repeatedly (perturbing the input sequence of items to be loaded each

12.2 existing approaches 147

time). The attractiveness of a merge (in the savings heuristic executed
by the ants) is adapted to the 3L-CVRP by introducing a notion of the
loading compactness of the route resulting from that merge. Solutions
produced by the ants must be feasible except for the number of vehi-
cles used. The solutions are post-optimized using a local search. This
local search explores neighborhoods constructed using ηreloc and ηswap.
The local search is allowed to violate capacity constraints at a penalty.
A further term is introduced in the objective function used for the local
search if the number of vehicles used in the current solution exceeds
the fleet size. It aims at prioritizing solutions with a high capacity- and
volume-utilization of the vehicles. Finally an elitist scheme is used to
update the pheromone matrix. The ACO is able to outperform the TS
on average in 26 out of 27 instances and to beat the GTS on average in
23 out of 27 instances .

A Hybrid Tabu Search (HTS) is presented in [Bor12]. A tree traversal
algorithm with a limited number of backtracks is proposed to handle
the loading problem. An initial solution is generated by choosing the
best among several solutions generated using a randomized savings
heuristic. The produced solutions may not violate any constraints, but
may use more vehicles than available. The HTS is split in two phases,
one aiming at reducing the number of vehicles in the initial solution,
and the other aiming at minimizing the total distance. At each iter-
ation, complete neighborhoods constructed using ηreloc and ηswap are
explored to select a small set of the best neighbors, one of which is
chosen at random. In the first phase the number of vehicles is used as
objective function. The quality of a move is measured using the total
volume loaded in the lighter of the implied routes. The search stops
as soon as a solution, using as many vehicles as available (or less) is
found. This solution is then used as initial solution for the second tabu
search, using the total distance as objective. In this search only entirely
feasible solutions may be visited. The HTS is able to improve on aver-
age 20 out of the 27 benchmark instances when compared to [FDHI10].

In [ZQLW12] a two-stage tabu search (2STS) is proposed. The au-
thors enhance well-known packing heuristics which are embedded in
a local search. An initial solution is constructed using an adapted ver-
sion of the savings heuristic. The initial solution may violate the ca-
pacity and loading constraints. The first phase of their tabu search
is employed if the initial solution is infeasible. The objective function

148 Chapter 12 vrp with 3d loading constraints

used penalizes excess capacity and excess length of a loading (as done
in [GILM06]). A fixed number of neighbors is randomly generated us-
ing η2ex and ηswap. The best of the generated neighbors is then selected.
Phase one stops as soon as a feasible solution has been found. This so-
lution is then used as initial solution for the second phase. The second
phase explores only feasible solutions. Neighbors are generated as be-
fore, this time using additionally ηreloc, ηcross and an operator splitting
a single route in two routes. The 2STS improves on average 20 out of
the 27 instances over [FDHI10].

The authors in [RTS11] propose a heuristic Branch & Bound (BB)
method for the 3L-CVRP. They use a previously published Container
Loading algorithm to solve the loading side-problem. This algorithm
is based on a partial tree search and greedy packing heuristics. The
proposed Branch & Bound model corresponds to a relaxation of the
3L-CVRP where the loading constraint is replaced with a lower bound
based on the volume of items to be loaded. It is iteratively used to
extend partial solutions into complete solutions, using lower and up-
per bounds from the VRP literature. The minimum cost routes that
are generated using this method are checked for feasibility using the
container loading procedure. The authors improve the best result from
[FDHI10] in 14 out of 27 cases.

A Honey Bees Mating approach (HBM) is proposed in [RZMS13].
The loading problem is attacked using a set of six loading heuristics.
Each bee corresponds to a solution. The population is initialized to fea-
sible VRP solutions, which also take the total allowed volume per route
into account, using an Greedy Randomized Adaptive Search (GRASP).
The existence of a feasible loading is not considered at this stage. The
population evolves until a maximum number of generations has been
reached. The solutions in a restricted candidate list are then considered
by increasing total distance and loading feasibility is checked using the
heuristics. If none of the solutions is feasible, a new honey bee proce-
dure is started. The HBM is able to improve 18 out of the 27 instances
when compared to the average results obtained in [FDHI10].

12.3 3l-cvrp as a vrpbb

The 3L-CVPR can be decomposed into a routing and a loading prob-
lem. The set of white box constraints Fwb corresponds to the capacity

12.4 problem instances 149

constraints. The unknown black box constraints Fbb to be respected by
every route, correspond to the constraint that a feasible three-dimen-
sional loading must exist for the items to be delivered on the route.

For this thesis the algorithm described in [Bor12] has been reim-
plemented. The author proposes a tree traversal method to solve the
loading problem. Each node in the tree corresponds to a partial load-
ing, and the branching decision consists in deciding which potential
placement (i.e, item and position pair) to execute next. Heuristic de-
cisions are used to prune branches. Since this loading algorithm is of
high complexity (polynomial in the number of items per route), only a
limited number of nodes may be visited before aborting the procedure.
Note that this approach is not complete. The loading check provided
for the CVRPBB here is thus not exact, i.e. feasible routes may be con-
sidered infeasible.

12.3.0.1 Problem-specific knowledge in existing approaches

The TS and the 2STS use the excess length of a loading to measure the
violation of the loading constraints. Both GTS and HTS use the volume
of the demanded items at some point in the initialization or optimiza-
tion procedure. The ACO algorithm uses a measure of loading com-
pactness in the attractiveness of route merges. It also uses the volume
information in the local search post-optimizing solutions constructed
by the ants. The BB also uses the volume as a lower bound. Finally
HBM also uses the volume, to restrict the set of solutions considered
in the bees process to solutions where none of the routes exceed the
total volume allowed by the vehicles.

12.4 problem instances

The benchmark instances used for the 3L-CVRP are the ones presented
in [GILM06]. They were generated based on well-known Capacitated
VRP instances from the literature. The loading volume of the vehicles
was fixed to W = 25, H = 30 and L = 60. For each customer the num-
ber of items was drawn uniformly at random from the range 1, . . . , 3.
For each item, its width (resp. height or length) was generated uni-
formly at random from the interval [0.2W, 0.6W] (resp. [0.2H, 0.6H] or
[0.2L, 0.6L]). The minimum percentage of supported area α was fixed

150 Chapter 12 vrp with 3d loading constraints

to 75%. The authors then proceeded to compute the minimum num-
ber of vehicles necessary to load all the customers’ items using the
greedy loading heuristics presented in the same paper. The number of
vehicles reached for each instance using this approach was then set as
the maximum number of vehicles for the given instance. It should be
noted that the maximum numbers of vehicles indicated in the paper
are incorrect. The correct numbers of vehicles can be found in the in-
stance files that can be downloaded from http://www.or.deis.unibo.

it/research.html. To the best of our knowledge all papers presented
in the previous section use the correct numbers.

12.5 experimental results

The experiments presented in this section have all been conducted on
an AMD Opteron 6284 SE CPU (2.7 Ghz, 16MB cache size). The sys-
tem has been compiled using gcc 4.4.7 and uses CPLEX 12.4 as MILP
solver and the Boost Libraries 1.53 for random number generation. Re-
sults have been obtained over 10 independent runs. The solutions cor-
responding to the results presented in this section can be downloaded
from http://becool.info.ucl.ac.be/resources/VRPBB.

In this section two types of best known results from the literature are
considered. The all-best results correspond to the overall best known
results from the literature for the 3L-CVRP. The bb-best results on the
other hand correspond to results from the literature obtained using the
same black box algorithm as the one used here. In the case of the 3L-
CVRP the bb-best results correspond to the ones presented in [Bor12].

12.5.1 Pheromone-based Heuristic Column Generation (ACO-HCG)

The parameter configuration used for ACO-HCG has been elaborated
using an automatic algorithm configuration procedure. The process
and the resulting configuration are described in detail in chapter 11.
Note that the experiments in chapter 11 and the experiments for the
present chapter were conducted on different architectures. A compar-
ison of the results achieved on both architectures over the same num-
ber of runs (using the same seeds for the random number generator)
is given in Table A.2 in the appendix. It shows that the variations are
not very important, the average results (over 10 runs) vary by 0.05%

http://www.or.deis.unibo.it/research.html
http://www.or.deis.unibo.it/research.html
http://becool.info.ucl.ac.be/resources/VRPBB

12.5 experimental results 151

when averaged over all instances. This can be attributed to the varying
architecture but also to the non-determinism inherent to CPLEX.

The time limits from [GILM06] are used. The limit is imposed on
the route generation process. After the allowed time has been used up,
the current ant iteration is finished, the generation of new routes is
stopped and the final solution is computed. For instances with 0 ≤
n ≤ 25, the route generation time is limited to 1800 CPU seconds, for
instances with 25 < n < 50 it is limited to 3600 CPU seconds, and to
4200 CPU seconds for instances with n ≥ 50. A time limit of 1.5 · n is
imposed on CPLEX when solving problem SCP(R∗). If it is necessary
to solve problem SPP(R∗), this time limit is used in combination with
a limit on the number of discovered solutions, set to 10.

Table 12.1 presents the results obtained on the 3L-CVRP benchmark
instances. Column zmin and zavg indicate the best and average solu-
tion value over 10 runs. Column %RSD gives the relative standard
deviation over 10 runs, while column sectt indicates the average total
execution time. Finally in column %gbb

avg the average relative deviation
w.r.t the bb-best result is given. The gbb

avg value is computed as 100 · z−zbb
zbb

where z is the solution cost obtained using ACO-HCG and zbb is the
solution cost of the bb-best solution. A negative gbb

avg value indicates
that ACO-HCG improves the bb-best result on average (over 10 runs) .

A look at the %gbb
avg column shows that the proposed ACO-HCG ap-

proach is competitive in terms of solution quality. Over the 10 runs,
on average the bb-best result is obtained or even improved for 18 out
of 27 instances. It should be noted however that most variations are
in the range of a few percent. The most notable average deterioration
w.r.t. the bb-best result is for instance 3l-cvrp08, a small-scale instance,
while the biggest improvement is obtained on 3l-cvrp26, a large-scale
instance with clustered customers.

In terms of execution times, ACO-HCG is outperformed by the Hy-
brid Tabu Search (HTS) presented in [Bor12]. HTS uses both a limit on
stable iterations and a limit on total execution time, whereas in ACO-
HCG only a time limit is used. However, preliminary experiments have
shown that even when using a limit on the number of stable iterations
with ACO-HCG, the total execution time needed for all but the small-
est instances remains notably superior to the one needed in [Bor12].

152 Chapter 12 vrp with 3d loading constraints

When compared to the state-of-the-art HTS is very time-efficient. Ex-
ecution times of the state-of-the-art approaches for the 3L-CVRP are
recapitulated in Table A.1 in the appendix.

Analysis of CPU time allocation and Feasibility in generated routes

In this section the percentage of total execution time spent in different
parts of the algorithm is analyzed, as well as the number of bb-feasible
routes found, compared to the total number of routes tested for feasi-
bility w.r.t. Fbb.

Figure 12.3 gives a visual representation of the percentage of CPU
time allocated to different tasks in ACO-HCG. A detailed view of this
is given in Table 12.2. The tasks under consideration are:

• solving problem SCP(R∗) to obtain an integral solution (%IP)

• solving problem Relax(SCP(R∗)), repeated each iteration of ACO-
HCG (%LP)

• testing routes for bb-feasibility (%BB)

• retrieving or adding routes to the Feasibility store Ψ (%ST)

• generating new routes, thus executing the collector ants modulo the
time to check feasibility of routes (%GEN)

• post-optimizing the feasible routes generated by the collector ants
(%PO)

• other parts of ACO-HCG (%OTH)

It is clear from Fig. 12.4 that the majority of the CPU time is allocated
to the generation of feasible routes and to testing the bb-feasibility
of routes. However there are notable differences between different in-
stances. First, for the larger instances (n ≥ 50) most time is spent in
the black box (testing feasibility w.r.t. Fbb of routes). For the smaller
instances, we can identify two sets, those where the majority of the
time is spent in the generation of routes, and those where the majority
of the time is spent in the black box. In the first set there are instances
where the capacity constraints (that is the constraints in Fwb) are very
hard (instances 3l-cvrp02, 3l-cvrp16 and 3l-cvrp17). Only a handful of

12.5 experimental results 153

Instance ACO-HCG Automatic Configuration

K n zmin zavg %RSD sectt %gbb
avg

3l-cvrp01 4 15 302.02 302.02 0.0 1800.0 0.00

3l-cvrp02 5 15 334.96 334.96 0.0 1800.0 0.00

3l-cvrp03 4 20 385.53 390.12 1.0 1800.3 -0.64

3l-cvrp04 6 20 437.19 437.19 0.0 1800.0 0.00

3l-cvrp05 6 21 447.73 447.73 0.0 1800.2 0.93

3l-cvrp06 6 21 498.16 498.16 0.0 1800.1 0.00

3l-cvrp07 6 22 769.68 769.68 0.0 1800.4 0.00

3l-cvrp08 6 22 845.50 845.50 0.0 1800.6 4.27

3l-cvrp09 8 25 630.13 630.13 0.0 1800.0 0.00

3l-cvrp10 8 29 826.66 826.66 0.0 3603.2 0.77

3l-cvrp11 8 29 776.19 777.91 0.1 3601.5 -3.20

3l-cvrp12 9 30 612.25 612.25 0.0 3600.3 -0.38

3l-cvrp13 8 32 2661.62 2665.48 0.1 3601.6 0.74

3l-cvrp14 9 32 1385.00 1398.84 0.4 3605.3 2.22

3l-cvrp15 9 32 1336.22 1341.02 0.2 3624.1 -0.01

3l-cvrp16 11 35 698.61 698.61 0.0 3600.3 0.00

3l-cvrp17 14 40 866.40 866.40 0.0 3600.1 0.00

3l-cvrp18 11 44 1205.11 1209.21 0.4 3606.2 0.12

3l-cvrp19 12 50 741.31 741.31 0.0 7204.6 -0.06

3l-cvrp20 18 71 577.85 580.84 0.4 7217.9 -1.21

3l-cvrp21 17 75 1075.97 1079.47 0.2 7220.4 -0.99

3l-cvrp22 18 75 1147.43 1154.64 0.3 7217.8 0.60

3l-cvrp23 17 75 1102.39 1110.24 0.7 7221.1 -1.80

3l-cvrp24 16 75 1107.71 1110.20 0.1 7228.3 -0.53

3l-cvrp25 22 100 1370.70 1387.14 0.6 7256.1 -1.44

3l-cvrp26 26 100 1541.49 1548.15 0.3 7212.9 -3.26

3l-cvrp27 23 100 1483.66 1491.09 0.2 7253.1 -2.53

AVG 0.2 -0.24

Table 12.1: Results on 3L-CVRP using ACO-HCG in the automatic configuration,
zmin/avg = best/average solution cost over 10 runs, %RSD = relative per-
centage standard deviation over 10 runs, sectt = average total execution
time, %gbb

avg=average relative percentage deviation w.r.t. bb-best solution.

154 Chapter 12 vrp with 3d loading constraints

%
 o

f T
ot

al
 E

xe
cu

tio
n

T
im

e

ACO−HCG, CPU Time Allocation

Instance

3l−
cv

rp
01

3l−
cv

rp
03

3l−
cv

rp
05

3l−
cv

rp
07

3l−
cv

rp
09

3l−
cv

rp
11

3l−
cv

rp
13

3l−
cv

rp
15

3l−
cv

rp
17

3l−
cv

rp
19

3l−
cv

rp
21

3l−
cv

rp
23

3l−
cv

rp
25

3l−
cv

rp
27

%IP
%LP
%BB
%ST
%GEN
%PO
%OTH

0
20

40
60

80
10

0

Figure 12.3: ACO-HCG: CPU Time Allocation

routes are actually wb-feasible (feasible w.r.t. the capacity constraints),
and the time spent testing these routes for bb-feasibility is negligible.
Then in this set, there are also instances where the best solution to
Relax(SCP(R∗)) is reached early on. The same solution will be ob-
tained over several iterations. Thus the same solution will be used to
update the pheromones. The collector ants will converge to reproduce
the routes appearing in this solution. The bb-feasibility of these routes
will be verified in the Feasibility store Ψ, where they are stored as fea-
sible. This explains the higher %ST value for these instances.

Figure 12.4 shows the percentage of routes (averaged over 10 runs)
that were tested for feasibility w.r.t. Fbb, and that were actually found

12.5 experimental results 155

to be feasible. Again this value varies significantly from instance to in-
stance. It is however to be noted, that the percentage of feasible routes
is higher for instances with tight capacity constraints (see above). This
could be explained by the fact that in the set of wb-feasible routes the
majority is also bb-feasible. It can also be noted that instances 3l-cvrp04,
3l-cvrp06, 3l-cvrp09 and 3l-cvrp12 have a higher percentage of positive
tests.

F
ea

si
bl

e
%

 o
f T

es
te

d
R

ou
te

s

0
20

40
60

80
10

0

ACO−HCG, Feasibility in tested routes

Instance

3l−
cv

rp
01

3l−
cv

rp
03

3l−
cv

rp
05

3l−
cv

rp
07

3l−
cv

rp
09

3l−
cv

rp
11

3l−
cv

rp
13

3l−
cv

rp
15

3l−
cv

rp
17

3l−
cv

rp
19

3l−
cv

rp
21

3l−
cv

rp
23

3l−
cv

rp
25

3l−
cv

rp
27

Figure 12.4: ACO-HCG: % of tested routes that were bb-feasible

The exact numbers of feasible and tested routes are given in Table
12.2. In columns #Feasible routes and |Ψ| the exact number of routes in
the final R∗ and the final number of routes in Feasibility store Ψ is
given. In the case of ACO-HCG, |Ψ| corresponds to the total number

156 Chapter 12 vrp with 3d loading constraints

of routes tested for bb-feasibility. The numbers of feasible and tested
routes vary of course in function of the problem size.

12.5.2 Decomposition-based approach using ACO-HCG

The decomposition-based approach described in chapter 9 has been
tested with ACO-HCG. Parameter N has been set to d n

5 e. The time
allowed to solve each subproblem was fixed to min(300, n) CPU sec-
onds, where n corresponds to the number of customers in the sub-
problem. Explicit results comparing the performance of ACO-HCG
and the Decomposition-based approach using ACO-HCG (DECOMP
ACO-HCG) can be found in table 12.3. ACO-HCG outperforms DE-
COMP ACO-HCG on a majority of instances. In only one instance
is DECOMP ACO-HCG able to outperform ACO-HCG on average. It
seems that solving subproblems does not allow to generate routes in-
teresting for the global problem. Possibly too much time is lost solv-
ing simple problems which do not allow to contribute further feasible
routes to the pool of feasible routes. A plot comparing the performance
of DECOMP ACO-HCG to ACO-HCG can be found in the appendix
(Fig. A.1).

12.5.3 ACO-HCG without Post-optimization of feasible routes

In chapter 11 a parameter configuration for ACO-HCG has been elab-
orated using an automatic algorithm configuration procedure. For the
post-optimization two parameters were considered: TS and ILS, cor-
responding to the choice of doing the post-optimization of feasible
routes either using Tabu Search or Iterated Local Search. However
the choice to do no post-optimization at all was not considered. Thus
in order to establish whether the post-optimization procedure actu-
ally improves ACO-HCG’s results, experiments were run using ACO-
HCG’s automatic configuration (see 11) where the post-optimization
was switched off (i.e. neither Tabu Search nor Iterated Local Search
are performed). The resulting approach is denoted ACO-HCG-NOPO.
The corresponding results are given in Table A.3 in the appendix. Fur-
thermore the exact CPU Time Allocation percentages along with the
number of tested and feasible routes is given in Table A.4 in the ap-

12.5 experimental results 157

Instance % Total Execution Time Routes in Ψ

%IP %LP %BB %ST %GEN %PO #Feasible routes |Ψ|

3l-cvrp01 2.7 0.7 8.0 5.3 74.5 0.0 774.1 4750.8

3l-cvrp02 2.5 0.7 0.1 4.8 82.2 0.0 406.3 902.7

3l-cvrp03 12.3 0.3 48.1 1.9 35.6 0.1 2261.5 12916.0

3l-cvrp04 0.6 0.5 2.9 4.1 85.9 0.0 1156.1 3597.1

3l-cvrp05 3.1 0.3 49.8 2.3 42.5 0.1 1773.2 17382.3

3l-cvrp06 8.2 0.5 13.1 3.2 69.5 0.1 1821.2 8318.1

3l-cvrp07 0.1 0.1 75.5 1.3 22.3 0.1 1628.8 21756.7

3l-cvrp08 1.5 0.1 82.5 1.0 14.6 0.1 1944.7 35173.0

3l-cvrp09 1.8 0.4 4.9 3.4 86.1 0.0 1365.8 5423.1

3l-cvrp10 2.0 0.0 94.8 0.2 2.9 0.1 3311.9 60714.2

3l-cvrp11 0.9 0.0 93.3 0.3 5.3 0.1 4032.3 73603.1

3l-cvrp12 11.4 0.3 7.5 2.1 75.3 0.0 2631.8 7844.0

3l-cvrp13 0.4 0.0 96.0 0.2 3.3 0.1 3677.5 47700.8

3l-cvrp14 0.3 0.0 99.0 0.0 0.6 0.0 4506.7 53065.0

3l-cvrp15 3.2 0.0 95.8 0.1 0.8 0.1 5285.1 52672.8

3l-cvrp16 6.8 0.3 1.3 1.8 87.7 0.0 3020.3 7111.1

3l-cvrp17 1.4 0.2 0.6 1.7 94.9 0.0 2584.5 5632.3

3l-cvrp18 0.1 0.0 99.4 0.0 0.5 0.0 3481.6 39726.2

3l-cvrp19 0.2 0.0 95.0 0.2 4.6 0.0 6490.0 98943.2

3l-cvrp20 0.2 0.0 98.2 0.1 1.5 0.0 6953.6 108634.4

3l-cvrp21 0.1 0.0 98.5 0.0 1.2 0.0 6974.5 88005.4

3l-cvrp22 0.7 0.0 95.6 0.1 3.5 0.1 8604.0 147775.3

3l-cvrp23 0.7 0.0 96.6 0.1 2.6 0.0 8319.5 96452.1

3l-cvrp24 6.6 0.0 77.7 0.1 15.2 0.1 17296.4 90581.1

3l-cvrp25 0.7 0.0 97.2 0.0 1.9 0.0 8399.3 102284.9

3l-cvrp26 0.2 0.0 95.5 0.1 4.1 0.0 7589.7 153888.7

3l-cvrp27 1.8 0.0 93.8 0.1 4.2 0.1 10633.5 108480.4

Table 12.2: ACO-HCG : CPU Time Allocation, # feasible routes, # routes in Feasibility
Store (|Ψ|)

158 Chapter 12 vrp with 3d loading constraints

pendix.

Table A.3 shows that it is of advantage to execute the post-optimi-
zation of feasible routes, this in terms of best solutions as well as in
terms of average solution value. The gaps (best solution and average
solution value) between ACO-HCG and ACO-HCG-NOPO are how-
ever not very large, they generally lie below 1%. A look at Table A.4
reveals that ACO-HCG-NOPO tests generally less routes than ACO-
HCG. During the post-optimization in ACO-HCG several perturba-
tions of each feasible route are tested if necessary. This is of course
not done in ACO-HCG-NOPO. However one could expect ACO-HCG-
NOPO to use the time won by not performing bb-feasibility tests dur-
ing post-optimization to execute more iterations in general in which
new feasible routes are discovered and tested. This is not the case,
Table A.4 shows that ACO-HCG-NOPO spends more time on tasks
%IP and %LP than ACO-HCG. This is due to the fact that ACO-HCG-
NOPO ends up with a higher number of feasible routes in the column
pool than ACO-HCG. In ACO-HCG once a feasible route has been
found it is post-optimized, and only the resulting route (not the inter-
mediate feasible perturbations) will be added to the column pool. In
ACO-HCG-NOPO no post-optimization is done. Thus each route dis-
covered by the collector ants is directly added to the column pool, and
thus the feasible perturbations of feasible routes already in the column
pool produced by the collector ants will also be added to the column
pool, in contrary to ACO-HCG (assuming those perturbations were en-
countered in post-optimization with ACO-HCG). Thus the time won
by not systematically testing perturbations of feasible routes will be
lost again when solving the more complicated Set Covering Problem.
Note also that ACO-HCG-NOPO spends slightly more time in the
black box than ACO-HCG for a number of instances. This could be
due to variations between the routes tested with ACO-HCG and ACO-
HCG-NOPO.

12.5 experimental results 159

Instance ACO-HCG DECOMP ACO-HCG

K n zmin zavg sectt zmin zavg sectt gmin gavg

3l-cvrp01 4 15 302.02 302.02 1800.0 302.02 302.02 1808.5 0.00 0.00

3l-cvrp02 5 15 334.96 334.96 1800.0 334.96 334.96 1806.9 0.00 0.00

3l-cvrp03 4 20 385.53 390.12 1800.3 388.09 389.06 1808.2 0.66 -0.27

3l-cvrp04 6 20 437.19 437.19 1800.0 437.19 437.19 1807.5 0.00 0.00

3l-cvrp05 6 21 447.73 447.73 1800.2 447.73 447.73 1814.4 0.00 0.00

3l-cvrp06 6 21 498.16 498.16 1800.1 498.16 498.16 1809.9 0.00 0.00

3l-cvrp07 6 22 769.68 769.68 1800.4 769.68 769.68 1810.4 0.00 0.00

3l-cvrp08 6 22 845.50 845.50 1800.6 845.50 845.74 1810.4 0.00 0.03

3l-cvrp09 8 25 630.13 630.13 1800.0 630.13 630.13 1815.5 0.00 0.00

3l-cvrp10 8 29 826.66 826.66 3603.2 826.66 829.58 3618.2 0.00 0.35

3l-cvrp11 8 29 776.19 777.91 3601.5 776.19 779.93 3616.2 0.00 0.26

3l-cvrp12 9 30 612.25 612.25 3600.3 612.25 612.25 3610.8 0.00 0.00

3l-cvrp13 8 32 2661.62 2665.48 3601.6 2665.33 2670.36 3625.5 0.14 0.18

3l-cvrp14 9 32 1385.00 1398.84 3605.3 1418.51 1434.37 3623.6 2.42 2.54

3l-cvrp15 9 32 1336.22 1341.02 3624.1 1351.99 1358.68 3616.5 1.18 1.32

3l-cvrp16 11 35 698.61 698.61 3600.3 698.61 698.61 3617.8 0.00 0.00

3l-cvrp17 14 40 866.40 866.40 3600.1 866.40 866.40 3614.5 0.00 0.00

3l-cvrp18 11 44 1205.11 1209.21 3606.2 1221.56 1231.39 3632.1 1.37 1.83

3l-cvrp19 12 50 741.31 741.31 7204.6 741.31 743.95 7232.2 0.00 0.36

3l-cvrp20 18 71 577.85 580.84 7217.9 584.67 587.47 7236.2 1.18 1.14

3l-cvrp21 17 75 1075.97 1079.47 7220.4 1089.27 1102.47 7252.3 1.24 2.13

3l-cvrp22 18 75 1147.43 1154.64 7217.8 1154.71 1161.22 7286.1 0.63 0.57

3l-cvrp23 17 75 1102.39 1110.24 7221.1 1121.92 1125.59 7255.2 1.77 1.38

3l-cvrp24 16 75 1107.71 1110.20 7228.3 1109.93 1115.74 7246.3 0.20 0.50

3l-cvrp25 22 100 1370.70 1387.14 7256.1 1406.73 1422.03 7278.4 2.63 2.52

3l-cvrp26 26 100 1541.49 1548.15 7212.9 1564.27 1578.15 7270.0 1.48 1.94

3l-cvrp27 23 100 1483.66 1491.09 7253.1 1501.74 1512.80 7288.9 1.22 1.46

AVG 4210.2 4230.1 0.60 0.68

Table 12.3: Comparison of ACO-HCG in automatic configuration (ACO-HCG) with
Decomposition-based approach using ACO-HCG in automatic configura-
tion (DECOMP ACO-HCG). zmin/avg = best/average solution cost over
10 runs, sectt = average total execution time. gmin/avg= relative percent-
age deviation of DECOMP ACO-HCG w.r.t. ACO-HCG , computed as

100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with DECOMP

ACO-HCG and zD
min/avg the results obtained with ACO-HCG.

160 Chapter 12 vrp with 3d loading constraints

12.5.4 Dive & Generate (DING)

Dive & Generate has been executed over 10 independent runs using
the same time limits as in ACO-HCG. The set-up of DING is described
below.

12.5.4.1 Set-up of DING

Restarts In DING the exploration and construction of the current tree
is aborted and restarted once φ feasible routes with negative reduced
cost w.r.t. the root solution have been generated. Here φ = 5 · Kinit has
been used, where Kinit corresponds to the number of routes in the ini-
tial non-integral solution.

Post-optimization The post-optimization of generated feasible routes
has been done using Tabu Search.

Branching heuristic At each non-leaf node of the Dive & Generate
tree a set of child nodes with associated subproblems is created. A
subproblem is created by fixing a route in the current non-integral so-
lution. The corresponding child nodes are ordered using Value-based
ordering.

Trust region At each non-leaf node SCPi of the Dive & Generate tree
column generation is possibly executed. The decision on whether to
do so, depends on the lower bound LBi and the global upper bound
UB. If LBi ≥ θ ·UB, then column generation is entered. Parameter θ

has been fixed to 1.

Column Generation The randomized savings heuristic constructs at
each step a list Ω of potential route merges to execute. The construc-
tion of list Ω is stopped as soon as ν merges resulting in bb-feasible
routes have been added. Parameter ν has been fixed to 13.
Finally the randomized savings heuristic is executed ˜̀ times per col-
umn generation execution. Here ˜̀ is computed based on parameter `

(fixed to 5) and the percentage of customers already visited in a fixed
route (1 ≤ ˜̀ ≤ `).

12.5 experimental results 161

Search Strategy Both Depth First Search and Limited Discrepancy
Search have been used. In the case of Limited Discrepancy Search the
maximum number of allowed discrepancies is set to Kinit.

12.5.4.2 Comparison with ACO-HCG

In the following we will individually compare Dive & Generate us-
ing Depth First Search (DING-DFS) and Dive & Generate using Lim-
ited Discrepancy Search (DING-LDS) with ACO-HCG. This is done by
computing for each instance and both for ACO-HCG and the DING
variant under consideration, gbb

avg, the average relative deviation w.r.t.
the bb-best solution. The resulting values are then visualized in a scat-
ter plot where each point corresponds to one problem instance. The
x-coordinate of the point will correspond to gbb

avg for ACO-HCG and
the y-coordinate to gbb

avg for the method under consideration. DING
and ACO-HCG perform equally on the same instance if the point is
on the diagonal, DING performs better if the point is under the diago-
nal, and ACO-HCG performs better if the point is above the diagonal.
Statistical significance has been determined using a Wilcoxon signed-
rank test with confidence level 95%. The resulting plots are visualized
in Fig. 12.5. The explicit results for DING-DFS and DING-LDS are
given in Tables A.5 and A.6 in the appendix.

The figures show that both DING-DFS and DING-LDS are outper-
formed by ACO-HCG on a majority of instances. This difference in
performance is however more evident with DING-DFS. Fig. 12.5 (b)
shows that the differences in performance between ACO-HCG and
DING-LDS is similar in all instances (the points follow a line) and
not that important (the points are close to the diagonal). The same ob-
servations do not hold for DING-DFS. The difference in performance
between ACO-HCG and DING-DFS varies significantly from one prob-
lem instance to the next. Also, as the plot shows the difference in per-
formance is quite significant for some instances. While DING-LDS is
able to improve the bb-best solution on average for a handful of in-
stances, DING-DFS does this for only one single instance (in a sta-
tistically significant way). Finally neither DING-DFS nor DING-LDS
allow to improve upon the results obtained with ACO-HCG on any
instance.
While ACO-HCG considers any route as a potential candidate to be
added to the set of feasible routes R∗, DING does so only for routes

162 Chapter 12 vrp with 3d loading constraints

−2 0 2 4

−
2

0
2

4

ACO−HCG, gavg
bb %

D
IN

G
−

D
F

S
, g

a
vgb
b

 %

(a)

−2 0 2 4

−
2

0
2

4

ACO−HCG, gavg
bb %

D
IN

G
−

LD
S

, g
a

vgb
b

 %
(b)

Figure 12.5: Comparison of DING and ACO-HCG. Each point gives the av-
erage relative deviation from the bb-best solution over 10 inde-
pendent runs. The symbols denote whether there is statistically
significant difference (5) or not (2), or all the runs obtained the
same cost (O).

that have a negative reduced cost w.r.t the current non-integral solu-
tion. These routes are possibly not the ones that are necessary to obtain
a high-quality integer solution. Furthermore only the routes that actu-
ally appear in a relaxed solution can ever be part of an integer solution
(as this solution is obtained by fixing routes). Thus only if some of the
routes appearing in the relaxed solutions are also part of a high-quality
integer solution can DING perform well. Given the highly combinato-
rial nature of the problem under consideration, this might not be the
case. Plots comparing DING-DFS and DING-LDS with ACO-HCG in
the manual configuration from 11 (denoted ACO-HCG in this chapter)
can be found in the appendix (Fig. A.2). DING-LDS and ACO-HCG
perform very similar (more so than DING-LDS and ACO-HCG), how-
ever the majority of the results is not statistically significant. DING-
DFS still performs worse than ACO-HCG, but is now able to improve
the gbb

avg value obtained with ACO-HCG on one instance (DING-LDS
improves over ACO-HCG in 3 instances)

12.5.4.3 Analysis of CPU time allocation and Feasibility in generated routes

In this section the percentage of CPU time spent in different parts of
the algorithm is analyzed, as well as the number of bb-feasible routes

12.5 experimental results 163

found, compared to the total number of routes tested for feasibility
w.r.t. Fbb.
Figures 12.6 gives a visual representation of the percentage of the total
CPU time allocated to different tasks in DING-DFS and DING-LDS.
A detailed view of this is given in Tables 12.4 and 12.5. The tasks
under consideration are the same as for ACO-HCG. In DING problem
SCP(R∗) is only solved at the beginning of the process to initialize the
upper bound. Task %IP has been omitted in both figures and tables
since the percentage of time spent solving SCP(R∗) is negligible.

%
 o

f T
ot

al
 E

xe
cu

tio
n

T
im

e

DING−DFS, CPU Time Allocation

Instance

3l−
cv

rp
01

3l−
cv

rp
03

3l−
cv

rp
05

3l−
cv

rp
07

3l−
cv

rp
09

3l−
cv

rp
11

3l−
cv

rp
13

3l−
cv

rp
15

3l−
cv

rp
17

3l−
cv

rp
19

3l−
cv

rp
21

3l−
cv

rp
23

3l−
cv

rp
25

3l−
cv

rp
27

%LP
%BB
%ST
%GEN
%PO
%OTH

0
20

40
60

80
10

0

(a)

%
 o

f T
ot

al
 E

xe
cu

tio
n

T
im

e
DING−LDS, CPU Time Allocation

Instance

3l−
cv

rp
01

3l−
cv

rp
03

3l−
cv

rp
05

3l−
cv

rp
07

3l−
cv

rp
09

3l−
cv

rp
11

3l−
cv

rp
13

3l−
cv

rp
15

3l−
cv

rp
17

3l−
cv

rp
19

3l−
cv

rp
21

3l−
cv

rp
23

3l−
cv

rp
25

3l−
cv

rp
27

%LP
%BB
%ST
%GEN
%PO
%OTH

0
20

40
60

80
10

0

(b)

Figure 12.6: DING: CPU Time Allocation

DING spends most of the allocated CPU time while testing the bb-
feasibility of routes and in the "Other" DING parts. In DING these
latter correspond mainly to the construction and exploration of the
DING tree structure. Note that the repartition of time between those
tasks depends a lot on the problem instance.
Compared to ACO-HCG, DING spends less time testing the bb-fea-
sibility of routes in most instances. However, for some instances, e.g.
3l-cvrp01, it is to be noted that while ACO-HCG only spent a small
fraction of time in the black box (testing routes for bb-feasiblity), DING
spends almost half of the total execution time here. This is to be ex-
plained by the absence of pheromones in DING. In ACO-HCG the
best non-integral solution for this instance is discovered early on. Thus
pheromones are always put on the same arcs, leading the collector ants
to converge and to reproduce the same set of routes. This doesn’t hap-
pen in DING since the concept of pheromones doesn’t appear. On the

164 Chapter 12 vrp with 3d loading constraints

other hand, for some instances (e.g. 3-cvrp02 and 3l-cvrp16), DING
spends almost no time at all in the black box, while ACO-HCG did.
In these instances most of the CPU time is the used up in the main-
tenance of the tree structure and some time in the route generation.
The fraction of time then allocated to each of these tasks again varies
from instance to instance. For some of these instances only very lit-
tle time is spent in the generation of routes, this is the case for those
instances where ACO-HCG spent almost no time in the black box. It
seems that for these instances, the lower bound only seldom falls out-
side the trust region in non-leaf nodes, and thus column generation is
only very rarely executed.

When comparing DING-DFS and DING-LDS it turns out that, espe-
cially on large scale instances (with one notable exception), DING-LDS
spends more time in the black box and generating routes than DING-
DFS, but less time in the maintenance of the tree structure. These large-
scale instances typically have a high number of vehicles, and thus the
Dive & Generate tree is deeper and broader than for smaller instances.
Using DFS the search tends to stay in the deeper levels of the tree. At
those deeper levels, if column generation is executed, the randomized
savings heuristic will be executed less times as a high fraction of cus-
tomers is already visited in the fixed routes (see parameter ˜̀). Also if
a bad decision has been taken by fixing a route at a lower level, it is
possible that many infeasible nodes are visited, and thus most of the
effort is put into the creation of new sibling nodes. On the other hand
using LDS, the search backtracks to lower levels of the tree in a regular
fashion, thus modifying decisions taken near the root of the tree. The
lower bounds found here usually do not allow to prune nodes. Also,
when route generation is entered, here a higher number of randomized
savings heuristic executions is performed.

Figure 12.7 shows the percentage of routes tested for feasibility w.r.t.
Fbb that are found to be feasible. The percentages are similar for DING-
DFS and DING-LDS, but generally lower (again with some notable ex-
ceptions) when compared to ACO-HCG. The exact numbers are given
in Tables 12.4 and 12.5. In columns #Feasible routes and |Ψ|, the exact
number of routes in the final R∗ and the final number of routes in
Feasibility store Ψ is given. In the case of DING, |Ψ| corresponds to
the total number of routes tested for bb-feasibility. The number of fea-
sible and tested routes varies of course in function of the problem size.
A closer look at the tables reveals that the number of routes tested

12.5 experimental results 165

F
ea

si
bl

e
%

 o
f T

es
te

d
R

ou
te

s

0
20

40
60

80
10

0

DING−DFS, Feasibility in tested routes

Instance

3l−
cv

rp
01

3l−
cv

rp
03

3l−
cv

rp
05

3l−
cv

rp
07

3l−
cv

rp
09

3l−
cv

rp
11

3l−
cv

rp
13

3l−
cv

rp
15

3l−
cv

rp
17

3l−
cv

rp
19

3l−
cv

rp
21

3l−
cv

rp
23

3l−
cv

rp
25

3l−
cv

rp
27

(a)
F

ea
si

bl
e

%
 o

f T
es

te
d

R
ou

te
s

0
20

40
60

80
10

0

DING−LDS, Feasibility in tested routes

Instance

3l−
cv

rp
01

3l−
cv

rp
03

3l−
cv

rp
05

3l−
cv

rp
07

3l−
cv

rp
09

3l−
cv

rp
11

3l−
cv

rp
13

3l−
cv

rp
15

3l−
cv

rp
17

3l−
cv

rp
19

3l−
cv

rp
21

3l−
cv

rp
23

3l−
cv

rp
25

3l−
cv

rp
27

(b)

Figure 12.7: DING: % of tested routes that were bb-feasible

with DING-DFS and DING-LDS is, on most of the smaller and middle-
scale instances, higher than for ACO-HCG. This is however not the
case for larger instances, where ACO-HCG also clearly spends more
time in the black box feasibility test. While DING tests a higher num-
ber of routes, the number of feasible routes detected with ACO-HCG
is higher than the one with DING-DFS and DING-LDS for all but the
smallest instances. Finally the number of bb-feasible routes is higher
for DING-LDS than DING-DFS on a majority of instances. Again this
can be explained by the fact that DING-LDS visits different parts of
the search tree. If high-level decisions in DING-DFS leave a subset of
customers to visit for which only few bb-feasible routes are possible, a
lot of time will be spent trying to generate other bb-feasible routes that
do not exist.

166 Chapter 12 vrp with 3d loading constraints

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

3l-cvrp01 2.7 42.4 0.1 15.1 0.1 1673.4 31724.4

3l-cvrp02 3.1 0.2 0.1 17.1 0.0 594.1 1954.4

3l-cvrp03 6.0 67.6 0.0 4.9 0.1 3649.6 27593.7

3l-cvrp04 2.1 15.6 1.1 40.5 0.1 2928.8 18041.1

3l-cvrp05 4.2 40.9 0.0 2.0 0.0 2085.7 19617.8

3l-cvrp06 6.0 4.3 0.0 6.3 0.0 1678.8 5416.7

3l-cvrp07 0.0 99.5 0.0 0.3 0.1 2383.5 33374.4

3l-cvrp08 3.6 49.8 0.0 3.7 0.0 1596.5 49420.3

3l-cvrp09 4.2 3.6 0.0 12.4 0.0 1150.7 6035.0

3l-cvrp10 1.9 67.2 0.0 1.9 0.0 1936.3 93833.3

3l-cvrp11 3.1 28.2 0.0 2.1 0.0 1378.4 61295.6

3l-cvrp12 3.7 1.7 0.0 28.6 0.0 1297.8 2893.6

3l-cvrp13 3.0 48.1 0.0 4.7 0.0 2440.5 34981.4

3l-cvrp14 1.2 93.6 0.0 2.0 0.0 3575.6 107722.6

3l-cvrp15 1.8 91.5 0.0 1.8 0.0 4603.6 92982.0

3l-cvrp16 2.9 0.1 0.0 1.9 0.0 830.7 1300.5

3l-cvrp17 2.9 0.1 0.0 16.2 0.0 863.2 1510.0

3l-cvrp18 2.3 76.6 0.0 1.3 0.0 2494.6 65401.3

3l-cvrp19 3.0 18.1 0.0 4.8 0.0 2624.0 37541.9

3l-cvrp20 2.2 44.2 0.0 2.5 0.0 3730.7 123048.0

3l-cvrp21 3.8 34.4 0.0 4.1 0.0 4004.3 54022.7

3l-cvrp22 4.1 31.0 0.0 3.0 0.0 3636.1 102377.8

3l-cvrp23 4.6 21.7 0.0 3.1 0.0 3450.5 42512.8

3l-cvrp24 7.1 13.4 0.0 3.8 0.0 5544.2 28225.9

3l-cvrp25 4.5 31.3 0.0 6.0 0.0 4838.7 69186.0

3l-cvrp26 2.6 21.8 0.0 1.9 0.0 2990.6 68700.6

3l-cvrp27 5.0 31.4 0.0 3.4 0.0 4934.2 61925.0

Table 12.4: DING-DFS : CPU Time Allocation, # feasible routes, # routes in Feasibility
Store (|Ψ|)

12.5 experimental results 167

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

3l-cvrp01 2.4 49.9 0.2 14.0 0.1 1775.4 35196.2

3l-cvrp02 3.1 0.2 0.1 16.6 0.0 612.5 2215.5

3l-cvrp03 3.2 83.9 0.1 5.1 0.1 4164.1 32342.3

3l-cvrp04 2.0 15.3 1.1 40.3 0.1 2932.2 18100.4

3l-cvrp05 2.6 74.2 0.0 1.1 0.1 2800.9 33874.0

3l-cvrp06 5.5 13.6 0.0 4.6 0.1 2746.2 13651.6

3l-cvrp07 0.0 99.6 0.0 0.3 0.1 2370.0 32913.4

3l-cvrp08 2.2 76.9 0.0 2.8 0.1 2256.1 59586.2

3l-cvrp09 4.0 5.0 0.0 11.0 0.0 1419.2 7281.7

3l-cvrp10 1.5 84.9 0.0 2.5 0.0 2560.5 136271.9

3l-cvrp11 3.4 35.7 0.0 1.8 0.0 2152.3 60067.0

3l-cvrp12 3.7 2.3 0.0 27.9 0.0 1496.3 3557.9

3l-cvrp13 2.5 71.8 0.0 1.9 0.1 3608.4 44961.5

3l-cvrp14 0.6 97.4 0.0 1.2 0.0 3826.3 82093.7

3l-cvrp15 2.5 91.4 0.0 0.7 0.0 5356.5 70693.5

3l-cvrp16 3.3 0.1 0.0 3.9 0.0 943.2 1566.1

3l-cvrp17 2.4 0.1 0.0 29.9 0.0 991.3 1864.4

3l-cvrp18 1.2 92.3 0.0 1.2 0.0 3756.7 66166.7

3l-cvrp19 3.2 40.6 0.0 4.9 0.0 4102.9 59967.9

3l-cvrp20 1.3 77.7 0.0 3.7 0.0 4896.9 132615.0

3l-cvrp21 3.1 59.0 0.0 7.0 0.0 4948.3 73408.5

3l-cvrp22 3.8 42.7 0.0 9.6 0.0 5428.8 133397.0

3l-cvrp23 3.9 46.9 0.0 5.8 0.0 5175.2 76396.3

3l-cvrp24 6.1 18.9 0.0 11.7 0.0 6303.0 31119.1

3l-cvrp25 3.1 68.7 0.0 6.6 0.0 6760.7 102354.9

3l-cvrp26 2.1 55.9 0.0 3.4 0.0 5157.9 133668.8

3l-cvrp27 3.8 57.8 0.0 10.7 0.0 7358.7 95972.9

Table 12.5: DING-LDS : CPU Time Allocation, # feasible routes, # routes in Feasibility
Store (|Ψ|)

168 Chapter 12 vrp with 3d loading constraints

12.5.4.4 Results obtained when solving SCP(R∗)

In ACO-HCG the final solution is obtained by solving the integer Set
Covering Problem over the set of accumulated feasible routes R∗. In
DING the final solution corresponds to the best solution found in the
Dive & Generate tree. Possibly better solutions could be obtained for
DING, if the final solution were obtained in the same way as in ACO-
HCG, that is by solving problem SCP(R∗) where R∗ is the set of fea-
sible routes accumulated during the DING execution (the resulting ap-
proach is denoted DING*). The results corresponding to this are given
in the appendix (Tables A.7 and A.8). A look at these tables reveals,
that both DING*-DFS and DING*-LDS improve over DING-DFS and
DING-LDS. However, the improvements obtained with DING*-LDS
are slightly more important. Indeed, DING*-LDS improves the results
obtained with DING-LDS by up to 1.17%, while the maximal improve-
ment (over DING-DFS) obtained with DING*-DFS is of 1.03%.
On average the performance of DING*-LDS is still worse than that of
ACO-HCG. Finally the time needed to solve SCP(R∗) on DING-LDS
is bigger than the time needed to solve SCP(R∗) for DING-DFS, again
especially for large-scale instances, this is to be expected as theR∗ (the
set of feasible routes) is larger for DING-LDS (and thus DING*-LDS)
than for DING*-DFS.

12.5.5 Decomposition-based approach using DING-LDS

The decomposition-based approach described in chapter 9 has been
tested with DING-LDS. Parameter N has been set to d n

5 e. The time
to solve each subproblem to min(300, n) CPU seconds, where n corre-
sponds to the number of customers in the subproblem. Explicit results
comparing the performance of DING-LDS and the Decomposition-
based approach using DING-LDS (DECOMP DING-LDS) can be found
in Table 12.6. The average solution value is improved by the decom-
position-based approach in 16 instances. Plots comparing the perfor-
mance of DECOMP DING-LDS to DING-LDS and to ACO-HCG can
be found in the appendix (Figs. A.3). It seems that the DING method
profits more from the decomposition scheme than does ACO-HCG.

12.5 experimental results 169

Instance DING-LDS DECOMP DING-LDS

K n zmin zavg sectt zmin zavg sectt gmin gavg

3l-cvrp01 4 15 302.02 302.02 1800.1 302.02 302.02 1836.2 0.00 0.00

3l-cvrp02 5 15 334.96 334.96 1800.0 334.96 334.96 1883.2 0.00 0.00

3l-cvrp03 4 20 385.53 387.88 1800.2 385.53 387.84 1880.4 0.00 -0.01

3l-cvrp04 6 20 437.19 437.19 1800.0 437.19 437.19 1883.4 0.00 0.00

3l-cvrp05 6 21 447.73 447.73 1800.2 447.73 447.73 1861.8 0.00 0.00

3l-cvrp06 6 21 498.16 498.16 1800.1 498.16 498.16 1894.4 0.00 0.00

3l-cvrp07 6 22 769.68 769.68 1802.1 769.68 769.68 1884.2 0.00 0.00

3l-cvrp08 6 22 845.50 845.50 1800.7 845.50 845.50 1917.7 0.00 0.00

3l-cvrp09 8 25 630.13 630.13 1800.1 630.13 630.13 1926.4 0.00 0.00

3l-cvrp10 8 29 826.66 827.25 3600.5 826.66 826.92 3725.9 0.00 -0.04

3l-cvrp11 8 29 776.19 781.17 3600.2 776.19 776.97 3746.5 0.00 -0.54

3l-cvrp12 9 30 612.25 612.25 3600.1 612.25 612.25 3770.7 0.00 0.00

3l-cvrp13 8 32 2665.33 2669.47 3601.1 2661.62 2668.03 3753.5 -0.14 -0.05

3l-cvrp14 9 32 1384.09 1406.81 3600.8 1392.08 1402.78 3791.8 0.58 -0.29

3l-cvrp15 9 32 1341.73 1347.60 3603.0 1340.66 1344.64 3735.1 -0.08 -0.22

3l-cvrp16 11 35 698.61 698.61 3600.2 698.61 698.61 3752.3 0.00 0.00

3l-cvrp17 14 40 866.40 867.10 3600.2 866.40 866.40 3700.2 0.00 -0.08

3l-cvrp18 11 44 1207.44 1213.32 3604.8 1205.96 1216.73 3790.8 -0.12 0.28

3l-cvrp19 12 50 741.31 742.44 7201.0 741.31 742.27 7383.2 0.00 -0.02

3l-cvrp20 18 71 580.38 583.19 7213.0 579.66 581.76 7305.6 -0.12 -0.25

3l-cvrp21 17 75 1086.18 1095.10 7202.1 1084.86 1087.53 7353.4 -0.12 -0.69

3l-cvrp22 18 75 1147.93 1159.37 7203.8 1145.18 1152.68 7355.7 -0.24 -0.58

3l-cvrp23 17 75 1113.45 1121.88 7202.3 1103.34 1113.32 7340.6 -0.91 -0.76

3l-cvrp24 16 75 1111.63 1122.62 7200.4 1107.15 1108.72 7381.9 -0.40 -1.24

3l-cvrp25 22 100 1382.84 1403.54 7209.7 1384.31 1389.84 7343.2 0.11 -0.98

3l-cvrp26 26 100 1566.11 1584.56 7201.6 1543.70 1563.43 7395.8 -1.43 -1.33

3l-cvrp27 23 100 1494.29 1510.34 7205.5 1492.15 1497.23 7345.4 -0.14 -0.87

AVG 4202.0 4331.1 -0.11 -0.28

Table 12.6: Comparison of Dive & Generate with Limited Discrepancy Search (DING-
LDS) with Decomposition-based approach using DING-LDS (DECOMP
DING-LDS). zmin/avg = best/average solution cost over 10 runs, sectt =
average total execution time. gmin/avg= relative percentage deviation of

DECOMP DING-LDS w.r.t. DING-LDS, computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with DECOMP DING-LDS and
zD

min/avg the results obtained with DING-LDS.

170 Chapter 12 vrp with 3d loading constraints

12.5.6 Heuristic Branch & Price (HBP)

Heuristic Branch & Price has been executed over 10 independent runs
using the same time limits as in ACO-HCG. The set-up of HBP is
described below.

12.5.6.1 Set-up of HBP

Post-optimization The post-optimization of generated feasible routes
has been done using Tabu Search.

Column Generation The randomized savings heuristic constructs at
each step a list Ω of potential route merges to execute. The construc-
tion of list Ω is stopped as soon as ν merges resulting in bb-feasible
routes have been added. Parameter ν has been fixed to 13.
Finally the randomized savings heuristic is executed ` = 5 times per
column generation execution.

Search Strategy Both Depth First Search and Limited Discrepancy
Search have been used. In the case of Limited Discrepancy Search: for
Heuristic Branch & Price, branching on arcs, the maximum number of
allowed discrepancies has been set to n, the number of customers in
the considered instance. For Heuristic Branch & Price, branching on
pairs, the maximum number of allowed discrepancies has been set to
n/2.

12.5.6.2 Comparison with ACO-HCG

In the following we will individually compare the different Heuristic
Branch & Price variants presented earlier with ACO-HCG. We con-
sider two different branching schemes: branching on arcs (HBPA) and
branching on customer pairs (HBPP). Both of these are combined with
a Depth-First Search (HBPA-DFS and HBPP-DFS) and a Limited Dis-
crepancy Search (HBPA-LDS and HBPP-LDS), resulting in a total of
4 different configurations. The comparisons with ACO-HCG are done
by computing for each instance and both for ACO-HCG and the me-
thod under consideration, gbb

avg, the average relative deviation w.r.t. the
best-bb solution. The resulting values are then visualized in a scatter
plot where each point corresponds to one problem instance. The x-
coordinate of the point will correspond to gbb

avg for ACO-HCG and
the y-coordinate to gbb

avg for the method under consideration. HBP and

12.5 experimental results 171

ACO-HCG perform equally on the same instance if the point is on
the diagonal, the HBP performs better if the point is under the diago-
nal, and ACO-HCG performs better if the point is above the diagonal.
Statistical significance has been determined using a Wilcoxon signed-
rank test with confidence level 95%. The resulting plots are visualized
in Fig. 12.8. The explicit results for the 4 configurations are given in
Tables A.9, A.10, A.11 and A.12 in the appendix.

As for Dive & Generate, Heuristic Branch & Price is clearly outper-
formed by ACO-HCG.
It is difficult to establish clear differences between HBPA and HBPP.
HBPA-DFS and HBPP-DFS appear to perform very similarly. The ta-
bles show that HBPP-DFS improves HBPA-DFS on 11 out of 27 in-
stances, but that HBPA-DFS wins on the larger instances. It should also
be noted that both HBPP-DFS and HBPP-LDS are able to improve on
average the bb-best solution on one instance by several percent, which
is not the case for HBPA-DFS and HBPA-LDS. As HBPP-LDS performs
even better on this particular (small-scale) instance, a possible expla-
nation could be, that the constraints Fbb are such that forcing or forbid-
ding a pair of customers to appear in a same route has a particularly
strong impact in this instance.
A clear difference can be seen when comparing HBPA-DFS and HBPA-
LDS. With HBPA-LDS, the relative deviation obtained w.r.t. bb-best is
lower than the one obtained with HBPA-DFS on a majority of instances.
This is particularly true for the large-scale instances. Such a result is to
be expected, as Limited Discrepancy Search ensures a more balanced
exploration of the Heuristic Branch & Price tree. In contrary to HBPA,
the choice of the search strategy does not show a significant impact
on HBPP, where HBPP-DFS and HBPP-LDS achieve similar results. In
HBPP the selected pair of customers is first forced to appear in a same
route (left branch) and then forbidden from doing so (right branch).
With the Limited Discrepancy Search used here, the discrepancies are
taken as early as possible in the search tree. Thus Limited Discrepancy
Search will from time to time choose to forbid a pair of customers, as
high as possible in the search tree. However forbidding a pair of cus-
tomers to appear in a same route probably doesn’t restrict the set of
feasible solutions by a lot (depending of course also on the Fbb and Fwb
constraints), especially not if the number of customers is high. Forbid-
ding an arc on the contrary has a bigger impact.
Finally another explanation for the weakness of HBPP is the rather

172 Chapter 12 vrp with 3d loading constraints

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

ACO−HCG, gavg
bb %

H
B

PA
−

D
F

S
, g

a
vgb
b

 %

(a)

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

ACO−HCG, gavg
bb %

H
B

PA
−

LD
S

, g
a

vgb
b

 %

(b)

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

ACO−HCG, gavg
bb %

H
B

P
P

−
D

F
S

, g
a

vgb
b

 %

(c)

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

ACO−HCG, gavg
bb %

H
B

P
P

−
LD

S
, g

a
vgb
b

 %

(d)

Figure 12.8: Comparison of HBP and ACO-HCG. Each point gives the av-
erage relative deviation from the bb-best solution over 10 inde-
pendent runs. The symbols denote whether there is statistically
significant difference (5) or not (2), or all the runs obtained the
same cost (O).

12.5 experimental results 173

weak pricing mechanism used. Obviously the way the randomized
savings heuristic is used to identify new feasible routes of negative re-
duced cost is not optimal.
Plots comparing HBPA and HBPP with ACO-HCG in the manual con-
figuration from chapter 11 (denoted ACO-HCG in this chapter) can be
found in the appendix (Figs. A.4). Neither HBPA nor HBPA are able
to improve results of ACO-HCG.

12.5.6.3 Analysis of CPU time allocation and Feasibility in generated routes

In this section the percentage of CPU time spent in different parts of
the algorithm is analyzed. Figures 12.9 give a visual representation of
the percentage of the total execution time allocated to different tasks in
HBPA-DFS and HBPP-DFS. The plots for HBPA-LDS and HBPP-LDS
have been omitted for conciseness, but can be found in the appendix
(Figures A.5). They are however very similar to those given here. A
detailed view of the time allocation is given in Tables 12.7 and 12.8
(and in the appendix for HBPA-LDS and HBPP-LDS, see Tables A.13

and A.14) . The tasks under consideration are the same as for ACO-
HCG. Task %IP has been omitted in both figures and tables since the
percentage of time spent solving SCP(R∗) is negligible.

%
 o

f T
ot

al
 E

xe
cu

tio
n

T
im

e

HBPA−DFS, CPU Time Allocation

Instance

3l−
cv

rp
01

3l−
cv

rp
03

3l−
cv

rp
05

3l−
cv

rp
07

3l−
cv

rp
09

3l−
cv

rp
11

3l−
cv

rp
13

3l−
cv

rp
15

3l−
cv

rp
17

3l−
cv

rp
19

3l−
cv

rp
21

3l−
cv

rp
23

3l−
cv

rp
25

3l−
cv

rp
27

%LP
%BB
%ST
%GEN
%PO
%OTH

0
20

40
60

80
10

0

(a)

%
 o

f T
ot

al
 E

xe
cu

tio
n

T
im

e

HBPP−DFS, CPU Time Allocation

Instance

3l−
cv

rp
01

3l−
cv

rp
03

3l−
cv

rp
05

3l−
cv

rp
07

3l−
cv

rp
09

3l−
cv

rp
11

3l−
cv

rp
13

3l−
cv

rp
15

3l−
cv

rp
17

3l−
cv

rp
19

3l−
cv

rp
21

3l−
cv

rp
23

3l−
cv

rp
25

3l−
cv

rp
27

%LP
%BB
%ST
%GEN
%PO
%OTH

0
20

40
60

80
10

0

(b)

Figure 12.9: HBP: CPU Time Allocation

A look at the plots in Fig. 12.9 reveals that in terms of time alloca-
tion both HBPA and HBPP spend the majority of their time generating
routes, and testing feasibility of routes w.r.t. Fbb. The time spent in the
black box is higher than with DING on most instances, although this

174 Chapter 12 vrp with 3d loading constraints

is not the case on larger scale instances when comparing HBPP-DFS
with DING-LDS. Also the time used to generate routes is clearly higher
and the time spent in the maintenance of the tree structure lower in
HBP than in DING. It should be noted that with HBPA and HBPP col-
umn generation is executed at every non-leaf node, whereas in DING
column generation is executed only if the current lower bounds falls
outside a trust region, which explains why HBP spends more time
generating and testing routes. Furthermore the set of customers to be
visited is not reduced in the route generation as it is in DING.

When comparing HBPA and HBPP it is clear that HBPA spends sig-
nificantly more time in the black box. On the other hand HBPP spends
more time in the Feasibility store Ψ (%ST). The explanation for this last
observation is, that in HBPA routes discovered during pricing are only
checked for bb-feasibility in one direction. This entails that infeasible
routes will not be stored as such, since they haven’t been proven to
be infeasible in both directions, a requirement of the Feasibility Store.
A closer look reveals however that the time HBPP spends in the Fea-
sibility store doesn’t make up for the difference in time spent in the
black box between HBPA and HBPP spend. The remaining difference
can again be attributed to the weak pricing mechanism of HBPP.

In Figure 12.10, the percentage of routes tested for bb-feasibility that
have been found to be feasible is illustrated for HBPP-DFS (the same
plot for HBPP-LDS has been omitted for conciseness, but is very simi-
lar. It can be found in the appendix, Fig. A.6). Since a same route may
be tested multiple times in HBPA, the plot for HBPA is not provided,
as the values obtained are not directly comparable to those obtained
for HBPP. It can be seen that the percentage of feasible routes among
the tested ones for HBPP-DFS is lower on most instances compared to
DING and ACO-HCG. At the same time the number of tested routes is
lower, in some cases significantly lower, than for DING. Compared to
ACO-HCG it very much depends on the problem instance. For some
instances the number of tested routes is lower in HBPP-DFS (espe-
cially for some of the larger instances) and on others it is higher in
HBPP-DFS (especially for some of the smaller instances). A possible
explanation for this is that in the larger instances the pricing heuris-
tic simply has trouble producing routes of negative reduced cost. A
stronger guidance w.r.t. the dual costs would possibly produce better
results.

12.5 experimental results 175

F
ea

si
bl

e
%

 o
f T

es
te

d
R

ou
te

s

0
20

40
60

80
10

0

HBPP−DFS, Feasibility in tested routes

Instance

3l−
cv

rp
01

3l−
cv

rp
03

3l−
cv

rp
05

3l−
cv

rp
07

3l−
cv

rp
09

3l−
cv

rp
11

3l−
cv

rp
13

3l−
cv

rp
15

3l−
cv

rp
17

3l−
cv

rp
19

3l−
cv

rp
21

3l−
cv

rp
23

3l−
cv

rp
25

3l−
cv

rp
27

Figure 12.10: HBPP-DFS: % of tested routes that were bb-feasible

Finally, the exact numbers of feasible routes and routes stored in
Feasibility store Ψ, for HBPA-DFS and HBPP-DFS are given in Tables
12.7 and 12.8. Note that for HBPP, |Ψ| corresponds to the total num-
ber of routes checked for bb-feasibility. For HBPA, it corresponds to
the routes that have been positively tested for bb-feasibility in the tree,
or the ones generated to initialize R∗ or in enforced route generation
upon the start of a new tree. For most instances the number of feasible
routes discovered using HBPA is somewhat, though not significantly
lower. Again this can be explained by the fact that HBPA checks routes
for feasibility only in one direction. Thus it misses on opportunities
to discover new feasible routes (routes infeasible in one direction but
feasible in the other), an opportunity used by HBPP. The tables for

176 Chapter 12 vrp with 3d loading constraints

HBPA-LDS and HBPP-LDS (see appendix, Tables A.13 and A.14) show
that, especially for the large-scale instances, the number of routes in
Ψ is higher for HBPA-LDS than for HBPA-DFS. At the same time the
number of feasible routes is also higher with HBPA-LDS.
With HBPP-LDS the number of feasible routes found is higher than
with HBPP-DFS on all instances. In terms of |Ψ|, it depends on the in-
stance. On some instances HBPP-LDS tested more routes than HBPP-
DFS, on some less. Thus on some instances, even when testing less
routes HBPP-LDS managed to achieve a higher number of feasible
routes than HBPP-DFS. This is probably to be attributed to character-
istics of the given problem instance.

12.5.6.4 Results obtained when solving SCP(R∗)

As for DING, the final solution obtained in HBP is discovered in the
Heuristic Branch & Price tree. Possibly better results could be ob-
tained if one were to compute a final solution by solving problem
SCP(R∗) over the set of feasible routes R∗ accumulated during the
HBP execution (the corresponding approach is denoted HBP*). The
results corresponding to this are given in the appendix (tables A.15

to A.18). As for DING, it can be observed that HBP* improves over
HBP. The improvements are bigger with HBPA*-LDS and HBPP*-LDS
than with HBPA*-DFS and HBPP*-DFS. An interesting observation is
that the highest improvements are obtained with HBPP*-LDS. Solving
SCP(R∗) allows to improve the results of HBPP-LDS up to 4.03%. Also
the results obtained with HBPP*-LDS improve (on average) over those
obtained with HBPP*-DFS in 16 out of 27 instances. Furthermore the
results of HBPP*-LDS improve (on average) over those of HBPA*-LDS
in 14 out of 27 instances. The execution times needed to solve SCP(R∗)
are similar for all configurations.

12.5.7 Comparison of all methods

Table 12.9 compares the results obtained on all considered approaches
(except the decomposition-based approach) using the configurations
described in this section with the results obtained using the Hybrid
Tabu Search (HTS) presented in [Bor12]. It is the loading algorithm de-
scribed in this paper, that has been reimplemented as black box func-
tion and is used in the experiments described in this section. Columns
zmin and zavg give the best and the average solution cost determined

12.5 experimental results 177

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

3l-cvrp01 0.5 84.2 0.1 12.1 0.1 1753.1 14934.6

3l-cvrp02 2.2 5.7 0.2 62.0 0.0 867.1 2525.9

3l-cvrp03 1.2 64.6 0.0 29.6 0.1 2880.6 10886.7

3l-cvrp04 1.6 39.6 0.9 43.4 0.2 2808.1 17322.5

3l-cvrp05 0.3 84.3 0.0 14.2 0.1 1996.6 10183.2

3l-cvrp06 1.7 12.5 0.0 75.1 0.0 2051.2 5417.1

3l-cvrp07 0.0 99.1 0.0 0.8 0.1 1605.8 13852.5

3l-cvrp08 0.3 73.8 0.0 24.9 0.0 1121.3 6041.0

3l-cvrp09 0.8 44.5 0.2 51.8 0.1 2164.4 13123.9

3l-cvrp10 0.0 92.4 0.0 7.4 0.0 1131.8 3498.7

3l-cvrp11 0.1 90.1 0.0 9.6 0.0 1586.2 5064.7

3l-cvrp12 0.7 17.4 0.0 79.1 0.0 2002.5 5397.4

3l-cvrp13 0.1 86.8 0.0 12.8 0.0 2574.8 18556.6

3l-cvrp14 0.0 98.6 0.0 1.4 0.0 1043.2 4259.7

3l-cvrp15 0.0 97.9 0.0 2.1 0.0 1276.7 4527.5

3l-cvrp16 0.5 1.7 0.0 95.9 0.0 2290.9 5344.6

3l-cvrp17 0.3 2.5 0.1 95.6 0.0 2430.2 5948.1

3l-cvrp18 0.0 91.6 0.0 8.3 0.0 1135.0 6675.5

3l-cvrp19 0.1 62.3 0.0 37.4 0.0 2848.1 20831.2

3l-cvrp20 0.0 81.5 0.0 18.4 0.0 1597.9 10137.2

3l-cvrp21 0.0 74.8 0.0 25.2 0.0 1759.6 9922.2

3l-cvrp22 0.0 56.5 0.0 43.3 0.0 1748.6 10029.7

3l-cvrp23 0.0 70.9 0.0 29.0 0.0 1713.9 7816.0

3l-cvrp24 0.1 61.8 0.0 38.1 0.0 2284.7 4956.2

3l-cvrp25 0.0 61.2 0.0 38.7 0.0 2017.4 13635.4

3l-cvrp26 0.0 65.4 0.0 34.6 0.0 1723.0 15323.6

3l-cvrp27 0.0 75.9 0.0 24.0 0.0 1871.2 10432.6

Table 12.7: HBPA-DFS : CPU Time Allocation, # feasible routes, # routes in Feasibility
Store (|Ψ|)

178 Chapter 12 vrp with 3d loading constraints

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

3l-cvrp01 0.8 69.8 1.6 23.9 0.1 1583.0 24814.6

3l-cvrp02 1.6 0.5 4.7 76.6 0.0 619.2 2325.0

3l-cvrp03 0.9 57.3 2.5 37.0 0.1 2204.5 12069.4

3l-cvrp04 1.8 27.1 1.2 50.7 0.2 2792.2 16027.2

3l-cvrp05 0.2 83.5 1.0 14.7 0.1 1852.5 19501.1

3l-cvrp06 1.6 33.8 3.4 54.9 0.2 2874.0 15154.3

3l-cvrp07 0.0 99.4 0.0 0.5 0.1 1566.9 16591.1

3l-cvrp08 0.1 84.3 1.0 14.4 0.0 841.7 55667.6

3l-cvrp09 0.7 23.5 4.2 68.2 0.1 2132.8 13071.6

3l-cvrp10 0.0 89.7 0.6 9.6 0.0 1021.8 80189.1

3l-cvrp11 0.0 88.2 0.7 10.8 0.0 1992.3 92833.7

3l-cvrp12 0.5 6.4 5.4 86.2 0.0 1811.8 4717.2

3l-cvrp13 0.1 80.6 1.2 17.9 0.1 2352.3 28909.1

3l-cvrp14 0.0 92.3 0.4 7.3 0.0 1031.8 88901.5

3l-cvrp15 0.0 95.3 0.2 4.4 0.0 1054.0 64104.0

3l-cvrp16 0.3 0.8 5.7 92.2 0.0 1826.4 3736.6

3l-cvrp17 0.3 0.9 5.4 92.4 0.0 2206.3 4852.4

3l-cvrp18 0.0 95.4 0.3 4.4 0.0 963.4 34380.2

3l-cvrp19 0.0 63.3 2.0 34.5 0.0 2578.7 61575.6

3l-cvrp20 0.0 63.8 1.8 34.4 0.0 1517.9 233785.4

3l-cvrp21 0.0 79.4 1.0 19.5 0.0 1787.6 38050.9

3l-cvrp22 0.0 50.0 2.4 47.5 0.0 1695.9 98111.1

3l-cvrp23 0.0 49.7 2.2 48.1 0.0 2031.6 39846.0

3l-cvrp24 0.0 13.6 2.9 83.3 0.0 2674.1 12093.1

3l-cvrp25 0.0 60.7 1.8 37.4 0.0 2201.5 72562.0

3l-cvrp26 0.0 33.1 3.1 63.7 0.0 1756.3 143999.8

3l-cvrp27 0.0 44.6 2.3 52.9 0.0 2134.7 58269.5

Table 12.8: HBPP-DFS : CPU Time Allocation, # feasible routes, # routes in Feasibility
Store (|Ψ|)

12.5 experimental results 179

over 10 runs for all methods and for HTS. Note that the values in the
HTS zmin column correspond to the bb-best values considered in the
previous parts of this section. Columns sectt give the total execution
times. They are only indicated for HTS and ACO-HCG as the values
for DING and HBP are very similar to those of ACO-HCG. ACO-HCG
is able to improve over the best solution from HTS in 14 out of 27

instances, and able to find the best solution from HTS in 8 instances.
Thus in terms of best solution HTS outperforms ACO-HCG in only 5

instances out of 27. In terms of average solution value, ACO-HCG im-
proves the HTS results in 24 out of 27 instances. DING-LDS performs
very similar to ACO-HCG, but DING-DFS performs slightly less good.
Both are able to improve the best solution from HTS in 8, respectively
12 instances. In terms of average solution DING-LDS improves the
HTS value in 24 instances, but DING-DFS only in 11. The HBP meth-
ods perform worst. They improve the best HTS solution only on few
instances, and the average HTS value on a handful. It is very clear
that ACO-HCG and DING-LDS outperform the remaining methods,
especially on large scale instances. As noted previously HTS is very
time-efficient.

Table 12.10 shows, in columns %gallb
avg , the average relative deviation

from the overall best known solution from the state-of-the-art for the
3L-CVRP (this doesn’t include results published in [MDVH12] or
[MLISD13]). The relative deviation for one run is computed as 100 ·
z−zallb

zallb , where z corresponds to the solution cost obtained using the
methods presented in this thesis and zallb corresponds to the best
known solution cost. The table indicates in column zallb for each in-
stance the best known solution cost, and in columns zmin the best solu-
tion cost found over all runs using the corresponding method. Nega-
tive values for %gallb

avg indicate that the corresponding method improves
the best known solution on average. ACO-HCG improves or ties with
the best known solution in 16 out of 27 instances. It is also able to im-
prove on average the best known in 6 instances. The results obtained
with the other methods are less good. While they all allow to tie with
or even improve the best known solution in a handful instances, the
average relative deviation from the best known is higher than for ACO-
HCG. Note that for ACO-HCG, this average gap w.r.t. the best known
solution, averaged over all instances, amounts to only 0.9%, while it
amounts to 1.3% for DING-LDS.

180 Chapter 12 vrp with 3d loading constraints

Instance
H

T
S

A
C

O
-H

C
G

D
IN

G
-D

FS
D

IN
G

-LD
S

H
B

PA
-D

FS
H

B
PA

-LD
S

H
B

PP-D
FS

H
B

PP-LD
S

zm
in

zavg
sectt

zm
in

zavg
sectt

zm
in

zavg
zm

in
zavg

zm
in

zavg
zm

in
zavg

zm
in

zavg
zm

in
zavg

3l-cvrp01
302.02

302.02
72.3

302.02
302.02

1800.0
302.02

302.02
302.02

302.02
302.02

302.02
302.02

302.02
302.02

302.02
302.02

302.02

3l-cvrp02
334.96

334.96
0.9

334.96
334.96

1800.0
334.96

334.96
334.96

334.96
334.96

334.96
334.96

334.96
334.96

334.96
334.96

334.96

3l-cvrp03
392.63

401.44
182.0

385.53
390.12

1800.3
385.53

389.56
385.57

387.88
388.09

390.25
385.53

390.61
385.53

387.84
385.53

387.84

3l-cvrp04
437.19

437.54
16.1

437.19
437.19

1800.0
437.19

437.19
437.19

437.19
437.19

437.19
437.19

437.19
437.19

437.19
437.19

437.19

3l-cvrp05
443.61

451.03
182.6

447.73
447.73

1800.2
447.73

447.73
447.73

447.73
447.73

447.73
447.73

447.82
447.73

447.82
447.73

447.73

3l-cvrp06
498.16

498.38
23.6

498.16
498.16

1800.1
498.16

498.16
498.16

498.16
498.16

498.16
498.16

498.16
498.16

498.16
498.16

498.16

3l-cvrp07
769.68

772.49
133.1

769.68
769.68

1800.4
769.68

769.68
769.68

769.68
769.68

770.06
769.68

769.68
769.68

769.68
769.68

769.68

3l-cvrp08
810.89

821.35
139.1

845.50
845.50

1800.6
845.50

845.50
845.50

845.50
845.50

848.49
845.50

846.69
845.50

846.86
845.50

846.16

3l-cvrp09
630.13

645.81
24.3

630.13
630.13

1800.0
630.13

631.38
630.13

630.13
630.13

630.13
630.13

630.13
630.13

630.13
630.13

630.13

3l-cvrp10
820.35

827.29
175.1

826.66
826.66

3603.2
826.66

833.59
826.66

827.25
829.24

845.28
835.74

843.71
828.75

840.87
828.75

842.09

3l-cvrp11
803.61

815.62
136.4

776.19
777.91

3601.5
778.10

786.29
776.19

781.17
787.04

815.61
778.24

798.03
776.19

784.50
776.19

778.00

3l-cvrp12
614.59

630.46
14.0

612.25
612.25

3600.3
612.25

612.25
612.25

612.25
612.25

612.25
612.25

612.84
612.25

612.25
612.25

612.25

3l-cvrp13
2645.95

2694.81
268.4

2661.62
2665.48

3601.6
2665.33

2671.16
2665.33

2669.47
2665.33

2679.80
2670.50

2675.48
2665.33

2672.30
2670.50

2674.04

3l-cvrp14
1368.42

1413.59
311.6

1385.00
1398.84

3605.3
1401.64

1417.16
1384.09

1406.81
1497.31

1518.29
1477.98

1516.36
1437.55

1513.65
1428.57

1508.20

3l-cvrp15
1341.14

1355.50
311.5

1336.22
1341.02

3624.1
1342.32

1351.72
1341.73

1347.60
1358.00

1412.71
1349.73

1390.63
1356.08

1398.00
1364.67

1407.16

3l-cvrp16
698.61

705.05
3.4

698.61
698.61

3600.3
698.61

700.40
698.61

698.61
698.61

698.61
698.61

698.61
698.61

698.61
698.61

698.61

3l-cvrp17
866.40

917.96
2.5

866.40
866.40

3600.1
866.40

874.09
866.40

867.10
866.40

866.40
866.40

866.40
866.40

866.40
866.40

866.40

3l-cvrp18
1207.72

1228.98
309.5

1205.11
1209.21

3606.2
1209.81

1233.29
1207.44

1213.32
1225.62

1247.29
1226.40

1235.68
1226.42

1245.96
1225.46

1245.03

3l-cvrp19
741.74

753.87
416.5

741.31
741.31

7204.6
741.31

753.39
741.31

742.44
741.31

761.29
741.31

743.58
746.21

767.94
743.62

756.96

3l-cvrp20
587.95

596.42
427.0

577.85
580.84

7217.9
583.29

603.94
580.38

583.19
602.15

619.82
594.50

607.20
601.55

618.53
593.12

609.58

3l-cvrp21
1090.22

1107.00
443.4

1075.97
1079.47

7220.4
1100.87

1125.64
1086.18

1095.10
1113.60

1139.60
1103.02

1125.50
1108.16

1144.34
1109.38

1143.71

3l-cvrp22
1147.80

1171.49
423.5

1147.43
1154.64

7217.8
1167.28

1202.89
1147.93

1159.37
1190.92

1215.92
1185.80

1207.22
1184.46

1215.38
1184.05

1209.08

3l-cvrp23
1130.54

1135.46
425.8

1102.39
1110.24

7221.1
1119.59

1151.58
1113.45

1121.88
1138.47

1170.57
1128.80

1155.91
1158.35

1172.95
1158.13

1173.47

3l-cvrp24
1116.13

1128.82
411.1

1107.71
1110.20

7228.3
1131.51

1156.91
1111.63

1122.62
1164.36

1182.02
1120.76

1153.84
1168.77

1188.30
1154.37

1183.50

3l-cvrp25
1407.36

1428.82
453.0

1370.70
1387.14

7256.1
1420.01

1437.07
1382.84

1403.54
1444.22

1462.44
1421.81

1449.56
1444.22

1465.93
1444.22

1465.93

3l-cvrp26
1600.35

1625.31
430.6

1541.49
1548.15

7212.9
1594.20

1637.32
1566.11

1584.56
1635.49

1651.40
1601.09

1639.66
1645.05

1655.50
1614.04

1651.56

3l-cvrp27
1529.86

1550.85
435.0

1483.66
1491.09

7253.1
1519.41

1554.80
1494.29

1510.34
1541.37

1571.54
1541.37

1573.55
1548.00

1577.50
1548.00

1579.90

A
V

G
228.6

4210.2

Table
1

2.
9:

C
om

parison
of

proposed
m

ethods
w

ith
H

TS
([Bor

1
2]).The

best
know

n
results

in
[Bor

1
2]

correspond
to

the
bb-best

results
for

3L-C
V

R
P.

zm
in/

avg
corresponds

to
the

best/average
solution

value
over

1
0

runs.sectt
corresponds

to
the

average
total

execution
tim

e.sectt
is

indicated
for

H
TS

and
A

C
O

-H
C

G
only.R

em
aining

execution
tim

es
are

equal(give
or

take
5

seconds)
to

A
C

O
-H

C
G

.V
alues

in
bold

in
the

zm
in

colum
ns

indicate
that

the
corresponding

approach
is

a
tie

w
ith

or
im

proves
the

bb-best.V
alues

in
italic

in
the

z
avg

colum
n

indicate
that

the
corresponding

approach
im

proves
or

ties
w

ith
the

average
results

published
in

[Bor
1

2].

12.5 experimental results 181

In
st

an
ce

B
es

t
kn

ow
n

A
C

O
-H

C
G

D
IN

G
-D

FS
D

IN
G

-L
D

S
H

B
PA

-D
FS

H
B

PA
-L

D
S

H
B

PP
-D

FS
H

B
PP

-L
D

S

z a
ll

b
z m

in
%

gal
lb

av
g

z m
in

%
gal

lb
av

g
z m

in
%

gal
lb

av
g

z m
in

%
gal

lb
av

g
z m

in
%

gal
lb

av
g

z m
in

%
gal

lb
av

g
z m

in
%

gal
lb

av
g

3l
-c

vr
p0

1
29

1.
00

30
2.

02
3.

8
30

2.
02

3.
8

30
2.

02
3.

8
30

2.
02

3.
8

30
2.

02
3.

8
30

2.
02

3.
8

30
2.

02
3.

8

3l
-c

vr
p0

2
33

4.
96

33
4.

96
0.

0
33

4.
96

0.
0

33
4.

96
0.

0
33

4.
96

0.
0

33
4.

96
0.

0
33

4.
96

0.
0

33
4.

96
0.

0

3l
-c

vr
p0

3
39

2.
63

38
5.

53
-0

.6
38

5.
53

-0
.8

38
7.

88
-1

.2
1

38
8.

09
-0

.6
38

5.
53

-0
.5

38
5.

53
-1

.2
38

5.
53

-1
.2

3l
-c

vr
p0

4
43

7.
19

43
7.

19
0.

0
43

7.
19

0.
0

43
7.

19
0.

0
43

7.
19

0.
0

43
7.

19
0.

0
43

7.
19

0.
0

43
7.

19
0.

0

3l
-c

vr
p0

5
44

3.
61

44
7.

73
0.

9
44

7.
73

0.
9

44
7.

73
0.

9
44

7.
73

0.
9

44
7.

73
0.

9
44

7.
73

0.
9

44
7.

73
0.

9

3l
-c

vr
p0

6
49

8.
16

49
8.

16
0.

0
49

8.
16

0.
0

49
8.

16
0.

0
49

8.
16

0.
0

49
8.

16
0.

0
49

8.
16

0.
0

49
8.

16
0.

0

3l
-c

vr
p0

7
76

8.
85

76
9.

68
0.

1
76

9.
68

0.
1

76
9.

68
0.

1
76

9.
68

0.
2

76
9.

68
0.

1
76

9.
68

0.
1

76
9.

68
0.

1

3l
-c

vr
p0

8
80

5.
35

84
5.

50
5.

0
84

5.
50

5.
0

84
5.

50
5.

0
84

5.
50

5.
4

84
5.

50
5.

1
84

5.
50

5.
2

84
5.

50
5.

1

3l
-c

vr
p0

9
63

0.
13

63
0.

13
0.

0
63

0.
13

0.
0

63
0.

13
0.

0
63

0.
13

0.
0

63
0.

13
0.

0
63

0.
13

0.
0

63
0.

13
0.

0

3l
-c

vr
p1

0
82

0.
35

82
6.

66
0.

8
82

6.
66

1.
61

82
6.

66
0.

8
82

9.
24

3.
0

83
5.

74
2.

8
82

8.
75

2.
5

82
8.

75
2.

6

3l
-c

vr
p1

1
78

6.
19

77
6.

19
-1

.1
77

8.
10

0.
0

77
6.

19
-0

.6
78

7.
04

3.
7

77
8.

24
1.

5
77

6.
19

-0
.2

77
6.

19
-1

.0

3l
-c

vr
p1

2
61

2.
25

61
2.

25
0.

0
61

2.
25

0.
0

61
2.

25
0.

0
61

2.
25

0.
0

61
2.

25
0.

1
61

2.
25

0.
0

61
2.

25
0.

0

3l
-c

vr
p1

3
26

45
.9

5
26

61
.6

2
0.

7
26

65
.2

2
1.

0
26

65
.3

3
0.

9
26

65
.3

3
1.

3
26

70
.5

0
1.

1
26

65
.3

3
1.

0
26

70
.5

0
1.

1

3l
-c

vr
p1

4
13

68
.4

2
13

85
.0

0
2.

2
14

01
.6

4
3.

6
13

84
.0

9
2.

8
14

97
.3

1
11

.0
14

77
.9

8
10

.8
14

37
.5

5
10

.6
14

28
.5

7
10

.2

3l
-c

vr
p1

5
13

41
.1

4
13

36
.2

2
0.

0
13

42
.3

2
0.

8
13

41
.7

3
0.

5
13

58
.0

0
5.

3
13

49
.7

3
3.

7
13

56
.0

8
4.

2
13

64
.6

7
4.

9

3l
-c

vr
p1

6
69

8.
61

69
8.

61
0.

0
69

8.
61

0.
3

69
8.

61
0.

0
69

8.
61

0.
0

69
8.

61
0.

0
69

8.
61

0.
0

69
8.

61
0.

0

3l
-c

vr
p1

7
86

6.
40

86
6.

40
0.

0
86

6.
40

0.
9

86
6.

40
0.

1
86

6.
40

0.
0

86
6.

40
0.

0
86

6.
40

0.
0

86
6.

40
0.

0

3l
-c

vr
p1

8
12

07
.7

2
12

05
.1

1
0.

1
12

09
.8

1
2.

1
12

07
.4

4
0.

5
12

25
.6

2
3.

3
12

26
.4

0
2.

3
12

26
.4

2
3.

2
12

25
.4

6
3.

1

3l
-c

vr
p1

9
74

1.
74

74
1.

31
-0

.1
74

1.
31

1.
6

74
1.

31
0.

1
74

1.
31

2.
6

74
1.

31
0.

2
74

6.
21

3.
5

74
3.

62
2.

1

3l
-c

vr
p2

0
58

7.
95

57
7.

85
-1

.2
58

3.
29

2.
7

58
0.

38
-0

.8
60

2.
15

5.
4

59
4.

50
3.

3
60

1.
55

5.
2

59
3.

12
3.

7

3l
-c

vr
p2

1
10

42
.7

2
10

75
.9

7
3.

5
11

00
.8

7
8.

0
10

86
.1

8
5.

0
11

13
.6

0
9.

3
11

03
.0

2
7.

9
11

08
.1

6
9.

7
11

09
.3

8
9.

7

3l
-c

vr
p2

2
11

47
.8

0
11

47
.4

3
0.

6
11

67
.2

8
4.

8
11

47
.9

3
1.

0
11

90
.9

2
5.

9
11

85
.8

0
5.

2
11

84
.4

6
5.

9
11

84
.0

5
5.

3

3l
-c

vr
p2

3
11

30
.5

4
11

02
.3

9
-1

.8
11

19
.5

9
1.

9
11

13
.4

5
-0

.8
11

38
.4

7
3.

5
11

28
.8

0
2.

2
11

58
.3

5
3.

8
11

58
.1

3
3.

8

3l
-c

vr
p2

4
10

96
.8

8
11

07
.7

1
1.

2
11

31
.5

1
5.

5
11

11
.6

3
2.

4
11

64
.3

6
7.

8
11

20
.7

6
5.

2
11

68
.7

7
8.

3
11

54
.3

7
7.

9

3l
-c

vr
p2

5
14

07
.3

6
13

70
.7

0
-1

.4
14

20
.0

1
2.

1
13

82
.8

4
-0

.3
14

44
.2

2
3.

9
14

21
.8

1
3.

0
14

44
.2

2
4.

2
14

44
.2

2
4.

2

3l
-c

vr
p2

6
14

30
.1

5
15

41
.4

9
8.

3
15

94
.2

0
14

.5
15

66
.1

1
10

.8
16

35
.4

9
15

.5
16

01
.0

9
14

.6
16

45
.0

5
15

.8
16

14
.0

4
15

.5

3l
-c

vr
p2

7
14

55
.2

7
14

83
.6

6
2.

5
15

19
.4

1
6.

8
14

94
.2

9
3.

78
15

41
.3

7
8.

0
15

41
.3

7
8.

1
15

48
.0

0
8.

4
15

48
.0

0
8.

6

A
V

G
0.

9
2.

5
1.

3
3.

7
3.

0
3.

5
3.

3

Ta
bl

e
1

2
.1

0
:C

om
pa

ri
so

n
of

pr
op

os
ed

m
et

ho
ds

w
it

h
ov

er
al

lb
es

tk
no

w
n

re
su

lt
s

(a
ll-

be
st

)f
or

3
L-

C
V

R
P.

z m
in

co
rr

es
po

nd
s

to
th

e
be

st
so

lu
ti

on
va

lu
e

(o
ve

r
1

0
ru

ns
fo

r
th

e
pr

op
os

ed
m

et
ho

ds
).

%
gal

lb
av

g
co

rr
es

po
nd

s
to

th
e

av
er

ag
e

re
la

ti
ve

pe
rc

en
ta

ge
de

vi
at

io
n

fr
om

th
e

be
st

kn
ow

n
re

su
lt

.N
eg

at
iv

e
%

gal
lb

av
g

va
lu

es
in

di
ca

te
th

at
th

e
be

st
kn

ow
n

so
lu

ti
on

is
im

pr
ov

ed
on

av
er

ag
e.

V
al

ue
s

in
bo

ld
in

th
e

z m
in

co
lu

m
ns

in
di

ca
te

th
at

th
e

co
rr

es
po

nd
in

g
ap

pr
oa

ch
is

a
ti

e
w

it
h

or
im

pr
ov

es
th

e
be

st
kn

ow
n.

13
M U LT I - P I L E V E H I C L E R O U T I N G P R O B L E M

The Multi-Pile Vehicle Routing Problem (MP-VRP) was first introdu-
ced in [DFH+

07] and is derived from a real-world problem encoun-
tered at an Austrian wood-products retailer. To verify the feasibility of
a route, a one-dimensional loading problem has to be solved. In this
problem customers request a given quantity for each of the available
types of chipboards. For each customer, the requested chipboards of
the same type are then loaded onto pallets, which themselves must
be loaded in the back of the delivery truck, which is divided in mu-
tiple piles. The decision on how the chipboards are loaded onto the
pallets is heuristic and deterministic. Finally a set of items, each corre-
sponding to one or several loaded pallets, must be delivered to each
customer, and a feasible loading for these items on the multiple piles
of the truck must exist. The problem that must be solved to achieve this
corresponds to a one-dimensional loading problem (which is actually
a generalization of a well-known scheduling problem).

13.1 problem description

The MP-VRP is defined on top of the basic CVRP. A homogeneous fleet
of vehicles is available to perform the deliveries of items to customers.
The number of vehicles is not limited, i.e. |K| = |V\{0}|. Each vehicle
corresponds to a container of width W, height H and length L. The

183

184 Chapter 13 multi-pile vehicle routing problem

5
6

1

2

4

3

7

Figure 13.1: MP-VRP instance with routes

capacity Q of the vehicles is considered infinite (Q = ∞). The length
of each vehicle is divided in p symmetric piles, each of width W. The
height of those piles is limited by the height H of the vehicle. Each
customer i (i ∈ V\{0}) demands a set Ii of mi items each of length
liz ∈ {L/p, L}, width W and height hiz(z = 1, ..., mi). That is, all items
take up the entire width of the vehicle, and take up either the length of
one pile or the length of the vehicle. See Figure 13.1 for the depiction
of an MP-VRP instance with routes. The goal is to find a set of routes
each starting and ending at the depot, visiting every customer exactly
once such that the total cost is minimized and the following condition
holds for every route r:
a feasible loading exists for

⋃
i∈r.S

⋃mi
z=1{Iiz} on the p piles.

A loading of a route r is the assignment of a pile and a coordinate
(height) to the lower left corner of each item Iiz(z = 1, ..., mi), i ∈ r.S.
The following conditions must be fulfilled over the items

⋃
i∈r.S{Ii} for

a loading to be considered feasible:

• Containment All items fit completely into the loading space of the
vehicle.

• Non-overlapping None of the items overlap.

13.2 existing approaches 185

1

2

3

Figure 13.2: Feasible loading for a MP-VRP route

• Sequential Loading When visiting a customer i ∈ r.S no item Ijz(z =

1, ..., mj) s.t. pos(j, r) > pos(i, r) may be placed between the items of
customer i and the top of their allocated pile.

Note that there is no constraint on the support of items from below.
A feasible loading can contain holes, which will later on be filled out
with bulk material. A feasible loading for a given route is depicted in
Figure 13.2.

13.2 existing approaches

Doerner et al. introduced the problem in [DFH+
07] and in the same

paper propose a Tabu Search (TS) algorithm as well as an Ant Colony
Optimization (ACO) approach.
For both TS and ACO they propose a heuristic and a basic dynamic
programming approach to solve the loading problem. The heuristic
is based on a branch and bound method for the P||Cmax scheduling
problem, of which the loading problem encountered in the MP-VRP is
a generalization. It is this heuristic that was used in both the TS and
ACO.

186 Chapter 13 multi-pile vehicle routing problem

The ACO approach is derived from the savings-based ants [RSD02].
At each iteration a colony of ants uses the savings heuristics to con-
struct feasible solutions (i.e. respecting the loading constraints). To
compute the attractiveness of a merge m introducing arc (i, j) the ants
use two pheromones matrices, one dedicated to the total distance, and
one to the total packing height (summation of packing heights reached
in all the vehicles). Also, two types of heuristic information intervene
in the attractiveness of a merge. The heuristic information associated
with the distance is the classical savings value sij. The heuristic infor-
mation associated with the loading is obtained by combining the min-
imum height a loading for the items of customers i and j can reach, as
well as the amount of bulk material necessitated in such a loading. The
solutions constructed by the ants are post-optimized using ηreloc, ηswap

and η2ex neighborhoods. Finally the F best solutions in terms of total
distance and loading are used to update the respective pheromone ma-
trices.

The TS approach is deterministic. The initial solution is computed
using a simple savings heuristic, accepting only merges leading to fea-
sible routes. The tabu search is however allowed to move towards infea-
sible solutions. A measure of infeasibility is included in the objective
function as the excess height over all the vehicles in a solution. The
weight accorded to this measure is adapted throughout the search in
order to force it into feasible regions. The restricted neighborhood is
constructed using the ηreloc operator. The routes implied in this move
are then post-optimized using 4-opt insertion. The best of these moves,
taking into account the objective of the resulting solution and a penalty
term used to enhance diversification, is chosen. Finally to enhance in-
tensification, each time a new best solution is discovered, the size of
the neighborhood is increased during the next iteration.

Both algorithms are tested on a set of randomly generated bench-
mark instances as well as on real-world instances. The ACO algorithm
beats the TS in 17 out of the 21 random instances and 4 out of the 5

real-world instances, both while taking (significantly in the case of the
real world instances) less time to converge.

In [TDHI09] the authors propose a Variable Neighborhood Search
(VNS) for the MP-VRP. They use several heuristics to provide lower
and upper bounds on the height of a giving loading, as well as a dy-

13.3 mp-vrp as a vrpbb 187

namic programming approach to exactly solve the loading problem.

A feasible solution is constructed using the savings heuristic. This
solution is then used as initial solution for their VNS, in which they
consider neighborhoods of increasing size. All neighborhoods are con-
structed by exchanging route segments. The size of these segments in-
creases over the different neighborhoods. At each iteration, first a ran-
dom neighboring solution from the current neighborhood is selected.
This solution is accepted if the infeasibility of the loading problem is
not proved using lower bounds. This solution is then reoptimized us-
ing 2-opt moves. The loading feasibility of the ensuing locally optimal
solution is verified using upper bounds. Here, since the upper bounds
can overestimate the height of a loading, it is acceptable that the height
computed with the upper bounds exceed the height of the vehicle by a
certain percentage. If the local optimum improves the best known so-
lution so far, but the loading feasibility has not been proved using the
upper bounds on the loading height, the exact dynamic programming
approach is used to determine feasibility. If the local optimum should
be proven not to be feasible, a repairing procedure is applied in the
hopes to be able to end up with a feasible and still new best solution.

The authors also present a branch & cut approach for the problem.
First they run their VNS algorithm. The resulting solution is used to
initialize the upper bound. They also use their pool of routes proven
infeasible to initialize cuts corresponding to loading feasibility con-
straints. Subtour elimination cuts are generated throughout the proce-
dure.

Using the VNS approach the authors obtain good results when com-
pared to ACO and TS, improving 19 out of the 21 random instances
and 4 out of the 5 real-world instances. The Branch & Cut approach
is tested on partial instances, due to its time complexity and the size
of the original instances. They are able to show that their VNS solved
more than half of the considered instances to optimality.

13.3 mp-vrp as a vrpbb

It is easy to see that the MP-VRP can be decomposed into a routing and
a loading problem. The set of white box constraints Fwb is empty, since

188 Chapter 13 multi-pile vehicle routing problem

no capacity constraints need to be considered. The unknown black box
constraints Fbb to be respected by every route, correspond to the con-
straint that a feasible loading must exist for the items to be delivered
on the route.

The authors from [TDHI09] kindly provided us with their imple-
mentation for the Loading Feasibility Check. First feasibility is tested
by computing an upper bound on the height of the loading. This is
done using the heuristics presented in [DFH+

07]. If the upper bound
cannot prove the feasibility the exact dynamic programming method
is used. It establishes a dominance criterion based on the heights of
the different piles, which are sorted in non-decreasing order by height.
Dominance between two partial loadings is then established by com-
paring the height of the piles. The authors furthermore introduce a
pruning mechanism using a set of lower bounds stemming from the
P||Cmax. The upper bound heuristic is of temporal complexity linear in
the number of items to be loaded. The exact algorithm runs in a time
exponential in the number of items, and thus also in the size of the
route. This is why in this thesis a time limit (set to 5 CPU seconds) is
enforced on the execution of the exact algorithm. The loading check
provided for the VRPBB here is thus not exact, i.e. feasible routes may
be considered infeasible.

13.3.1 Problem-specific knowledge in existing approaches

The ACO algorithm uses loading-specific heuristic information as well
as a loading-specific pheromone matrix. The TS only uses loading-
specific information to measure infeasibility in the objective function.
The VNS uses specific knowledge about its feasibility checks. Lower
and upper bounds are used strategically to reduce computation time.
The exact method is used only when unavoidable.

13.4 problem instances

The benchmark instances used for the MP-VRP are those presented
in [DFH+

07]. The instances were generated based on well-known Ca-
pacitated VRP instances from the literature. The problem instances de-
fine four types of chipboards. Each customer demands a given num-

13.5 experimental results 189

ber of chipboards of each type. Three different classes of customers
were defined, customers in the first class ordering a small number
of chipboards, in the second class ordering a medium amount and
in the third class ordering a large amount of chipboards. For each
of these classes and each type of chipboard an interval delimiting
the possible number of chipboards ordered was then defined. For
each customer, the number of chipboards demanded per type is then
drawn uniformly at random from the interval corresponding to the
customer’s class and the chipboard type. For each original CVRP in-
stance three MP-VRP instances were created by considering different
distributions of customers in one of the three customer classes. The
vehicle height was fixed to H = 200 and the number of piles to p = 3.
The height of the different types of chipboards varies between 1 and
5, the height of a pallet is 5. The instances can be downloaded from
http://prolog.univie.ac.at/research/VRPandBPP/.

As previously pointed out, solving the loading problem consists of
packing the different chipboards unto pallets and then loading these
pallets into the truck. Both the construction of pallets and loading are
part of the black box in the case of this thesis.

13.5 experimental results

The experiments presented in this section have all been conducted on
an AMD Opteron 6284 SE CPU (2.7 Ghz, 16MB cache size). The sys-
tem has been compiled using gcc 4.4.7 and uses CPLEX 12.4 as MILP
solver. Results have been obtained over 10 independent runs. The so-
lutions corresponding to the results presented in this section can be
downloaded from http://becool.info.ucl.ac.be/resources/VRPBB.

In this section two types of best known results from the literature
are considered. First the all-best results, which correspond to the over-
all best known results from the literature for the MP-VRP. The bb-best
results on the other hand correspond to results from the literature ob-
tained using the same black box algorithm as the one used here. In
the case of the MP-VRP the bb-best results correspond to the ones pre-
sented in [TDHI09]. Note that the results taken as bb-best results have
been obtained over different configuration settings and correspond to
the overall best results the authors obtained in the course of their ex-
periments.

http://prolog.univie.ac.at/research/VRPandBPP/
http://becool.info.ucl.ac.be/resources/VRPBB

190 Chapter 13 multi-pile vehicle routing problem

13.5.1 Pheromone-based Heuristic Column Generation (ACO-HCG)

The parameter configuration used for ACO-HCG has been elaborated
using an automatic algorithm configuration procedure. The process
and the resulting configuration are described in detail in chapter 11.
Note that the experiments in chapter 11 and the experiments for this
chapter were conducted on different architectures. A comparison of
the results achieved on both architectures over the same number of
runs is given in table B.1 in the appendix. It shows that the variations
are more important than for the 3L-CVRP. Indeed while for this prob-
lem, the best solution found can be also be improved on 4 instances,
the average solution cost deteriorates on all instances but one. The
variation on the average solution cost, averaged over all instances cor-
responds to 0.34%. These variations can be explained by the different
architecture and the non-determinism in CPLEX. The results presented
in chapter 11 seem to improve more significantly over these presented
in this chapter due to the higher number of runs used in chapter 11.

The time limits from [TDHI09] are used. The limit is imposed on the
route generation process. After the allowed time has been used up, the
generation of new routes is stopped and the final solution is computed.
The route generation time limit corresponds to 1800 CPU seconds for
all instances.

Table 13.1 presents the results obtained on the MP-VRP benchmark
instances. Column zmin and zavg indicate the best and average solu-
tion value over 10 runs. Column %RSD gives the relative standard
deviation over 10 runs, while column sectt indicates the average total
execution time. Finally in column %gbb

avg the average relative deviation
w.r.t the bb-best result is given. The relative deviation w.r.t. bb-best is
computed as 100 · z−zbb

zbb
where z is the solution cost obtained using

ACO-HCG and zbb is the solution cost of the bb-best solution. A nega-
tive value in column %gbb

avg indicates that ACO-HCG on average (over
10 runs) improves the bb-best result.

A look at the %gbb
avg column shows that the proposed ACO-HCG

approach is able to improve the bb-best result on average for 2 out of
21 instances. It should be noted that the average deviation from the
bb-best result never exceeds 1.65%. The most notable average deteri-
oration w.r.t. the bb-best result is for instance CMT05-2, a large-scale

13.5 experimental results 191

instance where there is a similar number of customers in each class.
The biggest improvement is obtained on CMT02-1, a small-scale in-
stance where most customers either demand few or many items.

In terms of execution times, ACO-HCG is similar to the Variable
Neighborhood Search presented in [TDHI09]. The latter approach uses
a limit on stable iterations and a limit on total execution time (1800

CPU seconds). In ACO-HCG only a time limit is used, which is im-
posed on the route generation phase. A look at the sectt column in Ta-
ble 13.1 suggests thus that up to 200 CPU seconds (instances CMT05)
are necessary to extract a final integer solution from the set of collected
feasible routes R∗.

Analysis of CPU time allocation and Feasibility in generated routes

In this section the percentage of total execution time spent in different
parts of the algorithm is analyzed, as well as the number of bb-feasible
routes found, compared to the total number of routes tested for feasi-
bility w.r.t. Fbb.

Figure 13.3 gives a visual representation of the percentage of the
CPU time allocated to different tasks in ACO-HCG. A detailed view
of this is given in table 13.2. The tasks under consideration are:

• solving problem SCP(R∗) to obtain an integral solution (%IP)

• solving problems Relax(SCP(R∗)), repeated each iteration of ACO-
HCG (%LP)

• testing routes for bb-feasibility (%BB)

• retrieving or adding routes to the Feasibility store Ψ (%ST)

• generating new routes, thus executing the collector ants modulo the
time to check feasibility of routes (%GEN)

• post-optimizing feasible routes generated by the collector ants
(%PO)

• other parts of ACO-HCG (%OTH)

192 Chapter 13 multi-pile vehicle routing problem

Instance ACO-HCG Automatic Configuration

K n zmin zavg %RSD sectt %gbb
avg

CMT01-1 1 50 587.81 590.10 0.2 1823.6 0.48

CMT01-2 2 50 615.11 618.50 0.6 1804.7 0.55

CMT01-3 3 50 623.44 624.76 0.3 1804.4 0.21

CMT02-1 1 75 975.56 976.16 0.1 1855.3 -0.50

CMT02-2 2 75 898.38 902.93 0.3 1837.9 0.59

CMT02-3 3 75 889.26 890.85 0.2 1817.8 0.28

CMT03-1 1 100 1183.76 1186.61 0.1 1809.1 -0.13

CMT03-2 2 100 1219.15 1222.52 0.1 1893.8 0.29

CMT03-3 3 100 1157.22 1161.15 0.3 1818.6 0.37

CMT04-1 1 150 1617.12 1630.01 0.6 1934.3 0.31

CMT04-2 2 150 1547.30 1553.76 0.3 1984.4 0.10

CMT04-3 3 150 1541.41 1548.00 0.4 1883.7 0.40

CMT05-1 1 199 2024.91 2041.67 0.4 2037.5 0.29

CMT05-2 2 199 1849.76 1863.53 0.5 2038.8 1.64

CMT05-3 3 199 1952.32 1961.75 0.5 1985.1 0.66

CMT06-1 1 120 2250.76 2258.60 0.3 1914.9 0.80

CMT06-2 2 120 2085.16 2103.69 0.4 1863.9 1.63

CMT06-3 3 120 2152.84 2168.93 0.4 1848.3 0.68

CMT07-1 1 100 1139.85 1149.18 0.4 1845.5 1.11

CMT07-2 2 100 1214.95 1217.20 0.1 1843.4 -0.02

CMT07-3 3 100 1153.81 1167.71 0.9 1836.4 0.87

AVG 0.4 0.51

Table 13.1: Results on MP-VRP using ACO-HCG in the automatic configuration,
zmin/avg = best/average solution cost over 10 runs, %RSD = relative per-
centage standard deviation over 10 runs, sectt = average total execution
time, %gbb

avg=average relative percentage deviation w.r.t. bb-best solution.

13.5 experimental results 193

%
 o

f T
ot

al
 E

xe
cu

tio
n

T
im

e

ACO−HCG, CPU Time Allocation

Instance

CM
T01

_1

CM
T01

_2

CM
T01

_3

CM
T02

_1

CM
T02

_2

CM
T02

_3

CM
T03

_1

CM
T03

_2

CM
T03

_3

CM
T04

_1

CM
T04

_2

CM
T04

_3

CM
T05

_1

CM
T05

_2

CM
T05

_3

CM
T06

_1

CM
T06

_2

CM
T06

_3

CM
T07

_1

CM
T07

_2

CM
T07

_3

%IP
%LP
%BB
%ST
%GEN
%PO
%OTH

0
20

40
60

80
10

0

Figure 13.3: ACO-HCG: CPU Time Allocation

Clearly the majority of the CPU time is allocated to testing the bb-
feasibility of routes for all instances. The remaining time is allocated to
the generation of feasible routes and the resolution of the integer prob-
lem SCP(R∗). Note that in the automatic configuration of ACO-HCG
this latter problem is solved every 6 iterations. The percentages of time
allocated to the different tasks vary however from instance to instance.
In the larger instances (CMT04 and CMT05) more time is spent in the
generation of new feasible routes and in solving the integer problem.
There are different possible explanations for this. For once the data
structures to be maintained for the collector ants grow with the prob-
lem size. Of course the number of possible initial single-customer
routes and therefore possible route merges grows. In the MP-VRP the

194 Chapter 13 multi-pile vehicle routing problem

feasibility of small routes, visiting only a few customers is often easily
established. Given the initial number of single-customer routes many
iterations will be spent considering mainly merges resulting in such
routes. Also the collector ants continue merging routes until no fur-
ther feasible merge can be found. It can take quite a few ant steps
up to a state where only a few routes remain. Finally, the absence of
capacity constraints means that no merges can be eliminated due to
infeasibility w.r.t. Fwb. The high number of ant steps and the size of the
data structures to be maintained explain that more time is spent in the
route generation (and less in the black box feasibility) for large-scale
instances.
There are also different possible causes to the fact that a higher time
percentage is spent solving the integer problems. In the automatic con-
figuration problem SCP(R∗) is solved every 6 iterations. In the case
of smaller instances, this means that the problem is solved iteratively
over an increasing number of feasible routes, each time providing an
upper bound to the solver for the next time the problem is solved. In
the large-scale instances, ACO-HCG doesn’t reach 6 iterations, thus
the problem must be solved from scratch, without upper bound. The
fact that the number of vehicles is not limited in the MP-VRP means
also that the problem is less restricted and thus harder to solve.

Figure 13.4 shows the percentage of routes (averaged over 10 runs)
that were tested for feasibility w.r.t. Fbb that were actually found to
be feasible. This value varies between roughly 8 and 18 %. No clear
trend linked to problem size or class can be distinguished, if it isn’t
that instance CMT01-1 allows to find a higher percentage of feasible
routes than the remaining instances.

The exact numbers are given in table 13.2. It gives the exact per-
centage of total execution time used up by each task in ACO-HCG. In
columns #Feasible routes and |Ψ| the exact number of routes in the final
R∗ and the final number of routes in Feasibility store Ψ is given. In
the case of ACO-HCG, |Ψ| corresponds to the total number of routes
tested for bb-feasibility. An interesting discovery is that the number
of routes tested is lowest for instance CMT01-1, the instance where
the highest percentage of feasible routes was found and the highest
percentage of time is spent in the black box. It seems that checking
feasibility for routes for this instance takes a particular long time per
route. Instances CMT01-2 and CMT01-3 both have the same number
of customers, but take significantly less time to complete one ACO-

13.5 experimental results 195

F
ea

si
bl

e
%

 o
f T

es
te

d
R

ou
te

s

0
20

40
60

80
10

0

ACO−HCG, Feasibility in tested routes

Instance

CM
T01

_1

CM
T01

_2

CM
T01

_3

CM
T02

_1

CM
T02

_2

CM
T02

_3

CM
T03

_1

CM
T03

_2

CM
T03

_3

CM
T04

_1

CM
T04

_2

CM
T04

_3

CM
T05

_1

CM
T05

_2

CM
T05

_3

CM
T06

_1

CM
T06

_2

CM
T06

_3

CM
T07

_1

CM
T07

_2

CM
T07

_3

Figure 13.4: ACO-HCG: % of tested routes that were bb-feasible

HCG iteration. Note that the state-of-the-art approaches for the MP-
VRP make use of the knowledge that the loading problem to be solved
per route is symmetric, which can’t be exploited in the corresponding
VRPBB.

13.5.2 Decomposition-based approach using ACO-HCG

The decomposition-based approach described in chapter 9 has been
tested with ACO-HCG. Parameter N has been set to d n

5 e. The time
to solve each subproblem to min(300, n) CPU seconds, where n corre-
sponds to the number of customers in the subproblem. Explicit results
comparing the performance of ACO-HCG and the Decomposition-

196 Chapter 13 multi-pile vehicle routing problem

Instance % Total Execution Time Routes in Ψ

%IP %LP %BB %ST %GEN %PO #Feasible routes |Ψ|

CMT01-1 0.1 0 99.3 0.0 0.6 0.1 1871.6 11413.9

CMT01-2 0.2 0 97.6 0.0 1.9 0.2 3519.5 31936.4

CMT01-3 1.3 0 92.6 0.1 5.6 0.3 4956.2 74060.1

CMT02-1 5.2 0 87.7 0.1 6.8 0.2 4998.8 80304.9

CMT02-2 3.4 0 90.8 0.1 5.5 0.2 4387.9 53723.0

CMT02-3 1.5 0 92.4 0.1 5.8 0.2 5255.0 61384.9

CMT03-1 0.2 0 92.6 0.1 7.0 0.1 4220.5 53843.0

CMT03-2 7.2 0 80.1 0.1 12.3 0.2 5639.8 90278.5

CMT03-3 0.8 0 89.1 0.1 9.8 0.2 5262.6 70472.9

CMT04-1 5.9 0 85.7 0.1 8.3 0.1 3600.3 41736.6

CMT04-2 8.5 0 75.9 0.1 15.3 0.1 5011.1 70853.9

CMT04-3 3.7 0 80.7 0.1 15.3 0.1 5017.6 65451.1

CMT05-1 9.4 0 77.0 0.1 13.4 0.1 4056.0 47128.9

CMT05-2 9.7 0 77.1 0.1 13.0 0.1 4267.3 39407.1

CMT05-3 7.8 0 69.8 0.1 22.1 0.1 5128.7 73556.7

CMT06-1 2.3 0 95.8 0.0 1.8 0.1 3106.2 25076.0

CMT06-2 1.4 0 96.3 0.0 2.1 0.1 3607.1 28952.6

CMT06-3 1.0 0 93.3 0.1 5.3 0.2 6300.0 71371.4

CMT07-1 3.2 0 88.8 0.1 7.7 0.2 4189.1 50300.6

CMT07-2 3.1 0 86.7 0.1 9.8 0.2 4929.8 64325.1

CMT07-3 0.8 0 95.8 0.0 3.2 0.1 2667.7 24187.3

Table 13.2: ACO-HCG : CPU Time Allocation, # feasible routes, # routes in Feasibility
Store (|Ψ|)

13.5 experimental results 197

based approach using ACO-HCG (DECOMP ACO-HCG) can be found
in table 13.3. Again ACO-HCG outperforms DECOMP ACO-HCG,
this time on all instances. Interestingly the decomposition-based ap-
proach does not seem to bring an advantage to larger-scale instances.
Instances CMT05 are the largest instances for the MP-VRP, however
the decomposition-based approach does not perform better here than
for smaller instances. A plot comparing the performance of DECOMP
ACO-HCG to ACO-HCG can be found in the appendix (Fig. B.1).

13.5.3 ACO-HCG without Post-optimization of feasible routes

In chapter 11 a parameter configuration for ACO-HCG has been elab-
orated using an automatic algorithm configuration procedure. For the
post-optimization two parameters were considered: TS and ILS, thus
doing the post-optimization of feasible routes either using Tabu Search
or Iterated Local Search. However the choice to do no post-optimiza-
tion at all was not considered. Thus in order to establish whether the
post-optimization procedure actually improves ACO-HCG’s results,
experiments were run using ACO-HCG’s automatic configuration (see
11) where the post-optimization was switched off (i.e. neither Tabu
Search nor Iterated Local Search are performed). The resulting ap-
proach is denoted ACO-HCG-NOPO. The corresponding results are
given in Table B.2 in the appendix. Furthermore the exact CPU Time
Allocation percentages along with the number of tested and feasible
routes is given in table B.3 in the appendix.

Table B.2 shows that it is of advantage to execute the post-optimiza-
tion of feasible routes, this in terms of best solutions as well as in terms
of average solution value. It can however be noted that for a few in-
stances a better best solution can be found with ACO-HCG-NOPO. In
terms of average solution value the results obtained with ACO-HCG-
NOPO are up to 1.2% worse than these obtained with ACO-HCG. The
observations for the MP-VRP differ from these of the 3L-CVRP. While
in the 3L-CVRP, ACO-HCG tested more routes thanACO-HCG-NOPO,
Table B.3 shows that in MP-VRP it very much depends on the instance.
However the observation that ACO-HCG-NOPO ends up with more
feasible routes in its pool and thus more time is needed to solve the
Set Covering Problem (column %IP) holds. Finally Table B.3 reveals

198 Chapter 13 multi-pile vehicle routing problem

Instance ACO-HCG DECOMP ACO-HCG

K n zmin zavg sectt zmin zavg sectt gmin gavg

CMT01-1 1 50 587.81 590.10 1823.60 587.81 594.13 1840.7 0.00 0.68

CMT01-2 2 50 615.11 618.50 1804.70 616.74 619.36 1817.8 0.26 0.14

CMT01-3 3 50 623.44 624.76 1804.40 623.44 624.44 1824.8 0.00 -0.05

CMT02-1 1 75 975.56 976.16 1855.30 976.63 977.00 1831.4 0.11 0.09

CMT02-2 2 75 898.38 902.93 1837.90 903.12 906.80 1847.6 0.53 0.43

CMT02-3 3 75 889.26 890.85 1817.80 893.93 897.50 1834.8 0.53 0.75

CMT03-1 1 100 1183.76 1186.61 1809.10 1184.51 1191.49 1841.3 0.06 0.41

CMT03-2 2 100 1219.15 1222.52 1893.80 1224.52 1228.38 1851.7 0.44 0.48

CMT03-3 3 100 1157.22 1161.15 1818.60 1159.15 1165.26 1834.7 0.17 0.35

CMT04-1 1 150 1617.12 1630.01 1934.30 1630.34 1646.30 1845.0 0.82 1.00

CMT04-2 2 150 1547.30 1553.76 1984.40 1555.89 1568.01 1854.4 0.56 0.92

CMT04-3 3 150 1541.41 1548.00 1883.70 1556.62 1566.98 1857.4 0.99 1.23

CMT05-1 1 199 2024.91 2041.67 2037.50 2045.13 2057.05 1904.5 1.00 0.75

CMT05-2 2 199 1849.76 1863.53 2038.80 1855.87 1874.20 1875.9 0.33 0.57

CMT05-3 3 199 1952.32 1961.75 1985.10 1987.30 1995.63 1879.5 1.79 1.73

CMT06-1 1 120 2250.76 2258.60 1914.90 2256.84 2273.05 1824.6 0.27 0.64

CMT06-2 2 120 2085.16 2103.69 1863.90 2106.20 2116.31 1837.1 1.01 0.60

CMT06-3 3 120 2152.84 2168.93 1848.30 2171.35 2187.73 1836.7 0.86 0.87

CMT07-1 1 100 1139.85 1149.18 1845.50 1145.55 1153.41 1859.7 0.50 0.37

CMT07-2 2 100 1214.95 1217.20 1843.40 1219.26 1222.76 1836.8 0.35 0.46

CMT07-3 3 100 1153.81 1167.71 1836.40 1165.88 1177.37 1868.7 1.05 0.83

AVG 1880.07 1847.9 0.55 0.63

Table 13.3: Comparison of ACO-HCG in automatic configuration (ACO-HCG) with
Decomposition-based approach using ACO-HCG in automatic configura-
tion (DECOMP ACO-HCG). zmin/avg = best/average solution cost over
10 runs, sectt = average total execution time. gmin/avg= relative percent-
age deviation of DECOMP ACO-HCG w.r.t. ACO-HCG , computed as

100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with DECOMP

ACO-HCG and zD
min/avg the results obtained with ACO-HCG.

that for the MP-VRP, ACO-HCG-NOPO spends more time Generating
Routes and less in the black box than ACO-HCG.

13.5 experimental results 199

13.5.4 Dive & Generate (DING)

Dive & Generate has been executed over 10 independent runs using
the same set-up as for the 3L-CVRP, with one difference. The random-
ized savings heuristic is executed ` = 1 times per column generation
execution.

13.5.4.1 Comparison with ACO-HCG

In the following we will individually compare Dive & Generate us-
ing Depth First Search (DING-DFS) and Dive & Generate using Lim-
ited Discrepancy Search (DING-LDS) with ACO-HCG. This is done by
computing for each instance and both for ACO-HCG and the method
under consideration the mean relative deviation w.r.t. the best-bb so-
lution (denoted by gbb

avg). The resulting values are then visualized in
a scatter plot where each point corresponds to one problem instance.
The x-coordinate of the point will correspond to gbb

avg for ACO-HCG
and the y-coordinate to the gbb

avg for the method under consideration.
DING and ACO-HCG perform equally on the same instance if the
point is on the diagonal, DING performs better if the point is under the
diagonal, and ACO-HCG performs better if the point is above the di-
agonal. Statistical significance has been determined using a Wilcoxon
signed-rank test with confidence level 95%. The resulting plots are vi-
sualized in Fig. 13.5. The explicit results for DING-DFS and DING-LDS
are given in the appendix (tables B.4 and B.5).

The figures show clearly that both DING-DFS and DING-LDS are
outperformed by ACO-HCG on all instances. However, DING-LDS
gets better results than DING-DFS on all but one instance. While ACO-
HCG considers any route as potential candidate to be added to the set
of feasible routes R∗, DING does so only for routes that have a nega-
tive reduced cost w.r.t the current non-integral solution. These routes
are possibly not the ones that are necessary to obtain a high-quality
integer solution. Furthermore only the routes that actually appear in
a relaxed solution can ever be part of an integer solution (as this so-
lution is obtained by fixing routes). Thus only if some of the routes
appearing in the relaxed solutions are also part of a high-quality in-
teger solution can DING perform well. Finally in the MP-VRP, as the
number of vehicles is not limited, there can be a great number of such
routes at a time. This results in a Dive & Generate tree with a high

200 Chapter 13 multi-pile vehicle routing problem

0 1 2 3 4 5 6

0
1

2
3

4
5

6

ACO−HCG, gavg
bb %

D
IN

G
−

D
F

S
, g

a
vgb
b

 %

(a)

0 1 2 3 4 5

0
1

2
3

4
5

ACO−HCG, gavg
bb %

D
IN

G
−

LD
S

, g
a

vgb
b

 %
(b)

Figure 13.5: Comparison of DING and ACO-HCG. Each point gives the mean
%-deviation from the bb-best solution over 10 independent runs.
The symbols denote whether there is statistically significant dif-
ference (5) or not (2), or all the runs obtained the same cost (O).

branching factor and thus in a potentially huge tree. A lot of time will
be lost exploring one branch. It is for this reason that DING-LDS al-
lows to improve the performance w.r.t. DING-DFS. Discrepancies are
taken as early as possible and thus completely different parts of the
Dive & Generate tree can be explored.
Plots comparing DING-DFS and DING-LDS with ACO-HCG in the
manual configuration from chapter 11 (denoted ACO-HCG in this
chapter) can be found in the appendix (Fig. B.2).
DING-LDS performs still worse than ACO-HCG but is able to statis-
tically significantly improve the results obtained with ACO-HCG on
one instance. Also, as for the 3L-CVRP, the results on many instances
are not statistically significant. DING-DFS still performs worse than
ACO-HCG.

13.5.4.2 Analysis of CPU time allocation and Feasibility in generated routes

In this section the percentage of CPU time spent in different parts of
the algorithm is analyzed, as well as the number of bb-feasible routes
found, compared to the total number of routes tested for feasibility
w.r.t. Fbb.
Figures 13.6 gives a visual representation of the percentage of the total
execution time allocated to different tasks in DING-DFS and DING-

13.5 experimental results 201

%
 o

f T
ot

al
 E

xe
cu

tio
n

T
im

e

DING−DFS, CPU Time Allocation

Instance

CM
T01

_1

CM
T01

_2

CM
T01

_3

CM
T02

_1

CM
T02

_2

CM
T02

_3

CM
T03

_1

CM
T03

_2

CM
T03

_3

CM
T04

_1

CM
T04

_2

CM
T04

_3

CM
T05

_1

CM
T05

_2

CM
T05

_3

CM
T06

_1

CM
T06

_2

CM
T06

_3

CM
T07

_1

CM
T07

_2

CM
T07

_3

%LP
%BB
%ST
%GEN
%PO
%OTH

0
20

40
60

80
10

0

(a)
%

 o
f T

ot
al

 E
xe

cu
tio

n
T

im
e

DING−LDS, CPU Time Allocation

Instance

CM
T01

_1

CM
T01

_2

CM
T01

_3

CM
T02

_1

CM
T02

_2

CM
T02

_3

CM
T03

_1

CM
T03

_2

CM
T03

_3

CM
T04

_1

CM
T04

_2

CM
T04

_3

CM
T05

_1

CM
T05

_2

CM
T05

_3

CM
T06

_1

CM
T06

_2

CM
T06

_3

CM
T07

_1

CM
T07

_2

CM
T07

_3

%LP
%BB
%ST
%GEN
%PO
%OTH

0
20

40
60

80
10

0

(b)

Figure 13.6: DING: CPU Time Allocation

LDS. A detailed view of this is given in Tables 13.4 and 13.5. The tasks
under consideration are the same as for ACO-HCG. In DING problem
SCP(R∗) is only solved at the beginning of the process to initialize the
upper bound. Task %IP has been omitted in both figures and tables
since the percentage of time spent solving SCP(R∗) is negligible.

A clear difference can be established between DING-DFS and DING-
LDS. Whereas with DING-LDS a majority of time is spent testing
routes for bb-feasibility and generating routes, a bigger portion of time
is spent in the "Other" tasks for DING-DFS. DING-DFS spends clearly
less time in the black box and for most instances also in the generation
of new routes. In Dive & Generate column generation is executed only
if the current lower bound falls outside a trust region, and an enforced
route generation is executed upon restarts. The fact that only a small
fraction of the CPU time is allocated to route generation in DING-DFS
suggests that column generation is actually only executed seldom. As
the number of vehicles is not limited in MP-VRP the resulting Dive &
Generate tree is potentially very broad but also very deep. DING-DFS
seems to visit a great number of nodes, at which column generation is
executed but where no routes of negative reduced cost can be found.
Given the nature of Depth First Search and the CPU time allocations
a probable conclusion is that the search gets stuck in a specific branch,
visiting numerous nodes where no routes of negative reduced cost are
found. Furthermore, symmetries are not handled in Dive & Generate.
The fact that the set of feasible routes R∗ is enriched at some nodes,

202 Chapter 13 multi-pile vehicle routing problem

might not be sufficient to avoid the visit to symmetric parts of the
search tree.
Limited Discrepancy Search avoids the scenario of the search getting
stuck in a specific branch. Discrepancies are taken as early as possible
in the search tree, and drastically different parts of the search tree are
thus explored. Also, the search will always first reascend to the root.
This makes it impossible for the search to get stuck at leaf node level.
In terms of CPU time allocation, DING-LDS (and thus also DING-DFS)
spends significantly less time in the black box and generally more time
in route generation and the "Other" tasks when compared to ACO-
HCG. Remember that these latter correspond to the maintenance of a
tree structure in DING, not present in ACO-HCG.

F
ea

si
bl

e
%

 o
f T

es
te

d
R

ou
te

s

0
20

40
60

80
10

0

DING−DFS, Feasibility in tested routes

Instance

CM
T01

_1

CM
T01

_2

CM
T01

_3

CM
T02

_1

CM
T02

_2

CM
T02

_3

CM
T03

_1

CM
T03

_2

CM
T03

_3

CM
T04

_1

CM
T04

_2

CM
T04

_3

CM
T05

_1

CM
T05

_2

CM
T05

_3

CM
T06

_1

CM
T06

_2

CM
T06

_3

CM
T07

_1

CM
T07

_2

CM
T07

_3

(a)

F
ea

si
bl

e
%

 o
f T

es
te

d
R

ou
te

s

0
20

40
60

80
10

0

DING−LDS, Feasibility in tested routes

Instance

CM
T01

_1

CM
T01

_2

CM
T01

_3

CM
T02

_1

CM
T02

_2

CM
T02

_3

CM
T03

_1

CM
T03

_2

CM
T03

_3

CM
T04

_1

CM
T04

_2

CM
T04

_3

CM
T05

_1

CM
T05

_2

CM
T05

_3

CM
T06

_1

CM
T06

_2

CM
T06

_3

CM
T07

_1

CM
T07

_2

CM
T07

_3

(b)

Figure 13.7: DING: % of tested routes that were bb-feasible

Figures 13.7 show the percentage of routes tested for feasibility w.r.t.
Fbb that are found to be feasible. Interestingly, the percentages for
DING-DFS are consistently higher than those for DING-LDS. Both
DING-DFS and DING-LDS show a higher percentage of feasible routes
than ACO-HCG. The exact numbers are given in Tables 13.4 and 13.5.
In columns #Feasible routes and |Ψ| the exact number of routes in the
final R∗ and the final number of routes in Feasibility store Ψ is given.
In the case of DING, |Ψ| corresponds to the total number of routes
tested for bb-feasibility. The number of bb-feasible routes is lower with
DING-DFS than with ACO-HCG for most instances. On the other
hand DING-LDS detects more bb-feasible routes than ACO-HCG on
the larger instances. In terms of the number of tested routes, ACO-

13.5 experimental results 203

HCG performed more tests than DING-DFS and DING-LDS on most
instances. In general DING-LDS tests more routes for bb-feasibility
than DING-DFS, and also finds more bb-feasible routes.

13.5.4.3 Results obtained when solving SCP(R∗)

In ACO-HCG the final solution is obtained by solving the integer Set
Covering Problem over the set of accumulated feasible routes R∗. In
DING the final solution corresponds to the best solution found in the
Dive & Generate tree. Possibly better solutions could be obtained for
DING, if the final solution were obtained in the same way as in ACO-
HCG, that is by solving problem SCP(R∗) where R∗ is the set of fea-
sible routes accumulated during the DING execution (the correspond-
ing approach is denoted DING*). The results corresponding to this
are given in the appendix (Tables B.6 and B.7). The improvements are
similar to those obtained in the case of the 3L-CVRP. Both the results
of DING-DFS and DING-LDS are improved by solving DING*-DFS
and DING*-LDS, but the improvements obtained with DING*-LDS
are more substantial (up to 3.02% in terms of average solution value).
The results of DING*-LDS are still worse than those obtained with
ACO-HCG. Finally the time needed to solve SCP(R∗) on DING-LDS
is higher than the time needed to solve SCP(R∗) for DING-DFS, again
especially for large scale instances, where up to 276.7 CPU seconds are
necessary.

13.5.5 Decomposition-based approach using DING-LDS

The decomposition-based approach described in chapter 9 has been
tested with DING-LDS. Parameter N has been set to d n

5 e. The time
to solve each subproblem to min(300, n) CPU seconds, where n corre-
sponds to the number of customers in the subproblem. Explicit results
comparing the performance of DING-LDS and the Decomposition-
based approach using DING-LDS (DECOMP DING-LDS) can be found
in table 13.6. The decomposition-based approach allows to improve
most of the DING-LDS results! In 10 instances DECOMP DING-LDS
reaches better average solution values. However again, no clear link
with problem size can be seen. Plots comparing the performance of
DECOMP DING-LDS to DING-LDS and to ACO-HCG can be found
in the appendix (Figs. B.3).

204 Chapter 13 multi-pile vehicle routing problem

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

CMT01-1 5.9 52.2 0 12.2 0.1 3229.8 10373.7

CMT01-2 7.2 11.7 0 13.7 0.0 2754.7 7420.1

CMT01-3 6.9 3.4 0 4.0 0.0 2077.8 5568.5

CMT02-1 8.4 9.6 0 6.6 0.0 3372.9 16550.0

CMT02-2 7.7 8.6 0 9.8 0.0 3063.4 9879.5

CMT02-3 6.3 5.1 0 6.9 0.0 2285.7 6834.8

CMT03-1 4.5 10.2 0 9.1 0.0 2270.4 11580.4

CMT03-2 8.3 7.9 0 14.7 0.0 3904.1 16863.0

CMT03-3 8.0 8.2 0 12.7 0.0 3436.3 12878.2

CMT04-1 4.4 13.7 0 4.4 0.0 2205.6 12065.8

CMT04-2 5.9 9.1 0 18.2 0.0 3079.0 13518.3

CMT04-3 5.6 9.0 0 18.5 0.0 3260.4 12618.3

CMT05-1 5.9 16.7 0 7.2 0.0 3624.4 19784.3

CMT05-2 4.0 22.2 0 19.5 0.0 3779.3 17803.7

CMT05-3 5.3 14.8 0 43.4 0.1 5121.4 24791.0

CMT06-1 6.3 35.7 0 0.9 0.1 3878.0 20982.5

CMT06-2 7.0 47.9 0 0.8 0.1 5858.7 28427.2

CMT06-3 7.4 22.8 0 2.2 0.1 5431.8 33649.3

CMT07-1 8.2 23.8 0 2.3 0.1 4894.1 21763.9

CMT07-2 6.4 8.4 0 2.0 0.0 3038.4 13795.5

CMT07-3 4.6 11.9 0 1.0 0.0 2163.2 10036.3

Table 13.4: DING-DFS : CPU Time Allocation, # feasible routes, # routes in Feasibility
Store (|Ψ|)

13.5 experimental results 205

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

CMT01-1 1.6 93.4 0.0 1.4 0.1 2603.1 12118.2

CMT01-2 6.7 50.8 0.0 15.8 0.1 3923.3 21826.2

CMT01-3 9.8 20.4 0.0 8.3 0.1 3667.1 20255.6

CMT02-1 9.7 27.3 0.0 9.5 0.1 3900.1 29050.4

CMT02-2 9.2 36.4 0.0 13.1 0.1 4231.3 25736.0

CMT02-3 8.6 32.2 0.0 20.8 0.1 4560.3 26943.3

CMT03-1 7.0 43.1 0.0 10.0 0.1 3809.5 29422.4

CMT03-2 9.4 23.4 0.0 14.0 0.1 4421.7 36041.0

CMT03-3 9.4 26.1 0.0 9.5 0.1 4256.9 29260.6

CMT04-1 3.5 77.3 0.0 8.3 0.1 5019.3 45406.9

CMT04-2 6.6 52.1 0.1 22.0 0.1 6113.0 54602.0

CMT04-3 8.5 48.0 0.1 14.6 0.1 6134.2 53226.8

CMT05-1 2.4 73.6 0.1 17.4 0.1 5523.8 57944.3

CMT05-2 1.2 82.6 0.1 13.6 0.1 5746.4 53212.0

CMT05-3 6.1 49.2 0.1 24.6 0.1 6484.1 66825.6

CMT06-1 0.7 95.4 0.0 1.7 0.1 3848.9 33003.7

CMT06-2 0.6 96.1 0.0 1.5 0.1 3882.0 33761.9

CMT06-3 5.3 58.1 0.1 12.0 0.1 6470.5 69284.0

CMT07-1 4.3 65.1 0.0 6.0 0.1 4413.7 36622.5

CMT07-2 5.7 33.9 0.0 7.9 0.1 4128.7 33509.8

CMT07-3 2.4 74.9 0.0 2.3 0.1 3246.6 25903.2

Table 13.5: DING-LDS : CPU Time Allocation, # feasible routes, # routes in Feasibility
Store (|Ψ|)

206 Chapter 13 multi-pile vehicle routing problem

Instance DING-LDS DECOMP DING-LDS

K n zmin zavg sectt zmin zavg sectt gmin gavg

CMT01-1 1 50 594.54 599.13 1857.30 591.66 600.49 1950.5 -0.48 0.23

CMT01-2 2 50 616.74 621.84 1800.50 622.83 629.79 1907.7 0.99 1.28

CMT01-3 3 50 623.91 631.02 1800.10 623.91 626.31 1844.6 0.00 -0.75

CMT02-1 1 75 976.63 984.97 1800.10 976.60 980.14 1870.1 0.00 -0.49

CMT02-2 2 75 907.50 915.13 1800.70 907.87 916.17 1884.6 0.04 0.11

CMT02-3 3 75 889.88 904.18 1800.70 889.26 899.58 1873.0 -0.07 -0.51

CMT03-1 1 100 1189.45 1200.64 1800.70 1198.68 1219.38 1891.6 0.78 1.56

CMT03-2 2 100 1234.40 1246.28 1800.20 1224.05 1230.43 1860.3 -0.84 -1.27

CMT03-3 3 100 1174.49 1185.81 1800.20 1169.89 1178.21 1835.7 -0.39 -0.64

CMT04-1 1 150 1629.61 1659.57 1815.00 1661.65 1678.14 1891.8 1.97 1.12

CMT04-2 2 150 1573.16 1587.47 1800.90 1571.69 1590.65 1900.8 -0.09 0.20

CMT04-3 3 150 1568.01 1577.40 1800.30 1580.02 1606.12 1929.3 0.77 1.82

CMT05-1 1 199 2052.35 2079.31 1809.60 2069.10 2088.64 2010.7 0.82 0.45

CMT05-2 2 199 1875.58 1898.33 1814.00 1883.52 1916.46 1884.7 0.42 0.96

CMT05-3 3 199 1992.71 2003.07 1801.60 1986.91 2010.83 1890.0 -0.29 0.39

CMT06-1 1 120 2298.87 2333.72 1825.30 2292.80 2315.93 1923.6 -0.26 -0.76

CMT06-2 2 120 2130.10 2170.45 1832.70 2101.97 2146.68 1952.6 -1.32 -1.10

CMT06-3 3 120 2190.97 2212.80 1803.30 2197.15 2243.98 1888.6 0.28 1.41

CMT07-1 1 100 1177.31 1188.15 1800.10 1147.41 1157.03 1937.3 -2.54 -2.62

CMT07-2 2 100 1236.68 1266.53 1801.10 1220.09 1230.26 1896.5 -1.34 -2.86

CMT07-3 3 100 1190.39 1206.16 1803.40 1163.88 1182.07 1934.2 -2.23 -2.00

AVG 1807.99 1902.8 -0.18 -0.17

Table 13.6: Comparison of Dive & Generate with Limited Discrepancy Search (DING-
LDS) with Decomposition-based approach using DING-LDS (DECOMP
DING-LDS). zmin/avg = best/average solution cost over 10 runs, sectt =
average total execution time. gmin/avg= relative percentage deviation of

DECOMP DING-LDS w.r.t. DING-LDS, computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with DECOMP DING-LDS and
zD

min/avg the results obtained with DING-LDS.

13.5.6 Heuristic Branch & Price (HBP)

Heuristic Branch & Price has been executed over 10 independent runs
using the same set-up as for the 3L-CVRP, with one difference. The

13.5 experimental results 207

randomized savings heuristic is executed ` = 1 times per column gen-
eration execution.

13.5.7 Comparison with ACO-HCG

In the following we will individually compare the different Heuristic
Branch & Price variants with ACO-HCG. We consider two different
branching schemes: branching on arcs (HBPA) and branching on cus-
tomer pairs (HBPP). Both of these are combined with a Depth-First
Search (HBPA-DFS and HBPP-DFS) and a Limited Discrepancy Search
(HBPA-LDS and HBPP-LDS), resulting in a total of 4 different configu-
rations. The comparisons with ACO-HCG are done by computing for
each instance and both for ACO-HCG and the method under consider-
ation the mean relative deviation w.r.t. the best-bb solution denoted by
gbb

avg. The resulting values are then visualized in a scatter plot where
each point corresponds to one problem instance. The x-coordinate of
the point will correspond to gbb

avg for ACO-HCG and the y-coordinate
to gbb

avg for the method under consideration. HBP and ACO-HCG per-
form equally on the same instance if the point is on the diagonal, HBP
performs better if the point is under the diagonal, and ACO-HCG per-
forms better if the point is above the diagonal. Statistical significance
has been determined using a Wilcoxon signed-rank test with confi-
dence level 95%. The resulting plots are visualized in Fig. 13.8. The
explicit results are given in the appendix in tables B.8, B.9, B.10 and
B.11.

As for Dive & Generate, Heuristic Branch & Price is clearly out-
performed by ACO-HCG. Both HBPA-LDS and HBPP-LDS perform
slightly better than their DFS counterparts, although this is clearer
for HBPA. This is to be expected, as Limited Discrepancy Search en-
sures a more balanced exploration of the Heuristic Branch & Price
tree. The performance of HBPA-DFS and HBPP-DFS depends on the
instance. In 9 out 21 instances HBPP-DFS actually outperforms HBPA-
DFS. HBPP-LDS is outperformed by HBPP-DFS on 5 instances, while
it outperforms HBPA-LDS on 3 instances. Finally HBPA-LDS outper-
forms HBPA-DFS on 18 out of the 21 instances. None of the methods
is able to improve the bb-best result on average for any instance. Also
the methods perform generally worse than DING. The different perfor-
mances can’t be clearly linked to problem size or problem class. The

208 Chapter 13 multi-pile vehicle routing problem

0 2 4 6 8

0
2

4
6

8

ACO−HCG, gavg
bb %

H
B

PA
−

D
F

S
, g

a
vgb
b

 %

(a)

0 2 4 6

0
2

4
6

ACO−HCG, gavg
bb %

H
B

PA
−

LD
S

, g
a

vgb
b

 %

(b)

0 2 4 6 8

0
2

4
6

8

ACO−HCG, gavg
bb %

H
B

P
P

−
D

F
S

, g
a

vgb
b

 %

(c)

0 2 4 6

0
2

4
6

ACO−HCG, gavg
bb %

H
B

P
P

−
LD

S
, g

a
vgb
b

 %

(d)

Figure 13.8: Comparison of HBP and ACO-HCG. Each point gives the mean
%-deviation from the bb-best solution over 10 independent runs.
The symbols denote whether there is statistically significant dif-
ference (5) or not (2), or all the runs obtained the same cost (O).

13.5 experimental results 209

fact that HBPP-DFS performs better than HBPA-DFS on almost half
the instances comes as a surprise, as it was clearly outperformed by
HBPA-DFS on larger instances in the case of the 3L-CVRP. A closer
look at CPU time allocation and the number of generated routes is
necessary to explain this.
Plots comparing HBP with ACO-HCG in the manual configuration
from chapter 11 (denoted ACO-HCG in this chapter) can be found in
the appendix (Fig. B.4). Neither HBPA nor HBPP are able to improve
the results of ACO-HCG on any instance.

13.5.7.1 Analysis of CPU time allocation and Feasibility in generated routes

In this section the percentage of total execution time spent in different
parts of the algorithm is analyzed. Figures 13.9 give a visual represen-
tation of the percentage of the total execution time allocated to differ-
ent tasks in HBPA-DFS and HBPP-DFS. The plots for HBPA-LDS and
HBPP-LDS have been omitted for conciseness, but can be found in the
appendix (Fig. B.5). They are however very similar to those given here.
A detailed view of the time allocation is given in tables 13.7 and 13.8
(and tables B.12 and B.13 in the appendix for the LDS versions). The
tasks under consideration are the same as for ACO-HCG.Task %IP has
been omitted in both figures and tables since the percentage of time
spent solving SCP(R∗) is negligible.

%
 o

f T
ot

al
 E

xe
cu

tio
n

T
im

e

HBPA−DFS, CPU Time Allocation

Instance

CM
T01

_1

CM
T01

_2

CM
T01

_3

CM
T02

_1

CM
T02

_2

CM
T02

_3

CM
T03

_1

CM
T03

_2

CM
T03

_3

CM
T04

_1

CM
T04

_2

CM
T04

_3

CM
T05

_1

CM
T05

_2

CM
T05

_3

CM
T06

_1

CM
T06

_2

CM
T06

_3

CM
T07

_1

CM
T07

_2

CM
T07

_3

%LP
%BB
%ST
%GEN
%PO
%OTH

0
20

40
60

80
10

0

(a)

%
 o

f T
ot

al
 E

xe
cu

tio
n

T
im

e

HBPP−DFS, CPU Time Allocation

Instance

CM
T01

_1

CM
T01

_2

CM
T01

_3

CM
T02

_1

CM
T02

_2

CM
T02

_3

CM
T03

_1

CM
T03

_2

CM
T03

_3

CM
T04

_1

CM
T04

_2

CM
T04

_3

CM
T05

_1

CM
T05

_2

CM
T05

_3

CM
T06

_1

CM
T06

_2

CM
T06

_3

CM
T07

_1

CM
T07

_2

CM
T07

_3

%LP
%BB
%ST
%GEN
%PO
%OTH

0
20

40
60

80
10

0

(b)

Figure 13.9: HBP: CPU Time Allocation

A look at the Figures 13.9 reveals that in terms of time allocation
both HBPA and HBPP spend the majority of their time generating

210 Chapter 13 multi-pile vehicle routing problem

routes, and testing feasibility of routes w.r.t. Fbb. The time spent in
the black box is lower compared to DING-LDS (and to ACO-HCG)
but higher than with DING-DFS, whereas the time used to generate
routes is higher than DING (remember that with HBPA and HBPP col-
umn generation is executed at every non-leaf node, whereas in DING
column generation is executed only if the current lower bounds falls
outside a trust region.). In DING only customers not already visited
in a fixed route, are considered to appear in newly generated routes.
This means that the problem of generating routes of negative reduced
cost is more quickly more restricted as it is for HBP. This could mean
that DING-LDS has more facility in finding routes of negative reduced
cost than HBP and thus more routes are tested for bb-feasibility in
DING-LDS (remember the observation that with DING-DFS column
generation is executed only rarely).

When comparing HBPA and HBPP, it is visible that HBPP spends
(on most instances) more time in the black box than HBPA. This is
the case for all except for the largest instances (CMT05). This is sur-
prising given that the opposite was true for the 3L-CVRP. A possible
explanation for this higher quantity of time allocated to the tests for
bb-feasibility would be that the tree exploration is restarted more often
for HBPP than for HBPA. This would mean that the enforced route
generation were executed more often. The data however does not sup-
port this explanation.
There remain thus two possible explanations: either HBPP actually
tests more routes for bb-feasibility than HBPA, or it spends more time
testing a lower number of routes. As previously explained in chapter
10, in general a route is tested for bb-feasiblity in both directions. Given
that in HBPA the branching is performed on arcs, and thus the direc-
tion of the route matters w.r.t. the current subproblem, routes are only
checked in one direction for HBPA. This entails that infeasible routes
will not be stored as such, since they haven’t been proven to be infea-
sible in both directions, a requirement of the Feasibility store. Thus
it should actually be HBPA spending more time in the black box as
the same route will possibly be checked several times, and thus more
routes will be tested. On the other hand the fact that HBPP checks
routes both ways may also explain why it is HBPP that spends more
time in the black box for the MP-VRP. That is, if a given route is infeasi-
ble, in HBPP it will be reversed and checked for bb-feasibility again. In
the MP-VRP, routes are symmetric however, and a route infeasible one

13.5 experimental results 211

way will also be infeasible the other way. The loading black box uses
an upper bound to first easily show the infeasibility w.r.t. Fbb of a route.
If the upper bound fails to do this, an exact algorithm (with time limit
set to 5 sec) is used to prove the feasibility w.r.t. Fbb of a route. Possibly
the time limit of the exact algorithm is reached often in HBPP. If the
time limit is reached without the route being proven bb-feasible, then
HBPP will reverse the route and reexecute the check for bb-feasibility.
Based on the nature of the black box algorithm, in that case the time
limit of the exact algorithm will be reached again.

This latter explanation is however not sufficient to explain the differ-
ence in time allocated to the black box in HBPA and HBPP, since Tables
13.7 and 13.8 show that HBPP manages to accumulate a higher number
of feasible routes compared to HBPA. This was already the case for the
3L-CVRP, however there it was attributed to the fact that HBPP checks
routes in two directions, whereas HBPA doesn’t. This same argument
doesn’t hold here, as the side-problem for the MP-VRP is symmetric.
The only explanation that remains is thus that HBPP is able to gener-
ate more routes of negative reduced cost that are feasible, than HBPA.
A possible explanation for this is the observation that for HBPA ap-
plied to the MP-VRP there is a tendency to first branch on arcs that
are outgoing from the depot (depending of course on the values in the
current non-integral solution). Fixing such an arc possibly does not al-
low to restrict the set of possible routes as significantly as fixing a pair
of customers to a same route. Thus more restrictive problems are only
encountered deeper in the tree, and it is only deeper in the tree that
HBPA finds routes of negative reduced cost with ease.

Finally, HBPP spends more time in the Feasibility store Ψ (%ST). The
explanation for this last observation is the same as for the 3L-CVRP.
The fact that HBPA adds less routes to the Feasibility Store.

In Figure 13.10, the percentage of routes tested for bb-feasibility that
have been found to be feasible is illustrated for HBPP-DFS (the same
plot for HBPP-LDS has been omitted for conciseness, but is quite sim-
ilar and can be found in the appendix B.6). Since a same route may be
tested multiple times in HBPA, the plot for HBPA is not provided, as
the values obtained are not directly comparable to those obtained for
HBPP.

It can be seen that the percentage of feasible routes among the tested
ones for HBPP-DFS is higher on most instances compared to ACO-
HCG and similar to DING-LDS (and lower to DING-DFS). At the same

212 Chapter 13 multi-pile vehicle routing problem

F
ea

si
bl

e
%

 o
f T

es
te

d
R

ou
te

s

0
20

40
60

80
10

0

HBPP−DFS, Feasibility in tested routes

Instance

CM
T01

_1

CM
T01

_2

CM
T01

_3

CM
T02

_1

CM
T02

_2

CM
T02

_3

CM
T03

_1

CM
T03

_2

CM
T03

_3

CM
T04

_1

CM
T04

_2

CM
T04

_3

CM
T05

_1

CM
T05

_2

CM
T05

_3

CM
T06

_1

CM
T06

_2

CM
T06

_3

CM
T07

_1

CM
T07

_2

CM
T07

_3

Figure 13.10: HBPP-DFS: % of tested routes that were bb-feasible

time the number of tested routes (and also of feasible routes) is lower,
in some cases significantly lower, than for DING. The same holds for
ACO-HCG. Thus even if a considerable amount of time is spent testing
bb-feasibility of routes, it is still lower than for DING and ACO-HCG,
who consequently discover a higher number of feasible routes. This
can be explained by the simplistic pricing heuristic used in HBPP.

Finally, the exact numbers of feasible routes and routes stored in
Feasibility store Ψ, for HBPA-DFS and HBPP-DFS are given in tables
13.7 and 13.8. Note that for HBPP, |Ψ| corresponds to the total number
of routes checked for bb-feasibility. For HBPA, it corresponds to the
routes that have been positively tested for bb-feasibility in the tree, or

13.5 experimental results 213

the ones generated to initialize R∗, or the ones generated in enforced
route generation upon the construction of a new tree. As stated before,
HBPP generally obtains a higher number of feasible routes than HBPA.
HBPA-DFS has less routes in store and also less feasible routes than
HBPA-LDS. HBPP-DFS has sometimes a higher, sometimes a lower
amount of tested routes than HBPP-LDS. The same holds for the num-
ber of feasible routes. It should be noted however that on some in-
stances HBPP-DFS tests more routes than HBPP-LDS while achieving
a lower count of feasible routes. The opposite scenario can be observed
as well on selected instances.

13.5.7.2 Results obtained when solving SCP(R∗)

As for DING the final solution obtained in HBP is discovered in the
Heuristic Branch & Price tree. Possibly better results could be obtained
if one were to compute a final solution by solving problem SCP(R∗)
over the set of feasible routes R∗ accumulated during the HBP execu-
tion (approach denoted by HBP*). The results corresponding to this
are given in the appendix (tables B.14 to B.17). Again the observations
are similar to those made for the 3L-CVRP. HBP* allows to improve
over the results obtained with HBP. The improvements are bigger for
HBPA*-LDS and HBPP*-LDS than for HBPA*-DFS and HBPP*-DFS.
Again highest improvements are obtained with HBPP*-LDS. Solving
SCP(R∗) allows to improve the results of HBPP-LDS up to 2.24% (less
than for DING-LDS). Also the results obtained with HBPP*-LDS im-
prove (on average) over those obtained with HBPP*-DFS in 19 out of
21 instances. Furthermore the results obtained with HBPP*-LDS im-
prove (on average) over those obtained with HBPA*-LDS in 9 out of
21 instances. The execution times needed to solve SCP(R∗) are similar
for all configurations.

13.5.8 Comparison of all methods

Table 13.9 compares the results obtained on all considered approaches
using the configurations described in this section with the best results
obtained using the Variable Neighborhood Search in its best config-
uration (VNS) presented in [TDHI09]. It is the loading algorithm de-
scribed in this paper that has been used as black box function and is
used in the experiments described in this section. Columns zmin and
zavg give the best and the average solution cost determined over 10

214 Chapter 13 multi-pile vehicle routing problem

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

CMT01-1 0.4 73.4 0 25.5 0.1 2179.6 8037.8

CMT01-2 1.1 33.0 0 64.1 0.1 2557.2 9539.4

CMT01-3 1.2 19.5 0 76.9 0.1 2708.8 10977.7

CMT02-1 0.4 15.3 0 83.7 0.0 2143.1 5818.6

CMT02-2 0.4 19.2 0 79.8 0.0 2331.4 7893.9

CMT02-3 0.5 17.3 0 81.7 0.0 2349.0 8181.1

CMT03-1 0.2 23.3 0 76.3 0.0 2094.2 6342.2

CMT03-2 0.2 13.2 0 86.4 0.0 2068.3 6718.2

CMT03-3 0.2 15.8 0 83.7 0.0 2394.7 8018.7

CMT04-1 0.1 36.4 0 63.4 0.0 2092.5 7309.0

CMT04-2 0.1 27.9 0 71.9 0.0 2261.4 9174.9

CMT04-3 0.1 24.8 0 74.9 0.0 2363.7 9265.0

CMT05-1 0.0 50.3 0 49.5 0.0 2315.2 9715.1

CMT05-2 0.1 48.2 0 51.6 0.1 2431.9 11013.4

CMT05-3 0.1 35.5 0 64.3 0.0 2471.3 12506.9

CMT06-1 0.1 54.5 0 45.3 0.0 2483.5 9140.6

CMT06-2 0.1 50.1 0 49.6 0.0 2243.2 8310.7

CMT06-3 0.1 22.9 0 76.8 0.0 2351.6 9328.3

CMT07-1 0.1 23.0 0 76.6 0.0 2266.7 6165.3

CMT07-2 0.1 15.1 0 84.5 0.0 2146.3 6146.2

CMT07-3 0.1 18.3 0 81.3 0.0 2348.9 6257.5

Table 13.7: HBPA-DFS : CPU Time Allocation, # feasible routes, # routes in Feasibility
Store (|Ψ|)

13.5 experimental results 215

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

CMT01-1 0.3 70.0 1.8 27.4 0.1 2980.2 11268.3

CMT01-2 0.4 59.1 2.4 37.3 0.1 3566.6 27800.2

CMT01-3 0.6 32.0 4.0 61.8 0.1 4197.1 23648.9

CMT02-1 0.2 26.5 3.9 69.0 0.1 2685.3 34209.7

CMT02-2 0.2 39.6 3.2 56.6 0.1 3438.5 23275.8

CMT02-3 0.3 28.6 3.7 67.0 0.1 3564.2 19707.5

CMT03-1 0.1 29.8 3.4 66.5 0.1 2977.0 18325.0

CMT03-2 0.1 18.0 3.9 77.7 0.1 2985.0 20252.4

CMT03-3 0.1 22.0 3.7 74.0 0.1 2965.0 20646.5

CMT04-1 0.1 36.8 2.6 60.4 0.1 2839.7 17355.9

CMT04-2 0.1 19.7 3.4 76.8 0.1 2730.4 16704.5

CMT04-3 0.1 21.3 3.3 75.2 0.1 3267.1 16791.3

CMT05-1 0.1 24.3 2.7 72.9 0.1 2794.0 21710.8

CMT05-2 0.1 32.9 2.3 64.6 0.1 2567.9 18948.5

CMT05-3 0.1 19.7 2.9 77.2 0.1 2936.5 21268.2

CMT06-1 0.0 53.7 2.0 44.0 0.1 2587.4 32282.7

CMT06-2 0.0 58.3 1.8 39.7 0.1 2750.1 35429.1

CMT06-3 0.1 28.4 3.2 68.2 0.1 3030.6 41290.3

CMT07-1 0.0 33.0 3.0 63.8 0.1 2011.4 33331.4

CMT07-2 0.1 20.8 3.6 75.3 0.1 2200.1 30135.3

CMT07-3 0.0 31.3 3.1 65.4 0.1 2214.9 36986.0

Table 13.8: HBPP-DFS : CPU Time Allocation, # feasible routes, # routes in Feasibility
Store (|Ψ|)

216 Chapter 13 multi-pile vehicle routing problem

runs for all methods and for VNS. Columns sectt give the total execu-
tion times. They are only indicated for VNS and ACO- HCG as the
values for DING and HBP are very similar to those of ACO-HCG.
ACO-HCG is able to improve the best solution from VNS in 14 out
of 21 instances. Furthermore it improves the average solution in 15

instances. Small variations as these on instance CMT02-1 for exam-
ple (615.11 vs 615.12) are to be attributed to rounding. The remaining
methods clearly perform worse than ACO-HCG. DING is able to im-
prove the best solution from VNS in 3 instances, HBP never achieves
an improvement. None of DING or HBP is able to improve the aver-
age results of VNS in a consistent way, as ACO-HCG does. In terms
of execution times, no exact numbers are given in [TDHI09]. However
the time limit used is similar, and ACO-HCG exceeds the VNS time
limit at most by 238 CPU seconds. The execution times are thus com-
parable.
In general DING, HBPA and HBPP perform worse for the MP-VRP
than for the 3L-CVRP. This can be explained by the fact that the MP-
VRP instances are larger (higher number of customers). Obviously
DING and HBP do not scale well, which is to be expected due to the
fact that the size of their respective search trees grows with the num-
ber of customers and vehicles (the latter of which is unlimited in the
MP-VRP).

Table 13.10 shows, in columns %gallb
avg , the average relative deviation

from the overall best known solution from the state-of-the-art for the
MP-VRP (this doesn’t include results published in [MDVH12] or
[MLISD13]). The relative deviation for one run is computed as 100 ·
z−zallb

zallb
, where z corresponds to the solution cost obtained using the

methods presented in this thesis and zallb corresponds to the best
known solution cost. The table furthermore indicates in column zallb
for each instances the best known solution cost, and in columns zmin
the cost of the best solution found over all runs for the presented meth-
ods. Negative values for%gallb

avg indicate that the corresponding method
improves the best known solution on average.

ACO-HCG improves or ties with the best known solution in 11 out
of 21 instances. It is able to improve on average the best known in 2

instances. The results obtained with the other methods are less good.
Only DING-LDS allows to improve the best known solution one one in-
stance. Note that for ACO-HCG, the average gap w.r.t. the best known

13.5 experimental results 217

In
st

an
ce

V
N

S
A

C
O

-H
C

G
D

IN
G

-D
FS

D
IN

G
-L

D
S

H
B

PA
-D

FS
H

B
PA

-L
D

S
H

B
PP

-D
FS

H
B

PP
-L

D
S

z m
in

z a
vg

se
c t

t
z m

in
z a

vg
se

c t
t

z m
in

z a
vg

z m
in

z a
vg

z m
in

z a
vg

z m
in

z a
vg

z m
in

z a
vg

z m
in

z a
vg

C
M

T0
1-

1
59

0.
55

59
1.

80
18

00
58

7.
81

59
0.

10
18

23
.6

59
0.

08
59

8.
14

59
4.

54
59

9.
13

59
0.

24
60

4.
74

59
8.

24
60

3.
81

59
4.

88
60

4.
10

59
8.

14
60

4.
72

C
M

T
01

-2
61

5.
12

64
0.

07
18

00
61

5.
11

61
8.

50
18

04
.7

63
1.

19
64

3.
67

61
6.

74
62

1.
84

63
0.

37
64

0.
50

63
4.

93
64

3.
94

62
7.

26
65

8.
54

63
0.

13
65

2.
02

C
M

T
01

-3
62

3.
45

63
4.

46
18

00
62

3.
44

62
4.

76
18

04
.4

62
8.

94
64

7.
79

62
3.

91
63

1.
02

63
3.

24
64

2.
14

63
1.

68
64

0.
25

63
3.

03
64

6.
43

63
1.

68
64

0.
38

C
M

T
02

-1
98

2.
38

98
6.

12
18

00
97

5.
56

97
6.

16
18

55
.3

98
3.

07
10

18
.0

5
97

6.
63

98
4.

97
10

08
.8

1
10

36
.0

8
99

3.
97

10
18

.1
2

10
00

.0
2

10
34

.1
8

99
1.

88
10

26
.1

3

C
M

T0
2-

2
90

0.
03

90
1.

01
18

00
89

8.
38

90
2.

93
18

37
.9

91
9.

97
94

1.
38

90
7.

50
91

5.
13

92
1.

24
94

4.
71

93
3.

69
94

4.
22

92
7.

61
95

5.
95

94
3.

53
95

5.
71

C
M

T
02

-3
88

9.
29

89
2.

11
18

00
88

9.
26

89
0.

85
18

17
.8

90
3.

61
94

2.
57

88
9.

88
90

4.
18

91
6.

07
94

2.
10

92
6.

99
93

4.
13

92
1.

57
93

9.
43

91
4.

48
93

3.
59

C
M

T0
3-

1
11

91
.8

3
11

97
.4

4
18

00
11

83
.7

6
11

86
.6

1
18

09
.1

12
12

.7
5

12
55

.7
6

11
89

.4
5

12
00

.6
4

12
30

.5
0

12
62

.8
5

12
32

.2
3

12
47

.7
7

12
31

.1
4

12
67

.2
6

12
10

.4
7

12
53

.3
6

C
M

T0
3-

2
12

19
.8

3
12

22
.3

7
18

00
12

19
.1

5
12

22
.5

2
18

93
.8

12
51

.4
3

12
68

.2
0

12
34

.4
0

12
46

.2
8

12
73

.5
5

12
87

.7
5

12
61

.7
9

12
82

.9
2

12
68

.3
8

12
91

.5
6

12
68

.1
2

12
93

.4
3

C
M

T0
3-

3
11

61
.0

3
11

62
.4

9
18

00
11

57
.2

2
11

61
.1

5
18

18
.6

11
90

.5
5

12
28

.7
4

11
74

.4
9

11
85

.8
1

12
08

.3
4

12
38

.7
8

12
15

.6
8

12
36

.5
3

12
02

.5
9

12
39

.0
6

12
06

.3
5

12
37

.9
0

C
M

T0
4-

1
16

32
.1

0
16

35
.7

8
18

00
16

17
.1

2
16

30
.0

1
19

34
.3

16
72

.1
6

17
05

.9
3

16
29

.6
1

16
59

.5
7

16
90

.8
4

17
15

.4
2

16
82

.2
2

17
07

.6
6

16
89

.0
0

17
13

.1
1

16
90

.8
4

17
16

.1
3

C
M

T
04

-2
15

59
.0

5
15

62
.8

3
18

00
15

47
.3

0
15

53
.7

6
19

84
.4

15
86

.1
8

16
23

.1
8

15
73

.1
6

15
87

.4
7

16
10

.6
1

16
36

.6
6

16
12

.6
9

16
29

.3
8

16
12

.6
9

16
35

.1
1

16
12

.6
9

16
35

.4
0

C
M

T0
4-

3
15

43
.1

3
15

47
.9

0
18

00
15

41
.4

1
15

48
.0

0
18

83
.7

15
99

.2
7

16
36

.4
8

15
68

.0
1

15
77

.4
0

16
08

.0
1

16
47

.4
8

16
10

.1
7

16
34

.0
5

16
33

.9
5

16
53

.6
2

16
17

.0
0

16
46

.4
2

C
M

T
05

-1
20

38
.7

5
20

49
.2

5
18

00
20

24
.9

1
20

41
.6

7
20

37
.5

20
65

.6
9

21
00

.8
9

20
52

.3
5

20
79

.3
1

20
97

.4
2

21
17

.6
1

20
85

.4
0

21
15

.4
8

20
91

.1
3

21
20

.4
5

20
98

.1
0

21
16

.5
9

C
M

T0
5-

2
18

34
.2

3
18

39
.5

4
18

00
18

49
.7

6
18

63
.5

3
20

38
.8

19
00

.7
6

19
18

.4
7

18
75

.5
8

18
93

.3
3

18
76

.0
2

19
24

.8
4

18
99

.3
2

19
28

.2
9

18
76

.0
2

19
27

.5
9

18
98

.1
5

19
31

.1
9

C
M

T0
5-

3
19

58
.4

2
19

65
.8

5
18

00
19

52
.3

2
19

61
.7

5
19

85
.1

20
08

.7
0

20
40

.9
1

19
92

.7
1

20
03

.0
7

20
30

.2
1

20
59

.5
6

20
30

.5
6

20
57

.0
8

20
38

.8
0

20
63

.5
1

20
30

.2
1

20
58

.7
6

C
M

T0
6-

1
22

47
.3

4
22

54
.2

8
18

00
22

50
.7

6
22

58
.6

0
19

14
.9

23
12

.3
6

23
68

.7
2

22
98

.8
7

23
33

.7
2

23
35

.9
3

23
99

.2
6

23
37

.2
8

23
75

.6
7

23
28

.4
5

23
73

.2
9

23
18

.8
6

23
93

.9
1

C
M

T0
6-

2
20

89
.6

8
21

02
.6

4
18

00
20

85
.1

6
21

03
.6

9
18

63
.9

21
30

.0
6

21
78

.8
9

21
30

.1
0

21
70

.4
5

21
59

.6
3

22
22

.9
1

21
47

.8
0

21
99

.6
4

21
45

.3
0

22
20

.5
4

21
47

.8
0

22
01

.9
2

C
M

T0
6-

3
21

55
.2

3
21

83
.1

2
18

00
21

52
.8

4
21

68
.9

3
18

48
.3

22
13

.7
2

22
68

.2
4

21
90

.9
7

22
12

.8
0

22
87

.5
9

23
35

.4
3

22
31

.2
8

23
12

.6
8

22
16

.3
0

23
19

.9
6

22
34

.4
7

23
01

.2
6

C
M

T0
7-

1
11

36
.5

8
11

36
.6

1
18

00
11

39
.8

5
11

49
.1

8
18

45
.5

11
71

.2
8

11
91

.6
6

11
77

.3
1

11
88

.1
5

11
85

.6
3

12
11

.6
9

11
86

.5
2

12
13

.1
2

11
85

.6
3

12
17

.4
0

11
75

.0
8

12
15

.0
7

C
M

T0
7-

2
12

24
.6

1
12

28
.6

1
18

00
12

14
.9

5
12

17
.2

0
18

43
.4

12
53

.6
1

12
83

.3
3

12
36

.6
8

12
66

.5
3

12
48

.9
8

12
96

.2
7

12
36

.6
8

12
83

.6
1

12
39

.0
3

12
84

.6
2

12
48

.9
8

12
93

.7
7

C
M

T0
7-

3
11

58
.9

8
11

65
.1

3
18

00
11

53
.8

1
11

67
.7

1
18

36
.4

11
92

.9
2

12
29

.3
5

11
90

.3
9

12
06

.1
6

12
23

.0
4

12
41

.7
5

11
99

.8
9

12
28

.3
8

11
96

.2
1

12
40

.7
5

11
99

.4
7

12
25

.6
3

A
V

G
<

18
00

18
80

.1

Ta
bl

e
1

3
.9

:C
om

pa
ri

so
n

of
pr

op
os

ed
m

et
ho

ds
w

it
h

V
N

S
([

TD
H

I0
9
])

.
z m

in
/

av
g

co
rr

es
po

nd
s

to
th

e
be

st
/a

ve
ra

ge
so

lu
ti

on
va

lu
e

ov
er

1
0

ru
ns

.
se

c t
t

co
rr

es
po

nd
s

to
th

e
av

er
ag

e
to

ta
l

ex
ec

ut
io

n
ti

m
e.

se
c t

t
is

in
di

ca
te

d
fo

r
V

N
S

an
d

A
C

O
-H

C
G

on
ly

.R
em

ai
ni

ng
ex

ec
ut

io
n

ti
m

es
ar

e
eq

ua
l

(g
iv

e
or

ta
ke

5
se

co
nd

s)
to

A
C

O
-H

C
G

.V
al

ue
s

in
bo

ld
in

th
e

z m
in

co
lu

m
ns

in
di

ca
te

th
at

th
e

co
rr

es
po

nd
in

g
ap

pr
oa

ch
is

a
ti

e
w

it
h

or
im

pr
ov

es
th

e
be

st
so

lu
ti

on
of

th
e

V
N

S.
V

al
ue

s
in

ita
lic

in
th

e
z a

vg
co

lu
m

n
in

di
ca

te
th

at
th

e
av

er
ag

e
ov

er
1

0
ru

ns
ob

ta
in

ed
w

it
h

th
e

co
rr

es
po

nd
in

g
ap

pr
oa

ch
is

a
ti

e
w

it
h

or
im

pr
ov

es
th

e
av

er
ag

e
re

su
lt

s
pu

bl
is

he
d

in
[T

D
H

I0
9
].

218 Chapter 13 multi-pile vehicle routing problem

solution, averaged over all instances, amounts to only 0.5%. This value
is higher, up to 6% for the other methods.

13.5 experimental results 219

Instance
B

est
know

n
A

C
O

-H
C

G
D

IN
G

-D
FS

D
IN

G
-LD

S
H

B
PA

-D
FS

H
B

PA
-LD

S
H

B
PP-D

FS
H

B
PP-LD

S

zm
in

zm
in

g
avg

zm
in

g
avg

zm
in

g
avg

zm
in

g
avg

zm
in

g
avg

zm
in

g
avg

zm
in

g
avg

C
M

T
0

1-
1

5
8

7.
2

9
5

8
7.

8
1

0.
5

5
9

0.
0

8
1.

9
5

9
4.

5
4

2.
0

5
9

0.
2

4
3.

0
5

9
8.

2
4

2.
8

5
9

4.
8

8
2.

9
5

9
8.

1
4

3.
0

C
M

T
0

1-
2

6
1

5.
1

2
615.11

0.
6

6
3

1.
1

9
4.

6
6

1
6.

7
4

1.
1

6
3

0.
3

7
4.

1
6

3
4.

9
3

4.
7

6
2

7.
2

6
7.

1
6

3
0.

1
3

6.
0

C
M

T
0

1-
3

6
2

3.
4

5
623.44

0.
2

6
2

8.
9

4
3.

9
6

2
3.

9
1

1.
2

6
3

3.
2

4
3.

0
6

3
1.

6
8

2.
7

6
3

3.
0

3
3.

7
6

3
1.

6
8

2.
7

C
M

T
0

2-
1

9
7

8.
6

6
975.56

-
0.

3
9

8
3.

0
7

4.
0

976.63
0.

6
1

0
0

8.
8

1
5.

9
9

9
3.

9
7

4.
0

1
0

0
0.

0
2

5.
7

9
9

1.
8

8
4.

9

C
M

T
0

2-
2

8
9

7.
6

2
8

9
8.

3
8

0.
6

9
1

9.
9

7
4.

9
9

0
7.

5
2.

0
9

2
1.

2
4

5.
2

9
3

3.
6

9
5.

2
9

2
7.

6
1

6.
5

9
4

3.
5

3
6.

5

C
M

T
0

2-
3

8
8

8.
3

8
8

8
9.

2
6

0.
3

9
0

3.
6

1
6.

1
8

8
9.

8
8

1.
8

9
1

6.
0

7
6.

0
9

2
6.

9
9

5.
1

9
2

1.
5

7
5.

7
9

1
4.

4
8

5.
1

C
M

T
0

3-
1

1
1

8
8.

1
8

1183.76
-
0.

1
1

2
1

2.
7

5
5.

7
1

1
8

9.
4

5
1.

1
1

2
3

0.
5

0
6.

3
1

2
3

2.
2

3
5.

0
1

2
3

1.
1

4
6.

7
1

2
1

0.
4

7
5.

5

C
M

T
0

3-
2

1
2

1
8.

9
6

1
2

1
9.

1
5

0.
3

1
2

5
1.

4
3

4.
0

1
2

3
4.

4
0

2.
2

1
2

7
3.

5
5

5.
6

1
2

6
1.

7
9

5.
2

1
2

6
8.

3
8

6.
0

1
2

6
8.

1
2

6.
1

C
M

T
0

3-
3

1
1

5
6.

8
4

1
1

5
7.

2
2

0.
4

1
1

9
0.

5
5

6.
2

1
1

7
4.

4
9

2.
5

1
2

0
8.

3
4

7.
1

1
2

1
5.

6
8

6.
9

1
2

0
2.

5
9

7.
1

1
2

0
6.

3
5

7.
0

C
M

T
0

4-
1

1
6

2
4.

9
8

1617.12
0.

3
1

6
7

2.
1

6
5.

0
1

6
2

9.
6

1
2.

1
1

6
9

0.
8

4
5.

6
1

6
8

2.
2

2
5.

1
1

6
8

9.
0

0
5.

4
1

6
9

0.
8

4
5.

6

C
M

T
0

4-
2

1
5

5
2.

2
7

1547.30
0.

1
1

5
8

6.
1

8
4.

6
1

5
7

3.
1

6
2.

3
1

6
1

0.
6

1
5.

4
1

6
1

2.
6

9
5.

0
1

6
1

2.
6

9
5.

3
1

6
1

2.
6

9
5.

4

C
M

T
0

4-
3

1
5

4
1.

8
1

1541.41
0.

4
1

5
9

9.
2

7
6.

1
1

5
6

8.
0

1
2.

3
1

6
0

8.
0

1
6.

9
1

6
1

0.
1

7
6.

0
1

6
3

3.
9

5
7.

3
1

6
1

7.
0

0
6.

8

C
M

T
0

5-
1

2
0

3
5.

7
7

2024.91
0.

3
2

0
6

5.
6

9
3.

2
2

0
5

2.
3

5
2.

1
2

0
9

7.
4

2
4.

0
2

0
8

5.
4

0
3.

9
2

0
9

1.
1

3
4.

2
2

0
9

8.
1

0
4.

0

C
M

T
0

5-
2

1
8

3
3.

4
1

1
8

4
9.

7
6

1.
6

1
9

0
0.

7
6

4.
6

1
8

7
5.

5
8

3.
5

1
8

7
6.

0
2

5.
0

1
8

9
9.

3
2

5.
2

1
8

7
6.

0
2

5.
1

1
8

9
8.

1
5

5.
3

C
M

T
0

5-
3

1
9

4
8.

8
4

1
9

5
2.

3
2

0.
7

2
0

0
8.

7
0

4.
7

1
9

9
2.

7
1

2.
8

2
0

3
0.

2
1

5.
7

2
0

3
0.

5
6

5.
6

2
0

3
8.

8
0

5.
9

2
0

3
0.

2
1

5.
6

C
M

T
0

6-
1

2
2

4
0.

5
7

2
2

5
0.

7
6

0.
8

2
3

1
2.

3
6

5.
7

2
2

9
8.

8
7

4.
2

2
3

3
5.

9
3

7.
1

2
3

3
7.

2
8

6.
0

2
3

2
8.

4
5

5.
9

2
3

1
8.

8
6

6.
8

C
M

T
0

6-
2

2
0

7
0.

0
4

2
0

8
5.

1
6

1.
6

2
1

3
0.

0
6

5.
3

2
1

3
0.

1
0

4.
9

2
1

5
9.

6
3

7.
4

2
1

4
7.

8
0

6.
3

2
1

4
5.

3
0

7.
3

2
1

4
7.

8
0

6.
4

C
M

T
0

6-
3

2
1

5
4.

1
9

2152.84
0.

7
2

2
1

3.
7

2
5.

3
2

1
9

0.
9

7
2.

7
2

2
8

7.
5

9
8.

4
2

2
3

1.
2

8
7.

4
2

2
1

6.
3

0
7.

7
2

2
3

4.
4

7
6.

8

C
M

T
0

7-
1

1
1

3
6.

5
5

1
1

3
9.

8
5

1.
1

1
1

7
1.

2
8

4.
9

1
1

7
7.

3
1

4.
5

1
1

8
5.

6
3

6.
6

1
1

8
6.

5
2

6.
7

1
1

8
5.

6
3

7.
1

1
1

7
5.

0
8

6.
9

C
M

T
0

7-
2

1
2

1
7.

4
5

1214.95
0.

0
1

2
5

3.
6

1
5.

4
1

2
3

6.
6

8
4.

0
1

2
4

8.
9

8
6.

5
1

2
3

6.
6

8
5.

4
1

2
3

9.
0

3
5.

5
1

2
4

8.
9

8
6.

3

C
M

T
0

7-
3

1
1

5
7.

6
7

1153.81
0.

9
1

1
9

2.
9

2
6.

2
1

1
9

0.
3

9
4.

2
1

2
2

3.
0

4
7.

3
1

1
9

9.
8

9
6.

1
1

1
9

6.
2

1
7.

2
1

1
9

9.
4

7
5.

9

A
V

G
0.

5
4.

9
2.

6
5.

8
5.

3
6.

0
5.

6

Table
1

3.
1

0:
C

om
parison

ofproposed
m

ethods
w

ith
overallbestknow

n
results

(all-best)for
M

P-V
R

P.zm
in

corresponds
to

the
bestsolution

value
(over

1
0

runs
for

the
proposed

m
ethods).%

g
allb
avg

corresponds
to

the
average

relative
percentage

deviation
from

the
best

know
n

result.N
egative

%
g

allb
avg

values
indicate

that
the

best
know

n
solution

is
im

proved
on

average.V
alues

in
bold

in
the

zm
in

colum
ns

indicate
that

the
corresponding

approach
is

a
tie

w
ith

or
im

proves
the

best
know

n.

14
V R P B B W I T H M I N M A X O B J E C T I V E

The MinMax Capacitated Vehicle Routing Problem is a basic CVRP
with a different objective. The goal is to find a solution such that the
distance of the longest (read highest distance) route is minimized. Dif-
ferent problems with this objective function have been considered in
the literature, such as the CVRP [GLT97] or the selective VRP where
not all customers must be visited [VMdCM11]. The objective also often
appears in disaster management applications, where equal fairness to
all customers is of importance [CVH08].

14.1 problem description

The goal of the MinMax CVRP is to devise a solution Sol = {r1, . . . , rm}
amounting to a set of routes such that:

1. |Sol| ≤ |K|
the solution does not use more vehicles than available

2.
⋂

ri∈Sol ri.S = ∅ and
⋃

ri∈Sol ri.S = V\{0}
each customer is visited exactly once

3. ∑j∈r.S qj ≤ Q ∀r ∈ Sol,
the sum of the customer demands on a route does not exceed the
capacity Q

221

222 Chapter 14 vrpbb with minmax objective

4. min argmaxr∈Sol distance(r)
the distance of the longest route is minimized

14.2 adaptation of aco-hcg to the minmax objective

To adapt the approach presented in chapter 6 to the MinMax objective,
three modifications are necessary. They are described below.

14.2.1 MinMax VRPBB as a Set Covering Problem

The Pheromone-based Heuristic Column Generation method propo-
sed in chapter 6 solves the CVRPBB as a Set Covering/Partitioning
Problem. In this classical formulation a cost, the distance, is associated
with each route, and the goal is to select the set of routes such that the
Set Covering/Partitioning constraints are respected and such that the
total cost (i.e. distance) is minimized. Since in the case of the MinMax
VRPBB the objective is a different one, the Set Partitioning formulation
needs to be adapted as follows:

Min z (14.1)

s.t. ∑
r∈R

airxr = 1 ∀i ∈ V\0 (14.2)

∑
r∈R

xr ≤ K (14.3)

orxr ≤ z ∀r ∈ R (14.4)

xr ∈ {0, 1} ∀r ∈ R (14.5)

air =

{
1 if customer i is visited in route r

0 otherwise
∀i ∈ V\0, ∀r ∈ R

As before set R corresponds to the set of all wb- and bb-feasible
routes. The cost or associated with route r ∈ R is given by
distance(r) = ∑|r.S|

s=0 cr[s]r[s+1]. An additional variable z is introduced
here. It is the value of this variable that must be minimized. Con-
straints 14.5 force z to take a value at least as high as the cost of each
of the selected routes. As furthermore the value of z is minimized it
will take exactly the value of the highest cost selected route. This prob-

14.2 adaptation of aco-hcg to the minmax obj. 223

lem formulated over a set of feasible routes R∗ is called MMSCP(R∗).

14.2.2 Solving the intermediary problem

All of the presented approaches rely on the fact that the linear relax-
ation of the original problem, possibly augmented with additional con-
straints, is solved from time to time. In the case of the MinMax VRPBB
it is important to have a tight global upper bound at all times (as is
explained in the next section). In the case of the Pheromone-based
Heuristic Column Generation not the linear relaxation but the integer
problem will be solved, although possibly not to optimality for effi-
ciency reasons, in order to obtain an upper bound. A similar approach
is used in [VMdCM11].

14.2.3 Generating Feasible Columns

The Pheromone-based Heuristic Column Generation method uses a
version of randomized savings heuristic to generate feasible routes. It
starts from an initial state where each customer is visited in a route of
its own, and then iteratively selects a pair of routes in the current state
to be merged.

The heuristic computes a list of candidate merges containing the
most attractive wb-feasible merges in the current state. The heuristic in-
formation used in the computation of this attractiveness is the savings
value, i.e. the amount of distance that can be saved when executing
the merge. This measure is however not appropriate when consider-
ing a MinMax objective. Using the savings value, nothing guarantees
that the routes are built to be equally long. This is why the heuristic
computes for each merge the amount by which the distance of the cur-
rently longest route in the current state is increased. This measure is
then used as heuristic value in the computation of the attractiveness of
each merge.

The heuristic evaluates the bb-feasibility of all or only of some of
the merges in the candidate list, depending on the approach. If an
upper bound UB is given on the objective value of the current MinMax
VRPBB (by a previous solution for example), then we know that bb-

224 Chapter 14 vrpbb with minmax objective

feasibility of routes r s.t. distance(r) ≥ UB need not be evaluated, since
the route can never be part of a solution sol s.t. Obj(sol) < UB.

14.3 experimental results

In this section the results obtained on both the 3L-CVRP and the MP-
VRP with MinMax objective are presented. The time limits used are
those already used in the previous experiments for the 3L-CVRP and
the MP-VRP. Results have been obtained over 10 independent runs.

14.3.1 MinMax 3L-CVRP

The Pheromone-based Heuristic Column Generation has been applied
using the automatic configuration (except for parameters useint and f
as problem MMSCP(R∗) is solved every iteration for the MinMax).
No automated parameter setting has been conducted fro the MinMax
3L-CVRP. The automatic configuration has been chosen for simplicity,
but it is potentially not high-performing. The results are given in Table
14.1.

A look at Table 14.1 reveals that for the large-scale instances the
relative standard deviation is quite high, up to 22.5% for instance 3l-
cvrp25. An interesting observation is that for these instances, the cost
of the final solution corresponds to the cost of the first feasible solution
(combined from feasible routes generated completely at random). That
is, the initial solution is never improved throughout the process. This
is due to the fact that the time limits allowed for solving problem
MMSCP(R∗) are reached before the current upper bound is improved.
The lower bounds of problem MMSCP(R∗) are very weak, and thus
do not allow to prune important parts of the search tree. This weakness
is however reinforced by the fact, that in the current implementation,
problem MMSCP(R∗) is solved from scratch each time. This could
be easily remedied by using the current best solution to warm start
CPLEX.

14.3.2 MinMax MP-VRP

As the number of vehicles is not limited in the MP-VRP benchmark
instances, the objective of the problem will always correspond to the
distance from the depot to the most distant customer and back. There-

14.3 experimental results 225

Instance ACO-HCG-MINMAX

K n zmin zavg %RSD sectt

3l-cvrp01 4 15 86.17 86.17 0.0 1801.0

3l-cvrp02 5 15 75.77 75.77 0.0 1800.3

3l-cvrp03 4 20 106.84 109.23 0.8 1803.0

3l-cvrp04 6 20 83.11 84.25 1.4 1801.2

3l-cvrp05 6 21 99.41 99.41 0.0 1807.2

3l-cvrp06 6 21 106.89 106.89 0.0 1802.1

3l-cvrp07 6 22 164.79 164.79 0.0 1808.2

3l-cvrp08 6 22 169.86 169.86 0.0 1806.3

3l-cvrp09 8 25 96.71 96.71 0.0 1801.3

3l-cvrp10 8 29 137.53 137.53 0.0 3635.0

3l-cvrp11 8 29 137.53 137.53 0.0 3626.3

3l-cvrp12 9 30 81.62 82.07 1.8 3603.4

3l-cvrp13 8 32 509.03 509.03 0.0 3648.0

3l-cvrp14 9 32 237.74 237.74 0.0 3633.3

3l-cvrp15 9 32 237.74 237.74 0.0 3633.9

3l-cvrp16 11 35 77.41 77.41 0.0 3611.0

3l-cvrp17 14 40 74.56 74.59 0.2 3607.1

3l-cvrp18 11 44 259.67 259.67 0.0 3654.1

3l-cvrp19 12 50 87.86 87.86 0.0 7286.4

3l-cvrp20 18 71 52.95 52.95 0.0 7360.2

3l-cvrp21 17 75 100.12 126.99 14.3 7440.7

3l-cvrp22 18 75 89.31 120.60 16.3 7426.5

3l-cvrp23 17 75 122.83 142.34 7.5 7418.4

3l-cvrp24 16 75 133.76 160.62 12.1 7386.8

3l-cvrp25 22 100 102.25 134.56 22.5 7495.0

3l-cvrp26 26 100 117.05 117.05 0.0 7455.8

3l-cvrp27 23 100 132.87 152.38 8.3 7521.7

AVG 3.1 4284.2

Table 14.1: Results for the 3L-CVRP with MinMax objective. zmin/avg= best/av-
erage distance of the longest route,%RSD=relative standard
deviation,sectt=average total execution time.

226 Chapter 14 vrpbb with minmax objective

fore the number of vehicles has been limited to n/5 in these instances.
The Pheromone-based Heuristic Column Generation has been applied
using the automatic configuration (except for parameters useint and f
as problem MMSCP(R∗) is solved every iteration for the MinMax).
No automated parameter setting has been conducted fro the MinMax
MP-VRP. The automatic configuration has been chosen for simplicity,
but it is potentially not high-performing. The results are given in Table
14.2.

Clearly the limit on the number of vehicle is not sufficiently restric-
tive to forbid single-customers routes for most instances. We see that
for all instances except those of class CMT02, the cost of the best solu-
tion and the average solution are the same. Over the 10 runs, the same
best solution is produced. In these solutions the routes setting the so-
lution cost (i.e. the longest route) correspond to one customer routes.
Finally instances CMT03, CMT04 and CMT05 share a set of customers,
among which we find the most distant customer for the three instance
classes at a distance of 99.86/2 from the central depot.

14.3 experimental results 227

Instance ACO-HCG-MINMAX

K n zmin zavg %RSD sectt

CMT01-1 1 50 87.86 87.86 0.0 1883.4

CMT01-2 2 50 87.86 87.86 0.0 1857.0

CMT01-3 3 50 87.86 87.86 0.0 1842.0

CMT02-1 1 75 88.45 88.48 0.1 1962.7

CMT02-2 2 75 86.60 86.81 0.2 1982.0

CMT02-3 3 75 86.90 87.02 0.2 1947.7

CMT03-1 1 100 99.86 99.86 0.0 1959.9

CMT03-2 2 100 99.86 99.86 0.0 2060.7

CMT03-3 3 100 99.86 99.86 0.0 2008.8

CMT04-1 1 150 99.86 99.86 0.0 1982.2

CMT04-2 2 150 99.86 99.86 0.0 1964.1

CMT04-3 3 150 99.86 99.86 0.0 1960.1

CMT05-1 1 199 99.86 99.86 0.0 2140.2

CMT05-2 2 199 99.86 99.86 0.0 1923.7

CMT05-3 3 199 99.86 99.86 0.0 2139.8

CMT06-1 1 120 198.56 198.56 0.0 2134.0

CMT06-2 2 120 198.56 198.56 0.0 2111.3

CMT06-3 3 120 198.56 198.56 0.0 2051.0

CMT07-1 1 100 117.05 117.05 0.0 1827.3

CMT07-2 2 100 117.05 117.05 0.0 1895.1

CMT07-3 3 100 117.05 117.05 0.0 1859.4

AVG 0.0 1975.8

Table 14.2: Results for the MP-VRP with MinMax objective. zmin/avg= best/av-
erage distance of the longest route,%RSD=relative standard
deviation,sectt=average total execution time.

Part IV

C O N C L U S I O N S A N D F U T U R E W O R K

15
C O N C L U S I O N

The focus of this thesis is on Vehicle Routing Problems with a compli-
cated side-problem. The objective was the design of optimization ap-
proaches for such Vehicle Routing Problems, that work independently
of the side-problem. Existing approaches for such Vehicle Routing
Problems are often ad-hoc, and make extensive use of the knowledge
about the nature of the side-problem. The advantage of the approaches
proposed in this thesis is that they do not necessitate laborious adapta-
tions once the side-problem changes, as is the case for existing ad-hoc
approaches.

In order to formalize the objective, this thesis proposed the Vehicle
Routing Problem with Black Box Feasibility (VRPBB, chapter 4). In this
problem, each route must verify a set of hidden constraints Fbb. In or-
der to test the feasibility w.r.t. Fbb, a black box function, into which no
insight is possible, is introduced. This problem has not be considered
in the VRP literature so far.

Three incomplete optimization approaches for the VRPBB were pro-
posed in this thesis. All of them are based on the reformulation of the
VRPBB as a Set Partitioning Problem.

231

232 Chapter 15 conclusion

• Pheromone-based Heuristic Column Generation (chapter 6), com-
bines ideas from Ant Colony Optimization and Heuristic Column
Generation in a novel way. In order to allow the approach to learn
which arcs are more likely to appear in feasible and efficient routes,
pheromones are deposed on arcs appearing in solutions to the Lin-
ear Programming relaxation of the Set Partitioning Problem.

• Dive & Generate (chapter 7) is derived from the Branch & Gener-
ate primal heuristic. The idea of Branch & Generate is to perform
a dive in a Branch & Price tree, where new columns are generated
only when considered necessary. In Dive & Generate, this idea is ex-
tended with backtracking which allows to perform multiple dives,
heuristic pruning and restarts. Aside from the usual Depth-First
Search, a Limited Discrepancy Search is considered to explore the
resulting tree.

• Heuristic Branch & Price (chapter 8) performs a classical Branch &
Price, but with heuristic pruning and an incomplete tree exploration.
Two different well-known ranching decisions are considered. Both
Depth-First Search and Limited Discrepancy Search are considered.

These methods have been implemented into a coherent system
which is available for download under the LGPL license at http://

becool.info.ucl.ac.be/resources/VRPBB.

While these approaches were all designed and implemented under
a Vehicle Routing perspective, the concepts could be easily applied to
different problems, under the condition that Dantzig-Wolfe decompo-
sition is applicable and the black box constraints concern columns in-
dividually. In all of the methods the pricing heuristic would have to be
adapted to the problem at hand, but, as for Branch & Price, both the
Dive & Generate and Heuristic Branch & Price methods are generic
except for the pricing subproblem and the branching decisions. The
Pheromone-based Heuristic Column Generation method furthermore
requires an underlying graph structure on which the pheromones can
be deposed. This graph structure can be explicit or implicit. If it is ex-
plicit, as for the Vehicle Routing Problem, the problem is defined on
a graph and the pheromones can be deposed on this explicit graph.
If it is implicit, as for example for a Generalized Assignment Problem,
pheromones can be deposed on (variable,value) pairs from the original
problem formulation.

http://becool.info.ucl.ac.be/resources/VRPBB
http://becool.info.ucl.ac.be/resources/VRPBB

conclusion 233

One of the disadvantages of the presented methods, especially of
the Pheromone-based Heuristic Column Generation approach, are the
numerous parameters and design options that need to be set. The use
of irace, a publicly available implementation of the Iterated F-Race me-
thod, allowed to elaborate an optimized configuration and parameter
setting (chapter 11). The resulting configurations showed that the intu-
itive parameter setting used initially was emphasizing the wrong pa-
rameters. By using the optimized configurations and drastically mod-
ifying parameter values or design choices one at a time, precious in-
sights into the role and impact of the different components of the me-
thod were gained. This shows the utility of methods such as Iterate
F-Race, not only for parameter tuning, but also for improving the un-
derstanding of the approach under consideration.

In order to evaluate the proposed methods, they have been tested
on two concrete instantiations of the VRPBB for which benchmark in-
stances and best known results were available. Both applications, the
3L-CVRP (chapter 12) and the MP-VRP (chapter 13), combine Vehicle
Routing and Loading. A route is only feasible if a solution to a cor-
responding loading problem can be found. The existing approaches
for these problems all use some kind of knowledge about the loading
problem or the nature of the solution process for this loading problem.
The comparison with the state of the art (ad-hoc) approaches for both
problems was done in two steps: (a) the average solution value and
best solution value were compared to the approach proposing the load-
ing algorithms that were used as black box functions in this thesis; (b)
the best solution value was compared to the best known solution from
the literature.
Among all methods proposed in this thesis, Pheromone-based Heuris-
tic Column Generation works best for both the 3L-CVRP and the MP-
VRP. In step (a) it is able to outperform the considered ad-hoc ap-
proach in terms of best and average solution value on a majority of
instances. In step (b), it is able to detect new best solutions for 9 out
of 21 (MP-VRP) and 10 out of 27 (3L-CVRP) instances. While the Dive
& Generate and Heuristic Branch & Price methods perform well for
the 3L-CVRP, they perform less good for the MP-VRP. This is possibly
linked to the size of the MP-VRP instances. The complete solutions
from the experiments can be downloaded from http://becool.info.

ucl.ac.be/resources/VRPBB.

http://becool.info.ucl.ac.be/resources/VRPBB
http://becool.info.ucl.ac.be/resources/VRPBB

234 Chapter 15 conclusion

The experimental results show that the generic methods proposed in
this thesis are able to perform as well, if not better, than existing meth-
ods specifically tailored to the problem at hand. In order to adapt the
generic methods only a feasibility check needs to be provided. Exist-
ing methods necessitate the design and implementation effort, either
of lower and upper bounds, ways to measure the violation of the side-
problem, specific ways to guide the approach w.r.t the loading side-
problem, or a complete new approach. The generic methods proposed
in this thesis allow to reach similar results with a smaller design and
implementation effort.

15.1 future work

The work presented in this thesis could be extended in many differ-
ent directions. Especially the Dive & Generate and Heuristic Branch
& Price methods leave room for additional improvements and experi-
ments, but the Pheromone-based Heuristic Column Generation could
be further developed as well.

• Relaxation of the limit on the fleet size Depending on the Fbb con-
straints, even finding an initial non-integral feasible solution might
be difficult, if the number of available vehicles is limited. This is
problematic for all of the proposed approaches in this thesis. A sim-
ple way to circumvent this problem is to initially allow the use of
a higher number of vehicles than available. The number of allowed
vehicles can then be gradually lowered throughout the optimization
procedure, until reaching the correct fleet size.

• Association Rule Learning As has been shown in chapter 11, the
pheromones in the Pheromone-based Heuristic Column Generation
do not actually allow to learn which arcs are more likely to appear
in feasible routes, but rather function as a diversification mecha-
nism. Other learning mechanisms, such as association rule learning
should be considered to establish a set of rules allowing to evaluate
the probability of a given route to be feasible. If such an approach
could be developed, it would be very promising for further research
on the VRPBB.

• Pricing algorithms In both Dive & Generate and the Heuristic
Branch & Price, adapted versions of the savings heuristic are used
to do the pricing, i.e. to generate routes of negative reduced cost.

15.1 future work 235

This is a rather naïve approach, and substantial improvements could
be done on this basis. One could imagine a simplified Label set-
ting algorithm to solve a Resource-constrained shortest path prob-
lem. Only a small set of neighbors would be considered for each
customer. A more promising pricing heuristic would be the pertur-
bation of routes selected in the current non-integral solution. Cus-
tomers currently not visited could be added to, or swapped with
customers currently visited in, the route.

• Beam Search Most Branch & Price applications for Vehicle Routing
Problems use Best First Search to explore the Branch & Price tree. In
this thesis Depth First Search and Limited Discrepancy Search have
been considered, both for the Dive & Generate and Heuristic Branch
& Price trees. Following the Best First principle could possibly allow
to improve the results obtained with these methods. It avoids the pit-
falls of Depth First Search, while using a strong guidance from the
lower bounds. In this thesis, Best First Search has not been consid-
ered due to its memory requirements. Beam Search corresponds to
a Best First Search where only a fixed number of nodes is kept in
the frontier at all times. A compromise between completeness and
memory consumption could be made by using Beam Search.

• irace on remaining methods The Iterated F-Race procedure has
been applied only to the Pheromone-based Heuristic Column Gen-
eration method so far. It might however also be useful to apply It-
erated F-Race to Dive & Generate and Heuristic Branch & Price,
especially as the parameter values chosen for these methods haven’t
been determined experimentally. Furthermore the type of branching
decision used in Heuristic Branch & Price could be considered a de-
sign choice, and it would be left to the Iterated F-Race procedure to
determine whether it is preferable to branch on arcs or on customer
pairs. This could provide further insight into the reasons why one
method performs better or worse on some problem instances.

• Symmetry Handling In the current Dive & Generate and Heuristic
Branch & Price methods, symmetries in the corresponding trees are
not handled. While more complex mechanisms could be imagined,
a simple Tabu List of visited nodes could already allow to avoid
revisiting a subset of symmetric branches.

• Branching heuristic The branching heuristics used in the Heuristic
Branch & Price method are simple. More sophisticated heuristics,

236 Chapter 15 conclusion

based on past performances could be used. One possibility would
for example be Pseudo-cost branching ([Ach05]). Here route fea-
tures are attributed a score, and the feature maximizing this score
is selected to branch on next. The score is computed based on the
number of times that branching on this feature resulted in a feasible
solution in the past, and the objective cost of this solution. In the
Heuristic Branch & Price method, pseudo-cost branching could be
used as is, or adapted by computing the score of a feature based on
the number of times that branching on this feature occurred on a
path to an integral solution.

• Multiple Column Generation iterations and stabilization proce-
dures In the current versions of Dive & Generate and Heuristic
Branch & Price only at most a single Column Generation iteration
is performed at each node. One could consider performing multiple
iterations, possibly only at very promising nodes. Observations of
the evolution of the dual costs in the Pheromone-based Heuristic
Column Generation method show that the dual costs vary signifi-
cantly from one iteration to the next, even if the cost of the dual
solution doesn’t change. This implies that if multiple column gen-
eration iterations were performed in Dive & Generate or Heuristic
Branch & Price, stabilization procedures, such as these mentioned
in [Fei10], would have to be introduced.

• Other applications This thesis considered two concrete instantia-
tions of the Vehicle Routing Problem with Black Box Feasibility, both
combining routing and loading. Future work should consider other
applications, such as for example Vehicle Routing Problems with
Driver Break Scheduling ([PGDDR10]), or Vehicle Routing Problems
with Pallet Packing ([ZTK12]). As previously stated the approaches
have been designed and implemented for Vehicle Routing Problems,
but could be adapted to other problems, such as the Generalized
Assignment Problem or Airline Crew Scheduling. This would de-
mand the implementation of problem-specific pricing heuristics and
branching decisions (for Dive & Generate and Heuristic Branch &
Price).

• Comparison with exact methods In [TDHI09] the authors propose
an exact approach to solve the MP-VRP. This exact approach is
tested on a set of reduced (small-scale) instances. Pheromone-based
Heuristic Column Generation and the other methods should be eval-

15.1 future work 237

uated on these instances. This would allow to determine how close
the solution cost obtained using Pheromone-based Heuristic Col-
umn Generation (and the other methods) comes to optimal solution
cost.

Part V

A P P E N D I X

A
3 L - C V R P : E X P E R I M E N TA L R E S U LT S - A D D I T I O N A L
TA B L E S A N D P L O T S

a.0.1 Execution Times for the 3L-CVRP in the state-of-the-art

Reference Minsectt Maxsectt Avgsectt

[GILM06] 1800 7200 4200

[FDHI10] 12 10483.9 1793.1

[TZK09] 11.5 9915.7 2415.9

[Bor12] 0.9 453 228.6

[RTS11] - - 805.3

[RZMS13] 98.85 3354 754.21

[ZQLW12] 36.7 8511 2252.2

Table A.1: Minimal, Maximal and Average reported total execution times in
the 3L-CVRP state-of-the-art

241

242 Appendix A 3l-cvrp: additional material

a.1 pheromone-based heuristic column generation

a.1.1 Comparison of architectures over 10 runs

Majorana : architecture used in in chapter 11, AMD Opteron 6272 CPU (2.1
GHz, 16 MB cache size), gcc 4.4.6, CPLEX 12.4 and Boost Libraries v. 1.41

Claus : architecture used in in chapter 12: AMD Opteron 6284 SE CPU (2.7
Ghz, 16MB cache size), gcc 4.4.7, CPLEX 12.4 and Boost Libraries v. 1.53

Instance Majorana Claus

K n zmin zavg sectt zmin zavg sectt %gmin %gavg

3l-cvrp01 4 15 302.02 302.02 1800.00 302.02 302.02 1800.0 0.00 0.00

3l-cvrp02 5 15 334.96 334.96 1800.00 334.96 334.96 1800.0 0.00 0.00

3l-cvrp03 4 20 388.09 391.04 1800.20 385.53 390.12 1800.3 -0.66 -0.24

3l-cvrp04 6 20 437.19 437.19 1800.00 437.19 437.19 1800.0 0.00 0.00

3l-cvrp05 6 21 447.73 447.73 1800.00 447.73 447.73 1800.2 0.00 0.00

3l-cvrp06 6 21 498.16 498.16 1800.00 498.16 498.16 1800.1 0.00 0.00

3l-cvrp07 6 22 769.68 769.68 1800.00 769.68 769.68 1800.4 0.00 0.00

3l-cvrp08 6 22 845.50 848.47 1800.00 845.50 845.50 1800.6 0.00 -0.35

3l-cvrp09 8 25 630.13 630.13 1800.00 630.13 630.13 1800.0 0.00 0.00

3l-cvrp10 8 29 826.66 826.66 3603.50 826.66 826.66 3603.2 0.00 0.00

3l-cvrp11 8 29 776.19 777.34 3600.60 776.19 777.91 3601.5 0.00 0.07

3l-cvrp12 9 30 612.25 612.25 3600.20 612.25 612.25 3600.3 0.00 0.00

3l-cvrp13 8 32 2661.62 2667.17 3600.90 2661.62 2665.48 3601.6 0.00 -0.06

3l-cvrp14 9 32 1385.00 1401.45 3606.55 1385.00 1398.84 3605.3 0.00 -0.19

3l-cvrp15 9 32 1336.21 1340.07 3618.90 1336.22 1341.02 3624.1 0.00 0.07

3l-cvrp16 11 35 698.61 698.61 3600.00 698.61 698.61 3600.3 0.00 0.00

3l-cvrp17 14 40 866.40 866.40 3600.00 866.40 866.40 3600.1 0.00 0.00

3l-cvrp18 11 44 1205.11 1207.29 3613.10 1205.11 1209.21 3606.2 0.00 0.16

3l-cvrp19 12 50 741.31 741.63 7203.20 741.31 741.31 7204.6 0.00 -0.04

3l-cvrp20 18 71 577.39 581.25 7217.30 577.85 580.84 7217.9 0.08 -0.07

3l-cvrp21 17 75 1075.16 1079.69 7217.10 1075.97 1079.47 7220.4 0.08 -0.02

3l-cvrp22 18 75 1148.82 1153.00 7214.10 1147.43 1154.64 7217.8 -0.12 0.14

3l-cvrp23 17 75 1101.47 1111.26 7212.90 1102.39 1110.24 7221.1 0.08 -0.09

3l-cvrp24 16 75 1107.15 1112.29 7221.80 1107.71 1110.20 7228.3 0.05 -0.19

3l-cvrp25 22 100 1373.43 1387.54 7241.10 1370.70 1387.14 7256.1 -0.20 -0.03

3l-cvrp26 26 100 1544.40 1557.82 7218.60 1541.49 1548.15 7212.9 -0.19 -0.62

3l-cvrp27 23 100 1483.59 1489.16 7240.00 1483.66 1491.09 7253.1 0.00 0.13

AVG 4208.52 4210.2 -0.03 -0.05

Table A.2: zmin/avg = best/average solution cost over 10 runs, sectt = average total execu-
tion time, gmin/avg= relative percentage deviation w.r.t. Majorana, computed as

100 ·
zmin/avg−zMaj

min/avg

zMaj
min/avg

where zmin/avg are the results obtained on Claus and zMaj
min/avg

the results obtained on Majorana

A.1 pheromone-based hcg 243

a.1.2 Comparison of ACO-HCG and ACO-HCG-NOPO

Instance ACO-HCG ACO-HCG-NOPO

K n zmin zavg sectt zmin zavg sectt gmin gavg

3l-cvrp01 4 15 302.02 302.02 1800.0 302.02 302.02 1800.1 0.00 0.00

3l-cvrp02 5 15 334.96 334.96 1800.0 334.96 334.96 1800.0 0.00 0.00

3l-cvrp03 4 20 385.53 390.12 1800.3 392.24 393.61 1801.7 1.74 0.89

3l-cvrp04 6 20 437.19 437.19 1800.0 437.19 437.19 1800.0 0.00 0.00

3l-cvrp05 6 21 447.73 447.73 1800.2 447.73 447.73 1800.4 0.00 0.00

3l-cvrp06 6 21 498.16 498.16 1800.1 498.16 498.16 1800.4 0.00 0.00

3l-cvrp07 6 22 769.68 769.68 1800.4 769.68 769.68 1800.4 0.00 0.00

3l-cvrp08 6 22 845.50 845.50 1800.6 845.50 848.77 1800.8 0.00 0.39

3l-cvrp09 8 25 630.13 630.13 1800.0 630.13 630.13 1800.1 0.00 0.00

3l-cvrp10 8 29 826.66 826.66 3603.2 826.66 827.33 3607.9 0.00 0.08

3l-cvrp11 8 29 776.19 777.91 3601.5 776.19 777.74 3602.7 0.00 -0.02

3l-cvrp12 9 30 612.25 612.25 3600.3 612.25 612.25 3600.9 0.00 0.00

3l-cvrp13 8 32 2661.62 2665.48 3601.6 2666.10 2669.26 3602.5 0.17 0.14

3l-cvrp14 9 32 1385.00 1398.84 3605.3 1396.60 1407.55 3606.0 0.84 0.62

3l-cvrp15 9 32 1336.22 1341.02 3624.1 1340.78 1346.95 3631.3 0.34 0.44

3l-cvrp16 11 35 698.61 698.61 3600.3 698.61 698.61 3600.6 0.00 0.00

3l-cvrp17 14 40 866.40 866.40 3600.1 866.40 866.40 3600.2 0.00 0.00

3l-cvrp18 11 44 1205.11 1209.21 3606.2 1207.44 1217.10 3618.7 0.19 0.65

3l-cvrp19 12 50 741.31 741.31 7204.6 746.86 747.44 7204.7 0.75 0.83

3l-cvrp20 18 71 577.85 580.84 7217.9 580.07 582.68 7215.3 0.38 0.32

3l-cvrp21 17 75 1075.97 1079.47 7220.4 1078.65 1089.70 7229.8 0.25 0.95

3l-cvrp22 18 75 1147.43 1154.64 7217.8 1147.93 1158.32 7227.5 0.04 0.32

3l-cvrp23 17 75 1102.39 1110.24 7221.1 1104.25 1115.19 7225.6 0.17 0.45

3l-cvrp24 16 75 1107.71 1110.20 7228.3 1109.93 1116.24 7251.3 0.20 0.54

3l-cvrp25 22 100 1370.70 1387.14 7256.1 1392.26 1403.82 7303.7 1.57 1.20

3l-cvrp26 26 100 1541.49 1548.15 7212.9 1552.86 1564.28 7229.5 0.74 1.04

3l-cvrp27 23 100 1483.66 1491.09 7253.1 1490.47 1499.35 7267.7 0.46 0.55

AVG 4210.2 4215.9 0.29 0.35

Table A.3: Comparison of ACO-HCG in automatic configuration (ACO-HCG) with
ACO-HCG in automatic configuration without Post-optimization of
routes (ACO-HCG-NOPO). zmin/avg = best/average solution cost over
10 runs, sectt = average total execution time. gmin/avg= relative per-
centage deviation of ACO-HCG-NOPO w.r.t. ACO-HCG , computed as

100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with ACO-

HCG-NOPO and zD
min/avg the results obtained with ACO-HCG.

244 Appendix A 3l-cvrp: additional material

Instance % Total Execution Time Routes in Ψ

%IP %LP %BB %ST %GEN %PO #Feasible routes |Ψ|

3l-cvrp01 5.0 0.9 9.8 4.6 68.0 0 2042.2 4391.8

3l-cvrp02 4.0 0.8 0.1 4.5 79.9 0 862.2 868.9

3l-cvrp03 20.9 0.5 48.0 1.4 27.4 0 5836.5 10397.4

3l-cvrp04 1.1 0.8 3.4 3.8 82.8 0 2870.3 3289.6

3l-cvrp05 5.4 0.4 54.3 1.9 36.2 0 4613.5 13994.2

3l-cvrp06 19.0 0.8 14.1 2.6 57.7 0 5147.9 6918.7

3l-cvrp07 0.2 0.1 81.9 0.9 16.5 0 3550.9 16600.7

3l-cvrp08 3.6 0.1 79.3 0.9 15.5 0 4540.6 25805.2

3l-cvrp09 3.2 0.5 6.2 3.1 83.5 0 2891.0 4896.9

3l-cvrp10 2.6 0.0 94.8 0.1 2.4 0 7223.0 45213.4

3l-cvrp11 1.6 0.0 93.3 0.2 4.6 0 9685.9 55415.6

3l-cvrp12 15.6 0.4 9.0 1.8 70.0 0 5204.1 6801.2

3l-cvrp13 0.5 0.0 96.4 0.1 2.8 0 7389.5 34379.1

3l-cvrp14 0.3 0.0 99.1 0.0 0.5 0 6954.4 38064.9

3l-cvrp15 2.6 0.0 96.7 0.0 0.6 0 8859.8 37529.2

3l-cvrp16 9.9 0.3 1.4 1.6 84.4 0 5705.6 5939.6

3l-cvrp17 2.1 0.3 0.7 1.5 93.9 0 4730.9 5070.0

3l-cvrp18 0.1 0.0 99.4 0.0 0.4 0 5718.0 30428.5

3l-cvrp19 0.2 0.0 95.7 0.1 3.9 0 10034.3 71768.8

3l-cvrp20 0.2 0.0 98.3 0.0 1.4 0 10866.8 79554.1

3l-cvrp21 0.2 0.0 98.7 0.0 1.0 0 9566.9 62571.1

3l-cvrp22 0.9 0.0 95.4 0.1 3.6 0 12554.9 107494.4

3l-cvrp23 0.6 0.0 96.8 0.0 2.5 0 11833.1 68598.0

3l-cvrp24 10.3 0.0 72.2 0.1 16.7 0 29043.6 64069.2

3l-cvrp25 1.0 0.0 97.3 0.0 1.6 0 11612.0 73739.2

3l-cvrp26 0.6 0.0 94.7 0.1 4.6 0 12810.8 132618.5

3l-cvrp27 2.5 0.0 92.7 0.0 4.6 0 16173.2 91587.4

Table A.4: ACO-HCG-NOPO : CPU Time Allocation, # feasible routes, # routes in
Feasibility Store (|Ψ|)

A.1 pheromone-based hcg 245

a.1.3 Comparison of ACO-HCG and DECOMP ACO-HCG

−2 0 2 4

−
2

0
2

4

ACO−HCG, gavg
bb %

D
E

C
O

M
P

 A
C

O
−

H
C

G
, g

a
v

g
b

b
 %

Figure A.1: Comparison of DECOMP ACO-HCG and ACO-HCG. Each point
gives the average relative deviation from the bb-best solution over
10 independent runs. The symbols denote whether there is sta-
tistically significant difference (5) or not (2), or all the runs ob-
tained the same cost (O).

246 Appendix A 3l-cvrp: additional material

a.2 dive & generate

a.2.1 Comparison with ACO-HCG

−2 0 2 4

−
2

0
2

4

ACO−HCG, gavg
bb %

D
IN

G
−

D
F

S
, g

a
vgb
b

 %

(a)

−2 0 2 4
−

2
0

2
4

ACO−HCG, gavg
bb %

D
IN

G
−

LD
S

, g
a

vgb
b

 %

(b)

Figure A.2: Comparison of DING and ACO-HCG, ACO-HCG in the man-
ual configuration. Each point gives the average relative deviation
from the bb-best solution over 10 independent runs. The symbols
denote whether there is statistically significant difference (5) or
not (2), or all the runs obtained the same cost (O).

A.2 dive & generate 247

a.2.2 Explicit Results for DING

Instance DING-DFS

K n zmin zavg %RSD sech sectt %gbb
avg

3l-cvrp01 4 15 302.02 302.02 0.0 12.2 1800.1 0.00

3l-cvrp02 5 15 334.96 334.96 0.0 0.5 1800.1 0.00

3l-cvrp03 4 20 385.53 389.56 0.8 300.3 1800.2 -0.78

3l-cvrp04 6 20 437.19 437.19 0.0 2.7 1800.0 0.00

3l-cvrp05 6 21 447.73 447.73 0.0 102.1 1800.1 0.93

3l-cvrp06 6 21 498.16 498.16 0.0 28.6 1800.1 0.00

3l-cvrp07 6 22 769.68 769.68 0.0 121.1 1801.6 0.00

3l-cvrp08 6 22 845.50 845.50 0.0 240.0 1800.1 4.27

3l-cvrp09 8 25 630.13 631.38 0.6 38.7 1800.1 0.20

3l-cvrp10 8 29 826.66 833.59 1.2 1620.2 3600.3 1.61

3l-cvrp11 8 29 778.10 786.29 2.1 1289.8 3600.2 -2.16

3l-cvrp12 9 30 612.25 612.25 0.0 80.2 3600.1 -0.38

3l-cvrp13 8 32 2665.33 2671.16 0.2 1292.4 3600.4 0.95

3l-cvrp14 9 32 1401.64 1417.16 1.3 2448.5 3600.4 3.56

3l-cvrp15 9 32 1342.32 1351.72 0.4 2755.8 3600.8 0.79

3l-cvrp16 11 35 698.61 700.40 0.3 613.7 3600.6 0.26

3l-cvrp17 14 40 866.40 874.09 0.9 543.0 3600.6 0.89

3l-cvrp18 11 44 1209.81 1233.29 1.0 2801.1 3600.5 2.12

3l-cvrp19 12 50 741.31 753.39 1.0 3236.2 7200.5 1.57

3l-cvrp20 18 71 583.29 603.94 2.0 3795.1 7200.7 2.72

3l-cvrp21 17 75 1100.87 1125.64 1.3 3719.0 7200.7 3.25

3l-cvrp22 18 75 1167.28 1202.89 1.4 2878.5 7200.7 4.80

3l-cvrp23 17 75 1119.59 1151.58 1.2 3344.1 7200.7 1.86

3l-cvrp24 16 75 1131.51 1156.91 1.4 3843.5 7200.6 3.65

3l-cvrp25 22 100 1420.01 1437.07 1.0 3915.8 7200.8 2.11

3l-cvrp26 26 100 1594.20 1637.32 1.2 2200.0 7201.0 2.31

3l-cvrp27 23 100 1519.41 1554.80 1.5 4103.1 7201.2 1.63

AVG 0.8 1678.7 4200.5 1.34

Table A.5: Explicit results on 3L-CVRP using Dive & Generate with Depth First
Search, zmin/avg = best/average solution cost over 10 runs, %RSD = rel-
ative percentage standard deviation over 10 runs, sech = Time at which
UB = zmin, sectt = average total execution time, %gbb

avg=average relative
percentage deviation w.r.t. bb-best solution.

248 Appendix A 3l-cvrp: additional material

Instance DING-LDS

K n zmin zavg %RSD sech sectt %gbb
avg

3l-cvrp01 4 15 302.02 302.02 0.0 12.4 1800.1 0.00

3l-cvrp02 5 15 334.96 334.96 0.0 0.2 1800.0 0.00

3l-cvrp03 4 20 385.53 387.88 0.6 369.4 1800.2 -1.21

3l-cvrp04 6 20 437.19 437.19 0.0 2.6 1800.0 0.00

3l-cvrp05 6 21 447.73 447.73 0.0 152.7 1800.2 0.93

3l-cvrp06 6 21 498.16 498.16 0.0 16.1 1800.1 0.00

3l-cvrp07 6 22 769.68 769.68 0.0 119.5 1802.1 0.00

3l-cvrp08 6 22 845.50 845.50 0.0 140.6 1800.7 4.27

3l-cvrp09 8 25 630.13 630.13 0.0 112.4 1800.1 0.00

3l-cvrp10 8 29 826.66 827.25 0.1 1575.9 3600.5 0.84

3l-cvrp11 8 29 776.19 781.17 1.1 755.9 3600.2 -2.79

3l-cvrp12 9 30 612.25 612.25 0.0 46.8 3600.1 -0.38

3l-cvrp13 8 32 2665.33 2669.47 0.1 1373.3 3601.1 0.89

3l-cvrp14 9 32 1384.09 1406.81 0.8 2607.5 3600.8 2.81

3l-cvrp15 9 32 1341.73 1347.60 0.3 1636.4 3603.0 0.48

3l-cvrp16 11 35 698.61 698.61 0.0 318.6 3600.2 0.00

3l-cvrp17 14 40 866.40 867.10 0.2 60.9 3600.2 0.08

3l-cvrp18 11 44 1207.44 1213.32 0.6 2249.4 3604.8 0.46

3l-cvrp19 12 50 741.31 742.44 0.3 3756.2 7201.0 0.09

3l-cvrp20 18 71 580.38 583.19 0.4 4567.9 7213.0 -0.81

3l-cvrp21 17 75 1086.18 1095.10 0.5 4023.1 7202.1 0.45

3l-cvrp22 18 75 1147.93 1159.37 0.6 3321.0 7203.8 1.01

3l-cvrp23 17 75 1113.45 1121.88 0.5 4593.0 7202.3 -0.77

3l-cvrp24 16 75 1111.63 1122.62 0.8 3040.4 7200.4 0.58

3l-cvrp25 22 100 1382.84 1403.54 1.2 4204.4 7209.7 -0.27

3l-cvrp26 26 100 1566.11 1584.56 0.9 4809.2 7201.6 -0.99

3l-cvrp27 23 100 1494.29 1510.34 0.7 4849.6 7205.5 -1.28

AVG 0.4 1804.3 4202.0 0.16

Table A.6: Explicit results on 3L-CVRP using Dive & Generate with Limited Discrep-
ancy Search, zmin/avg = best/average solution cost over 10 runs, %RSD =
relative percentage standard deviation over 10 runs, sech = Time at which
UB = zmin, sectt = average total execution time, %gbb

avg=average relative
percentage deviation w.r.t. bb-best solution cost.

A.2 dive & generate 249

a.2.3 Results for DING*

Instance DING-DFS DING*-DFS

K n zmin zavg sectt zmin zavg sectt gmin gavg

3l-cvrp01 4 15 302.02 302.02 1800.1 302.02 302.02 0.1 0.00 0.00

3l-cvrp02 5 15 334.96 334.96 1800.1 334.96 334.96 0.0 0.00 0.00

3l-cvrp03 4 20 385.53 389.56 1800.2 385.53 387.58 1.5 0.00 -0.51

3l-cvrp04 6 20 437.19 437.19 1800.0 437.19 437.19 0.1 0.00 0.00

3l-cvrp05 6 21 447.73 447.73 1800.1 447.73 447.73 0.2 0.00 0.00

3l-cvrp06 6 21 498.16 498.16 1800.1 498.16 498.16 0.2 0.00 0.00

3l-cvrp07 6 22 769.68 769.68 1801.6 769.68 769.68 0.1 0.00 0.00

3l-cvrp08 6 22 845.50 845.50 1800.1 845.50 845.50 0.2 0.00 0.00

3l-cvrp09 8 25 630.13 631.38 1800.1 630.13 631.38 0.1 0.00 0.00

3l-cvrp10 8 29 826.66 833.59 3600.3 826.66 830.77 1.6 0.00 -0.34

3l-cvrp11 8 29 778.10 786.29 3600.2 778.10 783.07 0.2 0.00 -0.41

3l-cvrp12 9 30 612.25 612.25 3600.1 612.25 612.25 0.2 0.00 0.00

3l-cvrp13 8 32 2665.33 2671.16 3600.4 2665.33 2671.16 0.3 0.00 0.00

3l-cvrp14 9 32 1401.64 1417.16 3600.4 1401.64 1415.94 1.7 0.00 -0.09

3l-cvrp15 9 32 1342.32 1351.72 3600.8 1342.32 1348.59 4.6 0.00 -0.23

3l-cvrp16 11 35 698.61 700.40 3600.6 698.61 699.99 0.1 0.00 -0.06

3l-cvrp17 14 40 866.40 874.09 3600.6 866.40 870.90 0.1 0.00 -0.36

3l-cvrp18 11 44 1209.81 1233.29 3600.5 1209.80 1230.43 0.5 0.00 -0.23

3l-cvrp19 12 50 741.31 753.39 7200.5 741.31 752.02 0.3 0.00 -0.18

3l-cvrp20 18 71 583.29 603.94 7200.7 582.90 597.73 3.1 -0.07 -1.03

3l-cvrp21 17 75 1100.87 1125.64 7200.7 1098.82 1118.41 1.6 -0.19 -0.64

3l-cvrp22 18 75 1167.28 1202.89 7200.7 1167.28 1194.84 3.8 0.00 -0.67

3l-cvrp23 17 75 1119.59 1151.58 7200.7 1116.81 1144.84 2.4 -0.25 -0.59

3l-cvrp24 16 75 1131.51 1156.91 7200.6 1131.51 1149.60 3.1 0.00 -0.63

3l-cvrp25 22 100 1420.01 1437.07 7200.8 1408.37 1427.71 3.0 -0.82 -0.65

3l-cvrp26 26 100 1594.20 1637.32 7201.0 1592.79 1626.50 1.6 -0.09 -0.66

3l-cvrp27 23 100 1519.41 1554.80 7201.2 1519.41 1547.34 12.0 0.00 -0.48

AVG 4200.5 1.6 -0.05 -0.29

Table A.7: Comparison of Dive & Generate with Depth First Search (DING-DFS)
and results obtained when solving problem SCP(R∗) over set of feasible
routes R∗ obtained in DING-DFS (DING*-DFS). zmin/avg = best/average
solution cost over 10 runs, sectt = average total execution time, for DING*-
DFS this corresponds to the time necessary to solve problem SCP(R∗).
gmin/avg= relative percentage deviation of DING*-DFS w.r.t. DING-DFS ,

computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained

with DING*-DFS and zD
min/avg the results obtained with DING-DFS.

250 Appendix A 3l-cvrp: additional material

Instance DING-LDS DING*-LDS

K n zmin zavg sectt zmin zavg sectt gmin gavg

3l-cvrp01 4 15 302.02 302.02 1800.1 302.02 302.02 0.1 0.00 0.00

3l-cvrp02 5 15 334.96 334.96 1800.0 334.96 334.96 0.0 0.00 0.00

3l-cvrp03 4 20 385.53 387.88 1800.2 385.53 387.32 1.2 0.00 -0.14

3l-cvrp04 6 20 437.19 437.19 1800.0 437.19 437.19 0.1 0.00 0.00

3l-cvrp05 6 21 447.73 447.73 1800.2 447.73 447.73 0.2 0.00 0.00

3l-cvrp06 6 21 498.16 498.16 1800.1 498.16 498.16 0.4 0.00 0.00

3l-cvrp07 6 22 769.68 769.68 1802.1 769.68 769.68 0.1 0.00 0.00

3l-cvrp08 6 22 845.50 845.50 1800.7 845.50 845.50 0.2 0.00 0.00

3l-cvrp09 8 25 630.13 630.13 1800.1 630.13 630.13 0.0 0.00 0.00

3l-cvrp10 8 29 826.66 827.25 3600.5 826.66 827.12 2.5 0.00 -0.02

3l-cvrp11 8 29 776.19 781.17 3600.2 776.19 778.60 0.5 0.00 -0.33

3l-cvrp12 9 30 612.25 612.25 3600.1 612.25 612.25 0.2 0.00 0.00

3l-cvrp13 8 32 2665.33 2669.47 3601.1 2665.33 2669.47 0.4 0.00 0.00

3l-cvrp14 9 32 1384.09 1406.81 3600.8 1384.09 1405.85 3.0 0.00 -0.07

3l-cvrp15 9 32 1341.73 1347.60 3603.0 1341.73 1343.94 16.1 0.00 -0.27

3l-cvrp16 11 35 698.61 698.61 3600.2 698.61 698.61 0.1 0.00 0.00

3l-cvrp17 14 40 866.40 867.10 3600.2 866.40 866.84 0.1 0.00 -0.03

3l-cvrp18 11 44 1207.44 1213.32 3604.8 1207.44 1210.78 0.8 0.00 -0.21

3l-cvrp19 12 50 741.31 742.44 7201.0 741.31 742.44 0.6 0.00 0.00

3l-cvrp20 18 71 580.38 583.19 7213.0 579.27 581.13 4.7 -0.19 -0.35

3l-cvrp21 17 75 1086.18 1095.10 7202.1 1081.17 1086.09 9.2 -0.46 -0.82

3l-cvrp22 18 75 1147.93 1159.37 7203.8 1145.18 1155.74 9.2 -0.24 -0.31

3l-cvrp23 17 75 1113.45 1121.88 7202.3 1109.61 1114.46 10.1 -0.34 -0.66

3l-cvrp24 16 75 1111.63 1122.62 7200.4 1111.63 1116.33 8.5 0.00 -0.56

3l-cvrp25 22 100 1382.84 1403.54 7209.7 1377.12 1387.93 55.6 -0.41 -1.11

3l-cvrp26 26 100 1566.11 1584.56 7201.6 1553.41 1566.65 38.9 -0.81 -1.13

3l-cvrp27 23 100 1494.29 1510.34 7205.5 1489.92 1492.64 69.5 -0.29 -1.17

AVG 4202.0 8.6 -0.10 -0.27

Table A.8: Comparison of Dive & Generate with Limited Discrepancy Search (DING-
LDS) and results obtained when solving problem SCP(R∗) over set of fea-
sible routes R∗ obtained in DING-LDS (DING*-LDS). zmin/avg = best/av-
erage solution cost over 10 runs, sectt = average total execution time,
for DING*-LDS this corresponds to the time necessary to solve problem
SCP(R∗). gmin/avg= relative percentage deviation of DING*-LDS w.r.t.

DING-LDS , computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the re-

sults obtained with DING*-LDS and zD
min/avg the results obtained with

DING-LDS.

A.2 dive & generate 251

a.2.4 Comparison of DING-LDS and DECOMP DING-LDS

−2 0 2 4

−
2

0
2

4

DING−LDS, gavg
bb %

D
E

C
O

M
P

 D
IN

G
−

LD
S

, g
a

v
g

b
b

 %

(a)

−2 0 2 4

−
2

0
2

4

ACO−HCG, gavg
bb %

D
E

C
O

M
P

 D
IN

G
−

LD
S

, g
a

v
g

b
b

 %

(b)

Figure A.3: Comparison of DECOMP DING-LDS with DING-LDS and with
ACO-HCG Each point gives the average relative deviation from
the bb-best solution over 10 independent runs. The symbols de-
note whether there is statistically significant difference (5) or not
(2), or all the runs obtained the same cost (O).

252 Appendix A 3l-cvrp: additional material

a.3 heuristic branch & price

a.3.1 Comparison with ACO-HCG

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

ACO−HCG, gavg
bb %

H
B

PA
−

D
F

S
, g

a
vgb
b

 %

(a)

−2 0 2 4 6 8 10
−

2
0

2
4

6
8

10

ACO−HCG, gavg
bb %

H
B

PA
−

LD
S

, g
a

vgb
b

 %

(b)

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

ACO−HCG, gavg
bb %

H
B

P
P

−
D

F
S

, g
a

vgb
b

 %

(c)

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

ACO−HCG, gavg
bb %

H
B

P
P

−
LD

S
, g

a
vgb
b

 %

(d)

Figure A.4: Comparison of HBP and ACO-HCG, the manual configuration of
ACO-HCG. Each point gives the average relative deviation from
the bb-best solution over 10 independent runs. The symbols de-
note whether there is statistically significant difference (5) or not
(2), or all the runs obtained the same cost (O).

A.3 heuristic branch & price 253

a.3.2 Explicit Results for HBP

Instance HBPA-DFS

K n zmin zavg %RSD sech sectt %gbb
avg

3l-cvrp01 4 15 302.02 302.02 0.0 49.3 1800.2 0.00

3l-cvrp02 5 15 334.96 334.96 0.0 0.8 1800.1 0.00

3l-cvrp03 4 20 388.09 390.25 0.6 451.6 1800.4 -0.61

3l-cvrp04 6 20 437.19 437.19 0.0 5.5 1800.0 0.00

3l-cvrp05 6 21 447.73 447.73 0.0 479.6 1800.8 0.93

3l-cvrp06 6 21 498.16 498.16 0.0 166.6 1800.1 0.00

3l-cvrp07 6 22 769.68 770.06 0.2 329.1 1805.3 0.05

3l-cvrp08 6 22 845.50 848.49 0.5 952.5 1800.7 4.64

3l-cvrp09 8 25 630.13 630.13 0.0 105.5 1800.2 0.00

3l-cvrp10 8 29 829.24 845.28 1.2 2133.5 3600.9 3.04

3l-cvrp11 8 29 787.04 815.61 1.7 1500.9 3603.4 1.49

3l-cvrp12 9 30 612.25 612.25 0.0 952.0 3600.1 -0.38

3l-cvrp13 8 32 2665.33 2679.80 0.5 1929.9 3607.5 1.28

3l-cvrp14 9 32 1497.31 1518.29 0.9 1333.1 3604.7 10.95

3l-cvrp15 9 32 1358.00 1412.71 2.6 2061.4 3604.2 5.34

3l-cvrp16 11 35 698.61 698.61 0.0 94.1 3600.1 0.00

3l-cvrp17 14 40 866.40 866.40 0.0 67.3 3600.2 0.00

3l-cvrp18 11 44 1225.62 1247.29 1.3 1878.6 3603.8 3.28

3l-cvrp19 12 50 741.31 761.29 2.7 5236.0 7204.0 2.64

3l-cvrp20 18 71 602.15 619.82 1.7 2882.7 7208.8 5.42

3l-cvrp21 17 75 1113.60 1139.60 1.3 3613.0 7204.7 4.53

3l-cvrp22 18 75 1190.92 1215.92 1.2 1246.8 7203.2 5.93

3l-cvrp23 17 75 1138.47 1170.57 1.1 1970.8 7207.9 3.54

3l-cvrp24 16 75 1164.36 1182.02 1.6 4810.5 7205.3 5.90

3l-cvrp25 22 100 1444.22 1462.44 0.9 2090.3 7217.0 3.91

3l-cvrp26 26 100 1635.49 1651.40 0.7 2126.7 7204.5 3.19

3l-cvrp27 23 100 1541.37 1571.54 1.3 2459.3 7212.7 2.72

AVG 0.8 1515.8 4203.7 2.51

Table A.9: Explicit results on 3L-CVRP using Heuristic Branch & Price, branching on
arcs, with Depth First Search, zmin/avg = best/average solution cost over 10

runs, %RSD = relative percentage standard deviation over 10 runs, sech =
Time of the first restart at which UB = zmin, sectt = average total execution
time, %gbb

avg=average relative percentage deviation w.r.t. bb-best solution.

254 Appendix A 3l-cvrp: additional material

Instance HBPA-LDS

K n zmin zavg %RSD sech sectt %gbb
avg

3l-cvrp01 4 15 302.02 302.02 0.0 60.2 1800.3 0.00

3l-cvrp02 5 15 334.96 334.96 0.0 1.2 1800.0 0.00

3l-cvrp03 4 20 385.53 390.61 0.7 737.6 1800.8 -0.51

3l-cvrp04 6 20 437.19 437.19 0.0 5.1 1800.0 0.00

3l-cvrp05 6 21 447.73 447.82 0.1 377.2 1800.4 0.95

3l-cvrp06 6 21 498.16 498.16 0.0 64.9 1800.1 0.00

3l-cvrp07 6 22 769.68 769.68 0.0 454.1 1803.2 0.00

3l-cvrp08 6 22 845.50 846.69 0.4 563.1 1801.0 4.41

3l-cvrp09 8 25 630.13 630.13 0.0 93.3 1800.1 0.00

3l-cvrp10 8 29 835.74 843.71 0.8 2516.4 3602.5 2.85

3l-cvrp11 8 29 778.24 798.03 1.8 2029.2 3602.1 -0.69

3l-cvrp12 9 30 612.25 612.84 0.2 654.6 3600.1 -0.28

3l-cvrp13 8 32 2670.50 2675.48 0.3 2245.4 3601.5 1.12

3l-cvrp14 9 32 1477.98 1516.36 1.1 1208.7 3606.6 10.81

3l-cvrp15 9 32 1349.73 1390.63 2.8 2107.9 3604.8 3.69

3l-cvrp16 11 35 698.61 698.61 0.0 88.2 3600.1 0.00

3l-cvrp17 14 40 866.40 866.40 0.0 63.3 3600.1 0.00

3l-cvrp18 11 44 1226.40 1235.68 0.8 2273.8 3608.4 2.31

3l-cvrp19 12 50 741.31 743.58 0.5 4732.0 7214.2 0.25

3l-cvrp20 18 71 594.50 607.20 1.7 3574.5 7205.7 3.27

3l-cvrp21 17 75 1103.02 1125.50 1.5 3759.9 7203.1 3.24

3l-cvrp22 18 75 1185.80 1207.22 1.1 1740.9 7203.5 5.18

3l-cvrp23 17 75 1128.80 1155.91 1.1 4429.9 7213.3 2.24

3l-cvrp24 16 75 1120.76 1153.84 1.5 4753.9 7204.1 3.38

3l-cvrp25 22 100 1421.81 1449.56 1.0 2927.2 7215.3 3.00

3l-cvrp26 26 100 1601.09 1639.66 1.1 3880.0 7207.7 2.46

3l-cvrp27 23 100 1541.37 1573.55 1.3 690.5 7207.5 2.86

AVG 0.7 1704.9 4203.9 1.87

Table A.10: Explicit results on 3L-CVRP using Heuristic Branch & Price, branching
on arcs, with Limited Discrepancy Search, zmin/avg = best/average solu-
tion cost over 10 runs, %RSD = relative percentage standard deviation
over 10 runs, sech = Time at which UB = zmin, sectt = average total ex-
ecution time, %gbb

avg=average relative percentage deviation w.r.t. bb-best
solution.

A.3 heuristic branch & price 255

Instance HBPP-DFS

K n zmin zavg %RSD sech sectt %gbb
avg

3l-cvrp01 4 15 302.02 302.02 0.0 27.5 1800.1 0.00

3l-cvrp02 5 15 334.96 334.96 0.0 0.6 1800.0 0.00

3l-cvrp03 4 20 385.53 387.84 0.2 702.9 1800.4 -1.22

3l-cvrp04 6 20 437.19 437.19 0.0 4.4 1800.0 0.00

3l-cvrp05 6 21 447.73 447.82 0.1 557.1 1800.7 0.95

3l-cvrp06 6 21 498.16 498.16 0.0 35.8 1800.1 0.00

3l-cvrp07 6 22 769.68 769.68 0.0 258.5 1802.6 0.00

3l-cvrp08 6 22 845.50 846.86 0.3 975.7 1800.4 4.44

3l-cvrp09 8 25 630.13 630.13 0.0 62.0 1800.1 0.00

3l-cvrp10 8 29 828.75 840.87 1.1 1310.6 3601.5 2.50

3l-cvrp11 8 29 776.19 784.50 1.9 1665.2 3601.8 -2.38

3l-cvrp12 9 30 612.25 612.25 0.0 925.4 3600.1 -0.38

3l-cvrp13 8 32 2665.33 2672.30 0.2 1399.1 3606.3 1.00

3l-cvrp14 9 32 1437.55 1513.65 2.3 782.7 3604.8 10.61

3l-cvrp15 9 32 1356.08 1398.00 1.6 1994.5 3604.6 4.24

3l-cvrp16 11 35 698.61 698.61 0.0 55.3 3600.2 0.00

3l-cvrp17 14 40 866.40 866.40 0.0 195.4 3600.2 0.00

3l-cvrp18 11 44 1226.42 1245.96 0.7 1822.6 3616.8 3.17

3l-cvrp19 12 50 746.21 767.94 2.9 4741.1 7208.2 3.53

3l-cvrp20 18 71 601.55 618.53 1.9 3351.4 7205.8 5.20

3l-cvrp21 17 75 1108.16 1144.34 1.5 1428.7 7215.8 4.96

3l-cvrp22 18 75 1184.46 1215.38 1.5 2849.8 7206.1 5.89

3l-cvrp23 17 75 1158.35 1172.95 0.7 867.7 7208.6 3.75

3l-cvrp24 16 75 1168.77 1188.30 1.3 2014.8 7202.3 6.47

3l-cvrp25 22 100 1444.22 1465.93 0.9 647.1 7218.9 4.16

3l-cvrp26 26 100 1645.05 1655.50 0.4 2551.4 7204.1 3.45

3l-cvrp27 23 100 1548.00 1577.50 1.2 1796.4 7208.2 3.11

AVG 0.8 1223.1 4204.4 2.35

Table A.11: Explicit results on 3L-CVRP using Heuristic Branch & Price, branching
on pairs, with Depth First Search, zmin/avg = best/average solution cost
over 10 runs, %RSD = relative percentage standard deviation over 10

runs, sech = Time of the first restart at which UB = zmin, sectt = average
total execution time, %gbb

avg=average relative percentage deviation w.r.t.
bb-best solution.

256 Appendix A 3l-cvrp: additional material

Instance HBPP-LDS

K n zmin zavg %RSD sech sectt %gbb
avg

3l-cvrp01 4 15 302.02 302.02 0.0 33.4 1800.1 0.00

3l-cvrp02 5 15 334.96 334.96 0.0 0.8 1800.0 0.00

3l-cvrp03 4 20 385.53 387.84 0.2 567.6 1800.3 -1.22

3l-cvrp04 6 20 437.19 437.19 0.0 3.7 1800.0 0.00

3l-cvrp05 6 21 447.73 447.73 0.0 643.0 1800.8 0.93

3l-cvrp06 6 21 498.16 498.16 0.0 29.7 1800.1 0.00

3l-cvrp07 6 22 769.68 769.68 0.0 298.9 1803.8 0.00

3l-cvrp08 6 22 845.50 846.16 0.2 353.5 1800.5 4.35

3l-cvrp09 8 25 630.13 630.13 0.0 51.1 1800.1 0.00

3l-cvrp10 8 29 828.75 842.09 1.4 2332.2 3601.3 2.65

3l-cvrp11 8 29 776.19 778.00 0.1 1224.3 3602.6 -3.19

3l-cvrp12 9 30 612.25 612.25 0.0 1344.9 3600.1 -0.38

3l-cvrp13 8 32 2670.50 2674.04 0.1 1534.0 3605.4 1.06

3l-cvrp14 9 32 1428.57 1508.20 2.4 658.3 3605.0 10.22

3l-cvrp15 9 32 1364.67 1407.16 1.9 1338.0 3604.3 4.92

3l-cvrp16 11 35 698.61 698.61 0.0 47.7 3600.1 0.00

3l-cvrp17 14 40 866.40 866.40 0.0 144.6 3600.2 0.00

3l-cvrp18 11 44 1225.46 1245.03 0.9 2046.5 3620.5 3.09

3l-cvrp19 12 50 743.62 756.96 2.2 5726.1 7200.7 2.05

3l-cvrp20 18 71 593.12 609.58 2.6 2784.2 7213.9 3.68

3l-cvrp21 17 75 1109.38 1143.71 1.4 2461.2 7209.8 4.91

3l-cvrp22 18 75 1184.05 1209.08 1.6 2828.4 7207.1 5.34

3l-cvrp23 17 75 1158.13 1173.47 0.7 1167.7 7203.6 3.80

3l-cvrp24 16 75 1154.37 1183.50 1.3 2365.9 7202.2 6.04

3l-cvrp25 22 100 1444.22 1465.93 0.9 595.9 7211.6 4.16

3l-cvrp26 26 100 1614.04 1651.56 1.1 2425.8 7208.0 3.20

3l-cvrp27 23 100 1548.00 1579.90 1.2 333.0 7209.8 3.27

AVG 0.7 1234.8 4204.1 2.18

Table A.12: Explicit results on 3L-CVRP using Heuristic Branch & Price, branching
on pairs, with Limited Discrepancy Search, zmin/avg = best/average so-
lution cost over 10 runs, %RSD = relative percentage standard deviation
over 10 runs, sech = Time at which UB = zmin, sectt = average total ex-
ecution time, %gbb

avg=average relative percentage deviation w.r.t. bb-best
solution.

A.3 heuristic branch & price 257

% of Total Execution Time
H

B
PA

−L
D

S
, C

P
U

 T
im

e
A

llo
ca

tio
n

In
st

an
ce

3l−
cv

rp
01 3l−

cv
rp

03 3l−
cv

rp
05 3l−

cv
rp

07 3l−
cv

rp
09 3l−

cv
rp

11 3l−
cv

rp
13 3l−

cv
rp

15 3l−
cv

rp
17 3l−

cv
rp

19 3l−
cv

rp
21 3l−

cv
rp

23 3l−
cv

rp
25 3l−

cv
rp

27

%
LP

%
B

B
%

S
T

%
G

E
N

%
P

O
%

O
T

H

020406080100

(a
)

% of Total Execution Time

H
B

P
P

−L
D

S
, C

P
U

 T
im

e
A

llo
ca

tio
n

In
st

an
ce

3l−
cv

rp
01 3l−

cv
rp

03 3l−
cv

rp
05 3l−

cv
rp

07 3l−
cv

rp
09 3l−

cv
rp

11 3l−
cv

rp
13 3l−

cv
rp

15 3l−
cv

rp
17 3l−

cv
rp

19 3l−
cv

rp
21 3l−

cv
rp

23 3l−
cv

rp
25 3l−

cv
rp

27

%
LP

%
B

B
%

S
T

%
G

E
N

%
P

O
%

O
T

H

020406080100

(b
)

Fi
gu

re
A

.5
:H

BP
A

-L
D

S
an

d
H

BP
P-

LD
S,

C
PU

Ti
m

e
A

llo
ca

ti
on

258 Appendix A 3l-cvrp: additional material

F
ea

si
bl

e
%

 o
f T

es
te

d
R

ou
te

s

0
20

40
60

80
10

0

HBPP−LDS, Feasibility in tested routes

Instance

3l−
cv

rp
01

3l−
cv

rp
03

3l−
cv

rp
05

3l−
cv

rp
07

3l−
cv

rp
09

3l−
cv

rp
11

3l−
cv

rp
13

3l−
cv

rp
15

3l−
cv

rp
17

3l−
cv

rp
19

3l−
cv

rp
21

3l−
cv

rp
23

3l−
cv

rp
25

3l−
cv

rp
27

Figure A.6: HBPP-LDS, Percentage of feasible routes in tested routes

A.3 heuristic branch & price 259

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

3l-cvrp01 0.5 83.1 0.1 12.5 0.1 1874.3 14891.2

3l-cvrp02 2.2 6.1 0.2 61.5 0.0 788.1 2498.5

3l-cvrp03 1.3 59.6 0.0 33.5 0.1 2782.0 10434.2

3l-cvrp04 1.5 38.0 0.9 42.1 0.2 2753.6 17455.7

3l-cvrp05 0.3 83.3 0.0 15.0 0.0 2137.4 11371.1

3l-cvrp06 1.9 10.2 0.0 74.6 0.0 2325.3 5427.8

3l-cvrp07 0.0 99.3 0.0 0.6 0.1 1681.8 14715.9

3l-cvrp08 0.3 78.4 0.0 20.3 0.0 1297.3 8224.3

3l-cvrp09 0.8 45.6 0.2 50.4 0.1 2197.1 13447.7

3l-cvrp10 0.0 94.6 0.0 5.2 0.0 1532.6 5939.2

3l-cvrp11 0.0 93.8 0.0 6.0 0.0 1949.5 9737.9

3l-cvrp12 0.7 18.2 0.0 77.9 0.0 2076.2 5157.2

3l-cvrp13 0.1 85.4 0.0 14.1 0.0 2813.3 21002.1

3l-cvrp14 0.0 98.2 0.0 1.7 0.0 1515.9 6894.4

3l-cvrp15 0.0 97.3 0.0 2.6 0.0 1773.2 7773.6

3l-cvrp16 0.5 1.5 0.0 95.9 0.0 2224.7 5169.7

3l-cvrp17 0.4 2.4 0.1 95.3 0.0 2545.9 6153.5

3l-cvrp18 0.0 92.1 0.0 7.8 0.0 1602.5 11507.8

3l-cvrp19 0.1 69.0 0.0 30.7 0.0 4240.0 40640.8

3l-cvrp20 0.0 82.6 0.0 17.3 0.0 2036.5 15974.8

3l-cvrp21 0.0 73.0 0.0 26.9 0.0 2393.5 17160.7

3l-cvrp22 0.0 60.4 0.0 39.4 0.0 2487.1 17545.9

3l-cvrp23 0.0 70.5 0.0 29.4 0.0 2351.9 13466.1

3l-cvrp24 0.1 55.1 0.0 44.7 0.0 3185.6 8092.9

3l-cvrp25 0.0 62.3 0.0 37.6 0.0 2597.1 20158.8

3l-cvrp26 0.0 67.8 0.0 32.1 0.0 2212.6 22074.1

3l-cvrp27 0.0 67.1 0.0 32.9 0.0 2473.1 14892.7

Table A.13: HBPA-LDS : CPU Time Allocation and Ratio of Feasible routes / Routes
in Feasibility Store (|Ψ|)

260 Appendix A 3l-cvrp: additional material

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

3l-cvrp01 0.8 69.0 1.6 24.4 0.1 1592.9 25545.3

3l-cvrp02 1.7 0.5 4.7 74.6 0.0 622.2 2338.0

3l-cvrp03 0.8 62.8 2.2 32.1 0.1 2440.9 13892.3

3l-cvrp04 1.8 25.7 1.2 48.0 0.2 2803.1 16174.4

3l-cvrp05 0.2 85.9 0.9 12.5 0.1 2051.2 22117.9

3l-cvrp06 1.7 33.5 3.4 54.2 0.2 2960.5 16107.2

3l-cvrp07 0.0 99.4 0.0 0.5 0.1 1573.6 17283.3

3l-cvrp08 0.1 84.5 0.9 14.1 0.0 893.0 54630.8

3l-cvrp09 0.7 23.1 4.2 68.0 0.1 2182.6 13513.2

3l-cvrp10 0.0 91.0 0.5 8.4 0.0 1198.9 87668.0

3l-cvrp11 0.1 87.7 0.8 11.2 0.0 2154.3 104977.8

3l-cvrp12 0.5 6.5 5.4 85.7 0.0 1951.6 5230.6

3l-cvrp13 0.1 80.3 1.2 18.2 0.1 2534.3 32199.4

3l-cvrp14 0.0 96.8 0.2 3.0 0.0 1146.3 73713.1

3l-cvrp15 0.0 97.1 0.2 2.6 0.0 1299.1 56551.5

3l-cvrp16 0.3 1.0 5.8 91.8 0.0 1977.0 4164.4

3l-cvrp17 0.3 0.9 5.6 92.1 0.0 2287.2 5106.1

3l-cvrp18 0.0 94.9 0.3 4.8 0.0 1205.3 34675.7

3l-cvrp19 0.1 56.6 2.5 40.6 0.0 3028.1 58186.3

3l-cvrp20 0.0 66.3 1.8 31.8 0.0 2017.1 135730.5

3l-cvrp21 0.0 79.2 1.1 19.6 0.0 2616.4 41800.7

3l-cvrp22 0.0 56.0 2.3 41.6 0.0 2345.8 100535.0

3l-cvrp23 0.0 52.9 2.2 44.8 0.0 2358.5 42981.7

3l-cvrp24 0.1 15.6 3.6 80.6 0.0 3230.3 13944.5

3l-cvrp25 0.0 59.9 2.0 38.0 0.0 2597.3 64209.3

3l-cvrp26 0.0 34.7 3.2 62.0 0.0 2105.1 121600.0

3l-cvrp27 0.0 38.1 2.9 58.9 0.0 2453.9 72544.9

Table A.14: HBPP-LDS : CPU Time Allocation and Ratio of Feasible routes / Routes
in Feasibility Store (|Ψ|)

A.3 heuristic branch & price 261

a.3.3 Results for HBP*

Instance HBPA-DFS HBPA*-DFS

K n zmin zavg sectt zmin zavg sectt gmin gavg

3l-cvrp01 4 15 302.02 302.02 1800.2 302.02 302.02 0.1 0.00 0.00

3l-cvrp02 5 15 334.96 334.96 1800.1 334.96 334.96 0.0 0.00 0.00

3l-cvrp03 4 20 388.09 390.25 1800.4 388.09 390.25 0.4 0.00 0.00

3l-cvrp04 6 20 437.19 437.19 1800.0 437.19 437.19 0.1 0.00 0.00

3l-cvrp05 6 21 447.73 447.73 1800.8 447.73 447.73 0.2 0.00 0.00

3l-cvrp06 6 21 498.16 498.16 1800.1 498.16 498.16 0.3 0.00 0.00

3l-cvrp07 6 22 769.68 770.06 1805.3 769.68 770.06 0.0 0.00 0.00

3l-cvrp08 6 22 845.50 848.49 1800.7 845.50 848.49 0.1 0.00 0.00

3l-cvrp09 8 25 630.13 630.13 1800.2 630.13 630.13 0.1 0.00 0.00

3l-cvrp10 8 29 829.24 845.28 3600.9 828.75 837.86 0.5 -0.06 -0.88

3l-cvrp11 8 29 787.04 815.61 3603.4 787.04 809.31 1.0 0.00 -0.77

3l-cvrp12 9 30 612.25 612.25 3600.1 612.25 612.25 0.3 0.00 0.00

3l-cvrp13 8 32 2665.33 2679.80 3607.5 2665.33 2677.72 0.3 0.00 -0.08

3l-cvrp14 9 32 1497.31 1518.29 3604.7 1469.56 1487.47 0.8 -1.85 -2.03

3l-cvrp15 9 32 1358.00 1412.71 3604.2 1352.41 1376.05 0.3 -0.41 -2.60

3l-cvrp16 11 35 698.61 698.61 3600.1 698.61 698.61 0.3 0.00 0.00

3l-cvrp17 14 40 866.40 866.40 3600.2 866.40 866.40 0.1 0.00 0.00

3l-cvrp18 11 44 1225.62 1247.29 3603.8 1225.62 1239.18 0.3 0.00 -0.65

3l-cvrp19 12 50 741.31 761.29 7204.0 741.31 755.78 0.7 0.00 -0.72

3l-cvrp20 18 71 602.15 619.82 7208.8 596.89 604.55 2.9 -0.87 -2.46

3l-cvrp21 17 75 1113.60 1139.60 7204.7 1108.56 1117.49 1.0 -0.45 -1.94

3l-cvrp22 18 75 1190.92 1215.92 7203.2 1184.17 1193.67 1.8 -0.57 -1.83

3l-cvrp23 17 75 1138.47 1170.57 7207.9 1133.19 1146.85 2.0 -0.46 -2.03

3l-cvrp24 16 75 1164.36 1182.02 7205.3 1145.15 1153.61 2.3 -1.65 -2.40

3l-cvrp25 22 100 1444.22 1462.44 7217.0 1424.37 1432.03 5.2 -1.37 -2.08

3l-cvrp26 26 100 1635.49 1651.40 7204.5 1606.10 1618.43 2.7 -1.80 -2.00

3l-cvrp27 23 100 1541.37 1571.54 7212.7 1524.21 1537.43 3.8 -1.11 -2.17

AVG 4203.7 1.0 -0.39 -0.91

Table A.15: Comparison of Heuristic Branch & Price, branching on arcs, with Depth
First Search (HBPA-DFS) and results obtained when solving problem
SCP(R∗) over set of feasible routes R∗ obtained in HBPA-DFS (HBPA*-
DFS). zmin/avg = best/average solution cost over 10 runs, sectt = average
total execution time, for HBPA*-DFS this corresponds to the time neces-
sary to solve problem SCP(R∗). gmin/avg= relative percentage deviation

of HBPA*-DFS w.r.t. HBPA-DFS, computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where

zmin/avg are the results obtained with HBPA*-DFS and zD
min/avg the re-

sults obtained with HBPA-DFS.

262 Appendix A 3l-cvrp: additional material

Instance HBPA-LDS HBPA*-LDS

K n zmin zavg sectt zmin zavg sectt gmin gavg

3l-cvrp01 4 15 302.02 302.02 1800.3 302.02 302.02 0.1 0.00 0.00

3l-cvrp02 5 15 334.96 334.96 1800.0 334.96 334.96 0.0 0.00 0.00

3l-cvrp03 4 20 385.53 390.61 1800.8 385.53 390.17 0.6 0.00 -0.11

3l-cvrp04 6 20 437.19 437.19 1800.0 437.19 437.19 0.0 0.00 0.00

3l-cvrp05 6 21 447.73 447.82 1800.4 447.73 447.82 0.2 0.00 0.00

3l-cvrp06 6 21 498.16 498.16 1800.1 498.16 498.16 0.2 0.00 0.00

3l-cvrp07 6 22 769.68 769.68 1803.2 769.68 769.68 0.0 0.00 0.00

3l-cvrp08 6 22 845.50 846.69 1801.0 845.50 846.63 0.1 0.00 -0.01

3l-cvrp09 8 25 630.13 630.13 1800.1 630.13 630.13 0.1 0.00 0.00

3l-cvrp10 8 29 835.74 843.71 3602.5 831.74 835.70 0.9 -0.48 -0.95

3l-cvrp11 8 29 778.24 798.03 3602.1 778.24 793.99 0.3 0.00 -0.51

3l-cvrp12 9 30 612.25 612.84 3600.1 612.25 612.84 0.4 0.00 0.00

3l-cvrp13 8 32 2670.50 2675.48 3601.5 2670.50 2675.48 0.3 0.00 0.00

3l-cvrp14 9 32 1477.98 1516.36 3606.6 1450.62 1475.24 2.0 -1.85 -2.71

3l-cvrp15 9 32 1349.73 1390.63 3604.8 1346.62 1368.15 0.9 -0.23 -1.62

3l-cvrp16 11 35 698.61 698.61 3600.1 698.61 698.61 0.3 0.00 0.00

3l-cvrp17 14 40 866.40 866.40 3600.1 866.40 866.40 0.1 0.00 0.00

3l-cvrp18 11 44 1226.40 1235.68 3608.4 1225.20 1230.92 0.3 -0.10 -0.39

3l-cvrp19 12 50 741.31 743.58 7214.2 741.31 743.58 0.5 0.00 0.00

3l-cvrp20 18 71 594.50 607.20 7205.7 590.13 596.81 2.2 -0.74 -1.71

3l-cvrp21 17 75 1103.02 1125.50 7203.1 1094.14 1104.63 1.5 -0.81 -1.85

3l-cvrp22 18 75 1185.80 1207.22 7203.5 1172.26 1177.95 3.2 -1.14 -2.42

3l-cvrp23 17 75 1128.80 1155.91 7213.3 1128.49 1140.62 7.1 -0.03 -1.32

3l-cvrp24 16 75 1120.76 1153.84 7204.1 1120.76 1137.39 4.3 0.00 -1.43

3l-cvrp25 22 100 1421.81 1449.56 7215.3 1411.21 1419.91 7.9 -0.75 -2.05

3l-cvrp26 26 100 1601.09 1639.66 7207.7 1588.60 1604.59 4.1 -0.78 -2.14

3l-cvrp27 23 100 1541.37 1573.55 7207.5 1521.98 1527.04 9.9 -1.26 -2.96

AVG 4203.9 1.8 -0.30 -0.82

Table A.16: Comparison of Heuristic Branch & Price, branching on arcs, with Lim-
ited Discrepancy Search (HBPA-LDS) and results obtained when solving
problem SCP(R∗) over set of feasible routes R∗ obtained in HBPA-LDS
(HBPA*-LDS). zmin/avg = best/average solution cost over 10 runs, sectt =
average total execution time, for HBPA*-LDS this corresponds to the time
necessary to solve problem SCP(R∗). gmin/avg= relative percentage devi-

ation of HBPA*-LDS w.r.t. HBPA-LDS, computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with HBPA*-LDS and zD
min/avg

the results obtained with HBPA-LDS.

A.3 heuristic branch & price 263

Instance HBPP-DFS HBPP*-DFS

K n zmin zavg sectt zmin zavg sectt gmin gavg

3l-cvrp01 4 15 302.02 302.02 1800.1 302.02 302.02 0.1 0.00 0.00

3l-cvrp02 5 15 334.96 334.96 1800.0 334.96 334.96 0.0 0.00 0.00

3l-cvrp03 4 20 385.53 387.84 1800.4 385.53 387.84 0.5 0.00 0.00

3l-cvrp04 6 20 437.19 437.19 1800.0 437.19 437.19 0.1 0.00 0.00

3l-cvrp05 6 21 447.73 447.82 1800.7 447.73 447.82 0.2 0.00 0.00

3l-cvrp06 6 21 498.16 498.16 1800.1 498.16 498.16 0.3 0.00 0.00

3l-cvrp07 6 22 769.68 769.68 1802.6 769.68 769.68 0.0 0.00 0.00

3l-cvrp08 6 22 845.50 846.86 1800.4 845.50 846.86 0.1 0.00 0.00

3l-cvrp09 8 25 630.13 630.13 1800.1 630.13 630.13 0.1 0.00 0.00

3l-cvrp10 8 29 828.75 840.87 3601.5 826.66 833.06 0.3 -0.25 -0.93

3l-cvrp11 8 29 776.19 784.50 3601.8 776.19 783.48 0.3 0.00 -0.13

3l-cvrp12 9 30 612.25 612.25 3600.1 612.25 612.25 0.2 0.00 0.00

3l-cvrp13 8 32 2665.33 2672.30 3606.3 2665.33 2672.30 0.4 0.00 0.00

3l-cvrp14 9 32 1437.55 1513.65 3604.8 1436.04 1483.73 0.7 -0.11 -1.98

3l-cvrp15 9 32 1356.08 1398.00 3604.6 1353.88 1376.88 0.3 -0.16 -1.51

3l-cvrp16 11 35 698.61 698.61 3600.2 698.61 698.61 0.4 0.00 0.00

3l-cvrp17 14 40 866.40 866.40 3600.2 866.40 866.40 0.1 0.00 0.00

3l-cvrp18 11 44 1226.42 1245.96 3616.8 1225.62 1236.95 0.2 -0.07 -0.72

3l-cvrp19 12 50 746.21 767.94 7208.2 746.21 758.87 0.5 0.00 -1.18

3l-cvrp20 18 71 601.55 618.53 7205.8 593.12 601.81 0.9 -1.40 -2.70

3l-cvrp21 17 75 1108.16 1144.34 7215.8 1108.16 1121.75 1.8 0.00 -1.97

3l-cvrp22 18 75 1184.46 1215.38 7206.1 1178.48 1192.45 1.9 -0.50 -1.89

3l-cvrp23 17 75 1158.35 1172.95 7208.6 1135.73 1147.08 2.1 -1.95 -2.21

3l-cvrp24 16 75 1168.77 1188.30 7202.3 1147.91 1154.37 5.6 -1.78 -2.86

3l-cvrp25 22 100 1444.22 1465.93 7218.9 1425.87 1434.54 5.0 -1.27 -2.14

3l-cvrp26 26 100 1645.05 1655.50 7204.1 1602.77 1614.93 1.7 -2.57 -2.45

3l-cvrp27 23 100 1548.00 1577.50 7208.2 1527.45 1538.42 6.3 -1.33 -2.48

AVG 4204.4 1.1 -0.42 -0.93

Table A.17: Comparison of Heuristic Branch & Price, branching on customer pairs,
with Depth First Search (HBPP-DFS) and results obtained when solving
problem SCP(R∗) over set of feasible routes R∗ obtained in HBPP-DFS
(HBPP*-DFS). zmin/avg = best/average solution cost over 10 runs, sectt =
average total execution time, for HBPP*-DFS this corresponds to the time
necessary to solve problem SCP(R∗). gmin/avg= relative percentage de-

viation of HBPP*-DFS w.r.t. HBPP-DFS, computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with HBPP*-DFS and zD
min/avg the

results obtained with HBPP-DFS.

264 Appendix A 3l-cvrp: additional material

Instance HBPP-LDS HBPP*-LDS

K n zmin zavg sectt zmin zavg sectt gmin gavg

3l-cvrp01 4 15 302.02 302.02 1800.1 302.02 302.02 0.1 0.00 0.00

3l-cvrp02 5 15 334.96 334.96 1800.0 334.96 334.96 0.0 0.00 0.00

3l-cvrp03 4 20 385.53 387.84 1800.3 385.53 387.84 1.2 0.00 0.00

3l-cvrp04 6 20 437.19 437.19 1800.0 437.19 437.19 0.1 0.00 0.00

3l-cvrp05 6 21 447.73 447.73 1800.8 447.73 447.73 0.2 0.00 0.00

3l-cvrp06 6 21 498.16 498.16 1800.1 498.16 498.16 0.3 0.00 0.00

3l-cvrp07 6 22 769.68 769.68 1803.8 769.68 769.68 0.0 0.00 0.00

3l-cvrp08 6 22 845.50 846.16 1800.5 845.50 845.50 0.1 0.00 -0.08

3l-cvrp09 8 25 630.13 630.13 1800.1 630.13 630.13 0.1 0.00 0.00

3l-cvrp10 8 29 828.75 842.09 3601.3 826.66 832.70 1.2 -0.25 -1.12

3l-cvrp11 8 29 776.19 778.00 3602.6 776.19 778.00 0.3 0.00 0.00

3l-cvrp12 9 30 612.25 612.25 3600.1 612.25 612.25 0.3 0.00 0.00

3l-cvrp13 8 32 2670.50 2674.04 3605.4 2670.50 2673.36 0.3 0.00 -0.03

3l-cvrp14 9 32 1428.57 1508.20 3605.0 1428.57 1469.43 1.0 0.00 -2.57

3l-cvrp15 9 32 1364.67 1407.16 3604.3 1353.88 1364.35 0.5 -0.79 -3.04

3l-cvrp16 11 35 698.61 698.61 3600.1 698.61 698.61 0.3 0.00 0.00

3l-cvrp17 14 40 866.40 866.40 3600.2 866.40 866.40 0.1 0.00 0.00

3l-cvrp18 11 44 1225.46 1245.03 3620.5 1224.67 1233.63 0.3 -0.06 -0.92

3l-cvrp19 12 50 743.62 756.96 7200.7 741.31 750.70 0.5 -0.31 -0.83

3l-cvrp20 18 71 593.12 609.58 7213.9 587.52 595.34 3.5 -0.94 -2.34

3l-cvrp21 17 75 1109.38 1143.71 7209.8 1099.61 1108.31 2.3 -0.88 -3.10

3l-cvrp22 18 75 1184.05 1209.08 7207.1 1170.28 1179.01 7.1 -1.16 -2.49

3l-cvrp23 17 75 1158.13 1173.47 7203.6 1129.68 1138.51 6.1 -2.46 -2.98

3l-cvrp24 16 75 1154.37 1183.50 7202.2 1127.88 1135.78 5.7 -2.29 -4.03

3l-cvrp25 22 100 1444.22 1465.93 7211.6 1416.34 1424.03 12.9 -1.93 -2.86

3l-cvrp26 26 100 1614.04 1651.56 7208.0 1595.24 1604.41 3.8 -1.16 -2.85

3l-cvrp27 23 100 1548.00 1579.90 7209.8 1511.13 1525.70 11.6 -2.38 -3.43

AVG 4204.1 2.2 -0.54 -1.21

Table A.18: Comparison of Heuristic Branch & Price, branching on arcs, with Lim-
ited Discrepancy Search (HBPP-LDS) and results obtained when solving
problem SCP(R∗) over set of feasible routes R∗ obtained in HBPP-LDS
(HBPP*-LDS). zmin/avg = best/average solution cost over 10 runs, sectt =
average total execution time, for HBPP*-LDS this corresponds to the time
necessary to solve problem SCP(R∗). gmin/avg= relative percentage de-

viation of HBPP*-LDS w.r.t. HBPP-LDS, computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with HBPP*-LDS and zD
min/avg

the results obtained with HBPP-LDS.

B
M P - V R P : E X P E R I M E N TA L R E S U LT S - A D D I T I O N A L
TA B L E S A N D P L O T S

b.1 pheromone-based heuristic column generation

b.1.1 Comparison of architectures over 10 runs

Majorana : architecture used in in chapter 11, AMD Opteron 6272 CPU
(2.1 GHz, 16 MB cache size), gcc 4.4.6, CPLEX 12.4 and Boost Libraries
v. 1.41

Claus : architecture used in in chapter 13: AMD Opteron 6284 SE
CPU (2.7 Ghz, 16MB cache size), gcc 4.4.7, CPLEX 12.4 and Boost Li-
braries v. 1.53

265

266 Appendix B mp-vrp: additional material

Instance Majorana Claus

K n zmin zavg sectt zmin zavg sectt gmin gavg

CMT01-1 1 50 590.24 590.83 1833.90 587.81 592.06 1823.6 -0.41 -0.12

CMT01-2 2 50 615.11 615.69 1813.20 615.11 623.51 1804.7 0.00 0.46

CMT01-3 3 50 623.44 624.55 1805.50 623.44 626.73 1804.4 0.00 0.03

CMT02-1 1 75 975.56 975.57 1848.40 975.56 976.63 1855.3 0.00 0.06

CMT02-2 2 75 897.51 899.91 1823.56 898.38 907.33 1837.9 0.10 0.34

CMT02-3 3 75 889.26 890.82 1815.70 889.26 894.53 1817.8 0.00 0.00

CMT03-1 1 100 1180.21 1184.01 1825.20 1183.76 1189.33 1809.1 0.30 0.22

CMT03-2 2 100 1219.13 1221.16 1951.70 1219.15 1225.52 1893.8 0.00 0.11

CMT03-3 3 100 1157.22 1159.23 1812.70 1157.22 1168.67 1818.6 0.00 0.17

CMT04-1 1 150 1607.63 1615.17 1907.40 1617.12 1646.22 1934.3 0.59 0.92

CMT04-2 2 150 1544.61 1549.13 1941.10 1547.30 1560.32 1984.4 0.17 0.30

CMT04-3 3 150 1541.35 1545.35 1886.30 1541.41 1558.26 1883.7 0.00 0.17

CMT05-1 1 199 2019.80 2027.71 2032.80 2024.91 2052.36 2037.5 0.25 0.69

CMT05-2 2 199 1832.18 1837.98 2010.00 1849.76 1882.64 2038.8 0.96 1.39

CMT05-3 3 199 1948.15 1952.12 1919.20 1952.32 1978.17 1985.1 0.21 0.49

CMT06-1 1 120 2244.32 2249.43 2137.10 2250.76 2273.50 1914.9 0.29 0.41

CMT06-2 2 120 2089.17 2094.35 1985.00 2085.16 2116.88 1863.9 -0.19 0.45

CMT06-3 3 120 2153.45 2163.95 1839.60 2152.84 2179.06 1848.3 -0.03 0.23

CMT07-1 1 100 1140.29 1144.35 1832.10 1139.85 1156.57 1845.5 -0.04 0.42

CMT07-2 2 100 1214.95 1216.10 1858.10 1214.95 1219.77 1843.4 0.00 0.09

CMT07-3 3 100 1152.16 1163.92 1843.80 1153.81 1182.56 1836.4 0.14 0.33

AVG 1891.54 1880.1 0.11 0.34

Table B.1: Comparison of different architectures, zmin/avg = best/average solution
cost over 10 runs, sectt = average total execution time, gmin/avg= rela-

tive percentage deviation w.r.t. Majorana, computed as 100 ·
zmin/avg−zMaj

min/avg

zMaj
min/avg

where zmin/avg are the results obtained on Claus and zMaj
min/avg the results

obtained on Majorana

B.1 pheromone-based hcg 267

b.1.2 Comparison of ACO-HCG and ACO-HCG-NOPO

Instance ACO-HCG ACO-HCG-NOPO

K n zmin zavg sectt zmin zavg sectt gmin gavg

CMT01-1 1 50 587.81 590.10 1823.60 587.29 591.20 1817.7 -0.09 0.19

CMT01-2 2 50 615.11 618.50 1804.70 615.11 618.44 1809.5 0.00 -0.01

CMT01-3 3 50 623.44 624.76 1804.40 623.44 625.08 1813.8 0.00 0.05

CMT02-1 1 75 975.56 976.16 1855.30 975.63 976.17 1880.6 0.01 0.00

CMT02-2 2 75 898.38 902.93 1837.90 898.80 903.04 1851.8 0.05 0.01

CMT02-3 3 75 889.26 890.85 1817.80 889.26 895.09 1825.1 0.00 0.48

CMT03-1 1 100 1183.76 1186.61 1809.10 1185.20 1188.01 1813.8 0.12 0.12

CMT03-2 2 100 1219.15 1222.52 1893.80 1222.04 1224.33 1905.9 0.24 0.15

CMT03-3 3 100 1157.22 1161.15 1818.60 1157.54 1163.46 1821.9 0.03 0.20

CMT04-1 1 150 1617.12 1630.01 1934.30 1615.80 1631.04 1927.6 -0.08 0.06

CMT04-2 2 150 1547.30 1553.76 1984.40 1553.29 1559.78 1941.4 0.39 0.39

CMT04-3 3 150 1541.41 1548.00 1883.70 1550.46 1554.69 1906.0 0.59 0.43

CMT05-1 1 199 2024.91 2041.67 2037.50 2042.46 2053.66 2096.4 0.87 0.59

CMT05-2 2 199 1849.76 1863.53 2038.80 1867.68 1880.19 2048.6 0.97 0.89

CMT05-3 3 199 1952.32 1961.75 1985.10 1960.35 1976.87 2006.2 0.41 0.77

CMT06-1 1 120 2250.76 2258.60 1914.90 2271.79 2281.34 1994.3 0.93 1.01

CMT06-2 2 120 2085.16 2103.69 1863.90 2119.27 2128.38 1997.8 1.64 1.17

CMT06-3 3 120 2152.84 2168.93 1848.30 2170.27 2194.78 1854.4 0.81 1.19

CMT07-1 1 100 1139.85 1149.18 1845.50 1145.40 1153.74 1913.8 0.49 0.40

CMT07-2 2 100 1214.95 1217.20 1843.40 1218.31 1222.82 1939.5 0.28 0.46

CMT07-3 3 100 1153.81 1167.71 1836.40 1159.78 1171.35 1832.8 0.52 0.31

AVG 1880.07 1904.7 0.39 0.42

Table B.2: Comparison of ACO-HCG in automatic configuration (ACO-HCG) with
ACO-HCG in automatic configuration without Post-optimization of routes
(ACO-HCG-NOPO). zmin/avg = best/average solution cost over 10 runs,
sectt = average total execution time. gmin/avg= relative percentage deviation

of ACO-HCG-NOPO w.r.t. ACO-HCG , computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with ACO-HCG-NOPO and
zD

min/avg the results obtained with ACO-HCG.

268 Appendix B mp-vrp: additional material

Instance % Total Execution Time Routes in Ψ

%IP %LP %BB %ST %GEN %PO #Feasible routes |Ψ|

CMT01-1 0.4 0 98.4 0.0 1.1 0 4131.2 16108.5

CMT01-2 0.6 0 96.7 0.0 2.5 0 6874.8 35290.9

CMT01-3 3.2 0 89.9 0.1 6.6 0 10221.3 77316.7

CMT02-1 7.1 0 85.5 0.1 7.2 0 7842.4 75237.7

CMT02-2 5.6 0 88.0 0.1 6.2 0 7507.4 55324.9

CMT02-3 2.1 0 90.9 0.1 6.8 0 8768.7 61307.7

CMT03-1 0.3 0 91.3 0.1 8.3 0 6537.8 54999.6

CMT03-2 9.5 0 76.6 0.1 13.6 0 8895.7 90504.0

CMT03-3 1.6 0 87.3 0.1 10.8 0 7890.0 66238.7

CMT04-1 4.6 0 84.2 0.1 11.1 0 5136.6 47030.4

CMT04-2 6.3 0 75.3 0.1 18.2 0 6844.1 69327.8

CMT04-3 4.3 0 78.3 0.1 17.1 0 6794.0 63787.1

CMT05-1 11.3 0 74.3 0.1 14.3 0 4840.7 47215.2

CMT05-2 10.4 0 74.7 0.1 14.7 0 5200.8 40980.9

CMT05-3 8.7 0 68.3 0.1 22.8 0 6088.4 66215.3

CMT06-1 7.3 0 89.9 0.0 2.7 0 5325.7 33638.2

CMT06-2 7.8 0 88.9 0.0 3.2 0 5940.4 37121.9

CMT06-3 1.7 0 91.4 0.1 6.6 0 9054.8 70531.8

CMT07-1 9.9 0 79.9 0.1 10.0 0 9064.4 56164.5

CMT07-2 8.6 0 78.9 0.1 12.1 0 9849.2 71783.6

CMT07-3 0.8 0 94.9 0.0 4.2 0 5126.2 26837.2

Table B.3: ACO-HCG-NOPO : CPU Time Allocation, # feasible routes, # routes in
Feasibility Store (|Ψ|)

B.1 pheromone-based hcg 269

b.1.3 Comparison of ACO-HCG and DECOMP ACO-HCG

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

ACO−HCG, gavg
bb %

D
E

C
O

M
P

 A
C

O
−

H
C

G
, g

a
v

g
b

b
 %

Figure B.1: Comparison of DECOMP ACO-HCG and ACO-HCG. Each point
gives the average relative deviation from the bb-best solution over
10 independent runs. The symbols denote whether there is statisti-
cally significant difference (5) or not (2), or all the runs obtained
the same cost (O).

270 Appendix B mp-vrp: additional material

b.2 dive & generate

b.2.1 Comparison with ACO-HCG

1 2 3 4 5 6

1
2

3
4

5
6

ACO−HCG, gavg
bb %

D
IN

G
−

D
F

S
, g

a
vgb
b

 %

(a)

1 2 3 4 5
1

2
3

4
5

ACO−HCG, gavg
bb %

D
IN

G
−

LD
S

, g
a

vgb
b

 %

(b)

Figure B.2: Comparison of DING and ACO-HCG, ACO-HCG in the manual config-
uration. Each point gives the average relative deviation from the bb-best
solution over 10 independent runs. The symbols denote whether there is
statistically significant difference (5) or not (2), or all the runs obtained
the same cost (O).

B.2 dive & generate 271

b.2.2 Explicit results for DING

Instance Dive & Generate-DFS

K n zmin zavg %RSD sech sectt %gbb
avg

CMT01-1 1 50 590.08 598.14 0.9 1189.3 1800.6 1.85

CMT01-2 2 50 631.19 643.67 2.3 848.8 1800.3 4.64

CMT01-3 3 50 628.94 647.79 2.2 458.4 1800.3 3.90

CMT02-1 1 75 983.07 1018.05 2.0 664.5 1800.3 3.77

CMT02-2 2 75 919.97 941.38 1.7 563.2 1800.3 4.87

CMT02-3 3 75 903.61 942.57 3.4 347.0 1800.4 6.10

CMT03-1 1 100 1212.75 1255.76 2.7 678.5 1800.4 5.69

CMT03-2 2 100 1251.43 1268.20 1.2 468.7 1800.4 4.04

CMT03-3 3 100 1190.55 1228.74 2.3 554.0 1800.3 6.22

CMT04-1 1 150 1672.16 1705.93 1.1 390.7 1800.6 4.98

CMT04-2 2 150 1586.18 1623.18 1.5 392.3 1801.0 4.57

CMT04-3 3 150 1599.27 1636.48 1.7 586.3 1800.5 6.14

CMT05-1 1 199 2065.69 2100.89 1.0 989.3 1801.2 3.20

CMT05-2 2 199 1900.76 1918.47 0.8 623.9 1803.4 4.64

CMT05-3 3 199 2008.70 2040.91 0.8 732.3 1803.4 4.72

CMT06-1 1 120 2312.36 2368.72 1.6 477.9 1800.4 5.72

CMT06-2 2 120 2130.06 2178.89 1.4 843.2 1804.7 5.26

CMT06-3 3 120 2213.72 2268.24 2.3 645.2 1800.5 5.29

CMT07-1 1 100 1171.28 1191.66 1.5 510.9 1800.6 4.85

CMT07-2 2 100 1253.61 1283.33 1.8 408.8 1800.4 5.41

CMT07-3 3 100 1192.92 1229.35 2.0 459.2 1800.4 6.19

AVG 1.7 611.1 1801.0 4.86

Table B.4: Explicit results on MP-VRP using Dive & Generate with Depth First Search,
zmin/avg = best/average solution cost over 10 runs, %RSD = relative per-
centage standard deviation over 10 runs, sech = Time at which UB = zmin,
sectt = average total execution time, %gbb

avg=average relative percentage de-
viation w.r.t. bb-best solution cost.

272 Appendix B mp-vrp: additional material

Instance Dive & Generate-LDS

K n zmin zavg %RSD sech sectt %gbb
avg

CMT01-1 1 50 594.54 599.13 0.6 1550.8 1857.3 2.02

CMT01-2 2 50 616.74 621.84 0.8 961.7 1800.5 1.09

CMT01-3 3 50 623.91 631.02 0.6 906.1 1800.1 1.21

CMT02-1 1 75 976.63 984.97 0.4 788.9 1800.1 0.40

CMT02-2 2 75 907.50 915.13 0.5 917.6 1800.7 1.95

CMT02-3 3 75 889.88 904.18 0.9 1145.7 1800.7 1.78

CMT03-1 1 100 1189.45 1200.64 0.9 1118.8 1800.7 1.05

CMT03-2 2 100 1234.40 1246.28 0.8 831.9 1800.2 2.24

CMT03-3 3 100 1174.49 1185.81 0.8 708.4 1800.2 2.50

CMT04-1 1 150 1629.61 1659.57 1.2 1351.5 1815.0 2.13

CMT04-2 2 150 1573.16 1587.47 0.6 1026.5 1800.9 2.27

CMT04-3 3 150 1568.01 1577.40 0.8 1340.5 1800.3 2.31

CMT05-1 1 199 2052.35 2079.31 0.8 1075.7 1809.6 2.14

CMT05-2 2 199 1875.58 1898.33 0.5 1061.8 1814.0 3.54

CMT05-3 3 199 1992.71 2003.07 0.5 1191.2 1801.6 2.78

CMT06-1 1 120 2298.87 2333.72 1.4 1240.3 1825.3 4.16

CMT06-2 2 120 2130.10 2170.45 1.1 723.3 1832.7 4.85

CMT06-3 3 120 2190.97 2212.80 0.4 1040.3 1803.3 2.72

CMT07-1 1 100 1177.31 1188.15 0.8 673.1 1800.1 4.54

CMT07-2 2 100 1236.68 1266.53 1.9 375.8 1801.1 4.03

CMT07-3 3 100 1190.39 1206.16 1.0 804.3 1803.4 4.19

AVG 0.8 992.1 1808.0 2.57

Table B.5: Explicit results on MP-VRP using Dive & Generate with Limited Discrep-
ancy Search, zmin/avg = best/average solution cost over 10 runs, %RSD =
relative percentage standard deviation over 10 runs, sech = Time at which
UB = zmin, sectt = average total execution time, %gbb

avg=average relative
percentage deviation w.r.t. bb-best solution cost.

B.2 dive & generate 273

b.2.3 Results for DING*

Instance DING-DFS DING*-DFS

K n zmin zavg sectt zmin zavg sectt gmin gavg

CMT01-1 1 50 590.08 598.14 1800.60 590.08 597.88 0.6 0.00 -0.04

CMT01-2 2 50 631.19 643.67 1800.30 631.19 643.01 0.7 0.00 -0.10

CMT01-3 3 50 628.94 647.79 1800.30 628.94 647.66 0.3 0.00 -0.02

CMT02-1 1 75 983.07 1018.05 1800.30 983.07 1015.87 0.8 0.00 -0.21

CMT02-2 2 75 919.97 941.38 1800.30 914.79 940.12 0.6 -0.56 -0.13

CMT02-3 3 75 903.61 942.57 1800.40 903.61 942.38 0.6 0.00 -0.02

CMT03-1 1 100 1212.75 1255.76 1800.40 1212.75 1253.48 0.5 0.00 -0.18

CMT03-2 2 100 1251.43 1268.20 1800.40 1246.42 1264.51 5.0 -0.40 -0.29

CMT03-3 3 100 1190.55 1228.74 1800.30 1190.55 1227.69 1.8 0.00 -0.09

CMT04-1 1 150 1672.16 1705.93 1800.60 1668.89 1703.70 2.4 -0.20 -0.13

CMT04-2 2 150 1586.18 1623.18 1801.00 1584.85 1621.24 4.3 -0.08 -0.12

CMT04-3 3 150 1599.27 1636.48 1800.50 1599.27 1633.58 0.6 0.00 -0.18

CMT05-1 1 199 2065.69 2100.89 1801.20 2065.69 2097.54 2.7 0.00 -0.16

CMT05-2 2 199 1900.76 1918.47 1803.40 1880.58 1913.34 9.2 -1.06 -0.27

CMT05-3 3 199 2008.70 2040.91 1803.40 2008.70 2037.58 6.8 0.00 -0.16

CMT06-1 1 120 2312.36 2368.72 1800.40 2298.10 2354.57 54.9 -0.62 -0.60

CMT06-2 2 120 2130.06 2178.89 1804.70 2128.31 2172.23 90.6 -0.08 -0.31

CMT06-3 3 120 2213.72 2268.24 1800.50 2204.00 2262.76 10.8 -0.44 -0.24

CMT07-1 1 100 1171.28 1191.66 1800.60 1171.28 1182.94 7.4 0.00 -0.73

CMT07-2 2 100 1253.61 1283.33 1800.40 1241.91 1274.77 2.6 -0.93 -0.67

CMT07-3 3 100 1192.92 1229.35 1800.40 1188.63 1222.13 2.6 -0.36 -0.59

AVG 1800.97 9.8 -0.23 -0.25

Table B.6: Comparison of Dive & Generate with Depth First Search (DING-DFS) and
results obtained when solving problem SCP(R∗) over set of feasible routes
R∗ obtained in DING-DFS (DING*-DFS). zmin/avg = best/average solution
cost over 10 runs, sectt = average total execution time, for DING*-DFS this
corresponds to the time necessary to solve problem SCP(R∗). gmin/avg=
relative percentage deviation of DING*-DFS w.r.t. DING-DFS , computed

as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with DING*-

DFS and zD
min/avg the results obtained with DING-DFS.

274 Appendix B mp-vrp: additional material

Instance DING-LDS DING*-LDS

K n zmin zavg sectt zmin zavg sectt gmin gavg

CMT01-1 1 50 594.54 599.13 1857.30 592.69 598.52 1.0 -0.31 -0.10

CMT01-2 2 50 616.74 621.84 1800.50 616.74 621.84 0.9 0.00 0.00

CMT01-3 3 50 623.91 631.02 1800.10 623.91 630.58 2.8 0.00 -0.07

CMT02-1 1 75 976.63 984.97 1800.10 976.63 984.00 7.1 0.00 -0.10

CMT02-2 2 75 907.50 915.13 1800.70 907.50 913.24 10.7 0.00 -0.21

CMT02-3 3 75 889.88 904.18 1800.70 889.88 902.56 6.1 0.00 -0.18

CMT03-1 1 100 1189.45 1200.64 1800.70 1189.45 1197.59 2.0 0.00 -0.25

CMT03-2 2 100 1234.40 1246.28 1800.20 1229.52 1236.93 29.4 -0.40 -0.75

CMT03-3 3 100 1174.49 1185.81 1800.20 1174.49 1181.56 8.9 0.00 -0.36

CMT04-1 1 150 1629.61 1659.57 1815.00 1624.25 1642.24 139.7 -0.33 -1.04

CMT04-2 2 150 1573.16 1587.47 1800.90 1558.12 1569.50 127.9 -0.96 -1.13

CMT04-3 3 150 1568.01 1577.40 1800.30 1554.68 1567.49 85.2 -0.85 -0.63

CMT05-1 1 199 2052.35 2079.31 1809.60 2039.67 2055.77 269.3 -0.62 -1.13

CMT05-2 2 199 1875.58 1898.33 1814.00 1854.16 1867.87 276.7 -1.14 -1.60

CMT05-3 3 199 1992.71 2003.07 1801.60 1971.53 1984.11 224.3 -1.06 -0.95

CMT06-1 1 120 2298.87 2333.72 1825.30 2264.34 2276.72 76.4 -1.50 -2.44

CMT06-2 2 120 2130.10 2170.45 1832.70 2100.80 2127.79 79.9 -1.38 -1.97

CMT06-3 3 120 2190.97 2212.80 1803.30 2183.62 2190.82 25.2 -0.34 -0.99

CMT07-1 1 100 1177.31 1188.15 1800.10 1152.50 1156.68 29.7 -2.11 -2.65

CMT07-2 2 100 1236.68 1266.53 1801.10 1219.31 1228.23 14.0 -1.40 -3.02

CMT07-3 3 100 1190.39 1206.16 1803.40 1156.83 1170.96 12.5 -2.82 -2.92

AVG 1807.99 68.1 -0.72 -1.07

Table B.7: Comparison of Dive & Generate with Limited Discrepancy Search (DING-
LDS) and results obtained when solving problem SCP(R∗) over set of fea-
sible routes R∗ obtained in DING-LDS (DING*-LDS). zmin/avg = best/av-
erage solution cost over 10 runs, sectt = average total execution time,
for DING*-LDS this corresponds to the time necessary to solve prob-
lem SCP(R∗). gmin/avg= relative percentage deviation of DING*-LDS w.r.t.

DING-LDS , computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results

obtained with DING*-LDS and zD
min/avg the results obtained with DING-

LDS.

B.2 dive & generate 275

b.2.4 Comparison of DING-LDS and DECOMP DING-LDS

0 1 2 3 4 5

0
1

2
3

4
5

DING−LDS, gavg
bb %

D
E

C
O

M
P

 D
IN

G
−

LD
S

, g
a

v
g

b
b

 %

(a)

0 1 2 3 4

0
1

2
3

4

ACO−HCG, gavg
bb %

D
E

C
O

M
P

 D
IN

G
−

LD
S

, g
a

v
g

b
b

 %

(b)

Figure B.3: Comparison of DECOMP DING-LDS with DING-LDS and with
ACO-HCG Each point gives the average relative deviation from
the bb-best solution over 10 independent runs. The symbols denote
whether there is statistically significant difference (5) or not (2),
or all the runs obtained the same cost (O).

276 Appendix B mp-vrp: additional material

b.3 heuristic branch & price

b.3.1 Comparison with ACO-HCG

0 2 4 6 8

0
2

4
6

8

ACO−HCG, gavg
bb %

H
B

PA
−

D
F

S
, g

a
vgb
b

 %

(a)

0 1 2 3 4 5 6 7
0

1
2

3
4

5
6

7

ACO−HCG, gavg
bb %

H
B

PA
−

LD
S

, g
a

vgb
b

 %

(b)

0 2 4 6

0
2

4
6

ACO−HCG, gavg
bb %

H
B

P
P

−
D

F
S

, g
a

vgb
b

 %

(c)

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

ACO−HCG, gavg
bb %

H
B

P
P

−
LD

S
, g

a
vgb
b

 %

(d)

Figure B.4: Comparison of HBP and ACO-HCG, the manual configuration of ACO-
HCG. Each point gives the average relative deviation from the bb-best
solution over 10 independent runs. The symbols denote whether there is
statistically significant difference (5) or not (2), or all the runs obtained
the same cost (O).

B.3 heuristic branch & price 277

b.3.2 Explicit results for HBP

Instance HBPA-DFS

K n zmin zavg %RSD sech sectt %gbb
avg

CMT01-1 1 50 590.24 604.74 1.2 1395.0 1822.8 2.97

CMT01-2 2 50 630.37 640.50 1.1 1250.7 1800.3 4.13

CMT01-3 3 50 633.24 642.14 1.0 1038.3 1800.2 3.00

CMT02-1 1 75 1008.81 1036.08 1.7 1106.3 1801.4 5.61

CMT02-2 2 75 921.24 944.71 1.9 1263.8 1803.5 5.25

CMT02-3 3 75 916.07 942.10 1.3 1078.2 1802.3 6.05

CMT03-1 1 100 1230.50 1262.85 1.3 1126.8 1802.6 6.28

CMT03-2 2 100 1273.55 1287.75 0.8 1023.0 1802.9 5.64

CMT03-3 3 100 1208.34 1238.78 1.5 851.5 1802.9 7.08

CMT04-1 1 150 1690.84 1715.42 0.9 630.2 1814.7 5.57

CMT04-2 2 150 1610.61 1636.66 1.2 490.8 1813.2 5.44

CMT04-3 3 150 1608.01 1647.48 1.2 832.9 1813.0 6.85

CMT05-1 1 199 2097.42 2117.61 0.9 752.5 1827.1 4.02

CMT05-2 2 199 1876.02 1924.84 1.3 845.6 1828.9 4.99

CMT05-3 3 199 2030.21 2059.56 1.0 587.9 1833.7 5.68

CMT06-1 1 120 2335.93 2399.26 2.0 702.7 1806.3 7.08

CMT06-2 2 120 2159.63 2222.91 1.8 704.2 1826.7 7.38

CMT06-3 3 120 2287.59 2335.43 1.7 1122.2 1805.7 8.41

CMT07-1 1 100 1185.63 1211.69 1.6 772.5 1803.7 6.61

CMT07-2 2 100 1248.98 1296.27 2.5 487.9 1803.5 6.47

CMT07-3 3 100 1223.04 1241.75 1.2 565.1 1802.6 7.26

AVG 1.4 887.0 1810.4 5.80

Table B.8: Explicit results on MP-VRP using Heuristic Branch & Price, branching on
arcs, with Depth First Search, zmin/avg = best/average solution cost over 10

runs, %RSD = relative percentage standard deviation over 10 runs, sech =
Time of the first restart at which UB = zmin, sectt = average total execution
time, %gbb

avg=average relative percentage deviation w.r.t. bb-best solution
cost.

278 Appendix B mp-vrp: additional material

Instance HBPA-LDS

K n zmin zavg %RSD sech sectt %gbb
avg

CMT01-1 1 50 598.24 603.81 0.9 1335.3 1838.7 2.81

CMT01-2 2 50 634.93 643.94 0.8 1042.4 1800.3 4.69

CMT01-3 3 50 631.68 640.25 0.8 1236.3 1800.4 2.69

CMT02-1 1 75 993.97 1018.12 1.1 1333.8 1802.4 3.78

CMT02-2 2 75 933.69 944.22 0.9 1398.2 1803.4 5.19

CMT02-3 3 75 926.99 934.13 0.5 846.6 1801.1 5.15

CMT03-1 1 100 1232.23 1247.77 0.7 1151.1 1803.0 5.01

CMT03-2 2 100 1261.79 1282.92 1.1 338.7 1801.9 5.25

CMT03-3 3 100 1215.68 1236.53 1.0 551.2 1803.2 6.89

CMT04-1 1 150 1682.22 1707.66 0.8 808.1 1808.7 5.09

CMT04-2 2 150 1612.69 1629.38 0.7 477.1 1806.2 4.97

CMT04-3 3 150 1610.17 1634.05 0.9 721.4 1810.2 5.98

CMT05-1 1 199 2085.40 2115.48 1.0 624.6 1835.4 3.92

CMT05-2 2 199 1899.32 1928.29 1.1 772.3 1823.9 5.18

CMT05-3 3 199 2030.56 2057.08 0.9 649.9 1823.9 5.55

CMT06-1 1 120 2337.28 2375.67 1.3 948.5 1805.6 6.03

CMT06-2 2 120 2147.80 2199.64 1.6 887.8 1837.6 6.26

CMT06-3 3 120 2231.28 2312.68 2.7 846.8 1807.1 7.36

CMT07-1 1 100 1186.52 1213.12 1.5 419.7 1802.4 6.74

CMT07-2 2 100 1236.68 1283.61 2.3 414.5 1802.1 5.43

CMT07-3 3 100 1199.89 1228.38 1.5 566.9 1802.2 6.11

AVG 1.1 827.2 1810.5 5.24

Table B.9: Explicit results on MP-VRP using Heuristic Branch & Price, branching on
arcs, with Limited Discrepancy Search, zmin/avg = best/average solution
cost over 10 runs, %RSD = relative percentage standard deviation over 10

runs, sech = Time of the first restart at which UB = zmin, sectt = average
total execution time, %gbb

avg=average relative percentage deviation w.r.t. bb-
best solution cost.

B.3 heuristic branch & price 279

Instance HBPP-DFS

K n zmin zavg %RSD sech sectt %gbb
avg

CMT01-1 1 50 594.88 604.10 0.9 1398.0 1802.2 2.86

CMT01-2 2 50 627.26 658.54 2.8 831.4 1804.6 7.06

CMT01-3 3 50 633.03 646.43 1.6 1046.3 1800.9 3.69

CMT02-1 1 75 1000.02 1034.18 1.8 714.9 1805.3 5.42

CMT02-2 2 75 927.61 955.95 1.5 850.3 1803.8 6.50

CMT02-3 3 75 921.57 939.43 1.4 1110.2 1810.6 5.75

CMT03-1 1 100 1231.14 1267.26 1.2 755.9 1806.7 6.66

CMT03-2 2 100 1268.38 1291.56 1.1 588.6 1810.9 5.96

CMT03-3 3 100 1202.59 1239.06 1.7 692.7 1806.3 7.11

CMT04-1 1 150 1689.00 1713.11 1.0 448.7 1819.4 5.42

CMT04-2 2 150 1612.69 1635.11 1.0 446.3 1816.0 5.34

CMT04-3 3 150 1633.95 1653.62 0.8 254.5 1826.1 7.25

CMT05-1 1 199 2091.13 2120.45 0.9 377.9 1844.3 4.16

CMT05-2 2 199 1876.02 1927.59 1.5 682.8 1834.4 5.14

CMT05-3 3 199 2038.80 2063.51 0.9 369.4 1849.7 5.88

CMT06-1 1 120 2328.45 2373.29 1.4 896.6 1819.3 5.92

CMT06-2 2 120 2145.30 2220.54 1.8 451.0 1827.1 7.27

CMT06-3 3 120 2216.30 2319.96 2.9 779.1 1816.1 7.70

CMT07-1 1 100 1185.63 1217.40 1.9 496.1 1810.1 7.11

CMT07-2 2 100 1239.03 1284.62 2.3 501.4 1806.8 5.52

CMT07-3 3 100 1196.21 1240.75 2.1 541.7 1809.6 7.18

AVG 1.5 677.8 1815.7 5.95

Table B.10: Explicit results on MP-VRP using Heuristic Branch & Price, branching on
pairs, with Depth First Search, zmin/avg = best/average solution cost over
10 runs, %RSD = relative percentage standard deviation over 10 runs,
sech = Time of the first restart at which UB = zmin, sectt = average total
execution time, %gbb

avg=average relative percentage deviation w.r.t. bb-best
solution cost.

280 Appendix B mp-vrp: additional material

Instance HBPP-LDS

K n zmin zavg %RSD sech sectt %gbb
avg

CMT01-1 1 50 598.14 604.72 0.5 1240.4 1809.7 2.97

CMT01-2 2 50 630.13 652.02 2.7 968.3 1800.7 6.00

CMT01-3 3 50 631.68 640.38 1.2 1042.1 1800.6 2.71

CMT02-1 1 75 991.88 1026.13 2.4 811.4 1804.2 4.59

CMT02-2 2 75 943.53 955.71 1.2 985.9 1802.7 6.47

CMT02-3 3 75 914.48 933.59 1.3 706.7 1804.1 5.09

CMT03-1 1 100 1210.47 1253.36 1.9 800.2 1811.8 5.49

CMT03-2 2 100 1268.12 1293.43 1.3 41.5 1807.2 6.11

CMT03-3 3 100 1206.35 1237.90 1.5 535.7 1808.5 7.01

CMT04-1 1 150 1690.84 1716.13 1.0 194.2 1822.3 5.61

CMT04-2 2 150 1612.69 1635.40 1.0 219.2 1818.4 5.36

CMT04-3 3 150 1617.00 1646.42 1.1 329.0 1822.1 6.79

CMT05-1 1 199 2098.10 2116.59 0.8 496.3 1843.2 3.97

CMT05-2 2 199 1898.15 1931.19 1.3 261.0 1843.7 5.33

CMT05-3 3 199 2030.21 2058.76 1.0 235.8 1829.4 5.64

CMT06-1 1 120 2318.86 2393.91 2.7 616.9 1818.5 6.84

CMT06-2 2 120 2147.80 2201.92 1.7 327.4 1814.3 6.37

CMT06-3 3 120 2234.47 2301.26 2.8 682.8 1814.7 6.83

CMT07-1 1 100 1175.08 1215.07 2.2 394.9 1808.2 6.91

CMT07-2 2 100 1248.98 1293.77 2.2 302.3 1807.8 6.27

CMT07-3 3 100 1199.47 1225.63 1.3 712.0 1807.9 5.87

AVG 1.6 566.9 1814.3 5.63

Table B.11: Explicit results on MP-VRP using Heuristic Branch & Price, branching on
pairs, with Limited Discrepancy Search, zmin/avg = best/average solution
cost over 10 runs, %RSD = relative percentage standard deviation over 10

runs, sech = Time of the first restart at which UB = zmin, sectt = average
total execution time, %gbb

avg=average relative percentage deviation w.r.t.
bb-best solution cost.

B.3 heuristic branch & price 281

% of Total Execution Time
H

B
PA

−L
D

S
, C

P
U

 T
im

e
A

llo
ca

tio
n

In
st

an
ce

CM
T01

_1
CM

T01
_2

CM
T01

_3
CM

T02
_1

CM
T02

_2
CM

T02
_3

CM
T03

_1
CM

T03
_2

CM
T03

_3
CM

T04
_1

CM
T04

_2
CM

T04
_3

CM
T05

_1
CM

T05
_2

CM
T05

_3
CM

T06
_1

CM
T06

_2
CM

T06
_3

CM
T07

_1
CM

T07
_2

CM
T07

_3

%
LP

%
B

B
%

S
T

%
G

E
N

%
P

O
%

O
T

H

020406080100

(a
)

% of Total Execution Time

H
B

P
P

−L
D

S
, C

P
U

 T
im

e
A

llo
ca

tio
n

In
st

an
ce

CM
T01

_1
CM

T01
_2

CM
T01

_3
CM

T02
_1

CM
T02

_2
CM

T02
_3

CM
T03

_1
CM

T03
_2

CM
T03

_3
CM

T04
_1

CM
T04

_2
CM

T04
_3

CM
T05

_1
CM

T05
_2

CM
T05

_3
CM

T06
_1

CM
T06

_2
CM

T06
_3

CM
T07

_1
CM

T07
_2

CM
T07

_3

%
LP

%
B

B
%

S
T

%
G

E
N

%
P

O
%

O
T

H

020406080100

(b
)

Fi
gu

re
B.

5
:C

PU
Ti

m
e

A
llo

ca
ti

on
fo

r
H

BP
A

-L
D

S
an

d
H

BP
P-

LD
S

282 Appendix B mp-vrp: additional material

F
ea

si
bl

e
%

 o
f T

es
te

d
R

ou
te

s

0
20

40
60

80
10

0

HBPP−LDS, Feasibility in tested routes

Instance

3l−
cv

rp
01

3l−
cv

rp
03

3l−
cv

rp
05

3l−
cv

rp
07

3l−
cv

rp
09

3l−
cv

rp
11

3l−
cv

rp
13

3l−
cv

rp
15

3l−
cv

rp
17

3l−
cv

rp
19

3l−
cv

rp
21

3l−
cv

rp
23

3l−
cv

rp
25

3l−
cv

rp
27

Figure B.6: HBPP-LDS, Percentage of feasible routes in tested routes

B.3 heuristic branch & price 283

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

CMT01-1 0.4 68.6 0 30.1 0.1 2398.6 8940.9

CMT01-2 1.0 30.2 0 66.7 0.1 2590.0 8763.8

CMT01-3 1.1 19.2 0 77.1 0.1 2898.6 12314.2

CMT02-1 0.4 16.8 0 82.2 0.0 2456.6 7829.5

CMT02-2 0.4 17.8 0 81.2 0.0 2513.4 8110.3

CMT02-3 0.4 18.0 0 81.0 0.0 2421.2 9031.0

CMT03-1 0.2 24.6 0 75.0 0.0 2352.6 8825.2

CMT03-2 0.2 13.8 0 85.7 0.0 2227.8 8744.4

CMT03-3 0.2 15.4 0 84.1 0.0 2491.5 9039.4

CMT04-1 0.1 47.3 0 52.6 0.0 2058.8 9597.7

CMT04-2 0.1 28.1 0 71.7 0.0 2395.7 11405.9

CMT04-3 0.1 23.9 0 75.9 0.0 2503.6 11828.0

CMT05-1 0.0 50.2 0 49.7 0.0 2431.7 12700.7

CMT05-2 0.1 51.5 0 48.3 0.1 2583.7 13152.6

CMT05-3 0.1 32.3 0 67.5 0.1 2538.3 14662.5

CMT06-1 0.1 59.6 0 40.2 0.1 2646.5 11534.1

CMT06-2 0.1 58.5 0 41.3 0.1 2506.0 11160.1

CMT06-3 0.1 29.9 0 69.8 0.1 2850.9 14385.6

CMT07-1 0.1 21.9 0 77.7 0.0 2825.8 8360.8

CMT07-2 0.1 18.4 0 81.1 0.0 2637.8 8617.9

CMT07-3 0.1 29.6 0 70.1 0.0 2552.5 8167.9

Table B.12: HBPA-LDS : CPU Time Allocation and Ratio of Feasible routes / Routes
in Feasibility Store (|Ψ|)

284 Appendix B mp-vrp: additional material

Instance % Total Execution Time Routes in Ψ

%LP %BB %ST %GEN %PO #Feasible routes |Ψ|

CMT01-1 0.3 68.2 1.9 29.1 0.1 2908.4 10534.5

CMT01-2 0.4 51.2 2.9 44.5 0.1 3585.0 29536.2

CMT01-3 0.6 28.9 4.2 65.0 0.1 3540.0 22950.9

CMT02-1 0.2 27.4 3.9 68.2 0.1 2674.0 29900.0

CMT02-2 0.2 36.4 3.4 59.5 0.1 3700.0 22408.3

CMT02-3 0.3 24.7 4.0 70.5 0.1 3765.8 17903.6

CMT03-1 0.1 37.1 3.0 59.5 0.1 2955.9 13875.6

CMT03-2 0.1 19.0 3.9 76.7 0.1 3126.9 20497.9

CMT03-3 0.1 20.9 3.8 74.9 0.1 3153.2 18006.0

CMT04-1 0.1 35.3 2.7 61.9 0.1 2656.1 17845.2

CMT04-2 0.1 21.3 3.3 75.2 0.1 3138.1 18515.1

CMT04-3 0.1 22.0 3.3 74.5 0.1 3137.0 17542.8

CMT05-1 0.1 28.3 2.5 69.0 0.1 3082.0 24357.9

CMT05-2 0.1 39.2 2.1 58.5 0.1 2981.4 20973.5

CMT05-3 0.1 20.8 2.8 76.2 0.1 2840.5 21426.9

CMT06-1 0.0 60.6 1.7 37.6 0.1 2717.3 35039.2

CMT06-2 0.0 60.6 1.7 37.5 0.1 3186.1 24643.8

CMT06-3 0.1 27.9 3.2 68.7 0.1 3246.8 31300.2

CMT07-1 0.0 26.7 3.3 69.8 0.1 2293.1 27081.1

CMT07-2 0.0 20.2 3.6 75.9 0.1 2199.0 29395.9

CMT07-3 0.0 30.0 3.2 66.5 0.1 2329.3 24009.3

Table B.13: HBPP-LDS : CPU Time Allocation and Ratio of Feasible routes / Routes
in Feasibility Store (|Ψ|)

B.3 heuristic branch & price 285

b.3.3 Results for HBP*

Instance HBPA-DFS HBPA*-DFS

K n zmin zavg sectt zmin zavg sectt gmin gavg

CMT01-1 1 50 590.24 604.74 1822.8 590.24 604.74 0.5 0.00 0.00

CMT01-2 2 50 630.37 640.50 1800.3 630.37 639.28 1.0 0.00 -0.19

CMT01-3 3 50 633.24 642.14 1800.2 633.24 641.36 1.2 0.00 -0.12

CMT02-1 1 75 1008.81 1036.08 1801.4 992.66 1027.44 0.9 -1.60 -0.83

CMT02-2 2 75 921.24 944.71 1803.5 921.24 943.06 1.0 0.00 -0.17

CMT02-3 3 75 916.07 942.10 1802.3 916.07 938.99 1.6 0.00 -0.33

CMT03-1 1 100 1230.50 1262.85 1802.6 1225.60 1259.31 0.9 -0.40 -0.28

CMT03-2 2 100 1273.55 1287.75 1802.9 1273.55 1285.40 1.6 0.00 -0.18

CMT03-3 3 100 1208.34 1238.78 1802.9 1208.34 1232.12 1.2 0.00 -0.54

CMT04-1 1 150 1690.84 1715.42 1814.7 1690.84 1709.88 0.6 0.00 -0.32

CMT04-2 2 150 1610.61 1636.66 1813.2 1607.01 1630.84 1.1 -0.22 -0.36

CMT04-3 3 150 1608.01 1647.48 1813.0 1608.01 1639.60 0.9 0.00 -0.48

CMT05-1 1 199 2097.42 2117.61 1827.1 2071.30 2109.95 1.0 -1.25 -0.36

CMT05-2 2 199 1876.02 1924.84 1828.9 1875.50 1916.43 0.7 -0.03 -0.44

CMT05-3 3 199 2030.21 2059.56 1833.7 2030.21 2053.39 1.7 0.00 -0.30

CMT06-1 1 120 2335.93 2399.26 1806.3 2322.91 2341.24 2.6 -0.56 -2.42

CMT06-2 2 120 2159.63 2222.91 1826.7 2152.36 2198.62 1.6 -0.34 -1.09

CMT06-3 3 120 2287.59 2335.43 1805.7 2264.09 2318.10 1.3 -1.03 -0.74

CMT07-1 1 100 1185.63 1211.69 1803.7 1182.93 1202.36 1.1 -0.23 -0.77

CMT07-2 2 100 1248.98 1296.27 1803.5 1248.98 1282.31 1.6 0.00 -1.08

CMT07-3 3 100 1223.04 1241.75 1802.6 1208.23 1228.20 0.8 -1.21 -1.09

AVG 1810.4 1.2 -0.33 -0.58

Table B.14: Comparison of Heuristic Branch & Price, branching on arcs, with Depth
First Search (HBPA-DFS) and results obtained when solving problem
SCP(R∗) over set of feasible routes R∗ obtained in HBPA-DFS (HBPA*-
DFS). zmin/avg = best/average solution cost over 10 runs, sectt = average
total execution time, for HBPA*-DFS this corresponds to the time neces-
sary to solve problem SCP(R∗). gmin/avg= relative percentage deviation

of HBPA*-DFS w.r.t. HBPA-DFS, computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where

zmin/avg are the results obtained with HBPA*-DFS and zD
min/avg the results

obtained with HBPA-DFS.

286 Appendix B mp-vrp: additional material

Instance HBPA-LDS HBPA*-LDS

K n zmin zavg sectt zmin zavg sectt gmin gavg

CMT01-1 1 50 598.24 603.81 1838.7 598.24 603.81 0.7 0.00 0.00

CMT01-2 2 50 634.93 643.94 1800.3 624.72 641.77 1.3 -1.61 -0.34

CMT01-3 3 50 631.68 640.25 1800.4 631.68 640.25 1.1 0.00 0.00

CMT02-1 1 75 993.97 1018.12 1802.4 993.97 1011.24 3.3 0.00 -0.68

CMT02-2 2 75 933.69 944.22 1803.4 925.13 939.55 1.3 -0.92 -0.49

CMT02-3 3 75 926.99 934.13 1801.1 926.05 932.14 1.4 -0.10 -0.21

CMT03-1 1 100 1232.23 1247.77 1803.0 1229.64 1242.39 1.5 -0.21 -0.43

CMT03-2 2 100 1261.79 1282.92 1801.9 1260.28 1276.73 3.3 -0.12 -0.48

CMT03-3 3 100 1215.68 1236.53 1803.2 1213.92 1234.23 2.7 -0.14 -0.19

CMT04-1 1 150 1682.22 1707.66 1808.7 1681.34 1694.74 2.0 -0.05 -0.76

CMT04-2 2 150 1612.69 1629.38 1806.2 1607.01 1623.21 2.7 -0.35 -0.38

CMT04-3 3 150 1610.17 1634.05 1810.2 1610.17 1627.74 2.2 0.00 -0.39

CMT05-1 1 199 2085.40 2115.48 1835.4 2081.75 2103.98 1.9 -0.18 -0.54

CMT05-2 2 199 1899.32 1928.29 1823.9 1898.23 1917.92 2.6 -0.06 -0.54

CMT05-3 3 199 2030.56 2057.08 1823.9 2030.21 2050.66 4.4 -0.02 -0.31

CMT06-1 1 120 2337.28 2375.67 1805.6 2292.75 2329.22 9.3 -1.91 -1.96

CMT06-2 2 120 2147.80 2199.64 1837.6 2138.72 2172.53 3.4 -0.42 -1.23

CMT06-3 3 120 2231.28 2312.68 1807.1 2227.06 2289.97 8.2 -0.19 -0.98

CMT07-1 1 100 1186.52 1213.12 1802.4 1174.59 1191.84 3.7 -1.01 -1.75

CMT07-2 2 100 1236.68 1283.61 1802.1 1234.86 1262.32 4.9 -0.15 -1.66

CMT07-3 3 100 1199.89 1228.38 1802.2 1189.52 1210.14 1.7 -0.86 -1.48

AVG 1810.5 3.0 -0.39 -0.70

Table B.15: Comparison of Heuristic Branch & Price, branching on arcs, with Lim-
ited Discrepancy Search (HBPA-LDS) and results obtained when solving
problem SCP(R∗) over set of feasible routes R∗ obtained in HBPA-LDS
(HBPA*-LDS). zmin/avg = best/average solution cost over 10 runs, sectt =
average total execution time, for HBPA*-LDS this corresponds to the time
necessary to solve problem SCP(R∗). gmin/avg= relative percentage devi-

ation of HBPA*-LDS w.r.t. HBPA-LDS, computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with HBPA*-LDS and zD
min/avg

the results with HBPA-LDS.

B.3 heuristic branch & price 287

Instance HBPP-DFS HBPP*-DFS

K n zmin zavg sectt zmin zavg sectt gmin gavg

CMT01-1 1 50 594.88 604.10 1802.2 594.88 602.15 0.6 0.00 -0.32

CMT01-2 2 50 627.26 658.54 1804.6 625.82 651.93 0.9 -0.23 -1.00

CMT01-3 3 50 633.03 646.43 1800.9 633.03 645.77 1.3 0.00 -0.10

CMT02-1 1 75 1000.02 1034.18 1805.3 1000.02 1028.74 1.1 0.00 -0.53

CMT02-2 2 75 927.61 955.95 1803.8 924.43 950.94 1.7 -0.34 -0.52

CMT02-3 3 75 921.57 939.43 1810.6 921.57 936.61 1.1 0.00 -0.30

CMT03-1 1 100 1231.14 1267.26 1806.7 1231.13 1258.93 1.2 0.00 -0.66

CMT03-2 2 100 1268.38 1291.56 1810.9 1266.68 1284.60 1.4 -0.13 -0.54

CMT03-3 3 100 1202.59 1239.06 1806.3 1202.59 1232.89 1.0 0.00 -0.50

CMT04-1 1 150 1689.00 1713.11 1819.4 1687.26 1705.37 1.0 -0.10 -0.45

CMT04-2 2 150 1612.69 1635.11 1816.0 1607.01 1629.02 1.4 -0.35 -0.37

CMT04-3 3 150 1633.95 1653.62 1826.1 1631.14 1642.08 1.5 -0.17 -0.70

CMT05-1 1 199 2091.13 2120.45 1844.3 2083.93 2112.91 1.3 -0.34 -0.36

CMT05-2 2 199 1876.02 1927.59 1834.4 1875.50 1917.54 1.8 -0.03 -0.52

CMT05-3 3 199 2038.80 2063.51 1849.7 2030.21 2055.26 0.9 -0.42 -0.40

CMT06-1 1 120 2328.45 2373.29 1819.3 2310.02 2335.63 3.4 -0.79 -1.59

CMT06-2 2 120 2145.30 2220.54 1827.1 2143.60 2195.97 4.4 -0.08 -1.11

CMT06-3 3 120 2216.30 2319.96 1816.1 2216.30 2291.16 5.3 0.00 -1.24

CMT07-1 1 100 1185.63 1217.40 1810.1 1180.12 1198.42 0.7 -0.46 -1.56

CMT07-2 2 100 1239.03 1284.62 1806.8 1236.36 1274.14 1.5 -0.22 -0.82

CMT07-3 3 100 1196.21 1240.75 1809.6 1196.11 1227.72 0.7 -0.01 -1.05

AVG 1815.7 1.7 -0.18 -0.70

Table B.16: Comparison of Heuristic Branch & Price, branching on customer pairs,
with Depth First Search (HBPP-DFS) and results obtained when solving
problem SCP(R∗) over set of feasible routes R∗ obtained in HBPP-DFS
(HBPP*-DFS). zmin/avg = best/average solution cost over 10 runs, sectt =
average total execution time, for HBPP*-DFS this corresponds to the time
necessary to solve problem SCP(R∗). gmin/avg= relative percentage de-

viation of HBPP*-DFS w.r.t. HBPP-DFS, computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with HBPP*-DFS and zD
min/avg the

results obtained with HBPP-DFS.

288 Appendix B mp-vrp: additional material

Instance HBPP-LDS HBPP*-LDS

K n zmin zavg sectt zmin zavg sectt gmin gavg

CMT01-1 1 50 598.14 604.72 1809.7 598.14 604.47 0.7 0.00 -0.04

CMT01-2 2 50 630.13 652.02 1800.7 630.13 644.99 1.4 0.00 -1.08

CMT01-3 3 50 631.68 640.38 1800.6 631.68 640.33 1.6 0.00 -0.01

CMT02-1 1 75 991.88 1026.13 1804.2 986.73 1013.52 1.9 -0.52 -1.23

CMT02-2 2 75 943.53 955.71 1802.7 932.45 944.66 2.6 -1.17 -1.16

CMT02-3 3 75 914.48 933.59 1804.1 914.48 928.22 1.8 0.00 -0.58

CMT03-1 1 100 1210.47 1253.36 1811.8 1210.47 1241.12 1.5 0.00 -0.98

CMT03-2 2 100 1268.12 1293.43 1807.2 1258.36 1277.22 3.4 -0.77 -1.25

CMT03-3 3 100 1206.35 1237.90 1808.5 1196.75 1220.56 2.1 -0.80 -1.40

CMT04-1 1 150 1690.84 1716.13 1822.3 1682.98 1700.29 4.5 -0.46 -0.92

CMT04-2 2 150 1612.69 1635.40 1818.4 1594.00 1616.81 2.9 -1.16 -1.14

CMT04-3 3 150 1617.00 1646.42 1822.1 1607.24 1630.78 5.5 -0.60 -0.95

CMT05-1 1 199 2098.10 2116.59 1843.2 2083.93 2104.01 4.1 -0.68 -0.59

CMT05-2 2 199 1898.15 1931.19 1843.7 1892.48 1918.40 5.2 -0.30 -0.66

CMT05-3 3 199 2030.21 2058.76 1829.4 2023.63 2046.94 5.4 -0.32 -0.57

CMT06-1 1 120 2318.86 2393.91 1818.5 2305.92 2329.25 4.7 -0.56 -2.70

CMT06-2 2 120 2147.80 2201.92 1814.3 2147.30 2168.29 5.8 -0.02 -1.53

CMT06-3 3 120 2234.47 2301.26 1814.7 2223.18 2271.34 3.3 -0.51 -1.30

CMT07-1 1 100 1175.08 1215.07 1808.2 1174.27 1187.85 1.4 -0.07 -2.24

CMT07-2 2 100 1248.98 1293.77 1807.8 1237.95 1264.92 2.0 -0.88 -2.23

CMT07-3 3 100 1199.47 1225.63 1807.9 1195.24 1210.52 2.1 -0.35 -1.23

AVG 1814.3 3.0 -0.44 -1.13

Table B.17: Comparison of Heuristic Branch & Price, branching on arcs, with Lim-
ited Discrepancy Search (HBPP-LDS) and results obtained when solving
problem SCP(R∗) over set of feasible routes R∗ obtained in HBPP-LDS
(HBPP*-LDS). zmin/avg = best/average solution cost over 10 runs, sectt =
average total execution time, for HBPP*-LDS this corresponds to the time
necessary to solve problem SCP(R∗). gmin/avg= relative percentage de-

viation of HBPP*-LDS w.r.t. HBPP-LDS, computed as 100 ·
zmin/avg−zD

min/avg

zD
min/avg

where zmin/avg are the results obtained with HBPP*-LDS and zD
min/avg the

results obtained with HBPP-LDS.

B I B L I O G R A P H Y

[ABM98] Gerald Y. Agbegha, Ronald H. Ballou, and Kamlesh
Mathur, Optimizing auto-carrier loading, Transportation
science 32 (1998), no. 2, 174–188.

[Ach05] T Achterberg, Branching rules revisited, Operations Re-
search Letters 33 (2005), 42–54.

[ASH06] C. Archetti, M. G. Speranza, and A. Hertz, A tabu search
algorithm for the split delivery vehicle routing problem, Trans-
portation Science 40 (2006), no. 1, 64–73.

[ASV13] C. Archetti, M. G. Speranza, and D. Vigo, Vehicle routing
problems with profits, Tech. Report WPDEM2013/3, Uni-
versity of Brescia, 2013.

[Ba09] José Brandão, A deterministic tabu search algorithm for the
fleet size and mix vehicle routing problem, European Journal
of Operational Research 195 (2009), no. 3, 716–728.

[BBMR10] Roberto Baldacci, Enrico Bartolini, Aristide Mingozzi,
and Roberto Roberti, An exact solution framework for a
broad class of vehicle routing problems, Computational Man-
agement Science 7 (2010), 229–268.

[BJN+
94] Cynthia Barnhart, Ellis L. Johnson, George L.

Nemhauser, Martin WP Savelsbergh, and Pamela H.
Vance, Branch-and-price: Column generation for solving
huge integer programs, Mathematical Programming: State
of the Art (1994), 186–207.

289

290 Appendix B bibliography

[BLR+
12] R. Borndörfer, A. Löbel, M. Reuther, T. Schlechte, and

S. Weider, Rapid branching, Tech. Report 12-10, ZIB -
Konrad-Zuse-Zentrum für Informationstechnik, Berlin,
2012.

[Bon08] Boris Bontoux, Techniques hybrides de recherche exacte et ap-
prochée : application à des problèmes de transport, Ph.D. the-
sis, Université d’Avignon et des Pays de Vaucluse, De-
cember 2008.

[Bor12] Andreas Bortfeldt, A hybrid algorithm for the capacitated
vehicle routing problem with three-dimensional loading con-
straints, Computers & Operations Research 39 (2012),
no. 9, 2248–2257.

[BVH04] Russell Bent and Pascal Van Hentenryck, A two-stage hy-
brid local search for the vehicle routing problem with time
windows, Transportation Science 38 (2004), no. 4, 515–530

(en).

[BVH07] R. Bent and P. Van Hentenryck, Randomized adaptive spa-
tial decoupling for large-scale vehicle routing with time win-
dows, Proceedings of the national conference on artificial
intelligence, vol. 22, 2007, p. 173.

[BYBS10] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and
Thomas Stützle, F-race and iterated f-race: An overview, Ex-
perimental methods for the analysis of optimization al-
gorithms, Springer, 2010, p. 311–336.

[CGL97] Jean-François Cordeau, Michel Gendreau, and Gilbert
Laporte, A tabu search heuristic for periodic and multi-depot
vehicle routing problems, Networks 30 (1997), no. 2, 105–
119 (en).

[Cha06] Alain Chabrier, Vehicle routing problem with elementary
shortest path based column generation, Computers & Op-
erations Research 33 (2006), no. 10, 2972–2990.

[CLM01] J-F Cordeau, G. Laporte, and A. Mercier, A unified tabu
search heuristic for vehicle routing problems with time win-
dows, The Journal of the Operational Research Society 52
(2001), no. 8, 928–936.

bibliography 291

[Coo11] William J Cook, In pursuit of the traveling salesman: Math-
ematics at the limits of computation, Princeton University
Press, 2011.

[CRS09] Alberto Ceselli, Giovanni Righini, and Matteo Salani, A
column generation algorithm for a rich vehicle-routing prob-
lem, Transportation Science 43 (2009), no. 1, 56–69.

[CVH08] Ann Melissa Campbell, Dieter Vandenbussche, and
William Hermann, Routing for relief efforts, Transportation
Science 42 (2008), no. 2, 127–145.

[CW64] G. Clarke and J. W. Wright, Scheduling of vehicles from
a central depot to a number of delivery points, Operations
Research 12 (1964), no. 4, 568–581 (en).

[Dan98] George Dantzig, Linear programming and extensions,
Princeton university press, 1998.

[DBS06] M. Dorigo, M. Birattari, and T. Stützle, Ant colony opti-
mization, Computational Intelligence Magazine, IEEE 1
(2006), no. 4, 28–39.

[DD08] Ulrich Derigs and Thomas Döhmer, Indirect search for the
vehicle routing problem with pickup and delivery and time
windows, OR Spectrum 30 (2008), no. 1, 149–165.

[DDD05] Grégoire Dooms, Yves Deville, and Pierre Dupont, Cp
(graph): Introducing a graph computation domain in con-
straint programming, Principles and Practice of Constraint
Programming-CP 2005 (2005), 211–225.

[DFH+
07] K.F. Doerner, G. Fuellerer, R.F. Hartl, M. Gronalt, and

M. Iori, Metaheuristics for the vehicle routing problem with
loading constraints, Networks 49 (2007), no. 4, 294–307.

[Dom09] Michael Dom, Algorithmic aspects of the consecutive-ones
property, Bulletin of the European Association for Theo-
retical Computer Science (2009), 27–59.

[DR59] G.b. Dantzig and J.h. Ramser, The truck dispatching prob-
lem, Management Science 6 (1959), no. 1, 80–91.

292 Appendix B bibliography

[FDHI10] G. Fuellerer, K. F Doerner, R. F Hartl, and M. Iori, Meta-
heuristics for vehicle routing problems with three-dimensional
loading constraints, European Journal of Operational Re-
search 201 (2010), no. 3, 751–759.

[Fei10] D. Feillet, A tutorial on column generation and branch-and-
price for vehicle routing problems, 4OR: A Quarterly Journal
of Operations Research 8 (2010), no. 4, 407–424.

[GBLJ03] M. Grötschel, R. Borndörfer, A. Löbel, and W. Jäger, Duty
scheduling in public transit, Mathematics—Key Technolo-
gies for the Future, Springer, Berlin (2003), 653–674.

[GGW10] Chris Groër, Bruce Golden, and Edward Wasil, A li-
brary of local search heuristics for the vehicle routing problem,
Mathematical Programming Computation 2 (2010), no. 2,
79–101.

[GHL94] Michel Gendreau, Alain Hertz, and Gilbert Laporte, A
tabu search heuristic for the vehicle routing problem, Man-
agement Science 40 (1994), no. 10, 1276–1290.

[GILM06] M. Gendreau, M. Iori, G. Laporte, and S. Martello, A tabu
search algorithm for a routing and container loading problem,
Transportation Science 40 (2006), no. 3, 342–350.

[GILM08] Michel Gendreau, Manuel Iori, Gilbert Laporte, and Sil-
varo Martello, A tabu search heuristic for the vehicle routing
problem with two-dimensional loading constraints, Networks
51 (2008), no. 1, 4–18.

[GKL+
06] O. Günlük, T. Kimbrel, L. Ladanyi, B. Schieber, and G.B.

Sorkin, Vehicle routing and staffing for sedan service, Trans-
portation science 40 (2006), no. 3, 313–326.

[GL98] Fred Glover and Manuel Laguna, Tabu search, vol. 1,
Springer, 1998.

[GLT97] Bruce L. Golden, Gilbert Laporte, and Éric D. Taillard,
An adaptive memory heuristic for a class of vehicle routing
problems with minmax objective, Computers & Operations
Research 24 (1997), no. 5, 445–452.

bibliography 293

[Goe09] A. Goel, Vehicle scheduling and routing with drivers’ work-
ing hours, Transportation Science 43 (2009), 17–26.

[GP10] Dr Leo J. Grady and Dr Jonathan R. Polimeni, Appendix
discrete calculus, Discrete Calculus, Springer London, Jan-
uary 2010, pp. 199–242 (en).

[GRW08] Bruce L Golden, Subramanian Raghavan, and Edward A
Wasil, The vehicle routing problem: latest advances and new
challenges, vol. 43, Springer, 2008.

[GTA99] Luca Maria Gambardella, Éric Taillard, and Giovanni
Agazzi, MACS-VRPTW: a multiple colony system for vehi-
cle routing problems with time windows, New Ideas in Op-
timization, McGraw-Hill, 1999, pp. 63–76.

[Hoo11] John N Hooker, Integrated methods for optimization, vol.
170, Springer, 2011.

[HS04] Holger H. Hoos and Thomas Stützle, Stochastic local
search: Foundations & applications, Morgan Kaufmann,
2004.

[ID05] Stefan Irnich and Guy Desaulniers, Column generation,
ch. Shortest Path Problems With Resource Constraints,
Springer, 2005.

[IM10] Manuel Iori and Silvano Martello, Routing problems with
loading constraints, TOP 18 (2010), no. 1, 4–27.

[Irn08] Stefan Irnich, A unified modeling and solution framework
for vehicle routing and local search-based metaheuristics, IN-
FORMS Journal on Computing 20 (2008), no. 2, 270–287.

[ISGV07] Manuel Iori, Juan-José Salazar-González, and Daniele
Vigo, An exact approach for the vehicle routing problem
with two-dimensional loading constraints, Transportation
Science 41 (2007), no. 2, 253–264.

[JMS+10] C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, and
F. Vanderbeck, Column generation based primal heuristics,
Electronic Notes in Discrete Mathematics 36 (2010), 695–
702.

294 Appendix B bibliography

[KNBG07] Jari Kytöjoki, Teemu Nuortio, Olli Bräysy, and Michel
Gendreau, An efficient variable neighborhood search heuristic
for very large scale vehicle routing problems, Computers &
Operations Research 34 (2007), no. 9, 2743–2757.

[Lau78] Jena-Lonis Lauriere, A language and a program for stating
and solving combinatorial problems, Artificial intelligence
10 (1978), no. 1, 29–127.

[LIDLSB11] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas
Stützle, and Mauro Birattari, The irace package, iterated
race for automatic algorithm configuration, Tech. Report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Brux-
elles, Belgium, 2011.

[MDVH12] F. Massen, Y. Deville, and P. Van Hentenryck, Pheromone-
based heuristic column generation for vehicle routing problems
with black box feasibility, Integration of AI and OR Tech-
niques in Contraint Programming for Combinatorial Op-
timzation Problems (2012), 260–274.

[MH97] Nenad Mladenović and Pierre Hansen, Variable neighbor-
hood search, Computers & Operations Research 24 (1997),
no. 11, 1097–1100.

[MJ76] R. H. Mole and S. R. Jameson, A sequential route-building
algorithm employing a generalised savings criterion, Opera-
tional Research Quarterly (1970-1977) 27 (1976), no. 2,
503–511.

[MKKS11] C.M. Meyer, H. Kopfer, A.L. Kok, and M. Schutten, Dis-
tributed decision making in combined vehicle routing and
break scheduling, Dynamics in Logistics (2011), 125–133.

[MLISD13] Florence Massen, Manuel López-Ibáñez, Thomas Stützle,
and Yves Deville, Experimental analysis of pheromone-based
heuristic column generation using irace, Hybrid Metaheuris-
tics (2013), 92–106.

[MO11] Ball Michael O., Heuristics based on mathematical program-
ming, Surveys in Operations Research and Management
Science 16 (2011), no. 1, 21–38.

bibliography 295

[PDH08] Sophie N. Parragh, Karl F. Doerner, and Richard F. Hartl,
A survey on pickup and delivery problems, Journal für Be-
triebswirtschaft 58 (2008), no. 1, 21–51.

[PDH10] , Variable neighborhood search for the dial-a-ride prob-
lem, Computers & Operations Research 37 (2010), no. 6,
1129–1138.

[PGDDR10] Eric Prescott-Gagnon, Guy Desaulniers, Michael Drexl,
and Louis-Martin Rousseau, European driver rules in vehi-
cle routing with time windows, Transportation Science 44
(2010), no. 4, 455–473.

[PR09] Sandro Pirkwieser and Günther R. Raidl, A column gen-
eration approach for the periodic vehicle routing problem with
time windows, Proceedings of the International Network
Optimization Conference, vol. 2009, 2009.

[PU11] Patrick Prosser and Chris Unsworth, Limited discrepancy
search revisited, Journal of Experimental Algorithmics
(JEA) 16 (2011), 1–6.

[RCL13] Marie-Eve Rancourt, Jean-François Cordeau, and Gilbert
Laporte, Long-haul vehicle routing and scheduling with work-
ing hour rules, Transportation Science 47 (2013), no. 1,
81–107.

[RGP02] Louis-Martin Rousseau, Michel Gendreau, and Gilles Pe-
sant, Solving small VRPTWs with constraint programming
based column generation, Proceedings of the Fourth Inter-
national Workshop on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial
Optimisation Problems (CP-AI-OR’02), 2002, pp. 333–
344.

[RSD02] Marc Reimann, Michael Stummer, and Karl Doerner, A
savings based ant system for the vehicle routing problem, Pro-
ceedings of the genetic and evolutionary computation
conference, 2002, p. 1317–1326.

[RTS11] Jidong Ren, Yajie Tian, and T. Sawaragi, A relaxation me-
thod for the three-dimensional loading capacitated vehicle rout-
ing problem, 2011 IEEE/SICE International Symposium

296 Appendix B bibliography

on System Integration (SII), December 2011, pp. 750 –
755.

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh, Hand-
book of constraint programming, vol. 2, Elsevier Science,
2006.

[RZMS13] Qingfang Ruan, Zhengqian Zhang, Lixin Miao, and
Haitao Shen, A hybrid approach for the vehicle routing prob-
lem with three-dimensional loading constraints, Computers
& Operations Research 40 (2013), no. 6, 1579–1589.

[Sal05] Matteo Salani, Branch-and-price algorithms for vehicle rout-
ing problems, Ph.D. thesis, Univeristà degli studi di Mi-
lano, 2005.

[Sha98] Paul Shaw, Using constraint programming and local search
methods to solve vehicle routing problems, Principles
and Practice of Constraint Programming—CP98 (1998),
417–431.

[Sha04] , A constraint for bin packing, Principles and
Practice of Constraint Programming–CP 2004 (2004),
648–662.

[Sol87] Marius M. Solomon, Algorithms for the vehicle routing and
scheduling problems with time window constraints, Opera-
tions Research 35 (1987), no. 2, 254–265 (en).

[Sol10] Christine Solnon, Ant colony optimization and constraint
programming, Wiley-IEEE Press, 2010.

[Tai93] Éric Taillard, Parallel iterative search methods for vehicle
routing problems, Networks 23 (1993), no. 8, 661–673.

[TDHI09] Fabien Tricoire, Karl F. Doerner, Richard F. Hartl, and
Manuel Iori, Heuristic and exact algorithms for the multi-pile
vehicle routing problem, OR Spectrum (2009), 931–f959.

[Tho01] Erlendur Thorsteinsson, Branch-and-check: A hybrid frame-
work integrating mixed integer programming and constraint
logic programming, Principles and Practice of Constraint
Programming—CP 2001, 2001, p. 16–30.

bibliography 297

[TLG96] Éric D. Taillard, Gilbert Laporte, and Michel Gendreau,
Vehicle routeing with multiple use of vehicles, The Journal of
the Operational Research Society 47 (1996), no. 8, 1065–
1070.

[TV02] Paolo Toth and Daniele Vigo (eds.), The vehicle routing
problem, siam monographs on discrete mathematics and appli-
cations, Society for Industrial and Applied Mathematics,
2002.

[TZK09] C.D. Tarantilis, E.E. Zachariadis, and C.T. Kiranoudis, A
hybrid metaheuristic algorithm for the integrated vehicle rout-
ing and three-dimensional container-loading problem, IEEE
Transactions on Intelligent Transportation Systems 10
(2009), no. 2, 255–271.

[VBJN94] Pamela H. Vance, Cynthia Barnhart, Ellis L. Johnson, and
George L. Nemhauser, Solving binary cutting stock prob-
lems by column generation and branch-and-bound, Compu-
tational optimization and applications 3 (1994), no. 2,
111–130.

[VMdCM11] Cristiano Arbex Valle, Leonardo Conegundes Martinez,
Alexandre Salles da Cunha, and Geraldo R. Mateus,
Heuristic and exact algorithms for a min–max selective vehi-
cle routing problem, Computers & Operations Research 38
(2011), no. 7, 1054–1065.

[Vog12] Ulrich Vogel, A flexible metaheuristic framework for solving
rich vehicle routing problems, vol. 17, Shaker Verlag, 2012.

[Wol98] LA Wolsey, Integer programming, New York [etc.]: Wiley,
1998.

[XCRA03] H. Xu, Z.L. Chen, S. Rajagopal, and S. Arunapuram, Solv-
ing a practical pickup and delivery problem, Transportation
Science 37 (2003), no. 3, 347–364.

[ZQLW12] Wenbin Zhu, Hu Qin, Andrew Lim, and Lei Wang, A
two-stage tabu search algorithm with enhanced packing heuris-
tics for the 3L-CVRP and M3L-CVRP, Computers & Oper-
ations Research 39 (2012), no. 9, 2178–2195.

298 Appendix B bibliography

[ZTK12] E. E. Zachariadis, C. D. Tarantilis, and C. T. Kiranoudis,
The pallet-packing vehicle routing problem, Transportation
Science 46 (2012), no. 3, 341–358.

	Abstract
	Acknowledgments
	Contents
	Background
	1 Introduction
	1.1 Vehicle Routing Problems
	1.2 Problem Statement
	1.3 Contributions
	1.4 Outline
	1.5 Publications

	2 Vehicle Routing Problems
	2.1 Problem Notions
	2.2 The Capacitated VRP
	2.3 Notations and Operations on routes
	2.4 Construction Heuristics
	2.5 Local Search
	2.6 Ant Colony Optimization
	2.7 Branching Search
	2.8 Branch & Bound
	2.9 Column Generation
	2.10 Branch & Propagate

	3 VRPs with complex side-constraints
	3.1 Rich Vehicle Routing Problems
	3.2 VRPs with complicated side-problems
	3.3 Generic/high-level approaches for Rich VRPs

	Contributions
	4 The VRP with Black Box Feasibility
	4.1 Problem Formulation
	4.2 Examples of VRPBB instantiations
	4.3 Features of an optimization approach
	4.4 VRPBBs considered in this thesis
	4.5 Solving the CVRPBB

	5 CVRPBB as Set Partitioning Problem
	5.1 Notations

	6 Pheromone-based Heuristic Col. Gen.
	6.1 Principles
	6.2 Generating feasible routes
	6.3 Pheromone update
	6.4 Post-optimization of feasible routes
	6.5 Solving the integer problem

	7 Dive & Generate
	7.1 Branch & Generate
	7.2 Principles
	7.3 Initialization of R*
	7.4 Restarts
	7.5 Node exploration
	7.6 Generating feasible routes
	7.7 Branching heuristic
	7.8 Search strategy

	8 Heuristic Branch & Price
	8.1 Principles
	8.2 Initialization of R*
	8.3 Node exploration
	8.4 Subproblem creation
	8.5 Branching heuristics
	8.6 Generating feasible routes
	8.7 Search strategy

	9 Decomposition-based Approach
	9.1 Principles
	9.2 Initialization of R*
	9.3 Selection of set of routes T

	10 Implementation
	10.1 Branch & Bound Tree
	10.2 Column Pool
	10.3 Solver and Solutions
	10.4 Column Generation
	10.5 Black Box and Feasibility Store
	10.6 Implementation of the proposed approaches

	Applications
	11 Parameter setting with irace
	11.1 Principles
	11.2 Iterated F-race
	11.3 Training instances
	11.4 Considered parameters and their ranges
	11.5 Automatic parameter setting
	11.6 Exp. analysis of ACO-HCG parameters

	12 VRP with 3D loading constraints
	12.1 Problem Description
	12.2 Existing Approaches
	12.3 3L-CVRP as a VRPBB
	12.4 Problem Instances
	12.5 Experimental Results

	13 Multi-Pile Vehicle Routing Problem
	13.1 Problem Description
	13.2 Existing Approaches
	13.3 MP-VRP as a VRPBB
	13.4 Problem Instances
	13.5 Experimental Results

	14 VRPBB with MinMax Objective
	14.1 Problem description
	14.2 Adaptation of ACO-HCG to the MinMax Obj.
	14.3 Experimental Results

	Conclusions and Future Work
	15 Conclusion
	15.1 Future Work

	Appendix
	A 3L-CVRP: Additional Material
	A.1 Pheromone-based HCG
	A.2 Dive & Generate
	A.3 Heuristic Branch & Price

	B MP-VRP: Additional Material
	B.1 Pheromone-based HCG
	B.2 Dive & Generate
	B.3 Heuristic Branch & Price

	Bibliography

