
P RO PAG AT O R S F O R TA B L E C O N S T R A I N T S

J E A N -BA P T I S T E M A I RY

Thèse présentée en vue de l’obtention du grade de docteur en sciences de
l’ingénieur

2014

Institute of Information and Communication Technologies,
Electronics and Applied Mathematics

Louvain School of Engineering
Louvain-la-Neuve

Belgium

Thesis Committee:

Yves Deville (director) Université catholique de Louvain, Belgium

Charles Pecheur Université catholique de Louvain, Belgium

Christophe Lecoutre CRIL-CNRS, Université d’Artois, France

Pierre Schaus Université catholique de Louvain, Belgium

Peter Van Roy (president) Université catholique de Louvain, Belgium

A B S T R AC T

Constraint Programming is devoted to finding solutions to hard combinato-
rial problems. Such problems usually define exponentially large search spaces.
Coping with such search spaces to find solution(s) (or the best solution) is only
possible through the use of sophisticated techniques. Several techniques exist
and this thesis is focused on one of them: propagation.

Propagation aims at removing parts of the search space that provably con-
tain no solution. The constraints are used to locate (and remove) such parts
of the search space. The propagation considered in this thesis is that of the
Table Constraint. Table constraints are constraints that give explicit access to
the list of allowed tuples. Three chapters cover different aspects of propagation
for this constraint. In the first one, five different Generalized Arc Consistency
(GAC) propagators are proposed for table constraint. Two of them have an
optimal time complexity. All the proposed propagators are evaluated on a vari-
ety of benchmarks against the state-of-the-art propagators for table constraints.
The experimental results show that our propagators are faster than the state
of the art when the arity of the tables is between 3 and 4 (inclusive). For bi-
nary table constraints, they are outperformed by propagators dedicated only to
binary constraints. When the arity is strictly greater than 4, our propagators
are competitive with the state of the art. The second chapter covers both GAC
propagation and the expressivity of constraint programming. It presents a gen-
eralization of table constraint, called Smart Table Constraint, together with its
GAC propagator, called smartSTR2. Smart table constraints introduce simple
arithmetic expressions inside the allowed tuples. This improves the expressiv-
ity and allows an efficient filtering of this new constraint. After presenting

iii

the syntax, semantics, and the GAC propagator, that chapter will experimen-
tally compare smartSTR2 with the state-of-the-art GAC propagators on several
global constraints. Smart table constraint indeed allow an efficient representa-
tion of several well known global constraints. The third chapter is dedicated to
a consistency stronger than GAC for table constraints, called Domain k-Wise
Consistency (DkWC), and a procedure to easily enforce it. This procedure is
based on the pre-search computation of a modified CSP such that enforcing
GAC on this CSP amounts to enforcing DkWC on the original one. Existing
GAC propagators for table constraints can thus be used without any modifi-
cation to enforce this stronger consistency. Unfortunately, enforcing DkWC is
costly. This is also the case for the other consistencies stronger than GAC. We
thus also propose two weaker variants of our filtering procedure that are still
stronger than GAC but less costly to enforce than full DkWC. These weaker
variants, more practical, are compared on a variety of benchmarks to state-of-
the-art GAC propagators as well as state-of-the-art propagators for consisten-
cies stronger than GAC.

Throughout this thesis, all the proposed algorithms are evaluated on differ-
ent benchmarks against other alternatives. The results of these evaluations are
measurements made on executions of different programs. Those measurements
can be tricky to analyze from a statistical viewpoint because they contain miss-
ing data (for instance, an algorithm failing to solve an instance within a given
time budget) and hypotheses on their distributions are hard to make. In this
thesis, we developed a statistical procedure, based on the bootstrap method, to
compare algorithms in this context. This procedure is applied to the experimen-
tal results presented in this thesis.

iv

AC K N OW L E D G M E N T S

I’d like first to warmly thank Yves Deville, my supervisor, for its guidance
during the last 4 years and a half. His constant support, his numerous advices
and the many technical discussions we had made the fulfilment of this thesis
possible. I also would like to thank Yves for the many discussions, other than
technical, that we had during these times. I learnt a lot of things from you !

Going to the department each day was a pleasure, thanks to the people
who work there. First of all, I’d like to thank my former and present office
mates. With Florence and Vianney, the discussions in the office where always
interesting, were they scientific, para-scientific or not at all scientific. I was
lucky enough to find the same serious but relaxed atmosphere with Cyrille and
Ratheil as office mates. Within the office, we even had our own set of man-
ners! I also would like to thank my friends and colleagues Fanfwè, Xavier, Jey,
Guillaume-Bernard, Karim, Nico, Sam, Romain, Simon ant Antoine. Going
through a PhD from the beginning to the end with you guys was pleasurable
and really supporting. Many thanks also go to all the people working at the
INGI department. Weather it is for the seminars, the social events, the coffee
breaks, the day to day organization, etc., you guys are the best !

Without the careful reading, intelligent questions and numerous comments
of the jury, this thesis would not be what it is. I sincerely thank all the members
of the jury for this. Special thanks go to Christophe Lecoutre, with whom the
different collaborations have been as fruitful as they have been enjoyable.

On the personal level, carrying out a PhD would not be possible without
a supporting and loving family. I thus hereby thank my parents, brothers, my
grandfather and my godfather for their support.

v

During these four years and a half, I have had the chance to have the most
wonderful support one can have: the nicest life partner there is. I’d like to give
my deepest gratitude to Céline, who supported, comforted and motivated me
from day to day during the whole process. You just rock baby !

I gratefully acknowledge the support of the Fond National de la Recherche
Scientifique (FNRS).

vi

C O N T E N T S

I BAC K G RO U N D 7
1 C O N S T R A I N T P RO G R A M M I N G 9

1.1 Constraint Satisfaction Problems 10
1.2 Constraint Optimization Problems 14
1.3 Table Constraints . 15

2 P RO PAG AT I O N I N C O N S T R A I N T P RO G R A M M I N G 19
2.1 Generalized Arc Consistency 19
2.2 GAC for Table Constraints 22
2.3 Consistencies Stronger than GAC 25

3 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S 29
3.1 Problem Definition . 30
3.2 Treatment of Data Without Censoring 31
3.3 Treatment of Data With Censoring 33

II P RO PAG AT I O N F O R TA B L E C O N S T R A I N T S 43
4 E F F I C I E N T A N D O P T I M A L G AC P RO PAG ATO R S F O R TA -

B L E C O N S T R A I N T S 45
4.1 The AC5 Algorithm . 46
4.2 Efficient GAC Propagators 49
4.3 A Variation Based on Recomputation 59
4.4 Optimal GAC Propagators 63
4.5 Experimental Results . 73
4.6 Statistical Treatment of the Experiments 105

vii

5 T H E S M A RT TA B L E C O N S T R A I N T 111
5.1 Syntax and Semantics . 113
5.2 Filtering Smart Table Constraints 118
5.3 Link with Logical Combination of Constraints 128
5.4 Experimental Results . 129

6 E F F I C I E N T F I LT E R I N G P RO C E D U R E F O R D O M A I N k -
W I S E C O N S I S T E N C Y O N TA B L E C O N S T R A I N T S 135
6.1 Domain k-Wise Consistency 136
6.2 Filtering Procedure for k-Wise Consistency 137
6.3 Domain k-Wise Consistency Filtering 139
6.4 Practical Use of the Domain k-Wise Consistency 144
6.5 Experimental Results . 145
6.6 Statistical Treatment of the Experiments 155

Conclusion and Perspectives 159

B I B L I O G R A P H Y 164

viii

I N T RO D U C T I O N

P RO PAG AT I O N I N C O N S T R A I N T P RO G R A M M I N G

The context in which this thesis lies is Constraint Programming. Constraint
programming is a paradigm to solve problems (aren’t we all trying to solve
problems?). The problems tackled by constraint programming are described in
a particular form: as constraint programs. Constraint programs describe what
the solution to the problem is, not how to obtain it. This description is made
in the form of constraints the solution(s) have to respect. Constraint programs
also define a search space. The search space is the space in which to search for
a solution to the problem (or the best solution to the problem in terms of some
criterion). This description of a problem as a constraint program is called a
Constraint Satisfaction Problem (CSP) when the goal is to find solution(s) sat-
isfying the constraints inside the search space, and a Constraint Optimization
Problem (COP) when the best solution is searched for. The search space con-
taining all the candidate solutions is usually too large to be searched exhaus-
tively without using sophisticated techniques. Several such techniques exist.
One of them will be of interest for this thesis. This technique detects and ig-
nores parts of the search space where there is provably no solution while doing
an exhaustive search. This technique, called propagation, has the advantage of
being complete: if a solution exists and you have enough time, the technique
will find it. This is granted by the property that the removed parts of the search
space do not contain any solution.

More practically, CSPs model real world problems with three components:
the variables, a domain for each variable, and a set of constraints. Each vari-
able’s domain defines the possible values that that variable is allowed to take.

1

2 Chapter 0 C O N T E N T S

They thus define the search space. Each constraint puts restrictions on the al-
lowed combinations of values for a subset of the variables. This subset is called
the scope of the constraint. Solving a CSP means finding solution(s). A solu-
tion consists of a value for each variable from its domain such that each con-
straint is satisfied. COPs have one additional component: an objective function
to optimize. The objective function assigns values to the candidate solutions.
The goal is then to find the best solution in terms of the objective function.

Propagation is the task of detecting and removing those parts of the search
space where there are provably no solution. It uses the constraints on the so-
lutions to deduce and propagate information on the search space while the
exhaustive search takes place. The propagation is usually characterized by a
consistency. Consistencies are properties of the CSPs or COPs that the prop-
agation enforces. For instance, a well known consistency requires that each
value in the domains of the variables participates in at least one solution to each
constraint in isolation from the others. Enforcing the consistency amounts to
removing the values from the domains of the variables that do not satisfy the
property. Reducing the domains of the variables reduces the search space. One
can also tighten the constraints to reduce the search space.

The propagation takes place in so-called propagators. Propagators are often
associated with constraints since the deduction is based on them, often in iso-
lation from the other constraints. We will be particularly interested in one con-
straint: the Table Constraint. This constraint simply gives explicit access to the
raw list of accepted combinations of values for the variables in its scope. The
raw list is called the table. It allows modeling any possible constraint. Prop-
agating a table constraint presents several challenges: the tables of allowed
combinations of values are usually long and there is no general structure in-
side the tables (since they can model any constraint). This means that usually
the tables have to be traversed in order to deduce and propagate information. In
this thesis, several new propagators are introduced for table constraints. Five of
them are associated with the table constraints individually and one of them is
a procedure allowing of integrating the propagation information of several ta-
ble constraints to prune the search space more. We also define the consistency
associated with the last propagator: the Domain k-Wise Consistency. A new
constraint, generalizing the table constraint, is also introduced together with
its propagator. This new constraint is called the Smart Table Constraint. It gen-
eralizes the expression of tables by introducing simple arithmetic expressions
that can be used inside the tables of the constraints.

When designing a new propagator or propagation algorithm, it is common
to compare it with existing state-of-the-art alternatives. The results of such
comparisons are measurements of the execution of the algorithms. Being able

C O N T E N T S 3

to draw conclusions based on those results is not always obvious. Some algo-
rithms may even fail to solve some problem instances within the given resource
budget, leading to incomplete data. In order to deal with such results, we have
developed a statistical procedure. This procedure can be used to draw conclu-
sions on the relative performance of techniques or algorithms. It is applied to
all the experimental data presented in this thesis.

C O N T R I B U T I O N S

The contributions of this thesis are:

• The introduction of five new propagators, two of them having an opti-
mal time complexity, for the table constraint;

• The experimental evaluation of those propagators against state of the
art propagators for table constraints;

• The introduction of the Smart Table Constraint;

• The definition of an efficient propagator for the smart table constraint
and the experimental evaluation of this propagator;

• The definition of Domain k-Wise Consistency;

• The introduction of a procedure, relying only on existing propagators,
to obtain domain k-wise consistency on table constraints and its exper-
imental evaluation;

• The definition of a procedure, relying on a statistical background, to
analyse experimental data;

• The application of this statistical procedure to all the experimental data
of this thesis.

All the code developed during this thesis has been published under the
GPLv3 license and can be found on http://becool.info.ucl.
ac.be/resources/table-constraint-propagators.

O U T L I N E

This thesis is organized into two parts. The first part gives the background and
state-of-the-art information about all the contents of this thesis. The second
part is concerned with the propagation in constraint programming applied to
the table constraint.

http://becool.info.ucl.ac.be/resources/table-constraint-propagators
http://becool.info.ucl.ac.be/resources/table-constraint-propagators

4 Chapter 0 C O N T E N T S

In Part I, Chapter 1 gives background information on Constraint Program-
ming with a particular focus on one constraint heavily studied in this thesis: the
Table Constraint. Chapter 2 presents propagation in constraint programming,
again with a focus on table constraints. Finally, Chapter 3 defines the statisti-
cal procedure used throughout this thesis to further analyse the experimental
results of the algorithms.

Part II is divided into three chapters. The first one, Chapter 4, presents five
different propagators for the table constraints, amongst which, two have an
optimal time complexity. Chapter 5 defines a new generalized form of table
constraint, called smart table constraint, together with a generalized arc con-
sistency propagator for this new constraint. Chapter 6 proposes a filtering pro-
cedure to obtain stronger filtering than generalized arc consistency on table
constraints, relying only on existing propagators. All the chapters present the
corresponding experimental results.

P U B L I C AT I O N S

Journal Publications

[DVHM13] Yves Deville, Pascal Van Hentenryck and Jean-Baptiste
Mairy, ”Domain Consistency with Forbidden Values”, Constraints 18
(3), pages 377-403

[MVHD14a] Jean-Baptiste Mairy, Pascal Van Hentenryck and Yves
Deville, "Optimal and Efficient Filtering Algorithms for Table Con-
straints", Constraints 19 (1), pages 77-120

Conference Publications

[MVHD12] Jean-Baptiste Mairy, Pascal Van Hentenryck and Yves
Deville, "An Optimal Filtering Algorithm for Table Constraints", 18th
International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2012), 2012, pages 496–511.

[MDL14] Jean-Baptiste Mairy, Yves Deville and Christophe Lecoutre,
"Domain k-Wise Consistency Made as Simple as Generalized Arc Con-
sistency", Integration of AI and OR Techniques in Constraint Program-
ming (CPAIOR) 2014, pages 235-250

[MDL15] Jean-Baptiste Mairy, Yves Deville and Christophe Lecoutre,
"The Smart Table Constraint", Integration of AI and OR Techniques in
Constraint Programming (CPAIOR) 2015

C O N T E N T S 5

Workshop publications

[MSD10] J.B Mairy, P. Schaus and Y. Deville, “Generic Adaptive Heu-
ristics for Large Neighborhood Search”, Workshop on Local Search
Techniques in Constraint Satisfaction of the 16th International Confer-
ence on Principles and Practice of Constraint Programming (CP 2010),
2010.

[MDVH11] J.B Mairy, Y. Deville, and P. Van Hentenryck, "Reinforced
Adaptive Large Neighborhood Search", Workshop on Local Search
Techniques in Constraint Satisfaction of the 17th International Confer-
ence on Principles and Practice of Constraint Programming (CP 2011),
2011.

Part I

BAC K G RO U N D

1
C O N S T R A I N T
P RO G R A M M I N G

Constraint Programming (CP) is a paradigm to solve hard combinatorial prob-
lems [RBW06, Lec09]. Combinatorial problems are problems for which a
solution (or the best solution) is searched for inside a search space. It is the
paradigm governing all the work in this thesis. The search space can be seen as
the space of possible candidate solutions. The search spaces of combinatorial
problems are, generally, too large to be searched exhaustively. Many of such
problems belong to the class of NP-hard problems. In constraint programming,
the problems are described in a declarative fashion, meaning that the search
space is described together with the constraints on the solution. In other words,
the problem describes what the solutions are like, not how to obtain them. The
goal is then to find a candidate solution inside the search space that respects all
the constraints, or the best candidate solution that respects all the constraints.
Those problems for which only a solution is sought are called Constraint Sat-
isfaction Problems (CSPs). Problems for which the best solution is sought are
called Constraint Optimization Problems (COPs). Section 1.1 presents the CSP
framework, Section 1.2 presents the COP framework, and Section 1.3 presents
one particular constraint that is studied in this thesis.

9

10 Chapter 1 C O N S T R A I N T P RO G R A M M I N G

5
9

2

4

1
5

4
1

2
7

3

1

7

8

9

3

5

Figure 1.1: Example of a Sudoku

1.1 C O N S T R A I N T S AT I S F AC T I O N P RO B L E M S

Constraint satisfaction problems are described by a set of decision variables, a
domain (the possible values) for each of the variables, and a set of constraints
on the variables. The goal is to find values for each decision variable, inside its
domain, such that all the constraints are satisfied. The domains of the variables
can be continuous or discrete. In this thesis, we will only focus on discrete
domains for the variables. Example 1 gives the CSP encoding for the well
known Sudoku problem.

Example 1. The Sudoku problem is the problem of filling a 9 × 9 grid with
digits from 1 to 9. Some positions of the grid are pre-filled with digits. All
the digits in a row or a column must be different from each other. Also, each
of the 3-by-3 sub-grids must contain all the digits from 1 to 9. An example
of a sudoku problem can be found in Figure 1.1. The Sudoku problem can
be described as a CSP. One possible CSP model for that problem is to have
one variable per position in the grid, for a total of 81 decision variables. Each
variable has {1, . . . , 9} as its domain. There is one constraint per row and one
constraint per column, constraining the variables of the row/column to take
different values. There is also one constraint per 3× 3 sub-grid, constraining
the variables of the sub-grid to take different values. Finally, there is one con-
straint per pre-filled position in the Sudoku, constraining that variable to take
the pre-defined value.

1.1 C O N S T R A I N T S AT I S F AC T I O N P RO B L E M S 11

In Example 1, we can already see that the size of the search space is huge.
Indeed, each of the 81 variables can take 9 different values. The size of the
search space is thus 981. Even with 0.01 ms to check that the solutions respect
the constraints (pre-defined positions, digits in rows and columns different,
and digits in the 3× 3 sub-grids different), checking all the possible candidate
solutions would take around 6 × 1058 million years. But you can solve this
CSP in less time than that, can’t you? So does the constraint programming
framework!

Formally, CSP (X, D, C) is composed of an ordered set of n variables X =

{x1, . . . , xn}, a set of domains D = {D(x1), . . . , D(xn)} where D(xi) is
the set of possible values of the variable xi, and a set of e constraints C =

{c1, . . . , ce}, where each constraint cj restricts the possible combinations of
values, called allowed tuples, for a subset of variables from X: this subset is
called the scope of cj and is denoted by scope(cj). The arity of a constraint
cj is the size of its scope: #scope(cj). Because variable domains may evolve
(be reduced) during the search, D(x) is referred to as the current domain of x,
which is a subset of the initial domain of x (denoted by Dinit(x)). For a group
of variables Y ⊆ X, D(Y) denotes the set of domains for the variables in Y.
We will use the term literal to refer to a variable–value pair. An assignment of
a set of variables Y = {y1, . . . , yk} is a set of literals {(y1, v1), . . . , (yk, vk)}
with (v1, . . . , vk) ∈ Dinit(Y); it is a valid assignment if (v1, . . . , vk) ∈ D(Y).
An assignment of the set of variables Y is total for a CSP (X, D, C) if Y = X
(i.e., it assigns a value to every variable). An assignment or tuple τ satisfies a
set of constraints C′ iff for every constraint c′ ∈ C′, τ[scope(c′)] is allowed
by c′, where τ[Y] denotes the restriction of τ to literals referring to variables
in Y. The goal of the search is to find a valid total assignment that respects
all the constraints. The set of solutions of a CSP P = (X, D, C) is denoted by
sols(P).

Each CSP can be associated with a constraint graph. This (hyper-)graph has
one vertex per variable and one (hyper-)edge per constraint, connecting the
vertices representing the variables of the constraint scope. This graph is also
called the primal constraint graph. Another graph representing a CSP is the
dual constraint graph. This graph has one vertex per constraint and two con-
straints are linked iff their scopes share common variables.

Constraint programming is often described by the following equation:

CP = Model + Search

The Model part of the equation is the process by which the real world prob-
lem is translated into a triplet (X, D, C). The expressiveness of CP comes from

12 Chapter 1 C O N S T R A I N T P RO G R A M M I N G

P

D

FE

x2 = 0 x2 = 1

A

CB

x2 = 0 x2 = 1

x1 = 0 x1 = 1

Figure 1.2: Example of a search tree for a CSP

the extensive catalog of constraints available to the user. They range from very
simple arithmetic constraints to complex constraints such as the geost con-
straints. This constraint states that the shapes defined by shifted boxes rep-
resented with its variables do not overlap in the set of specified dimensions.
Adequately choosing the decision variables, their domains, and the constraints,
has a large impact on the performance of a constraint programming program
for solving a problem. For instance, in Example 1, setting the domain of the
variables representing the pre-filled position to the value in the sudoku reduces
the search space to 964, since those variables can only take one value. This
divides the size of the search space by 1.6× 1016.

The Search part of the equation relates to the way a solution is sought inside
the search space. The search space is concretized as a tree. Each node of the
tree is a CSP, with the root of the tree being the original CSP. Arcs of the tree
represent decisions. A decision is usually a modification of the domain of a
variable. For instance, it could be the assignation of a value to a variable or a
refutation of a value from a domain. Example 2 shows an example of a search
tree where the decisions are assignments.

Example 2. Figure 1.2 gives an example of a search tree. In this example,
the CSP to solve is a CSP P with two binary variables x1 and x2 and some
constraints C. We thus have P = (X, D, C) with X = {x1, x2} and D =

{D(x1), D(x2)} where D(x1) = D(x2) = {0, 1}. In this example, A, B, C,
D, E and F are CSPs, each of which is obtained by taking the decision that is on
the edge to the parent CSP. Those decisions can be expressed by modifying the
domains of the variables or adding the constraint to the child CSP. The leaves
of the search tree contain all the full valid assignations. The goal is to find one
that respects the constraints.

1.1 C O N S T R A I N T S AT I S F AC T I O N P RO B L E M S 13

P

D

E

x2 = 0

A

CB

x2 = 0 x2 = 1

x1 = 0 x1 = 1

Figure 1.3: Exploration of a search tree. Nodes in red are nodes that are failures and
the node in green is a solution to the CSP.

The search tree is constructed on the fly, while searching for the solution(s).
This is the concept of backtracking search. A backtracking search builds the
search tree while exploring it. When an inconsistency is detected at a node
(such as the violation of a constraint), the search backtracks to a previous
search node and makes a different choice (leading to a different search node).
Example 3 shows the exploration of a search tree.

Example 3. Figure 1.3 shows a possible exploration of the search tree from
the CSP of Example 2, where the constraint set only contains the constraint
x1 − 1 = x2. In this example, the tree is traversed with a depth first search
traversal. First, the decision x1 = 0 is inspected. From this node, x2 = 0 is
tested. The CSP B is a failure because it contains a full valid assignment of
the variables that does not respect the constraint. Hence, the search backtracks
to A to take the second decision for x2: x2 = 1. This is also a failure for the
same reasons as C. The search backtracks again to A. This time, no further
possibility is left for x2. A is then also a failure. The search then backtracks
from A to P to take the other decision for x1. Finally, the search arrives at E,
which is a solution to P. As the search tree is constructed on the fly, node F
from Figure 1.2 is never created.

When backtracking to a previous search node, some data structures may
have to be restored. Such data structures, maintained during the search, are
said to be trailed structures.

Another important concept of the search in constraint programming is the
propagation. Propagation in CP uses the constraints to reduce the search space
without removing any solutions. This is done by only ignoring those parts of
the search space where there is provably no solution. Propagation can be done

14 Chapter 1 C O N S T R A I N T P RO G R A M M I N G

at the beginning of the search (on the original CSP), on some nodes of the
search tree, or on all nodes of the search tree. Example 4 illustrates propagation
for the case of a simple CSP. Propagation is the topic of Chapter 2.

Example 4. Let’s have a look at the CSP used in Example 2. We have P =

(X, D, C) with X = {x1, x2} and D = {D(x1), D(x2)} where D(x1) =

D(x2) = {0, 1} and C = {x1 − 1 = x2}. Without searching, we can safely
remove 1 from the domain of x2 because no value from the domain of x1 can
satisfy the constraint when x2 = 1. Also, we can remove 0 from the domain
of x1 because no value in the domain of x2 can satisfy the constraint. Those
reductions of the search space are safe because, as there is no way to satisfy the
constraint x1 − 1 = x2 with the values of the initial domains of the variables,
those values can never lead to a solution. In this case, the propagation alone
reduces the domains of the variables to singletons, meaning that a solution is
found.

The parts of the search space that are not considered during the search are
the ones that provably contain no solutions. Thus, if a solution exists, it will be
found. This is why Constraint Programming is classified among the complete
search techniques.

1.2 C O N S T R A I N T O P T I M I Z AT I O N P RO B L E M S

Constraint Optimization Problems (COPs) are CSPs with the addition of an
objective function to optimize. They are described as a quadruplet (X,D,C,O)
where X is the set of variables, D is the set of domains for the variables, C is
the set of constraints, and O is the objective function. An example of a COP is
given in Example 5.

Example 5. The well known Travelling Salesman Problem (TSP) can be seen
as a COP. The objective of this problem is, given a list of n cities with the
distances between them, to find a tour visiting all the cities only once with the
shortest possible total distance. The problem can be formulated as a quadruplet
(X, D, C, O). The variables X = {x1, x2, . . . , xn} represent the tour, with xi
containing the identifier of the ith city to visit. The domains of the variables
are the possible cities. The constraints C constrain the variables to represent
a valid tour for a TSP, i.e., a tour where all the cities are visited only once.
The objective function to minimize is the sum of the distances between all the
consecutive cities in the tour.

The resolution of a COP in the CP framework is somewhat similar to that
of a CSP. It uses the same kinds of backtracking searches and propagation
techniques. The difference is that, since the best solution is sought, the search

1.3 TA B L E C O N S T R A I N T S 15

cannot stop as soon as a solution is found. All the solutions must be inspected
in order to find the best one. The objective of the COP can be used to further
prune the search space, by constraining, each time a solution is found, the
objective value to be better than the last found solution.

1.3 TA B L E C O N S T R A I N T S

Among the extensive catalog of constraints available to the user, global con-
straints play a key role in the success of CP. Global constraints are constraints
that can be used on any number of variables. An example of a global constraint
is the AllDifferent constraint, stating that all the variables given as arguments
take different values. The advantage of using one global constraint, as opposed
to all the binary " 6=" constraints, is that the global constraint captures the se-
mantics of all the binary constraints at once. It allows their propagation to
perform stronger search space reductions and/or to do it more efficiently.

AllDifferent is an example of a constraint given in intention: the seman-
tics of the constraint is given, but the allowed combinations of values for the
variables are not listed explicitly. In contrast, table constraints are global con-
straints that explicitly list the set of allowed combinations of values for the
variables in their scope. This set is called the table. A particular combination
of values for the variables will be accepted by the constraint iff it is listed in its
table. Table constraints are the target constraints of Chapters 4, 5 and 6. Note
that table constraints can also list the set of disallowed combinations, but they
are not the focus of this thesis.

Table constraints are essential to constraint programming and will be needed
more and more. Indeed, they theoretically allow encoding any constraint. They
thus allow encoding any constraint for which no intensional form exists. Such
constraints frequently arise in real world application, where the data is messy
and not everything can be put in equations. Table constraints are, for instance,
mandatory when one or more items respecting some constraints are sought in-
side a set of items, and each item is described by a set of numerical characteris-
tics. In this case, one item is a line in the table. In order for a set of variables to
represent the characteristics of one item, a table constraint is needed, because
in most cases, there is no arithmetic relation between the characteristics of the
items. An example of such an application is the querying of the semantic web.
Constraint programming has been used in [dSMDS11, dSMDSC12] to query
the semantic web. The goal of the semantic web is to make the information on
the internet, which is human readable, machine-readable and to allow efficient
semantic querying. In the semantic web, the data contained in a website can be
represented as a Resource Description Format (RDF) graph. This graph con-

16 Chapter 1 C O N S T R A I N T P RO G R A M M I N G

x y z

1 1 2

1 2 3

2 1 3

Figure 1.4: Table constraint encoding for x + y = z where D(x) = D(y) = {1, 2}
and D(z) = {2, 3}

tains nodes, representing resources (e.g.: people, objects, concepts, etc.) and
literals, representing values (strings, dates, numbers, etc.). Nodes are linked to-
gether by labelled edges, which encode a relation between the two resources. It
is possible to represent this graph with a large table constraint of arity 3. Each
line represents an edge: the first column contains the origin node, the second,
the edge, and the last, the destination node. Queries of the semantic web can
also be viewed as (small) graphs. Indeed, the query of the relation between Bob
and Alice can be encoded with a simple graph containing two nodes, Bob and
Alice, and a variable as the label of the edge. Then this triplet is constrained to
appear in the table representing the graph. Of course, much more complicated
queries exist and correspond to more complicated graphs. We can thus encode
queries in the model of the CSP and the RDF graph as a table constraint. The
Semantic Web is an example of the use of CP in the area of big data, and in this
example, table constraints are mandatory. More generally, table constraints are
also very useful in database applications of constraint programming. Indeed, it
is very often only possible to describe tables in a database by table constraints.
Table constraints will be more and more needed because constraint program-
ming is being applied to more and more areas where the data is often only
representable with table constraints.

To give a simple example, Figure 1.4 gives a table constraint encoding the
constraint x + y = z where D(x) = D(y) = {1, 2} and D(z) = {2, 3}.

Formally, inside a CSP (X, D, C), the table of a table constraint c with
scope(c) = {x1, x2, . . . , xr} is a set of tuples on scope(c). Since there is
no ambiguity about scope(c), we will write the tuples of the tables omitting
the variables. Not all the tuples in a table are required to be valid, as the do-
mains may evolve while the table can stay the same. Given a set of tuples
T of arity r, a table constraint c over T holds if (x1, . . . , xr) ∈ T, where
scope(c) = (x1, . . . , xr). The size t of a table constraint c is its number of

1.3 TA B L E C O N S T R A I N T S 17

tuples, which is also denoted by c.length. Given a table constraint, we say that
a tuple τ is allowed if it belongs to the table.

2
P RO PAG AT I O N I N
C O N S T R A I N T
P RO G R A M M I N G

As seen in Chapter 1, propagation is the mechanism used by constraint pro-
gramming to reduce the search space without removing any solution. This
reduction mechanism uses the constraints to perform deductions and hence
reduce the search space. Usually, propagation is characterized by consisten-
cies. Consistencies are properties of the CSPs that the propagators enforce. En-
forcing a consistency amounts to reducing the search space until the property
is respected, without removing any solutions. Consistencies have generated a
tremendous research effort. There thus exist many different consistencies and
many different ways to enforce them (even for a given consistency). This chap-
ter focuses on the central consistency in constraint programming (Section 2.1),
on its application to table constraints (Section 2.2), and on consistencies that
prune the search space more than the central consistency (Section 2.3).

2.1 G E N E R A L I Z E D A R C C O N S I S T E N C Y

The central consistency in CP is called Generalized Arc Consistency (GAC),
or sometimes Domain Consistency (DC) [Mac77a]. It is the highest filtering

19

20 Chapter 2 P RO PAG AT I O N I N C O N S T R A I N T P RO G R A M M I N G

one can obtain by considering the constraints one at a time. It states that all the
literals of the variables in the scope of each constraint must participate in at
least one solution of the constraint (in isolation from the others). To formally
define it, we need first to introduce the notion of support. In the following, for a
constraint c, we will denote by c(v) the test evaluating to true iff v is allowed by
c. A literal of a constraint c is a literal (x, a) such that x ∈ scope(c). A support
on a constraint c is a tuple τ ∈ D(scope(c)) such that c(τ), and a support
(on c) for a literal (x, a) of c is a support τ on c such that τ[x] = a. Note
that supports are valid tuples, meaning that the values involved are necessarily
present in the current domains.
Definition 1. (GAC) A constraint c is generalized arc consistent (GAC) iff
there exists at least one support for each literal of c. A CSP P is GAC iff every
constraint of P is GAC.

Enforcing GAC is the task of removing from the domains all the values that
have no support on a constraint. The values to remove from the domains de-
pend on the constraint. GAC thus reduces the domains of the variables, but
this is not the case for all consistencies. Most of the consistencies can be clas-
sified in two categories: domain-filtering consistencies and constraint-filtering
ones. Domain-filtering consistencies identify inconsistent values that can be
removed from the domains of the variables, whereas constraint-filtering ones
identify inconsistent tuples in the constraints. GAC is a domain-filtering consis-
tency. Different examples of such consistencies can be found in [Bes06, DB01,
BSW08, KWR+10, Lec09, Ste08]. Consistencies can be also ordered with re-
spect to their pruning strength. A consistency stronger than another will reduce
the search space more. In contrast, a weaker consistency reduces the search
space less. Consistencies weaker than GAC are cheaper to enforce but they
lose ground progressively, at least for binary and table constraints, as they re-
duce (much) less the search space. On the other hand, consistencies stronger
than GAC are more and more studied, and often tested on difficult problem
instances, where the cost of enforcing them can be counterbalanced by their
large inference capabilities. However, such strong consistencies need to reason
with several constraints simultaneously, which makes the development of fil-
tering algorithms complex, especially for integration into existing CP solvers.
Chapter 6 is concerned with a consistency stronger than GAC.

Alongside the consistencies are the propagation algorithms, enforcing the
consistency. A same consistency can be enforced by many different algorithms.
Usually, propagation is obtained through a fixed-point algorithm. Propagation
is performed on each constraint (or group of constraints), which can hopefully
reduce the search space. After one constraint (or group of constraint) has per-
formed its propagation, the consistency of the other constraints impacted by the

2.1 G E N E R A L I Z E D A R C C O N S I S T E N C Y 21

search space reduction has to be checked again, because the search space has
changed and those constraints could prune the search space further. The fixed-
point algorithm thus uses a propagation queue, containing the constraints that
need to (re-)check their consistency. When asking to a constraint (or group
of constraints) to (re-)check its consistency, two approaches are possible. The
first one just gives to the constraint(s) the information that their consistency
has to be checked again. The propagation queue only contains the constraints
in this case. The propagators of this kind are called constraint-based. The sec-
ond approach gives to the constraint the literal(s) that have been removed from
the domain(s). The propagation queue thus contains constraints together with
the literal(s) removed in this case. Propagators using this approach are called
value-based. Value-based propagators can be more efficient at enforcing the
consistency of the constraint(s) but usually have to be called for each literal
removed. The propagation algorithm for a consistency can be designed either
to be general purpose (working for all constraints) or specialized for one con-
straint.

For GAC, many general purpose algorithms have been designed, which only
need the constraint to be able to check that a particular tuple is allowed. This
is the case, for instance, of GAC1 [Mac77a], GAC3 [Mac77b, McG79, CJ98],
GAC2001/3.1 [BR01, BRYZ05, ZY01], AC4 [MH86, MM88] AC5 [VDT92],
AC6 [Bes94] and AC7 [BFR99]. On the one hand, GAC1, GAC3, GAC2001
and GAC3.1 are constraint based: the propagation queue of their fixed-point
algorithm contains only constraints. On the other hand, AC4, AC5, AC6 and
AC7 are value-based: the propagation queue of their fixed-point algorithm con-
tains constraints and tuples that have been deleted. Those algorithms are un-
able to take advantage of the semantics of the constraint, as they can be used to
propagate any constraint (general purpose propagators). Many more constraint-
based and value-based GAC propagators have been developed for particular
constraints. The propagators designed for one constraint use their knowledge
of the constraint to be more efficient. Those propagators often use complex al-
gorithms. For instance, the propagator for the AllDifferent constraint [Rég94]
maintains a maximal matching between the variables and the values and uses
the information of the inclusions of edges into the maximal matching to prune
the domains. Making a list of GAC propagators for particular constraints is out
of the scope of this thesis. However, regarding GAC, we will be interested in
the propagators developed for table constraints. This is the topic of the next
section.

22 Chapter 2 P RO PAG AT I O N I N C O N S T R A I N T P RO G R A M M I N G

2.2 G AC F O R TA B L E C O N S T R A I N T S

A lot of research effort has been spent on GAC propagators for table con-
straints. To achieve domain consistency, one must at least check the validity
of each tuple and, in the worst case, remove all the values from the domains.
For a table constraint of arity r containing t tuples with a maximum of d values
in the domains, a GAC algorithm has a complexity Ω(r · t + r · d) per table
constraint in the worst case. A classical algorithm used in a fixed-point algo-
rithm with a complexity O(r · t + r · d) per table constraint is thus optimal.
Few propagators designed for table constraints have the optimal theoretical
complexity, yet, they behave well in practice.

The existing propagators can be categorized in 4 classes: index-based, com-
pression-based, based on a dynamic table, and value-based. Those classes are
not mutually exclusive. Each approach is designed to cope, in its own way,
with large structure-less tables. The index-based methods build indices of the
tuples in the tables so as to traverse them quicker. Compression-based meth-
ods build alternative representations of the tables, compressing the informa-
tion. Dynamic table approaches modify the table during the search to focus
only on the relevant parts. Value-based propagators use the value-based prop-
agation paradigm to perform the propagation. As a first point of comparison
for the existing techniques, we will analyze the complexity of all the calls
to the propagator along a branch of the search tree. We will consider a table
constraint of arity r containing t tuples with a maximum of d values in the
domains. In this complexity analysis, the time complexity of the backtracking
operations is not taken into account. The index-based approaches use an index-
ing of the table so as to traverse it more quickly. Examples of such propaga-
tors are GAC3-allowed and other constraint-based variants (GAC3rm-allowed,
GAC2001-allowed) [Lec09, BR97, LS06, GJM06]. For each variable–value
pair (x, a), the index data structure has an array of the indices of the tuples
with value a for x. The space complexity of the data structure is O(r · t).
The time complexity of GAC3-allowed along a branch in the search tree is
O(r3 · d · t) per table constraint. Indeed, for one call to GAC3-allowed, a
variable requires at worst to test the validity of each tuple of the constraint
(thanks to the indexing structure), which costs O(r · t). Thus, one call of GAC3-
allowed costs O(r2 · t). The propagator being called at most r · d times along
a branch in the search tree, the complexity of GAC3-allowed is O(r3 · d · t).
GAC2001-allowed has a time complexity of O(r2 · t + r3 · d2) per table con-
straint along a branch in the search tree. The last support structure of GAC2001-
allowed ensures that a tuple from the table is never considered twice, except
while checking if the last support is still valid. Along a branch in the search

2.2 G AC F O R TA B L E C O N S T R A I N T S 23

tree, the cost of testing each tuple once per variable is O(r2 · t). The cost of
the validity tests of the last supports is O(r3 · d2), leading to a total complexity
of O(r2 · t + r3 · d2). Indexing can also be used in value-based propagators. In
[LR05], the authors propose a value-based propagator for table constraints im-
plementing GAC6. It uses a structure which indexes, for each variable–value
pair (x, a) and each tuple, the next tuple in the table with value a for x. The
spatial complexity of the data structure is O(r · d · t). This space usage can be
reduced by using a data structure called a hologram [Lho04]. Another index
type, proposed in [GJMN07], indexes, for each tuple and variable, the next tu-
ple having a different value for the variable. Compression-based propagators
compress the table in a form that allows a fast traversal. One of such com-
pressed forms uses a trie for each variable [GJMN07]. Another example of a
compression-based technique [CY10, Car06] uses a Multi Valued Decision Di-
agram (MDD) to represent the table more efficiently. Their algorithm is called
MDDc. During propagation, the tries or MDD are traversed using the current
domains to perform the pruning. These algorithms are constraint-based and
have a time complexity of O(r2 · d · t) per table constraint along a branch in the
search tree. This is a worst time complexity, corresponding to the case where
there is little or no compression obtained with their respective encodings of
the table. In [PR14], the authors propose two new versions of the MDD-based
propagator: MDD-4 and MDD-4R. The first version differs from MDDc by
modifying and maintaining the MDD representing the constraint. In MDDc,
the MDD of the constraint is never modified. MDD-4R improves MDD-4 by
adding a mechanism to reset the MDD when the cost of the maintenance op-
erations is more expensive than the reset. Compression and faster traversal
can also be achieved by using compressed tuples that represent a set of tuples
[KW07, XY13, Rég11]. Compressed tuples provide the possibility of using
sets instead of values for the variables inside the tuples. The set of tuples rep-
resented by a compressed tuple is the Cartesian product of the variables’ sets.
Another compression method [JN13] is to apply the so-called short supports
from [NGJM13] to table constraints. Short supports applied to table constraints
allow a tuple to leave variables out, meaning that all the values for that vari-
able are allowed. This allows reducing the size of the tables while proposing
an efficient filtering algorithm. Another compression approach is based on the
detection of frequent patterns [GHLR14]. Frequent patterns are used to com-
press tables, and an algorithm is proposed to filter such reduced constraints.
Propagators based on dynamic tables maintain the table by suppressing invalid
tuples from it. The or-tools propagator [PF] maintains such a dynamic table.
It uses a bitset on the tuples of the table to maintain their validity. One bitset
per literal (x, a) is also used for easy access of the tuples with value a for

24 Chapter 2 P RO PAG AT I O N I N C O N S T R A I N T P RO G R A M M I N G

variable x. This propagator has an O(r · d · t) time complexity per table con-
straint along a branch in the search tree. The STR algorithm [Ull07] and its
refined versions, STR2, STR2+ [Lec11] and STR2w [LLY14], also maintain
a dynamic table. They are constraint-based and scan only the previously valid
tuples to extract the domain consistent/inconsistent values. The time complex-
ity of STR2, STR2+ and STR2w is O(r2 · d · t) per table constraint along a
branch in the search tree. This complexity is obtained by multiplying by r · d
the complexity of one call to the propagator given in [Lec11, LLY14] while
taking into account that the values of the domains can only be removed once
along a branch in the search tree. The maximum number of calls to the propa-
gator along one branch in the search tree is indeed r · d. None of the previously
presented propagators has the optimal O(r · t+ r · d) time complexity per table
constraint. STR3 [LLY12] has recently been introduced with an optimal time
complexity per table constraint. Although the name might suggest it, STR3 is
not an improvement of STR2. STR3 is a brand new GAC algorithm for table
constraints. It is value-based (while STR2 and STR2+ are constraint-based),
thus belonging to the last table constraint propagators category. STR3 starts
by precomputing the set of initial supporting tuples for each literal (working
with the indexes of those tuples). Those sets are not trailed during the search.
Each valid literal has two special supports in its set: the last known valid tuple
(called curr) and one valid support in this set (we call it watched). The tuple
curr is maintained during the search upon backtracking. Its property is that all
the tuples after curr are known to be invalid. The second special support is not
backtracked during the search. This means that the two can be different. Upon
the removal of a literal (x, a), a new valid tuple is searched for all the other lit-
erals having (x, a) in their watched tuple. This search starts at curr towards the
head of the set. Once a new valid support is found, both curr and watched are
updated for the literal being inspected. If none is found, then the literal is re-
moved. STR3 can be seen as a highly optimized version of GAC4, applying an
idea similar to watched literals to the supports. A recent version of the MDDc

propagator, presented in [GSS11], is both in the value based and compression
based categories. This propagator uses an MDD, as does MDDc, but it never
revisits parts of the MDD that do not need to be revisited. To achieve this, it
switches from constraint based to value based. It also adds explanations to the
MDD propagation, in an incremental fashion.

Table 2.1 gives an overview of the different GAC propagators for table
constraints. All these propagators have different theoretical time complexities.
They also behave differently in practice. Some are faster than others on some
benchmarks but there is no general complete ordering of them with respect to
practical speed. What we can see in this table is that only one of the propa-

2.3 C O N S I S T E N C I E S S T RO N G E R T H A N G AC 25

Algorithm Optimal?

Index-based GAC3-allowed X

GAC3rm-allowed X

GAC2001-allowed X

Compression-based trie-based X

MDDc X

MDD-4 X

MDD-4R X

compressed tuples X

short supports X

frequent patterns X

Dynamic table or-tool propagator X

STR X

STR2 / STR2+ / STR2w X

Value-based GAC6 X

STR3 V

Table 2.1: Classification of the existing GAC Propagators for Table Constraint

gator has the optimal time complexity for a branch in the search tree. Chap-
ter 4 presents several new filtering procedures to obtain GAC on table con-
straints developed in the context of this thesis. Two of them have the optimal
O(r · t + r · d) time complexity. The others, although not optimal, perform
well in practice.

2.3 C O N S I S T E N C I E S S T RO N G E R T H A N G AC

Generalized Arc Consistency is the central consistency in constraint program-
ming. It is the strongest filtering achievable while considering constraints in
isolation. However, several consistencies stronger than GAC exist. They re-
quire considering several constraints at a time but they can prune the search
space more than GAC. Consistencies can also be incomparable. Incomparable

26 Chapter 2 P RO PAG AT I O N I N C O N S T R A I N T P RO G R A M M I N G

consistencies are neither stronger nor weaker than each other: some CSPs can
verify one consistency but not the other, and reciprocally. This means that both
consistencies can be enforced together to strengthen the pruning. The study
of all the consistencies and their relative strengths is outside the scope of this
thesis. We will be interested, in this section, in the k-wise consistency and its
combinations with GAC.

k-Wise Consistency (kWC) [Jég91, Bes06] can be classified as a constraint-
filtering consistency. Indeed, kWC identifies inconsistent tuples inside the con-
straints that were initially accepted by them. Enforcing kWC amounts to re-
ducing the constraints. It is based on the idea of extending tuples.

Definition 2. (Extension) Let Y and Z be two sets of variables. A tuple τ′ on
Y ∪ Z is an extension on Y ∪ Z of a tuple τ on Y iff τ′[y] = τ[y], ∀y ∈ Y.

Of course, a valid extension is simply an extension that corresponds to a
valid tuple. We can now define k-wise consistency, which basically guarantees
that every tuple in a constraint can be extended to any set of k− 1 additional
constraints. This kind of property allows us to reason about connections be-
tween constraints through shared variables.

Definition 3. (kWC) A CSP P = (X, D, C) is k-wise consistent (kWC) iff
∀c1 ∈ C, ∀τ ∈ c1 : τ ∈ D(scope(c1)), ∀c2, . . . , ck ∈ C, ∃τ′ valid extension
of τ on

⋃k
i=1 scope(ck) satisfying c2, . . . , ck.

Note that k-wise consistency is called pairwise consistency for k=2 and
three-wise consistency for k=3. It is immediate that k-wise consistency implies
(k − 1)-wise consistency. Enforcing kWC on a CSP involves removing from
the constraints (i.e., considering as no longer allowed) the tuples that cannot be
extended. It thus modifies the constraints, and not the domains as GAC does.
As a result, kWC is incomparable with GAC: a CSP can be kWC but not GAC
and reciprocally [JJNV89]. However, combining both consistencies allows us
to make more pruning of the domains than GAC alone.

Definition 4. (GAC+kWC) A CSP P is GAC+kWC iff P is both GAC and
kWC.

At this stage, although already suggested earlier, we can observe that GAC,
kWC and GAC+kWC are well-behaved consistencies. We recall that a con-
sistency ψ is well-behaved [Lec09] when for any CSP P, the ψ-closure of P
exists, where the ψ-closure of P is the greatest CSP, denoted by ψ(P), which
is both ψ-consistent and equivalent to P. The underlying partial order on CSPs
is: P′ = (X, D′, C′) � P = (X, D, C) iff ∀x ∈ X, D′(x) ⊆ D(x) and
there exists a bijection µ from C to C′ such that ∀c ∈ C, µ(c) ⊆ c. Enforcing

2.3 C O N S I S T E N C I E S S T RO N G E R T H A N G AC 27

ψ on P means computing ψ(P), and an algorithm that enforces ψ is called a
ψ-algorithm.

From GAC+kWC, we derive a domain-filtering consistency, called domain
k-wise consistency (DkWC). When a CSP P is domain k-wise consistent, this
means that none of the variable domains of P can be reduced when enforcing
GAC+kWC.

Definition 5. (DkWC) A CSP P = (X, D, C) is domain k-wise consistent
(DkWC) iff GAC+kWC(P) is a CSP Q = (X, DQ, CQ) such that D = DQ.

GAC+kWC is both domain-filtering and constraint-filtering, which may ren-
der difficult its implementation in constraint solvers, whereas DkWC filters the
domains and not the constraints. The pruning of DkWC is equivalent to that
of GAC+kWC in the domains of the variables. The constraints are left unmod-
ified by DkWC. Chapter 6 presents a filtering procedure for DkWC on table
constrains which only relies on existing GAC propagators. GAC propagators
exist in (almost) every CP solver. This makes the integration of DkWC into an
existing solver very easy.

In the literature, GAC has already been combined with 2WC, 3WC and kWC
[Jég91, JJNV89, BSW08, Ste08, KWR+10, Ste07, LXY14]. A first approach
consists in weakening the combination, to obtain a pure domain-filtering con-
sistency. We obtain then the max-restricted pairwise consistency (maxRPWC)
[Ste07, Ste08, PS12].

Definition 6. (maxRPWC) A CSP P = (X, D, C) is max-restricted pairwise
consistent (maxRPWC) iff ∀x ∈ X, ∀a ∈ D(x), ∀c ∈ C | x ∈ scope(c),
∃τ ∈ D(scope(c)) such that τ[x] = a, τ ∈ c and ∀c′ ∈ C there exists a valid
extension of τ on scope(c) ∪ scope(c′) satisfying c′.

MaxRPWC is a domain-filtering consistency, close to the idea of D2WC and
GAC+2WC but weaker than GAC+2WC [BSW08]. MaxRPWC is stronger
than GAC. In [LPS13], the authors propose a specialized filtering procedure,
called eSTR, for enforcing GAC+ 2WC (called full pairwise consistency in
their paper) on table constraints. Two techniques are combined: simple tabular
reduction (STR) and tuple counting. This allows eSTR to keep and update a
counter, for each tuple of each table, of the number of supports it has in the
other tables. This counter can be used to detect and remove unsupported tu-
ples. This approach is orthogonal to the one that will be presented in Chapter
6. Indeed, in [LPS13], the authors lift up an existing GAC propagator, STR, to
a propagator for GAC+2WC: eSTR. Our approach is to propose a filtering pro-
cedure, relying on a modified CSP, only using existing pure GAC propagators
and we are not restricted to GAC+2WC. The idea of using GAC propagators to

28 Chapter 2 P RO PAG AT I O N I N C O N S T R A I N T P RO G R A M M I N G

enforce a consistency stronger than GAC has been used in [LXY14]. To obtain
GAC+kWC, the authors use factor variables, representing variables that the
constraints share, as well as additional constraints for k ≥ 3. The fundamental
difference between [LXY14] and the technique presented in Chapter 6 is that
we only add one (dual) variable to the scope of each constraint, representing
the constraint itself. In [LXY14], several variable can be added to the scope
and represent the variables shared between constraints.

Other approaches, not weakening the combination of GAC and k-wise con-
sistency, first compute the kWC-closure of a CSP and then apply GAC, as pro-
posed in [Jég91, JJNV89, BSW08] for 2WC and [KWR+10] for kWC. The
approach in [KWR+10] relies on a specialized propagator, first computing the
k-wise consistent closure of the CSP and then obtaining GAC by projection
onto the domains. The filtering process for the k-wise consistency inspects
each constraint with respect to each relevant group of k constraints. Inspecting
a constraint means searching, for each tuple of the constraint, for a support in
each group. This search for a support is performed using a backtracking search
(Forward Checking), on the dual encoding of the CSP. This whole process is
sped up by memorizing, for each constraint and each group, the last encoun-
tered support. A similar approach is developed in [WKCB11] for relational
neighborhood inverse consistency. In [KWR+10], the authors also propose a
slightly weaker consistency, considering only groups of constraints forming
connected components in the minimal dual graph. Although attractive, these
original forms of propagators can be hard to include in existing constraint
solvers. For instance, in Comet, the context management system makes the
start of an independent search inside a propagator impossible.

Other related approaches exist, although not trying to directly enforce GAC+
kWC. In [Lho12], the authors propose a consistent reformulation for the con-
junction of two tables sharing more than one variable, keeping the spatial com-
plexity low. In [BR99], the authors propose an algorithm to achieve GAC on
global constraints. In that paper, the global constraints are perceived as groups
of constraints and the CSPs they define are solved on the fly to achieve GAC
on them. GAC+kWC on a group of k constraints can be seen as solving the
subproblem they define, but in our approach, the subproblems are not solved
on the fly.

The integration of strong levels of consistency into existing solvers has been
studied in [VPJ11]. The integration is performed within a generic scheme, in-
corporating the subset of the constraints involved in the local consistency into
a global constraint.

3
S TAT I S T I C A L T R E AT M E N T
O F T H E E X P E R I M E N TA L
DATA

When developing an algorithm, it is good practice to implement and test this
algorithm on different benchmarks against other existing algorithms. This is
the case for all the algorithms presented in this thesis. The results of such tests
are measurements on the execution of the different algorithms put into com-
petition, such as execution time, memory consumption, etc. Some algorithms
can be better than an other on some benchmarks without being better on all of
them. Moreover, some algorithms may have incomplete measurements. This
is the case, for instance, when a limit is used on the resources (such as the
execution time) and the algorithm fails to execute within these limits. This
makes the comparison harder. In this context, we developed a procedure to
compare such algorithms. This procedure has been developed in collaboration
with Bernadette Govaerts and Cédric Heuchenne from the Institute of Statis-
tics, Biostatistics and Actuarial Sciences (ISBA) of the Université catholique
de Louvain. The statistical treatment of such experimental data is the topic of
this chapter. Section 3.1 defines the context in which the procedure is to be
used. Sections 3.2 and 3.3 then present the procedure itself. This procedure
will be used, together with more traditional reporting, on all the experimenta-
tion made for this thesis.

29

30 Chapter 3 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S

3.1 P RO B L E M D E F I N I T I O N

In this chapter, we will suppose that we have two algorithms, A and B. These
algorithms are executed on problem instances. The measure of interest is here
the execution time but the procedure can be applied to other measurements,
such as the number of nodes, the number of failures of the search, etc. Each
instance comes from a particular problem class. Classes can be, for instance,
the problem itself (scheduling, car sequencing, etc.) but can also be a particu-
larity of the instances (number of variables, number of constraints, etc.). Each
class can contain a different number of instances and can have a different im-
portance, which is user-defined. We will consider the different classes as given
and the different instances in each class as a sample of the class full popula-
tion. The data can contain censored data. Censored data occurs because the
algorithm exceeds some fixed bound on the resource before completing. For
execution time, censored data frequently occur in the presence of a timeout.
Also, in this research, no hypothesis is made on the statistical distribution of
the data. With such a decision to not make any hypothesis on the statistical dis-
tribution of the data, and in the presence of censored data, classical statistical
tests such as the t-test or ANOVA cannot be used. Another particularity of the
data we treat in this work is that it is paired. Indeed, algorithms A and B are
executed on the same set of instances. The measurements for A on an instance
and for B on the same instance are thus not independent.

The goal of this chapter is to propose a statistical treatment of the execution
data to compare the performances of algorithms A and B. More precisely, we
will be interested in generalizing to the whole population and all the classes,
given their importances, a statistic of interest reflecting the relative perfor-
mances of A and B. We thus define statistics of interest and rely on a well
known method from applied statistics to provide confidence intervals on those
statistics of interest.

Notation

We will consider two algorithms, A and B. We have k different classes, C1,
C2, . . . , Ck. For class j, the sample contains Nj instances. There is a total of N
instances in the whole sample. Each instance yi belongs to one class. The im-
portance of class j is wj. In the procedure, we will suppose that ∑k

j=1 wj = 1.
The measurements for instance yi will be denoted by, respectively, xA,i and
xB,i for algorithms A and B. The estimators for the statistics of interest are pre-
sented for a set of data. This set contains triplets (yi, xA,i, xB,i) of the instance,
the execution time for A, and the execution time for B.

3.2 T R E AT M E N T O F DATA W I T H O U T C E N S O R I N G 31

3.2 T R E AT M E N T O F DATA W I T H O U T C E N S O R I N G

This section concerns the data without the presence of censoring. This means
that the measurements made on the executions of the two algorithms are com-
plete: the execution times for both algorithms are known for each instance. In
this case, a special statistical treatment of the data is still presented because no
hypothesis is made on the statistical distribution of the data. Also, the proce-
dure for this case uses the same generalization method as the procedure for the
case with censoring. The only difference between the two procedures lies in
the statistic(s) of interest considered.

For this case, we define three statistics of interest: the arithmetic mean of
differences (θ1), the arithmetic mean of inverses of differences (θ2), and the
geometric mean of the ratios (θ3). Their estimators (θ̂), presented below, are
computed on the experimental results for a set of instances S, and for algo-
rithms A and B. They are computed in such a way that a large positive number
means A is better than B (smaller execution time) while a large negative num-
ber indicates that B is faster than A.

• Arithmetic Mean of Difference:

θ̂1(A, B, S) = w1 ∗
(

∑{yi∈S:yi∈C1}
xB,i−xA,i

N1

)
+ . . .

+wk ∗
(

∑{yi∈S:yi∈Ck}
xB,i−xA,i

Nk

)
• Arithmetic Mean of Inverses of Differences:

θ̂2(A, B, S) = w1 ∗
(

∑{yi∈S:yi∈C1}

1
xA,i
− 1

xB,i
N1

)
+ . . .

+wk ∗
(

∑{yi∈S:yi∈Ck}

1
xA,i
− 1

xB,i
Nk

)
• Geometrical Mean of Ratios:

θ̂3(A, B, S) =
(

∏{yi∈S:yi∈C1}
xB,i
xA,i

) w1
N1 ∗ . . .

∗
(

∏{yi∈S:yi∈Ck}
xB,i
xA,i

) wk
Nk

The difference between θ̂1 and θ̂2 is that θ̂2 attaches more importance to
short execution times. This can be useful for benchmarks with many small

32 Chapter 3 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S

solving times and some large ones. For θ̂3, we are interested in ratios. As ar-
gued in [FW86], the geometric average is more accurate for ratios and normal-
ized numbers. θ̂3 thus uses the geometric mean. To summarize, the statistic
of interest to use depends on the results and the desired quantity. If the exe-
cution times are comparable, or the long execution times are more important,
and we are interested in the time difference, θ̂1 is the appropriate measurement.
If the benchmark results present short and long execution times, and we want
the time difference to give importance to short execution times, θ̂2 is the right
choice. If we are interested in the ratios of performances of the algorithms, θ̂3

is the appropriate statistic of interest.
The procedure used to estimate a confidence interval for the three defined

statistics of interest is knows as the basic bootstrap interval [WPB00, Efr79,
ET94, Dav97, You94]. The idea behind the basic bootstrap interval is the fol-
lowing.
Suppose a statistic of interest θ has to be computed on the cumulative distribu-
tion function F of a random variable X. F is unknown, as is the case for our
experiments. An estimator θ̂ can be computed on the set of observed values
of X: O = {x∗1 , x∗2 , . . . , x∗N}. θ̂ is thus a random variable itself. A confidence
interval for the statistic of interest θ can be obtained using the probability dis-
tribution of θ̂ − θ: let sα be the α-percentile of the distribution of θ̂ − θ, then
we have that

P(sα/2 ≤ θ̂ − θ ≤ s(1−α/2)) = 1− α

The confidence interval having probability 1− α to contain the true value of θ

is thus:

θ̂ − s(1−α/2) ≤ θ ≤ θ̂ − sα/2

As we make the assumption that F is unknown and no hypothesis is made on it,
we do not know anything about the distribution of θ̂− θ. This is where the boot-
strap comes into play. By drawing M independent sets of observations from
the set O with replacement and computing the estimator θ̂ on them, we can
have observations of the random variable θ̂: θ̂∗1 , θ̂∗2 , . . . , θ̂∗M. With the assump-
tion that the variation of θ̂ around θ is close to the variation of θ̂∗ around θ̂, we
can derive a confidence interval for θ. This assumption is standard in the boot-
strap community and often verified [Dav97]. If s∗α represents the α-percentile
of the distribution of θ̂∗ − θ̂, the confidence interval with probability 1− α is
estimated by:

θ̂ − s∗(1−α/2) ≤ θ ≤ θ̂ − s∗α/2

3.3 T R E AT M E N T O F DATA W I T H C E N S O R I N G 33

It is easier to work directly with the percentiles of θ̂∗ than with those of θ̂∗− θ̂.
If r∗α is the α-percentile of the distribution of θ̂∗, we have

r∗α = s∗α + θ̂

Inserting this last relation into the confidence interval estimation, we have

2θ̂ − r∗(1−α/2) ≤ θ ≤ 2θ̂ − r∗α/2

The α-percentile of θ̂∗ is given by the (M · α)th observed value in the ordered
set of observations θ̂∗1 ≤ θ̂∗2 ≤ · · · ≤ θ̂∗M.

For our algorithm execution measurements, the basic bootstrap procedure
is the same for each statistic of interest defined. For a statistic of interest θs,
this is summarized in Procedure 1. It consists in drawing, with replacement,
M bootstrap samples (sets of instances) from among the entire sample regard-
less of the class, of size N (the same size as the original observation sample).
The estimator of the statistic of interest is then computed on those M sets
independently (taking classes into account through their importance). The ba-
sic bootstrap interval is then computed, with respect to the desired confidence
level α.

In practice, these confidence intervals on the statistics of interest will be
used to evaluate the differences between algorithms (pair by pair). If the confi-
dence interval, with a significance level α, is [i, j] for algorithms A and B, we
know that the true statistic (θ, not θ̂) lies, with probability 1− α, between i
and j. We can thus quantify the difference between algorithms A and B with
respect to the statistic of interest. This difference is said significant (with a sig-
nificance level α) if 0 is outside the confidence interval for θ1 and θ2. For θ3, it
is significant if 1 is outside the confidence interval. We will thus say that algo-
rithm A is significantly faster than B if the confidence interval for θ1(A, B, S)
or θ2(A, B, S) (respectively, θ3(A, B, S)) is positive and does not contain 0 (re-
spectively, 1). The bootstrap thus allows us to quantify the differences between
algorithms and their significance.

3.3 T R E AT M E N T O F DATA W I T H C E N S O R I N G

The experimental data frequently contains censoring. Censoring occurs be-
cause the algorithms exceed a fixed bound on the use of the resources (total
execution time, the number of nodes, the memory used, etc.). The different
statistics from Section 3.2 cannot be used in this context. Indeed, for some i,
either xA,i or xB,i is missing or both. Replacing them with the timeout value
gives a non-precise test because the sets of instances for which data is censored

34 Chapter 3 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S

Basic Bootstrap Interval

1. Draw M independent bootstrap samples of size N.
Each sample β j is obtained by drawing N observations
(y∗i , x∗A,i, x∗B,i) with replacement.

2. Compute the estimator of θs for each bootstrap
sample: θ̂∗j = θ̂∗s (A, B, β j)

3. Renumber the bootstrap replications of θ̂ such that:

θ̂∗1 ≤ θ̂∗2 ≤ · · · ≤ θ̂∗M

4. The confidence interval is:

[2 ∗ θ̂sample − θ̂∗dM·(1−α/2)e, 2 ∗ θ̂sample − θ̂∗bM·α/2c]

In the above procedure, θ̂sample is computed on the original sample and α

is the desired significance level.

Procedure 1: Basic Bootstrap procedure for statistic of interest θs.

3.3 T R E AT M E N T O F DATA W I T H C E N S O R I N G 35

Time

CDFA

1.0

0.5

0
0.0

Figure 3.1: Example of a cumulative distribution function for an algorithm A

for A and B are most of the times distinct. As before, we will consider that the
measurements are execution times and that censoring is present because of a
timeout imposed on the experiments. The reasoning can be generalized to other
kinds of measurements. We will present the procedure of the data for one in-
stance class first, then we will generalize it to the multi-class setting. The only
change made to the procedure in Section 3.2 is the statistic of interest used.

The tool we are using to treat data with censoring is the cumulative distribu-
tion function (CDF) of the solving times. This function gives, for an algorithm
and each time point t, the probability for an instance to be solved in a time less
than or equal to t. An example of a CDF is given in Figure 3.1.

Of course, we do not have access to the CDFs of the algorithms. We will
thus use an estimator of the CDF: the empirical cumulative distribution (ECD).
In the single class setting, the empirical cumulative distribution gives, at each
time point t, the proportion of the instances for which the algorithm has an exe-
cution time less than or equal to t. Figure 3.2 gives an example of an empirical
cumulative distribution. In this figure, the algorithm is able to solve 85% of the
instances within the time limit TO. Formally, the definition of the empirical
cumulative distribution is the following.

Definition 7. (Empirical Cumulative Distribution): Let S be an instance set, A
be an algorithm, and xA,i be the time required by A to solve instance yi ∈ S
or +∞ if A didn’t solve instance yi before the time limit. We have that the
empirical cumulative distribution for A on S is defined as:

ECDA(t, S) =
#{yi ∈ S|xA,i ≤ t}

#S
,

where # is the cardinality of the set.

36 Chapter 3 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S

Time

prop
solved

TO

1.0

0.5

0
0.0

ECDA

Figure 3.2: Example of an empirical cumulative distribution for an algorithm

Empirical cumulative distributions can be related to performance profiles
[DM02]. For an algorithm A, its performance profile plots, for any ratio r ≥ 1,
the proportion of instances i for which the ratio of the time taken by A to solve
i to the time taken by the best algorithm to solve i is less than or equal to r.
The difference from the empirical cumulative distributions is the focus: perfor-
mance profiles focus on ratios while empirical cumulative distributions focus
on solving time. The choice of empirical cumulative distributions is motivated
by our focus on solving time.

When comparing two algorithms, their empirical cumulative distributions
can be used in different ways. For a time t between 0 and TO, the empirical
cumulative distributions can give the difference in proportion of the instance
set solved by each algorithm within this time budget t. We can also use this
function the other way around. For a percentage q of the instance set, the em-
pirical cumulative distributions of the algorithms can give the time needed by
each algorithms to solve q% of the instances. Those two uses are illustrated in
Figure 3.3. In Figure 3.3 (a), we have the proportion pA of the instance set
solved by A requiring less time than t and similarly for B and pB. In Figure
3.3 (b) we have the times tA and tB taken respectively by A and B to solve q%
of the instances.

A very important point about these graphs is that the set of instances con-
sidered for A and the one for B can be different. There is indeed no guarantee
that the instances solved by A and B within a particular time budget are the
same ones. It may seem like the pairing of the tests is lost in the empirical
cumulative distributions but, as we will see later on, this is not (entirely) the
case.

3.3 T R E AT M E N T O F DATA W I T H C E N S O R I N G 37

Time

prop
solved

TO

1.0

0.5

0
0.0

ECDA

ECDB

t

pA
pB

(a)

Time

prop
solved

TO

1.0

0.5

0
0.0

ECDA

ECDB
q%

tA tB

(b)

Figure 3.3: Utilisation of the empirical cumulative distributions for (a) the proportions
pA and pB of the instance set solved after given time t and (b), the times
tA and tB required to solve a given percentage of the instance set (p%).

38 Chapter 3 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S

Time

prop
solved

TO

1.0

0.5

0
0.0

ECDA

ECDB
p1

p2 ×

×p3

Figure 3.4: Example of the cumputability of the exact time differences for different
proportions of the instance set: p1 is computable, p2 is partially com-
putable and p3 is not computable

As the measure of interest in this thesis is the execution time, we will be
more interested in the setting of Figure 3.3 (b), where the time taken by the
algorithms to solve a given proportion of the instance set is the measurement
of interest. We can already notice that the exact time difference is not com-
putable for some percentages. Figure 3.4 illustrates this problem. For p1, the
time difference is computable. For p2, we can only have a lower bound on the
real time difference and for p3, we don’t have any information.

Formally, we will thus make use of the inverse of the empirical cumulative
distribution. Its definition under the presence of a time limit TO is given below.

Definition 8. (Inverse Empirical Cumulative Distribution): Let S be an in-
stance set, A be an algorithm and ECDA be its its empirical cumulative distri-
bution. We define the Inverse Empirical Cumulative Distribution as:

ECD−1
A (p, S) =

if(@t : 0 ≤ t ≤ TO∧ ECDA(t, S) ≥ p) :⊥

else : min{t:0≤t≤TO∧ECDA(t,S)≥p}(t)

We are not interested in solving a particular proportion of the instance set
but we would like to assess the performances of the algorithms in general.
The algorithms being compared are meant to be used on an unknown number
of unknown instances and the time budget that will be given to them is also
unknown. The measurement we use in this setting is thus the mean time dif-
ference between the algorithms for the different proportions of the instance set

3.3 T R E AT M E N T O F DATA W I T H C E N S O R I N G 39

Time

prop
solved

TO

1.0

0.5

0
0.0

ECDA

ECDBpmax

Figure 3.5: Illustration of the area where the exact time differences are computable.

where the exact time differences are computable. This can be seen as the mean
width of the area between the empirical cumulative distributions where the
time differences are computable. This area is illustrated in Figure 3.5. In this
plot, the areas before and after the crossing point of the ECDs have opposite
signs.

As we only consider the area where the exact time differences are com-
putable, the definition of our measurement makes use of the following quan-
tity.

Definition 9. (pmax(A, B, S)): Let A and B be two algorithms with respective
empirical cumulative distributions ECDA and ECDB and S be an instance set.
We define the maximum computable proportion as:

pmax(A, B, S) = min(ECDA(TO, S), ECDB(TO, S))

This definition captures the maximum proportion such that all the time dif-
ferences below it are exactly computable. Figure 3.5 illustrates pmax. For an
instance set S (one class), in the presence of censored data, the estimator of the
statistic of interest is, for algorithms A and B:

θ̂4(A, B, S) = 1
pmax(A,B,S)

∫ pmax(A,B,S)
0 (ECD−1

B (p, S)− ECD−1
A (p, S))dp

Notice that we subtract ECD−1
A from ECD−1

B . This captures the fact that
for a given proportion of the instances, a smaller solving time is better. This
thus makes θ̂4(A, B, S) positive if A is better than B. θ̂4 is also normalized
with respect to pmax(A, B, S) to get the mean time difference between the

40 Chapter 3 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S

Time

1.0

0.5

0
0.0

TO

pCDF
max

CDFB

CDFA

Figure 3.6: Illustration of the statistic of interest θ4

algorithms when considering all the proportions of the instance set from 0
to pmax. This makes θ̂4 independent of pmax. If there are no timeouts in the
instance set, the quantity θ̂4(A, B, S) is exactly θ̂1(A, B, S).

The basic bootstrap procedure defined in Section 3.2, Procedure 1, is then
used on θ̂4. This is where some of the pairing of the data is recovered. Indeed,
instances (and not solving times) are drawn at random from the set of instances.
This means that if an instance is drawn, it will be taken into account for the
computations of empirical cumulative distributions of both algorithms.

This measurement θ̂4 is an estimator of the mean width of the area between
the real cumulative distribution functions of the algorithms in the presence of
a time limit, as shown in Figure 3.6.

In the multi-class setting, inside an instance set S we have different classes
of instances C1, . . . , Ck. Each class Cj has a predefined importance wj (such
that (∑j∈{1...k} wj) = 1). The measurement we define in this case (θ̂5) is very
similar to θ̂4. Only the empirical cumulative distributions are changed to re-
flect the importances of the instance classes. We thus define the multi-class
empirical cumulative distribution:

Definition 10. (Multiclass Empirical Cumulative Distribution): Let S be an
instance set, A be an algorithm, and xA,i be the time required by A to solve
instance yi ∈ S or +∞ if A didn’t solve instance yi before the time limit. We
have that the empirical cumulative distribution for A on S is defined as:

MECDA(t, S) = ∑
j∈{1...k}

[
wj ∗

#{yi ∈ S : yi ∈ Cj ∧ xA,i ≤ t}
#{yi ∈ S : yi ∈ Cj}

]
where # is the cardinality of the set.

In ECDA, at each time point, the value of the function is the proportion of
the entire set that has been solved. Here the proportions in the different classes

3.3 T R E AT M E N T O F DATA W I T H C E N S O R I N G 41

are simply aggregated using their different importances. MECD−1 is defined
similarly to ECD−1 and mpmax is defined similarly to pmax. The measurement
for the multi-class setting in the presence of censoring is then:

θ̂5(A, B, S) = 1
mpmax(A,B,S)

∫ mpmax(A,B,S)
0 (MECD−1

B (p, S)

−MECD−1
A (p, S))dp

The bootstrap procedure defined in Section 3.2 is then also be used on θ̂5.
Similarly to θ̂4, θ̂5 is an estimator of the mean width of the area between the
multi-class versions of the CDFs of the algorithms under the presence of a time
limit.

Part II

P RO PAG AT I O N F O R TA B L E C O N S T R A I N T S

4
E F F I C I E N T A N D O P T I M A L
G AC P RO PAG AT O R S F O R
TA B L E C O N S T R A I N T S

As explained in Chapter 1, the table constraint is a core constraint. By listing
the allowed combinations of values for its variables, it permits encoding any
constraint. Chapter 2 explained the importance of propagation in constraint
programming, allowing substantial reductions of an exponentially large search
tree. This chapter presents five different generalized arc consistency (GAC)
propagators for table constraints. In other words, this chapter presents the adap-
tation of an important mechanism for a core constraint. Due to its form, the
propagation of table constraints cannot make use of particular knowledge of
the constraint and must deal with the raw list of allowed tuples. This chapter
thus presents effective and optimal means to use this raw list of allowed tuples
to reduce the domains of the variables. By optimal, we mean that the worst
case time complexity of the algorithm is minimal.

It starts by presenting AC5, the framework used by our propagators. Then
it presents efficient but non-optimal propagators. Afterward, it presents a vari-
ation of our algorithm based on recomputation of information rather than stor-
age before presenting the optimal propagators and the experimental results of
all the presented algorithms. Although presented in the context of CSPs, these

45

46 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

algorithms can of course be used in constraint optimization problems, as the
propagation of the constraints is orthogonal to the optimization of the objec-
tive.

Related Publications

[MVHD12] Jean-Baptiste Mairy, Pascal Van Hentenryck and Yves
Deville, "An Optimal Filtering Algorithm for Table Constraints", 18th
International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2012), 2012, Québec City, Canada.

[MVHD14a] Jean-Baptiste Mairy, Pascal Van Hentenryck and Yves
Deville, "Optimal and Efficient Filtering Algorithms for Table Con-
straints", Constraints 19 (1), pages 77-120

4.1 T H E AC5 A L G O R I T H M

The algorithms presented in this chapter all use the value-based paradigm. In a
constraint-based approach, the propagation queue contains information about
the constraints that need to re-enforce consistency. In a value-based approach,
information on the removed values is also stored in the queue for the propaga-
tion. The propagation algorithms are called once for each deleted literal. Their
job is then to reflect the deletion of that literal. GAC considers constraints
in isolation. To obtain GAC on all constraints at the same time, a fixed-point
algorithm is needed. Indeed, if a constraint removes a literal, this might com-
promise the consistency of the other constraints. The generic fixed-point algo-
rithm using the value-based propagation paradigm chosen to embed the propa-
gators designed in this chapter is AC5 [VDT92, DV10]. AC5 uses a queue Q
of triplets (c, x, a) stating that the domain consistency of constraint c should
be reconsidered because value a has been removed from D(x). For the pre-
sentation and specification of AC5 (and other algorithms in this chapter), the
following sets are useful. Let c be a constraint with arity r, of a CSP (X, D, C)
with y ∈ scope(c), and B be some domain for the variables X.

Inc(c, B) = {(x, a)| x ∈ scope(c) ∧ a ∈ D(x)∧

∀τ ∈ B(scope(c))x=a : ¬c(τ)}

Cons(c, y, b) = {(x, a)|x ∈ scope(c) ∧ a ∈ D(x)∧

∃τ ∈ c : τ[x] = a ∧ τ[y] = b}

Inc(c) = Inc(c, D)

4.1 T H E AC5 A L G O R I T H M 47

Inc(c, B) represents the set of domain inconsistent literals of constraint c
with respect to domain B. Cons(c, y, b) is the set of literals in the tuples al-
lowed by c having value b for variable y. A constraint c in a CSP (X, D, C) is
domain-consistent iff Inc(c) = ∅. A CSP (X, D, C) is domain-consistent iff
all its constraints are domain-consistent.

Specification 1 describes the main methods of AC5. In the postcondition of
enqueue, Qo represents the value of Q at call time. The propagators using
AC5 should define their own post and valRemove methods. The generic
AC5 algorithm, using those methods, is depicted in Algorithm 1. In all the
pseudocodes presented in this chapter, the assumed context is the resolution
of a CSP (X, D, C) and a propagation queue Q. The working principle of
AC5 consists of two parts: initialization (initAC5) and queue propagation
(propagateQueueAC5). In the initialization, the post(c,4) method is
called once for each constraint c. Its role is to compute the inconsistent val-
ues of the constraint and to initialize specific data structures required for the
propagation. Each time a value is removed from a domain, enqueue puts the
necessary information in the propagation queue. In the second phase of AC5,
while there are triplets (c, y, b) in the queue, valRemove(c, y, b) is called
so that the constraint c can reflect the removal of b from D(y), possibly re-
moving more literals. This dequeuing/enqueuing process is repeated until the
queue becomes empty. At this point, the constraints using AC5 are generalized
arc consistent. As long as (c, x, a) is in the queue, it is algorithmically desir-
able to consider that value a is still in D(x) from the perspective of constraint
c. This is captured by the following definition.

Definition 11. The local view of a domain D(x) wrt a queue Q for a constraint
c is defined as D(x, Q, c) = D(x) ∪ {a|(c, x, a) ∈ Q}.

For a constraint c, a queue Q and a set of variables X = {x1 . . . xn},
D(X, Q, c) is defined as {D(x1, Q, c), . . . , D(xn, Q, c)}. In a table constraint
c, a tuple τ is Q-valid if all its values belong to D(scope(c), Q, c). The cen-
tral method of AC5 is the valRemove method, where the set 4 is the set of
values becoming inconsistent because b is removed from D(y). In this specifi-
cation, b is a value that is no longer in D(y) and valRemove computes the
values (x, a) no longer supported in the constraint c because of the removal of
b from D(y). Note that values in the queue are still considered in the poten-
tial supports as their removal has not yet been reflected in this constraint. The
minimal pruning41 only deals with variables and values previously supported
by (y, b). However, we give valRemove the ability to achieve more pruning
(42), which is useful for table constraints.

48 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

1 enqueue(in x: Variable; in a: Value;
2 in C1: Set of Constraints; inout Q: Queue)
3 // Pre: x ∈ X, a /∈ D(x), C1 ⊆ C
4 // Post: Q = Q0 ∪ {(c, x, a)|c ∈ C1, x ∈ scope(c)}
5

6 post(in c: Constraint; out 4: Set of Values)
7 // Pre: c ∈ C
8 // Post: 4 = Inc(c) + initialization of specific data structures
9

10 valRemove(in c: Constraint; in y: Variable;
11 in b: Value; out 4: Set of Values)
12 // Pre: c ∈ C, b /∈ D(y, Q, c)
13 // Post: 41 ⊆ 4 ⊆ 42 with 41 = Inc(c, D(X, Q, c)) ∩ Cons(c, y, b)
14 // and 42 = Inc(c)

Specification 1: The enqueue, post, and valRemove Methods for AC5

1 AC5(in X, C, inout D){
2 // Pre: (X, D, C) is a CSP
3 // Post: D ⊆ D0, (X, D, C) equivalent to (X, D0, C)
4 // (X, D, C) is domain consistent
5 initAC5(Q);
6 propagateQueueAC5(Q);
7 }

8 initAC5(out Q){
9 Q = ∅;

10 C1 = ∅;
11 forall(c in C){
12 post(c,4);
13 forall((x, a) in 4){
14 D(x) -= a;
15 enqueue(x, a, C1, Q);
16 }
17 C1 += c;
18 }
19 }

20 propagateQueueAC5(in Q){
21 while Q != ∅ {
22 select (c, y, b) in Q;
23 Q = Q - (c, y, b);
24 valRemove(c, y, b,4);
25 forall((x, a) in 4){
26 D(x) -= a;
27 enqueue(x, a, C\{c}, Q);
28 }
29 }
30 }

Algorithm 1: The AC5 Algorithm.

4.2 E F F I C I E N T G AC P RO PAG ATO R S 49

The AC5 algorithm may seem to be dependent on a particular solver. In-
deed, propagation queues and fixed-point algorithms implementing the AC5
framework are not present in every solver. For instance, AC5 is implemented
in Comet and OscaR1 but not in GeCode2. However, many solvers provide,
when a propagator is called, the information on the changes that occurred in
the domains of the variables since the last call to the propagator (called deltas).
In those solvers, not implementing AC5 but having those deltas, it is easy to
implement our propagators. Indeed, to simulate AC5, it suffices to treat the lit-
erals in the deltas one by one with the same implementation of valRemove.
For the solvers neither implementing AC5 nor the deltas, our algorithms can
still be implemented. In such a case, it would be the constraint’s responsibility
to compute the deltas. This is possible by recording, at the end of each call
to the propagator, the current state of the domains. In this way, the deltas can
be computed at the beginning of the next call to the propagator. Unfortunately,
this would have an additional cost since the current state of the domains has to
be maintained during the search.

Notations Throughout this chapter, we will use the implicit ordering of the
tuples inside table constraints: τc,i denotes the ith element of the table in the
table constraint c and τc,i[x] is the value of τc,i for variable x. We introduce a
top index> (respectively, bottom index⊥) greater (respectively, smaller) than
any other index. We also introduce a universal tuple τc,>, with τc,>[x] = ∗
forall x ∈ X and abuse notation in postulating that ∀a ∈ D(x), ∗ = a. This
universal tuple can thus be found in any table. More precisely, for any table T,
τc,> ∈ T.

4.2 E F F I C I E N T G AC P RO PAG ATO R S

GAC is based on the notion of support. An algorithm computing GAC has to
remove the literals that do not have a support. One possible technique to do
so is to memorize the first support of each literal and to update it when this
support becomes invalid. When no more valid support can be found, the literal
can be removed. The algorithms defined in this chapter use a data structure FS
memorizing first supports. Intuitively, FS[x, a] is the index of the first Q-valid
support of (x, a). It is thus equivalent to the last structure used in GAC2001
algorithms. To speed up the table traversal, our algorithms use a second data
structure called next that links together all the tuples of the table sharing the

1 http://oscarlib.bitbucket.org/
2 http://www.gecode.org/

50 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

T

x y z

1 a b a

2 b c b

3 a a a

4 a b b

5 b b a

next

x y z

1 3 4 3

2 5 > 4

3 4 > 5

4 > 5 >

5 > > >

Figure 4.1: Example of a next data structure of a table T (arrow pointers for variable
z only).

same value for a given variable. For a tuple index and a variable, next gives the
index of the next tuple having the same value for the variable. More formally,
for a given table constraint c, FS and next satisfy the following invariant (called
the FS-invariant) before dequeuing an element from Q.

∀x ∈ scope(c) ∀a ∈ D(x, Q, c) : FS[x, a] = i⇔

τc,i[x] = a ∧ i 6= >∧ τc,i ∈ D(scope(c), Q, c)

∧ ∀j < i : τc,j[x] = a⇒ τc,j 6∈ D(scope(c), Q, c)

∀x ∈ scope(c) ∀ 1 ≤ i ≤ c.length :

next[x, i] = Min{j|i < j ∧ τc,j[x] = τc,i[x]}

The next data structure, illustrated in Figure 4.1, is static as it does not de-
pend on the domain of the variables. However, FS must be trailed during the
search.

Propagators using the AC5 framework only need to define their own post
and valRemove methods. The two first efficient propagators of this chapter
use the same structure for their post and valRemove methods. Methods
postTC and valRemoveTC are thus given in Algorithms 2 and 3. TC is
included in the method and algorithm names to underline the fact that those are
propagators for Table Constraints. Note that the4 computed by valRemove-
TC corresponds to 41 in Specification 1. Method valRemoveTC uses the
seekNextSupportTC method (Algorithm 4), which searches for the next
Q-valid support for a literal. The abstract method isQValidTC(c,i) tests
whether τc,i is Q-valid (i.e., τc,i ∈ D(scope(c), Q, c)) and can be implemented
in many ways. One simple way is to record the Q-validity of tuples in some

4.2 E F F I C I E N T G AC P RO PAG ATO R S 51

data structure, initialized in method initSpecStructTC and updated in
method setQInvalidTC. Method postTC initializes the FS and next data
structures and returns the set of inconsistent values. Method valRemoveTC
only has to consider the tuples in the next chain for (y, b) from FS[y, b]. Those
are all the newly Q-invalid tuples. The tuples before are invalid and cannot be
the first support of any other Q-valid literal. The tuples outside the next chain
for (y, b) do not contain (y, b). When one of the traversed tuples τc,i is the
first support of an element a = τc,i[x], a new support FS[x, a] must be found.
Indeed, τc,i is no longer Q-valid. If such a new support does not exist, then
(x, a) belongs to the set 4. Method valRemoveTC thus computes the set
4 and maintains the FS-invariant. The AC5 algorithm with the postTC and
valRemoveTC implementation for table constraint is called AC5TC (AC5
for Table Constraints).

1 postTC(in c: Constraint;out 4: Set of Values){
2 // Pre: c ∈ C, c is a table constraint
3 // Post: 4 = Inc(c) + initialization of the next, FS and
4 // specific data structures
5 4 = ∅;
6 initSpecStructTC(c);
7 forall(x in scope(c), a in D(x)) c.FS[x, a]=>;
8 forall(x in scope(c), i in 1..c.length) c.next[x, i]=>;
9 forall(i in c.length..1)

10 if (τc,i in D(scope(c))){
11 forall(x in scope(c)){
12 c.next[x, i] = FS[x, τc,i[x]];
13 c.FS[x, τc,i[x]] = i;
14 }
15 }
16 else setQInvalidTC(c, i);
17 forall(x in scope(c),a in D(x))
18 if(c.FS[x, a]==>) 4 += (x,a);
19 }

Algorithm 2: Method postTC for Table Constraints

We will now analyze the complexity of AC5TC. None of the analyses of
the complexities of the propagation presented in this thesis will include the
complexity of handling the backtrackable structures. The complexity analysis
thus does not include the time complexity of storing information about the
modification of the data structures, nor the complexity of restoring them on
backtracking. The complexity analysis thus represents the complexity of per-
forming the pruning at one node. This complexity, as we put aside the cost

52 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

1 valRemoveTC(in c: Constraint;in y: Variable;
2 in b: Value; out 4: Set of Values) {
3 // Pre: c ∈ C, c is a table constraint and b /∈ D(y, Q, c)
4 // Post: 4 = Inc(c, D(X, Q, c)) ∩ Cons(c, y, b)
5 4 = ∅;
6 i = c.FS[y, b];
7 while(i!=>){
8 setQInvalidTC(c, i);
9 forall(x in scope(c): x!=y){

10 a = τc,i[x];
11 if (c.FS[x, a]==i){
12 c.FS[x, a] = seekNextSupportTC(c, x, i);
13 if(c.FS[x, a]==> && a in D(x)) 4 += (x, a);
14 }
15 }
16 i = c.next[y, i];
17 }
18 }

Algorithm 3: Method valRemoveTC for Table Constraints.

1 seekNextSupportTC(in c: Constraint; in x: Variable;
2 in i: Index) : Index {
3 // Pre: c ∈ C, c is a table constraint, x ∈ scope(c), 1 ≤ i ≤ c.length
4 // Post: return the first index j greater than i of a Q−valid tuple with
5 // τc,j[x] == τc,i[x]
6 i = c.next[x, i];
7 while(i!=>){
8 if(isQValidTC(c, i)) return i;
9 i = c.next[x, i];

10 }
11 return >;
12 }

Algorithm 4: Function seekNextSupportTC for Table Constraints.

4.2 E F F I C I E N T G AC P RO PAG ATO R S 53

of storing backtracking information, corresponds to the complexity of enforc-
ing the consistency along a descending path in the search tree. The reason to
not include those costs is the following: the way backtrackable information
is handled is solver-dependent and the costs differ from one solver to one an-
other. For instance, in comet, trailing is implemented. With trailing, the cost of
backtracking a structure is proportional to the number of modifications in the
structure. In Gecode, backtracking is implemented with a copy, at each node,
of the backtrackable quantities. The cost is of course not the same.

Proposition 1. Assuming that initSpecStructTC and setQInvalid-
TC have a time complexity of O(r · t + r · d) and O(1) respectively and allow
a correct implementation of isQValidTC to have a complexity of O(r), then
AC5TC is correct and has a time complexity of O(r2 · t + r · d) per table con-
straint along a branch in the search tree.

Proof. Assuming a correct implementation of isQValidTC, AC5TC is cor-
rect. Indeed, postTC and valRemoveTC respect their specification (Spec-
ification 1). Not considering initSpecStructTC, method postTC has a
time complexity of O(r · t + r · d). After the postTC method, the domain
size of x is O(t) since each value in D(x) has at least one support in the
table. We now establish the complexity of all executions of valRemoveTC
for a given table constraint, assuming this table constraint is one of the con-
straints of the CSP on which domain consistency is achieved. Consider first all
executions of valRemoveTC without line 12. For a given variable y, these
executions follow the different next chains of the variable y. The chains for
all values of y have a total number of t elements. The complexity of lines 9–
16 (without line 12) is O(r). Since the table has r variables, the complexity
of all valRemoveTC executions during the fixed point (without line 12) is
thus O(r2 · t), assuming an O(1) complexity of setQInvalidTC. Consider
now all executions of line 12 in valRemoveTC for a variable x. Since line
12 always increases the value of FS[x, a] in the next chain of (x, a), we have a
global complexity of O(V · t) for the variable x, where V is the time complex-
ity of isQValidTC. All executions of line 12 in valRemoveTC thus take
time O(V · r · t). The time complexity of all executions of valRemoveTC
is then O(r2 · t + V · r · t). With an O(r) isQvalidTC, this complexity is
O(r2 · t), giving AC5TC a complexity of O(r2 · t + r · d) per table constraint
along a branch in the search tree.

To achieve domain consistency, one must at least check the validity of each
tuple and, in the worst case, remove all the values from the domains. Hence
a domain-consistency algorithm has a complexity Ω(r · t + r · d) per table

54 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

constraint in the worst case. An AC5-like algorithm with a complexity O(r ·
t+ r · d) per table constraint is thus optimal. For most incremental propagators,
if the time complexity for obtaining domain consistency is O(f), then the time
complexity of the all executions of this algorithm along any descending path
in the search tree is also O(f), ignoring the cost imputable to backtrackable
structures. Indeed, the worst case scenario at one node is the removal of all
literals one by one. As literals can only be removed once in any descending
path of the search tree, this is also the worst case scenario for a descending path
in the search tree. Even with an O(1) the time complexity of isQValidTC,
AC5TC has a complexity of O(r2 · t+ r · d) per table constraint along a branch
in the search tree. Thus, it does not have the optimal time complexity, but its
implementations turn out, in the experiments, to be more efficient than state-
of-the-art algorithms on some classes of problems.

1 initSpecStructTC-Bool(in c: Constraint) {
2 forall(i in 1..c.length) c.isQValid[i] = true;
3 }
4

5 isQValidTC-Bool(in c:Constraint;in i:Index){
6 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length
7 // Post: returns τc,i ∈ D(X, Q, c)
8 return c.isQValid[i];
9 }

10

11 setQInvalidTC-Bool(in c: Constraint;in i: Index) {
12 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length
13 c.isQValid[i] = false;
14 }

Algorithm 5: Implementation of the specific methods of AC5TC-Bool

We now present two implementations of AC5TC. They differ in how they
implement isQValidTC, setQInvalidTC and initSpecStructTC.
The specific methods of AC5TC-Bool, the first implementation of AC5TC, are
shown in Algorithm 5. AC5TC-Bool uses a data structure isQValid[i] to record
the Q-validity of the element τc,i. It satisfies the invariant isQValid[i]⇔ τc,i ∈
D(scope(c), Q, c) before dequeuing an element from Q (1 ≤ i ≤ c.length).
The data structure must be backtracked during search, as it depends on the do-
mains. Indeed, as the domains are restored on backtracking during the search,
this structure must be, too. As the specific methods of AC5TC-Bool are cor-
rect, AC5TC-Bool is correct. The time complexity of isQValidTC-Bool
and setQInvalidTC-Bool is O(1) and initSpecStructTC-Bool is

4.2 E F F I C I E N T G AC P RO PAG ATO R S 55

1 initSpecStructTC-Sparse(in c: Constraint){
2 forall(i in 1..c.length){
3 c.Map[i] = i;
4 c.Dyn[i] = i;
5 }
6 c.size = c.length;
7 }
8

9 isQValidTC-Sparse(in c: Constraint;
10 in i: Index;out b: Bool){
11 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length
12 // Post: return (τc,i ∈ D(X, Q, c))
13 return (c.Map[i] <= c.size);
14 }
15

16 setQInvalidTC-Sparse(in c: Constraint; in i: Index){
17 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length
18 c.Dyn[c.Map[i]] = c.Dyn[c.size];
19 c.Dyn[c.size] = i;
20 c.Map[c.Dyn[c.Map[i]]] = c.Map[i];
21 c.Map[i] = c.size;
22 c.size--;
23 }

Algorithm 6: Implementation of the specific methods of AC5TC-Sparse

56 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

O(t). The time complexity of AC5TC-Bool is then O(r2 · t + r · d) per table
constraint.

AC5TC-Bool must backtrack the isQValid Boolean array. Backtracking this
array during the search is costly. During the search, when moving from one
search node to another one, this array must either be restored to its previous
state or information on the modifications of the array must be stored. We thus
now propose an implementation that only trails one integer, building upon an
idea in STR, STR2 and STR2+ [Ull07, Lec11] originally described in [BT93].
Applied to a table, this structure, called Sparse Set, keeps the elements that
have been removed at the end of the table, with a single variable size represent-
ing the boundary between present (before position size) and removed elements
(after position size). When an element is removed, it is swapped with the ele-
ment at position size, and size is decremented by one. This representation uses
two arrays Map and Dyn to represent the sparse set. For each entry of the set,
Map contains its position in the array Dyn—this array contains the elements
of the set before the index size, and the ones which have been removed are after
size. Figure 4.2 depicts the structures representing the set {1, 2, 3, 4, 6, 7, 9, 10}
from which 5 and 8 had previously been removed. Here, as will be the case in
our propagator, the values are the successive integer values between 1 and n.
This is not a necessary condition. Figure 4.3 illustrates the remove operation.
The size variable must be backtracked during search (again, because it depends
on the domains) but the arrays Map and Dyn do not need to be. On backtrack,
restoring size automatically restores the elements of the table, albeit at a dif-
ferent position in the table. This is sometimes called semantic backtracking
[VHR95]. For this implementation, the Sparse Sets are used to keep track of
the set of Q-valid tuple indexes in the table of the constraint. Figure 4.4 illus-
trates the use of the sparse sets for this implementation. Instead of trailing t
Booleans as AC5TC-Bool is doing, AC5TC-Sparse only has to trail size (one
integer). More formally, for a given table constraint c, the data structures sat-
isfy the following invariants before dequeuing an element from Q:

∀ 1 ≤ i ≤ c.length :

(Map[i] ≤ size⇔ τi ∈ D(scope(c), Q, c)) ∧ Dyn[Map[i]] = i

Testing the Q-validity of a tuple index i in such set is easy: it suffices to test
whether Map[i] is less than or equal to size. This is an O(1) operation.

The implementations of the specific functions for this algorithm are given in
Algorithm 6: it is called AC5TC-Sparse. The time complexity of isQValid-
TC-Sparse and setQInvalidTC-Sparse is O(1). The time complexity

4.2 E F F I C I E N T G AC P RO PAG ATO R S 57

Map

1
2
3
4
5
6
7
8
9

10

Dyn

1
2
3
4
5
6
7
8
9
10

size

8
6
9
1
3
10
2
5
4
7

5
8
10
1
9
3
2
6
4
7

Figure 4.2: The two arrays representing the Sparse Set {1, 2, 3, 4, 6, 7, 9, 10}

Map
1
2
3
4
5
6
7
8
9
10

Dyn
1
2
3
4
5
6
7
8
9
10

size

8
6
9
1
3

10
2
5
4
7

5
8
10
1
9
3
2
6
4
7

(a) Operations to remove 9 from
the set

Map
1
2
3
4
5
6
7
8
9
10

Dyn
1
2
3
4
5
6
7
8
9
10

size

6
8
9
1
3
10
2
5
4
7

5
8
9
1
10
3
2
6
4
7

(b) Resulting Dyn and Map

Figure 4.3: Removing 9 from the set {1, 2, 3, 4, 6, 7, 9, 10} (5 and 8 previously re-
moved)

58 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

Table
x y z

1 a b a

2 b c b

3 a a a

4 a b b

5 b b a

Map

1
2
3
4
5

Dyn

1
2
3
4
5

size

4
2
3
5
1

2
5
3
4
1

Figure 4.4: AC5TC-Sparse using Sparse sets to keep track of Q-valid tuples. In this
example, tuples 2 and 5 are Q-invalid.

of initSpecStructTC-Sparse is O(t). The time complexity of AC5TC-
Sparse is thus O(r2 · t + r · d).

The spatial complexities of both AC5TC-Bool and AC5TC-Sparse are Θ(r ·
t + r · d). Indeed, the next structure is Θ(r · t) since each tuple appears in r
chains, FS is Θ(r · d) and both isQValid and Map/Dyn are Θ(t). AC5TC-
Bool has Θ(r · d) integers and Θ(t) Booleans in its data structure to maintain
during the search: it must maintain FS and isQValid. AC5TC-Sparse only has
to maintain FS and one integer, so Θ(r · d) integers. The cost the algorithms
have to pay during backtracking is proportional to the number of changes in
the structures when trailing is used. Trailing is a technique to maintain informa-
tion during the search, recording the modifications to the trailed structures and
undoing them on backtracking. The nature, integer or Boolean, of the elements
of the structure doesn’t matter: a cost of O(1) has to be paid to store/restore
them. Each change is recorded in the trailing record of the algorithms. We thus
compare here the number of modifications to their structures, which is the size
of their trailing record. For one table constraint, along a branch in the search
tree containing m nodes, if k tuples of the table are found to be Q-invalid, the
size of the trailing record due to FS is O(r · k). In addition, AC5TC-Bool has k
elements in its trailing record due to isQValid and AC5TC-Sparse has at most
m elements in its record, because only size is trailed. If at most one tuple is
found Q-invalid in each node, the records have the same size, but usually we
have m < k. Also, the contribution to the record size due to the Q-validity
structure seems small compared to the contribution of FS. However the upper
bound on the number of modifications to FS will only be attained if each re-
moved tuple updates the first support of r− 1 literals. In practice, this is a rare

4.3 A VA R I AT I O N BA S E D O N R E C O M P U TAT I O N 59

event. The choice of the Q-validity structure thus has a large impact on the
performance of the propagators, as we will see in the experimental results of
the algorithms.

4.3 A VA R I AT I O N BA S E D O N R E C O M P U TAT I O N

Using the Q-validity of the tuples while traversing the next structure has a
drawback. A literal that is no longer domain consistent may have its first sup-
port updated several times before being removed. In a worst case scenario, a
literal with a lot of Q-valid (but not valid) supports may have its first support
updated to each of the Q-valid supports before being removed. Example 6 il-
lustrates this problem.

Example 6. In a binary table constraint c where scope(c) = {x, y}, let’s sup-
pose a literal (y, b) has only 3 supports (ordered as they are in the table): τ1,
τ2 and τ3. Let’s suppose that τ1[x] = a, τ2[x] = b and τ3[x] = c. If the propa-
gation queue contains (x, a), (x, b) and (x, c) and they are popped out in that
order, the first support for (y, b) (initially τ1) will be updated to τ2, then to τ3,
and finally to >.

The solution to this problem is to work directly with the validity of the tuples
instead of using the Q-validity. In the previous scenario, the literal would have
been removed the first time a new valid support had been searched for. We
thus propose a variation of the AC5TC algorithm, called AC5TC-Recomp, that
works with the validity of the tuples. AC5TC-Recomp does not require any
data structure to store Q-validity information. Rather, the validity of the tuples
is tested when needed and not stored. Even with this switch from Q-validity to
validity, AC5TC-Recomp still uses the same next structure as used by AC5TC.
However, the FS structure has to be slightly changed together with its invariant.
The new structure is called FUS and stores, for each literal, the index of the
first useful support in the table. Its new invariant can be found below and is
satisfied before dequeuing an element of Q.

∀x ∈ scope(c), ∀a ∈ D(x) :

FUS[x, a] = i⇔ [τc,i[x] = a ∧ i 6= >∧ τc,i ∈ D(scope(c), Q, c)

∧ (∀j < i : τc,j[x] = a⇒ τc,j 6∈ D(scope(c)))]

∀x, y ∈ scope(c), ∀a ∈ D(x), b ∈ D(y, Q, c)\D(y) :

(FUS[x, a] = i ∧ τc,i[y] = b)⇒ FUS[y, b] ≤ FUS[x, a]

60 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

The first part of the invariant states that for a literal in the domain, the first
useful support is Q-valid and different from >. It also states that all the possi-
ble supports before the first useful support are invalid. This is the first differ-
ence from the invariant for FS in AC5TC. Recall that in the FS invariant, the
preceding candidate supports were Q-invalid. This difference arises because
AC5TC-Recomp is not using Q-validity information. When updating the first
useful support of a tuple, this can avoid updating the first useful support to
Q-valid tuples that are invalid. The second part of the invariant is dedicated to
ensuring that the update process will not miss a FUS update for some literal.
This will be explained in more detail later, together with the update process.

The post method of AC5TC-Recomp is very similar to the postTC meth-
od of Algorithm 2. It also initializes the next data structure and FUS is ini-
tialized the same way FS is in postTC. No Q-validity is used in either of
the post methods, and FS and FUS are exactly the same after the initializa-
tion. The only difference between postTC and the post method of AC5TC-
Recomp is that AC5TC-Recomp does not call initSpecStructTC or set-
QInvalidTC.

The valRemoveTC-Recomp method is given in Algorithm 7. This has
similarities with valRemoveTC (Algorithm 3). Indeed, when called for a
constraint c, a variable y and a value b, valRemoveTC-Recomp cycles
through the tuples τc,i where τc,i[y] = b. It starts at FUS[y, b] because the
tuples before FUS[y, b] are invalid and cannot be the first useful support for
any valid literal. This is granted by the FUS invariant. For each of these tuples
τc,i, a new support is sought for each literal (x, a) for which FUS[x, a] = i.
If no new support is found, valRemoveTC-Recomp includes (x, a) in 4,
as was done in valRemoveTC. However, there are significant differences
between valRemoveTC-Recomp and valRemoveTC. The first is the use
of seekNextSupportTC-Recomp to update FUS. This method searches
for a new valid support, traversing the next chains, and does not search for
a Q-valid one. Recall that seekNextSupportTC (Algorithm 4) updates
FS searching for the next Q-valid support. Another difference between val-
RemoveTC-Recomp and valRemoveTC is the test τc,i[x] ∈ D(x) in line
8 of valRemoveTC-Recomp. This test is the equivalent of the one in line
13 of Algorithm 3. This test is needed here at line 8 to maintain the second
part of the FUS invariant. This part of the invariant guarantees that for each
literal in the queue, its first useful support is before the first useful support of
the valid literals in this tuple. This allows valRemoveTC-Recomp(c, y, b)
to look for updates to make from FUS[y, b] towards the end of the table. In
order to see the need for the second part of the invariant, let’s suppose it were
not present and the test τc,i[x] ∈ D(x) were pushed inside line 12 (as it is

4.3 A VA R I AT I O N BA S E D O N R E C O M P U TAT I O N 61

in Algorithm 3). Let’s suppose we are executing valRemoveTC-Recomp
for the literal (y, b). Let’s also suppose that the first useful support of a literal
(x, a) in the propagation queue contains (y, b). Without the test τc,i[x] ∈ D(x)
of line 8, a new valid support for (x, a) would be sought to update FUS[x, a].
This would automatically set FUS[x, a] to > because all supports of (x, a)
contain (x, a) and are thus invalid. Setting FUS[x, a] to > would prevent the
call to valRemoveTC-Recomp for (x, a) to update FUS for the literals that
have a tuple with (x, a) as first useful support. This may lead the algorithm
to leave non-GAC literals out of 4. This is already implicitly present in the
FS invariant (Section 4.2), thanks to the Q-validity of the first support granted
for the valid literals and the literals in the queue and the Q-invalidity of the
candidate supports before. This guarantees that the first support of each literal
in the queue is before the first support of the literals in this tuple.

1 valRemoveTC-Recomp(in c: Constraint;in y: Variable;
2 in b: Value; out 4: Set of Values){
3 // Pre: c ∈ C, c is a table constraint and b /∈ D(y, Q, c)
4 // Post: Inc(c, D(X, Q, c)) ∩ Cons(c, y, b) ⊆ 4 ⊆ Inc(c) ∩ Cons(c, y, b)
5 4 = ∅;
6 i = c.FUS[y, b];
7 while(i!=>){
8 forall(x in scope(c): x!=y && τc,i[x] ∈ D(x)){
9 a = τc,i[x];

10 if (c.FUS[x, a]==i){
11 c.FUS[x, a]=seekNextSupportTC-Recomp(c, x, i);
12 if(c.FUS[x, a]==>) 4 += (x, a);
13 }
14 }
15 i = c.next[y, i];
16 }
17 }

Algorithm 7: Method valRemoveTC-Recomp for Table Constraints.

From a complexity point of view, it may seem inefficient to test the validity
of the tuples when searching for a new support. The test τc,i ∈ D(scope(c)) is
O(r). However, using the validity has an advantage: it allows valRemoveTC
to output a larger4 set than the previous algorithms. The validity information
is stronger than the Q-validity information since each valid tuple is also Q-
valid but not conversely. With this larger4, the domains at the fixed point will
be the same for all algorithms (since all compute domain consistency) but the
method valRemoveTC-Recomp of AC5TC-Recomp might be called less
often during the GAC fixed point.

62 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

1 function seekNextSupportTC-Recomp(in c: Constraint;
2 in x: Variable; in i: Index) : Index {
3 // Pre: c ∈ C, c is a table constraint, x ∈ scope(c), 1 ≤ i ≤ c.length
4 // Post: return the first index j greater than i of a valid tuple
5 // with τc,j[x] == τc,i[x]
6 i = c.next[x, i];
7 while(i!=>){
8 if(τc,i ∈ D(scope(c))) return i;
9 i = c.next[x, i];

10 }
11 return >;
12 }

Algorithm 8: The seekNextSupportTC-Recomp Function of AC5TC-Recomp.

Proposition 2. AC5TC-Recomp is correct. It has a time complexity of O(r2 ·
t + r · d) and a space complexity of O(r · t + r · d) per table constraint along
a branch in the search tree.

Proof. Both methods postTC-Recomp and valRemoveTC-Recomp sat-
isfy their specifications (Specification 1). Hence, AC5TC-Recomp is correct.
The post method of AC5TC-Recomp has the same complexity as that of
AC5TC: O(r · t+ r · d). The complexity of all the executions of valRemove-
TC-Recomp is O(r2 · t) per table constraint. The justification of this com-
plexity is similar to that for valRemoveTC (Proposition 1). For a variable
y, all the executions of valRemoveTC-Recomp follow the chains in the
next structure for each different value of the variable. The total number of el-
ements in those chains is t since the tuples have one value per variable. With
r variables, lines 8 to 15 are executed O(r · t) times. Without line 11, those
lines have a complexity of O(r). Without line 11, the complexity of all the
executions of valRemoveTC-Recomp is O(r2 · t). For a particular variable,
the loop in line 6 of seekNextSupportTC-Recomp can only be executed
O(t) times in all during the entire fixed point (totalled up for all its values).
Indeed, the next chains are traversed at most once. The test τc,i ∈ D(scope(c))
in line 8 of seekNextSupportTC-Recomp being O(r), the executions of
line 11 of valRemoveTC-Recomp are O(r2 · t) in all during the entire fixed
point. Hence the complexity of O(r2 · t) for valRemoveTC-Recomp during
a fixed point.

The spatial complexity of AC5TC-Recomp is Θ(r · t + r · d), as it uses
the same next structure as used in the previous section and FUS is Θ(r · d).
AC5TC-Recomp has to maintain FUS, which means it has to maintain Θ(r · d)

4.4 O P T I M A L G AC P RO PAG ATO R S 63

integers. When the GAC fixed point is reached, the FUS structure is the same
as the FS structure in the previous algorithms. The number of modifications to
the structure that AC5TC-Recomp has to store in its trailing record for FUS is
thus the same as the number of modifications the previous algorithms had to
store for FS. In addition, along a branch in the search tree containing m nodes,
if k tuples are found Q-invalid, AC5TC-Bool has k elements in its trailing
record while AC5TC-Sparse has at most only m integers in its record. AC5TC-
Recomp doesn’t have to maintain any data structure besides FUS.

Despite being non-optimal, in the experiments AC5TC-Recomp improves
on state-of-the-art algorithms for some classes of problems. It is the (previously
unpublished) table constraint propagator implemented in the Comet system.

4.4 O P T I M A L G AC P RO PAG ATO R S

In all of the previously presented algorithms, the successive updates of their
support structures may revisit the same tuple several times. This comes from
the static nature of the next structure. Indeed, there is no guarantee that a tuple
visited in a particular next chain, and found to be Q-invalid or invalid, will not
be revisited later in another chain. This redundant work has a cost. This cost is
particularly penalizing for AC5TC (Section 4.2). In method valRemoveTC
(Algorithm 3), all the executions of the seekNextSupportTC (line 12 of
Algorithm 3) take O(r · t), assuming isQValidTC takes constant time. How-
ever, the total time complexity of all the executions of valRemoveTC is
O(r2 · t). This makes AC5TC reach the non-optimal O(r2 · t + r · d) time
complexity per table constraint. Recall that the optimal time complexity per
table constraint is O(r · t + r · d). To remedy this situation, the idea is to use a
dynamic structure to store the supports for each literal instead of the static next
structure. Dynamic structures are maintained during the search. We call these
the collections of supports. These dynamic structures thus keep the Q-valid
supports for the values in D(X, Q, c). This avoids revisiting tuples, because as
soon as a tuple is detected to be Q-invalid, it is removed from the active collec-
tions it belongs to. Those collections are stored in a single structure, called Col.
More formally, for a table constraint c, the structure containing the collections,
Col, satisfies the following invariant before dequeuing an element of Q:

∀x∈ Vars(c), ∀a ∈ D(x, Q, c) :

Col[x, a] = {1 ≤ i ≤ c.length | τc,i[x] = a ∧ τc,i ∈ D(Vars(c), Q, c)}

This invariant simply states that for each variable x and each value in its
extended domain D(x, Q, c), its collection contains all its Q-valid supports. In

64 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

order to allow different implementations for this collection structure, we have
designed a generic propagator. This propagator uses the abstract methods spec-
ified in Specification 2. Those methods simply form iterators over Col. They
enclose all interactions with the collections in Col. For the iterator requirement,
we assume that no remove operation is performed on a collection when iterat-
ing over it. We will refer to them as the specific functions as they are specific
to the concrete propagators implementing the generic propagator.

1 initSpecStruct(in c: Constraint,
2 in Colinit: Matrix of Arrays)
3 //pre: the collections in Colinit are sorted
4 //initializes specific structures implementing Col to the
5 //initial collections contained in the matrix Colinit
6 //in Colinit, a collection is represented by an array.
7

8 firstInCollection(in c: Constraint;
9 in x: Variable; in a: Value): Index

10 //returns the first element in Col[x, a]
11

12 nextInCollection(in c: Constraint;
13 in x: Variable; in i: Index): Index
14 //returns the element following i in Col[x,a] where a = τc,i[x]
15

16 //functions firstInCollection, nextInCollection and the test
17 //nextInCollection 6= > form iterators over the collections
18 //in Col
19

20 isCollectionEmpty(in c: Constraint;
21 in x: Variable; in a: Value): Boolean
22 //returns true iff Col[x,a] is empty
23

24 removeFromCollection(in c: Constraint,in x: Variable,
25 in i: Index)
26 //removes i from Col[x,a] where a = τc,i[x]

Specification 2: The abstract methods used by the generic optimal table constraint
propagator

The optimal generic algorithm for table constraints is called AC5TCOpt.
The post and valRemove methods for AC5TCOpt are presented in Algo-
rithms 9 and 10. Method postTCOpt first computes the initial collection
Colinit. Colinit is represented by a matrix containing one array per literal. For a
literal, its array in Colinit contains the indexes of its supporting tuples. post-

4.4 O P T I M A L G AC P RO PAG ATO R S 65

TCOpt then initializes the specific structures of the propagator by calling
initSpecStruct. It then removes all the values with no valid support.
The method valRemoveTCOpt(c, y, b) uses methods firstInCollec-
tion(c, y, b) (line 6), nextInCollection(c, y, i) (line 15), and the test
i 6= > (line 7) to traverse the collection for (y, b). These are the only tuples
that become Q-invalid when (y, b) is popped out of Q. These tuples are re-
moved from the collections they belong to and the literals left without any
Q-valid support are included in4.

1 postTCOpt(in c: Constraint; out 4: Set of Values){
2 // Pre: c ∈ C, c is a table constraint
3 // Post: 4 = Inc(c) + initialization of the data structures
4 4 = ∅;
5 forall(x in scope(c),a in D(x)) Colinit[x, a]=[];
6 forall(i in 1..c.length: τc,i in D(scope(c)))
7 forall(x in scope(c))
8 Colinit[x, τc,i[x]].append(i);
9 initSpecStruct(c,Colinit);

10 forall(x in scope(c),a in D(x))
11 if(isCollectionEmpty(c, x, a)) 4 += (x,a);
12 }

Algorithm 9: The post method of optimal AC5TCOpt table constraint propagator

Proposition 3. Assuming that initSpecStruct, firstInCollection,
nextInCollection, isCollectionEmpty and removeFromColl-
ection are correct, AC5TCOpt is correct. Assuming a complexity of O(r · t+
r · d) for initSpecStruct, and O(1) for the other specific functions, the
time complexity of AC5TCOpt is the optimal O(r · t+ r · d) per table constraint
along a branch in the search tree.

Proof. After the execution of Method postTCOpt, the Col invariant is re-
spected. Let’s suppose that the Col invariant is true before dequeuing a literal
(y, b) from Q. As the invariant is verified before the execution, the only tu-
ples that need attention are the tuples that become Q-invalid. Since the spe-
cific methods are correct, valRemoveTCOpt iterates through all the previ-
ously Q-valid tuples τc,i where τc,i[y] = b. Those tuple indexes are removed
from all the sets they belong to. The Col invariant is thus restored. With the
Col invariant, it is straightforward to prove that AC5TCOpt is correct. Indeed,
both postTCOpt and valRemoveTCOptmeet Specification 1 since the4s
are filled with the literals for which the collection in Col is empty. With an

66 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

1 valRemoveTCOpt(in c: Constraint; in y: Variable;
2 in b: Value; out 4: Set of Values) {
3 // Pre: c ∈ C, c is a table constraint and b /∈ D(y, Q, c)
4 // Post: 4 = Inc(c, D(X, Q, c)) ∩ Cons(c, y, b)
5 4 = ∅;
6 i = firstInCollection(c, y, b);
7 while(i 6= >){
8 forall(x in scope(c) : x 6= y){
9 removeFromCollection(c, x, i);

10 a = τc,i[x];
11 if(isCollectionEmpty(c, x, a) && a in D(x)){
12 4 += (x, a);
13 }
14 }
15 i = nextInCollection(c, y, i);
16 }
17 }

Algorithm 10: The valRemove method of optimal AC5TCOpt table constraint propa-
gator

O(r · t + r · d) complexity for initSpecStruct and an O(1) complex-
ity for isCollectionEmpty, postTCOpt is obviously O(r · t + r · d). The
complexity of valremoveTCOpt is O(r · t). Indeed, each execution of lines
6 to 16 leads to different values for i in {1, . . . , t}. This is due to the fact that
the indexes of the visited tuples are removed from all the collections they be-
long to. Lines 8 to 15 are thus executed at most t times along a branch in the
search tree. The complexity of those lines being O(r), the overall complexity
of valRemove is O(r · t) per table constraint (assuming the presence of other
constraints on which domain consistency is also applied).

We now present two different implementations of AC5TCOpt. They differ
in the data structure they use to backup the implementation of the functions
firstInCollection, nextInCollection, isCollectionEmpty
and removeFromCollection.

4.4.1 AC5TCOpt-Tr

The first propagator reuses an idea similar to the next structure of AC5TC
(Section 4.2) and AC5TC-Recomp (Section 4.3). In order to implement the
specific functions of AC5TCOpt, iterating through the collections in Col, this

4.4 O P T I M A L G AC P RO PAG ATO R S 67

new structure has to be dynamic and it has to allow the removal of tuples in
the collection in O(1). Indeed, the collections in Col depend on the domains of
the variables, and thus have to change during the search. This is why we used
two arrays to represent the index collections in Col: nextTr and predTr. They
can be viewed as a double-linked list version of the single-linked list nextTr.
The first structure, nextTr, contains, for each index i and each variable x, the
next tuple index in Col[x, τc,i[x]]. The second one, predTr, contains the preced-
ing tuple index in Col[x, τc,i[x]]. This propagator also uses an array, called FS,
referring, for each literal (x, a), to the first tuple index in Col[x, a]. The name
FS has been chosen for the similarities with the FS array in AC5TC (Section
4.2). The nextTr, predTr and FS data structures should be maintained during
the search, since Col depends on the current domains. For a variable x and a
value a ∈ D(x, Q, c), Col[x, a] can be enumerated by following the nextTr
chain, starting at FS[x, a]. The order between the tuples in nextTr and predTr is
fixed to be that of the table order. The collections in Col are thus here ordered
with respect to this order. As the nextTr and predTr are trailed through the exe-
cution of the propagator, we call the AC5Opt algorithm using those structures
AC5TCOpt-Tr (for AC5 Optimal Table Constraint Propagator with Trailing).

The implementation of the specific functions (Specification 2) of AC5TC-
Opt-Tr is presented in Algorithm 11. Method initSpecStruct initializes
nextTr, predTr and FS. As explained before, FS contains the beginning of the
collection for each different literal, in this case, the smallest index (the arrays
in Colinit are sorted). The functions firstInCollection and nextIn-
Collection are straightforward. For isCollectionEmpty, if the small-
est index of an element in a collection is >, that means that the collection
for the literal is empty. The removeFromCollection also takes into ac-
count the increasing order of the indexes in the structures. It has to distinguish
two cases. In the first one, the index to remove is the first one (line 34). In
this case, the first one is set to be the index following it. This effectively re-
moves index i from the collection because the traversal of the collection is
performed from FS to the end of the table. The second case (line 36) is the
one where the index to remove is after the first one. In this case, it must be
removed from the nextTr and predTr structures to remove it from the collec-
tion. The index i is never smaller than FS[x, a] because that would mean that
removeFromCollection would have been called to remove i from x’s
collection but not from y’s.

Proposition 4. The implementation of initSpecStruct, firstInColl-
ection, nextInCollection, isCollectionEmpty and remove-
FromCollection is correct. The time complexity of initSpecStruct

68 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

1 initSpecStruct(in c: Constraint,
2 in Colinit: Matrix of Arrays){
3 forall(x in scope(c), i in 1..c.length)
4 c.nextTr[x, i] = >; c.predTr[x, i] = ⊥;
5 forall(x in scope(c), a in D(x)){
6 nSup=len(Colinit[x, a]);
7 if(nSup==0)
8 c.FS[x, a]=>;
9 else

10 c.FS[x, a]=Colinit[x, a][1];
11 forall(j in 1..nSup-1){
12 c.nextTr[x,Colinit[x, a][j]]=Colinit[x, a][j + 1];
13 c.predTr[x,Colinit[x, a][j + 1]]=Colinit[x, a][j];
14 }
15 }
16 }
17

18 firstInCollection(in c: Constraint; in x: Variable;
19 in a: Value):Index{
20 return c.FS[x, a];
21 }
22

23 nextInCollection(in c:Constraint; in x: Variable;
24 in i: Index):Index{
25 return c.nextTr[x, i];
26 }
27

28 isCollectionEmpty(in c: Constraint; in x: Variable;
29 in a: Value):Boolean{
30 return c.FS[x, a] == >;
31 }
32

33 removeFromCollection(in c: Constraint;
34 in x: Variable, in i: Index){
35 a = τc,i[x]
36 if(c.FS[x, a] == i){
37 c.FS[x, a] = c.nextTr[x, i];
38 } else{ // i > FS[x, a]
39 if (c.predTr[x, i]!=⊥)
40 c.nextTr[x,c.predTr[x, i],c] = c.nextTr[x, i,c];
41 if (c.nextTr[x, i]!=>)
42 c.predTr[x,c.nextTr[x, i],c] = c.predTr[x, i,c];
43 }
44 }

Algorithm 11: Specific Methods of AC5TCOpt-Tr

4.4 O P T I M A L G AC P RO PAG ATO R S 69

is O(r · t + r · d). All the other methods are O(1). The time complexity of
AC5TCOpt-Tr is the optimal O(r · t+ r · d) per table constraint along a branch
in the search tree.

Proof. The proof that each function respects its individual specification (Spec-
ification 2) is straightforward. The last part of the specification to prove is that
the functions firstInCollection, nextInCollection and the test
nextInCollection 6= > form iterators over the collections in Col. This
is due to the fact that FS always referrs to the first element in its collection
and that the only elements removed from the nextTr and predTr chains are the
ones removed from the collections with removeFromCollection. The
time complexity of initSpecStruct is O(r · t + r · d) because the total
number of supports for a variable is O(t), hence is the number of elements
in the Col structures for a variable. This guarantees that the loop in line 10 is
O(t) for all the values of a variable. The loop in line 4 is thus O(r · t + r · d).
AC5TCOpt-Tr is then O(r · t + r · d).

AC5TCOpt-Tr has a spatial complexity of Θ(r · t + r · d) since nextTr and
predTr are Θ(r · t) and FS is Θ(r · d). All these structures have to be trailed
during the search. AC5TC-Tr has thus Θ(r · t + r · d) integers to backtrack.
Compared to the previous algorithms, the difference in backtrackable structure
is nextTr/predTr. For a table constraint, along a branch in the search tree of
length m, if k of its tuples are found Q-invalid, AC5TCOpt-Tr has Θ(r · k)
integers in its trailing record. Indeed, upon finding a Q-invalid tuple, for the r
variables, either FS is modified or the two pointers nextTr/predTr. This is much
more than the previous algorithms. Along the same branch, they have O(r ·
k) integers to trail for FS and an additional k elements for AC5TC-Bool and
at most m integers for AC5TC-Sparse for the Q-validity structures. AC5TC-
Recomp only has to backtrack FS. As explained before, the worst case scenario
leading to O(r · k) integers in the record for FS is not frequent.

4.4.2 AC5TCOpt-Sparse

The implementations of the specific methods of AC5TCOpt presented in the
previous section have one drawback: AC5TCOpt-Tr has to maintain Θ(r · t +
r · d) integers during the search. Trailing such a large number of integers can
be costly. By changing the data structures used to support the implementation
of the specific AC5TCOpt methods, we can obtain a propagator trailing only
Θ(r · d) integers. This new implementation, called AC5TCOpt-Sparse, is the
topic of this section.

70 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

The fundamental change to AC5TCOpt-Tr is to not maintain the order of
the elements in the collections. Indeed, inside the nextTr chains, the elements
are ordered with respect to their order of appearance in the table. This is an un-
necessary requirement. All that is needed is that those elements match the ones
in the collections. We can therefore replace the nextTr and predTr structures
with efficiently backtrackable sets. The structures we chose for representing
those sets are an adapted version of sparse sets, introduced in Section 4.2.

Recall that a sparse set structure uses two different arrays for representing
a set: Map and Dyn. In addition, Sparse Sets also maintain the size (size) of
the set. Map contains, for each entry of the set, its position in the array Dyn.
Dyn contains the elements of the set before the index size, and the removed
ones after size. There will be one such set per collection in Col, thus per literal.
Each set will contain tuple indexes from Col. For a variable x and a tuple index
i, τc,i[x] is the only value for x. The index i can thus only be in one collection
from Col, thus in one sparse set for x. This means that one Map array can
be shared by all the literals of the same variable. Indeed, for a tuple i and a
variable x, Map[i] will represent the position of i in the Dyn array of the literal
(x, τc,i[x]). The link between the arrays Map and Dyn can be formalized as

∀x ∈ X, ∀i, j : 1 ≤ i, j ≤ t :

Map[x][i] = j⇔ Dyn[x, τc,i[x]][j] = i

We will refer to this as the Dyn/Map invariant. Sharing the Map between
all the values of a variable allows the size of the Map array to be Θ(t) (for
each variable). After the creation of the structures, previously unseen elements
are never added to Col. This allows the size of the Dyn array to be fixed to
the initial number of support of its literal. Figure 4.5 shows an example of the
structures for variable x. In this example, the arrays Dyn[x, a] and Dyn[x, b]
can be used to traverse the collections. The array Map[x] can be used, together
with the table of the constraint, to locate an element in the different Dyn arrays
in O(1). Amongst these structures, only size has to be trailed.

The implementation of the specific methods (Specification 2) of AC5TCOpt
for AC5TCOpt-Sparse is given in Algorithm 12. Method initSpecStruct
fills the Dyn, Map and size structures. Method firstInCollection re-
turns the first element in Dyn if the sparse set is not empty, > otherwise. As
the elements are swapped in Dyn on removal, the first element is not always
the one with the smallest index. Method nextInCollection returns the el-
ement following the current element in Dyn if it is at an index smaller than the
size of this set. It returns > otherwise. Method removeFromCollection
swaps the element that is to be removed with the last one of the right Dyn array

4.4 O P T I M A L G AC P RO PAG ATO R S 71

Col

Col[x, a] = {1, 3, 4}
Col[x, b] = {2, 5}

Table

x y z

1 a b a

2 b c b

3 a a a

4 a b b

5 b b a

Map[x]

1

2

3

4

5

1

1

2

3

2

Dyn[x, a]

1

2

3

1

3

4

size[x, a] = 3

Dyn[x, b]

1

2

2

5

size[x, b] = 2

Figure 4.5: Example of the Sparse Set structures used by AC5TCOpt-Sparse for vari-
able x

and updates the Map structure. This keeps the link between Map and Dyn con-
sistent. This is the standard procedure for removing an element from a sparse
set, adapted to the present case.

Proposition 5. The implementation of initSpecStruct, firstInColl-
ection, nextInCollection, isCollectionEmpty and remove-
FromCollection for AC5TCOpt-Sparse is correct. The time complexity of
initSpecStruct is O(r · t + r · d). All the other methods are O(1). The
time complexity of AC5TCOpt-Sparse is the optimal O(r · t + r · d) per table
constraint along a branch in the search tree.

Proof. The correctness of the specific functions with respect to their individual
specifications (Specification 2) is straightforward provided that the Dyn and
Map arrays are consistent. They are consistent if and only if the Dyn/Map in-
variant is respected. The invariant is trivially respected after the initSpect-
Struct. The only function that changes Dyn and Map after their creation
is removeFromCollection. If the invariant is respected before remove-
FromCollection, it is respected after. The invariant is therefore always re-
spected. The functions firstInCollection, nextInCollection and
the test nextInCollection 6= > thus form iterators over the collections
in Col, the elements from Col[x, a] being in Dyn[x, a] between indexes 1 and

72 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

1 initSpecStruct(in c: Constraint,
2 in Colinit: Matrix of Arrays){
3 forall(x in scope(c), a in D(x)){
4 j=1;
5 forall(i in Colinit[x, a]){
6 c.Dyn[x, a][j] = i;
7 c.Map[x][i] = j;
8 j+=1;
9 }

10 c.size[x, a] = Colinit[x, a].length;
11 }
12 }
13

14 firstInCollection(in c: Constraint;
15 in x: Variable; in a: Value){
16 if(c.size[x, a] > 0)
17 return c.Dyn[x, a][1];
18 else
19 return >;
20 }
21

22 nextInCollection(in c: Constraint;
23 in x: Variable; in i: Index){
24 if(c.Map[x][i] < c.size[x, a]){
25 return c.Dyn[x,τc,i[x]][c.Map[x][i]+1];
26 }else{
27 return >;
28 }
29 }
30

31 isCollectionEmpty(in c: Constraint;
32 in x: Variable; in a: Value){
33 return c.size[x, a] == 0;
34 }
35

36 removeFromCollection(in c: Constraint; in x: Variable,
37 in i: Index){
38 a = τc,i[x];
39 c.Dyn[x, a][c.Map[x][i]] = c.Dyn[x, a][c.size[x, a]];
40 c.Dyn[x, a][c.size[x, a]] = i;
41 c.Map[x][c.Dyn[x, a][c.Map[x][i]]] = c.Map[x][i];
42 c.Map[x][i] = c.size[x, a];
43 c.size[x, a] -= 1;
44 }

Algorithm 12: Specific Methods of AC5TCOpt-Sparse

4.5 E X P E R I M E N TA L R E S U LT S 73

size[x, a]. Recall that no remove operation is performed on a collection while
iterating over it (hypothesis from Col). The O(r · t + r · d) time complexity of
initSpecStruct is provided by the O(t) elements in the collections for
all the values of a variable.

Although the time complexity of AC5TCOpt-Sparse is the same as that of
AC5TCOpt-Tr (Section 4.4.1), the advantage of AC5TCOpt-Sparse is the num-
ber of integers to backtrack. AC5TCOpt-Sparse backtracks only the size array,
which contains one integer per literal. It has thus only Θ(r · d) integers to back-
track, compared to the Θ(r · t + r · d) integers that AC5TCOpt-Tr has to trail.
More precisely, for a table constraint, on a branch in the search tree, if k tuples
are found Q-invalid, AC5TCOpt-Sparse has O(r · k) integers on its trailing
record. This worse case scenario corresponds to the situation where each tu-
ple detected Q-invalid updates the collections of r different literals. Otherwise,
only one integer is stored on the record when multiple updates of the same
collection is performed at a node. For a table constraint, along a branch in the
search tree detecting k tuples from the table to be Q-invalid, AC5TCOpt-Tr has
a total number of integers in its trailing record of Θ(r · k). AC5TCOpt-Sparse
always has a number of integers in its trailing record that is less than or equal to
the number in AC5TCOpt-Tr record, but most of the time, it has strictly fewer
integers in its trail.

The total spatial complexity of AC5TCOpt-Sparse is Θ(r · t + r · d). The
size of Dyn is Θ(r · t) since each tuple index is in exactly r Sparse Sets, the
Map structure is Θ(r · t) (Θ(t) for each variable), and the size structure is
Θ(r · d).

4.5 E X P E R I M E N TA L R E S U LT S

All proposed algorithms have been implemented on top of Comet. The core
of the Comet system being closed source, a core implementation is not pos-
sible. For comparison, classical constraint-based algorithms have also been
implemented on top of Comet. The AC3 and AC3rm algorithms [LH+07], de-
signed for binary constraints, have also been reimplemented. In our implemen-
tation, these algorithms use a dichotomic search in the table to verify that a
tuple is allowed by the constraint. The GAC3-Allowed algorithm has been
chosen for the comparison because it is the standard GAC3 algorithm for non-
binary table constraints [Lec09]. Three existing state-of-the-art methods were
also reimplemented: The MDDc algorithm from [CY10], the STR2+ algorithm
from [Lec11] and STR3 from [LLY12]. For MDDc, the order of the variables
can have a big impact on the performance of the algorithm. Indeed, the order

74 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

strongly influences the size of the constructed MDD. Unfortunately, obtaining
the perfect order is NP-Complete [CY10]. In the experiments, we used the
variable order in the instances as the order in the MDDs. For the STR2+ reim-
plementation, the array lastSize was used. Some optimization can be obtained
by reusing the structures constructed for a propagator between different con-
straints relying on the same table but with different scopes. This is the case, for
instance, for the next structure of our propagators or the MDD of MDDc. This
optimization has not been used in our test for any of the propagators. All exper-
iments were conducted on an Intel Xeon 2.53GHz using Comet 2.1.1. The al-
gorithms are compared within a MAC search. The problems have been selected
because they offer very different constraint arities. Some of them contain only
binary tables while other contain up to arity 20 table constraints. This section
thus presents results on the geometric problem, on the Langford problem, on
the Traveling Salesman Problem, on the RandRegular problem, on fully ran-
dom instances, on Crossword instances, and on modified Renault instances.
All the instances used are available at http://becool.info.ucl.ac.
be/resources/positive-table-constraints-benchmarks

For each instance set, the experimental results report the mean execution
times in seconds (totTime), the mean “posting” times in seconds (postTime),
the number of propagator calls (nProp), the percentage to the best with re-
spect to execution time (%best), the mean of percentage to the best algorithm
in terms of execution time (µ%best), the number of validity checks (valChk),
Q-validity checks (QvalChk), and the number of pointers followed (pFollow).
The difference between the %best and µ%best is the following: for %best, the
execution times are averaged before computing the quantity. There is thus one
best algorithm. For µ%best, the percentages are computed instance by instance
and aggregated with a geometric mean at the end. This measure takes into ac-
count that different instances may have different best algorithms. The µ%best
measure uses a geometric mean as suggested in [FW86]. The last reported
quantity, pFollow, represents different quantities for different algorithms. For
GAC3-Allowed, it corresponds to the number of times the tuples are accessed.
For the AC5TC algorithms and AC5TCOpt-Tr, it is defined as the number of
times the next or nextTr structures are used to traverse the table. For MDDc, it
corresponds to the number of edges followed in the MDD structure. Although
referring to different quantities, pFollow is useful for comparing the behavior
of the propagators as it reflects the usage of their specific structures. For each
instance set, scatter plots of AC5TCOpt-Sparse versus STR2+ and STR3 are
given. In those scatter plots, each point is an instance. The x coordinate of a
point is the time taken by the algorithm on the bottom of the plot and its y
coordinate, the time taken by the other algorithm. A point with coordinates

http://becool.info.ucl.ac.be/resources/positive-table-constraints-benchmarks
http://becool.info.ucl.ac.be/resources/positive-table-constraints-benchmarks

4.5 E X P E R I M E N TA L R E S U LT S 75

(5,10) means that this instance has been solved in 5 seconds by the algorithm
on the bottom and 10 by the other. The x = y line is also displayed. The
more points an algorithm has on its opposing side of the line x = y, the faster
it is than the other. Those plots allow a detailed view, instance by instance,
of the performance of the algorithms. STR2+, STR3 and AC5TCOpt-Sparse
have been chosen because AC5TCOpt-Sparse is the fastest of our algorithms
and STR2+, STR3 are its best competitors. For the binary benchmarks, scatter
plots of AC5TCOpt-Sparse versus AC3rm are also given.

The search strategy is given for each benchmark. We used the terminology
defined in [Bee06]. The dom variable heuristic first chooses the variable with
the smallest domain. The dom/deg heuristic first chooses the variable with the
smallest ratio domain size—the degree of the variable (the number of con-
straints in which it is involved). The lexicographic value ordering consists in
trying first the smallest value with respect to the lexicographic ordering.

The Geometric Problem Instances of the geometric problem are random
instances generated following a specific structure proposed by Rick Wallace
[Wal05]. Each variable is randomly placed in the unit square. A fixed distance
(less than

√
2) is randomly chosen. For each pair of variables (x, y), if the dis-

tance between their associated points is less than or equal to this fixed distance,
the arc (x, y) is added to the constraint graph. Constraint relations are then cre-
ated as they are in fully random CSP instances [XBHL07]. The constraints of
this problem are thus binary. We use the instance set from [Lec], which has 100
instances. In this instance set, all the variables have the same domain, of size
20. The search strategy uses the heuristic dom/deg with lexicographic value
ordering. A timeout of 5 minutes has been used. The quantity %solv gives the
percentage of instances solved.

Table 4.1 presents the experimental results on geom instances. Figure 4.6
plots the percent best quantities for this instance set. All the quantities (ex-
cept %solv) are computed on instances for which none of the techniques time-
outs. All our propagators are faster than the state-of-the-art STR2+, STR3 and
MDDc. AC5TCOpt-Tr, AC5Opt-Sparse and AC5TC-Recomp are also better
than the classical AC3, and GAC3-Allowed propagators. AC3rm is clearly
the fastest strategy on those instances. It is also the best on each instance,
as its µ%best is 100. AC5TCOpt-Sparse is the fastest of our propagators on
those instances. Its performance is competitive with AC3rm. It is however
not the best of our propagators on each instance. The instances on which it
is beaten are the smallest, where AC5TC-Recomp is the best of our propa-
gators. AC5TCOpt-Sparse is significantly faster than AC5TCOpt-Tr, due to
the cost that AC5TCOpt-Tr has to pay to trail its structures. Checking the va-

76 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

propagator totTime postTime nProp %best µ%best %solv valChk QvalChk pFollow

GAC3-Allowed 10.1 0.3 288 k 276 283 86 28 k 0 28 k

AC5TC-Bool 12.5 0.3 867 k 341 328 84 300 25 k 50 k

AC5TC-Sparse 10.8 0.2 867 k 295 271 86 300 25 k 50 k

AC5TC-Recomp 7.9 0.2 831 k 216 206 87 6 k 0 29 k

AC5TCOpt-Tr 9.6 0.8 867 k 263 412 87 300 0 13 k

AC5TCOpt-Sparse 6.5 0.4 867 k 178 236 87 300 0 0

MDDc 14.7 1.6 288 k 401 694 86 0 0 65 k

STR2+ 24.9 0.3 288 k 680 650 82 26 k 0 0

STR3 15.2 0.6 867 k 413 477 84 300 0 0

AC3 10.4 0.1 288 k 283 234 85 0 0 0

AC3rm 3.7 0.1 288 k 100 100 89 0 0 0

Table 4.1: Results of the propagators on the geom instances (times in seconds)

lidity (instead of the Q-validity) allows AC5TC-Recomp to follow less point-
ers than AC5TC-Bool and AC5TC-Sparse by performing longer jumps in the
table. Moreover, as the tables are binary, the cost of a validity check is low.
AC5TCOpt-Tr follows much fewer pointers than AC5TC-Bool and AC5TC-
Sparse because it does not follow pointers to a previously inspected tuple.

Scatter plots for the geom instance set are given in Figure 4.7. In those scat-
ter plots, next to each technique name, are the number of instances that are
solved by this algorithm that triggered a timeout with the other algorithm. For
instance, AC5TCOpt-Sparse solved five instances that caused STR2+ to time-
out. Those instances are not in the plot. As we can observe in these scatter
plots, AC3rm is faster than AC5TCOpt-Sparse on all instances except for the
easiest ones. AC3rm solves two instances that caused AC5TCOpt-Sparse to
timeout. AC5TCOpt-Sparse solves more instances and is faster than STR2+
and STR3 on all the instances except the easiest ones. We can also observe
that STR3 is faster than STR2+. The time performances of those algorithms
are proportional on this instance set.

Langford Number Problem The Langford number problem L(k, n) is the
problem of arranging k sets of numbers 1 to n into a sequence of numbers
such that each occurrence of a number m is m numbers apart from its pre-

4.5 E X P E R I M E N TA L R E S U LT S 77

0 100 200 300 400 500 600 700
Percent Best

geom

GAC3_A

MDD

STR2+

STR3

AC3

AC3rm

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.6: Percent best quantities for the geom instance set

vious occurrence. This is problem 24 of CSPLIB 3. These problems can be
fully modeled with binary (positive) table constraints. The instances with table
constraints can be found in [Lec]. The search strategy used was dom/deg with
lexicographic value ordering. Problems where all the propagators take more
than 5 minutes have been removed from the sets. For k = 2, 12 instances are
used: n ∈ {5..12, 15, 16, 19, 20}, for k = 3, 8 instances: n ∈ {3..10} and for
k = 4, 9 instances: n ∈ {3..11}. The results for k equal to 2, 3 and 4 can be
found in Table 4.2. Figures 4.8, 4.9 and 4.10 plot the percent best quantities
for k = 2, k = 3 and k = 4 respectively.

The fastest propagator on those instances is clearly AC3rm. However, ex-
cept for AC5TC-Bool on the k = 4 set of instances, all our propagators are
faster than the state-of-the-art STR2+, STR3 and MDDc. AC5TCOpt-Sparse,
AC5TCOpt-Tr and AC5TC-Recomp are faster than AC3 on the k = 2 set.
AC5TCOpt-Sparse and AC5TC-Recomp are faster than AC3 on the k = 3
set. The three fastest of our propagators on those instances are AC5TCOpt-
Sparse, AC5TCOpt-Tr and AC5TC-Recomp. They are also better than the
classical GAC3-Allowed. Among our propagators, AC5TCOpt-Sparse is the
fastest on those three instance sets. Our optimal AC5TCOpt-Tr is only faster
than AC5TC-Recomp on the k = 2 instance set. Observe that the number of

3 www.csplib.org

www.csplib.org

78 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 50 100 150
AC3rm: 2

0

50

100

150

A
C

5
T
C

O
p

tS
p

a
rs

e
:

0

0 50 100 150 200
STR2+: 0

0

50

100

150

200

A
C

5
T
C

O
p

tS
p

a
rs

e
:

5

0 50 100 150 200 250
STR3: 0

0

50

100

150

200

250

A
C

5
T
C

O
p

tS
p

a
rs

e
:

3

Figure 4.7: Scatter plots of the Geom instance set

4.5 E X P E R I M E N TA L R E S U LT S 79

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

k = 2

GAC3-Allowed 16.3 0.6 1 M 315 324 166 k 0 166 k
AC5TC-Bool 18.6 0.8 2 M 358 342 576 178 k 316 k
AC5TC-Sparse 16.8 0.5 2 M 323 276 576 178 k 316 k
AC5TC-Recomp 10.1 0.4 2 M 195 199 27 k 0 154 k
AC5TCOpt-Tr 9.4 2.5 2 M 182 488 576 0 42 k
AC5TCOpt-Sparse 6.6 0.8 2 M 126 264 576 0 0
MDDc 26.6 3.7 1 M 512 970 0 0 307 k
STR2+ 26.7 1.3 1 M 514 643 46 k 0 0
STR3 23.7 1.6 2 M 456 638 576 0 0
AC3 11.3 0.2 1 M 218 176 0 0 0
AC3rm 5.2 0.1 1 M 100 101 0 0 0

k = 3

GAC3-Allowed 2.5 0.3 75 k 395 310 12 k 0 12 k
AC5TC-Bool 3.5 0.3 242 k 553 395 380 10 k 21 k
AC5TC-Sparse 2.5 0.2 242 k 398 324 380 10 k 21 k
AC5TC-Recomp 1.5 0.2 239 k 244 213 2 k 0 12 k
AC5TCOpt-Tr 2.2 0.9 242 k 342 402 380 0 4 k
AC5TCOpt-Sparse 1.4 0.4 242 k 227 242 380 0 0
MDDc 3.9 1.5 75 k 608 718 0 0 22 k
STR2+ 3.7 0.6 75 k 585 546 5 k 0 0
STR3 4.0 0.7 242 k 639 627 380 0 0
AC3 1.6 0.1 85 k 223 183 0 0 0
AC3rm 0.7 0.1 85 k 100 100 0 0 0

k = 4

GAC3-Allowed 23.4 1.3 419 k 477 379 19 k 0 19 k
AC5TC-Bool 42.5 1.6 1.6 M 867 524 677 20 k 36 k
AC5TC-Sparse 29.8 1.0 1.6 M 608 384 677 20 k 36 k
AC5TC-Recomp 17.0 0.8 1.58 M 347 244 3 k 0 18 k
AC5TCOpt-Tr 21.8 5.0 1.6 M 445 621 677 0 5 k
AC5TCOpt-Sparse 12.3 1.7 2 M 250 315 677 0 0
MDDc 31.2 7.3 419 k 637 957 0 0 35 k
STR2+ 33.2 3.3 419 k 677 676 10 k 0 0
STR3 39.3 3.4 2 M 802 730 677 0 0
AC3 11.7 0.4 419 k 238 188 0 0 0
AC3rm 4.9 0.2 419 k 100 103 0 0 0

Table 4.2: Experimental Results on Langford instances (times in seconds)

80 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 100 200 300 400 500 600
Percent Best

langford2

GAC3_A

MDD

STR2+

STR3

AC3

AC3rm

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.8: Percent best quantities for the langford 2 instance set

0 100 200 300 400 500 600 700
Percent Best

langford3

GAC3_A

MDD

STR2+

STR3

AC3

AC3rm

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.9: Percent best quantities for the langford 3 instance set

4.5 E X P E R I M E N TA L R E S U LT S 81

0 100 200 300 400 500 600 700 800 900
Percent Best

langford4

GAC3_A

MDD

STR2+

STR3

AC3

AC3rm

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.10: Percent best quantities for the langford 4 instance set

followed pointers is globally higher for this instance set, due to the inclusion
of instances with larger n. The number of calls to the propagators during the
search is also larger on the k = 2 set. This suggests that AC5TC-Tr requires
harder instances (found in the k = 2 set) to amortize the cost of its data struc-
tures. AC5TCOpt-Sparse does not have this problem, thanks to its lesser need
in backtrackable structures.

Scatter plots for the Langford problem are given for the k = 4 set in Figure
4.11. In those scatter plots are given, next to each algorithm, the number of
instances that are solved by it and that caused the other algorithm to timeout.
The scatter plots for the other values of k displayed the same patterns. The
observations are similar to the ones made for the geom instance set: AC3rm
seems linearly faster than AC5TCOpt-Sparse and AC5TCOpt-Sparse seems
linearly faster than STR2+ and STR3. AC5TCOpt-Sparse and AC3rm solve
one instance more than STR2+ and STR3.

The Traveling Salesman Problem We continue with the results of the prop-
agators on the Traveling Salesman Problem (TSP) constraint satisfaction in-
stances. We used the set of instances tsp-20 and tsp-25 [Lec]. Those struc-
tured instances are composed of very different table constraints. Their arity is
2 or 3. Some tables have up to 20,000 tuples, but some others have as few
as 20. The variables also have quite different domain sizes: some have small

82 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 50 100 150 200
AC3rm: 0

0

50

100

150

200

A
C

5
T
C

O
p

tS
p

a
rs

e
:

0

0 50 100 150 200
STR2+: 0

0

50

100

150

200

A
C

5
T
C

O
p

tS
p

a
rs

e
:

1

0 50 100 150 200 250
STR3: 0

0

50

100

150

200

250

A
C

5
T
C

O
p

tS
p

a
rs

e
:

1

Figure 4.11: Scatter plots of the Langford instance set for k = 4

4.5 E X P E R I M E N TA L R E S U LT S 83

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

GAC3-Allowed 797 1.7 6.7 M 1 073 795 11 M 0 11 M

AC5TC-Bool 186 0.8 21.2 M 251 254 2 k 1 M 2 M

AC5TC-Sparse 153 0.5 21.2 M 207 195 2 k 1 M 2 M

AC5TC-Recomp 109 0.3 20.9 M 146 140 391 k 0 1 M

AC5TCOpt-Tr 120 3.3 21.2 M 162 222 2 k 0 466 k

AC5TCOpt-Sparse 74 0.5 21 M 100 104 2 k 0 0

MDDc 456 19.0 6.7 M 614 1041 0 0 7 M

STR2+ 398 1.4 6.7 M 536 478 803 k 0 0

STR3 226 1.0 21 M 305 296 2k 0 0

Table 4.3: Results of the propagators for instance set TSP-20 (times in seconds)

domains, while others have domains containing up to 1000 values. There are
61 variables and 230 table constraints in tsp-20 instances. The tsp-25 instances
have 76 variables and 350 constraints. The negative table constraints found
in those instances have been transformed into positive ones by computation of
their complement. The search strategy used here is dom/deg with lexicographic
value ordering. Both sets contain 15 instances. For the set tsp-25, instance tsp-
25-715 has been removed from the set, as it was unsolved after three hours.

Tables 4.3 and 4.4 present the results. The plots of the percent best quantities
are given in Figures 4.12 and 4.13. We first observe that STR2+, STR3 and
MDDc are slower than our propagators, except for the set TSP-25 where STR3
is faster than AC5TC-Bool. AC5TCOpt-Sparse is the fastest propagator on
both instance sets. It is the best for each instance of the TSP-20 set. Another
observation is that AC5TC-Recomp is faster than AC5TCOpt-Tr on the TSP-
20 set, despite AC5TCOpt-Tr’s being optimal. On the other hand, AC5TCOpt-
Tr is faster on the TSP-25 set. We can also see that checking the validity instead
of the Q-validity allows AC5TC-Recomp to follow fewer pointers and perform
fewer validity checks than the Q-validity checks of AC5TC-Bool and AC5TC-
Sparse. Moreover, on these instances, the small arity makes the validity check
(O(r)) not so expensive compared to Q-validity (O(1)). This explains the good
performance of AC5TC-Recomp.

To test the effect of the arity on this instance set, we merged binary tables
of the instances of the TSP-20 set into arity 4 tables. The merge was obtained
by merging arity 2 constraints into arity 4 ones. The merged constraints do

84 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

GAC3-Allowed 6 607 2.4 73 M 931 764 23 M 0 23 M

AC5TC-Bool 2 625 1.3 198 M 370 350 2 k 11 M 19 M

AC5TC-Sparse 1 937 0.7 198 M 273 263 2 k 11 M 19 M

AC5TC-Recomp 1 315 0.5 196 M 185 180 3 M 0 10 M

AC5TCOpt-Tr 1 089 5.2 198 M 153 151 2 k 0 3 M

AC5TCOpt-Sparse 710 0.9 198 M 100 100 2 k 0 0

MDDc 4 974 25.2 73 M 701 637 0 0 28 M

STR2+ 3 740 2.9 73 M 527 500 5 M 0 0

STR3 2 308 1.9 198 M 325 305 2 k 0 0

Table 4.4: Results of the propagators for instance set TSP-25 (times in seconds)

0 200 400 600 800 1000 1200
Percent Best

TSP20

GAC3_A

MDD

STR2+

STR3

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.12: Percent best quantities for the TSP-20 instance set

4.5 E X P E R I M E N TA L R E S U LT S 85

0 200 400 600 800 1000
Percent Best

TSP25

GAC3_A

MDD

STR2+

STR3

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.13: Percent best quantities for the TSP-25 instance set

not share variables. The selection of the constraints to merge was made by a
greedy algorithm trying to maximize the number of merged constraints. The
pruning in this benchmark is thus the same as in the original one. The results
are summarized in Table 4.5. A plot of the percent best quantities is presented
in Figure 4.14. A timeout of 15 minutes was set for these experiments. The data
in the table concerns only instances for which none of the propagators timeouts.
The percentage of the 15 instances solved by each propagator individually is
also given. AC5TCOpt-Sparse is the fastest propagator, as for the TSP-20 and
TSP-25 instance sets. However, STR2+ and STR3 are faster than our other
propagators on those instances. This seems to indicate that those existing state-
of-the-art propagators are better for larger arity constraints. The three propaga-
tors solving the largest number of instances are our two AC5TCOpt algorithms
and STR2+.

Scatter plots for the TSP-20 and TSP-20 with quaternary tables are given in
Figures 4.15 and 4.16. The patterns on the set TSP-25 are similar to the ones
in the scatter plots of the TSP-20 set. For the modified TSP-20 set, next to
each algorithm, is the number of instances solved by this algorithm for which
the other timeouts. As we can see on those scatter plots, AC5TCOpt-Sparse
is linearly better than STR2+ and STR3 on both instance sets. STR2+ is a bit
faster on the instance set with quaternary tables while STR3 is disadvantaged.

86 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 100 200 300 400 500 600 700 800
Percent Best

TSPQuat

GAC3_A

MDD

STR2+

STR3

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.14: Percent best quantities for the quaternary TSP instance set

4.5 E X P E R I M E N TA L R E S U LT S 87

0 500 1000 1500 2000 2500 3000
STR2+: 0

0

500

1000

1500

2000

2500

3000

A
C

5
T
C

O
p

tS
p

a
rs

e
:

0

0 500 1000 1500
STR3: 0

0

500

1000

1500

A
C

5
T
C

O
p

tS
p

a
rs

e
:

0

Figure 4.15: Scatter plots of the TSP-20 instance set

Two instances with quaternary tables are solved by AC5TCOpt-Sparse while
triggering a timeout for STR3.

RandRegular The Regular constraint [Pes04] is a global constraint on a se-
quence of variables stating that the values taken by the variables have to form a
word in a given regular language. The regular language is specified by a deter-
ministic finite automaton. This constraint generalizes some other well known
global constraints [Pes04]. Examples of problems where those constraints are
heavily used in CP are rostering problems. In rostering, regular constraints are
used to enforce the valid patterns of activities.

Each regular constraint can be encoded efficiently with a table constraint
[BCDP05, QW06]. Since the length of the sequence is fixed at the number

88 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 100 200 300 400 500 600 700
STR2+: 0

0

100

200

300

400

500

600

700

A
C

5
T
C

O
p

tS
p

a
rs

e
:

0

0 100 200 300 400 500 600
STR3: 0

0

100

200

300

400

500

600

A
C

5
T
C

O
p

tS
p

a
rs

e
:

2

Figure 4.16: Scatter plots of the modified TSP-20 instance set with quaternary tables

4.5 E X P E R I M E N TA L R E S U LT S 89

propagator totTime postTime nProp %best µ%best %solved valChk QvalChk pFollow

GAC3_Allowed 103 7.7 303 k 623 336 60 1 M 0 1 M

AC5TC-Bool 123 6.1 853 k 745 392 60 7 k 881 k 1 M

AC5TC-Sparse 99 4.0 853 k 600 303 67 7 k 881 k 1 M

AC5TC-Recomp 83 3.4 844 k 504 261 73 227 k 0 793 k

AC5TCOpt-Tr 60 44.1 853 k 362 429 93 7 k 0 36 k

AC5TCOpt-Sparse 16.6 7.3 852 k 100 102 93 7 k 0 0

MDDc 130 104.0 303 k 782 934 87 0 0 456 k

STR2+ 34.2 16.0 303 k 207 200 93 80 k 0 0

STR3 43.8 10.6 853 k 265 217 80 7 k 0 0

Table 4.5: Experimental Results on tsp-20 instances with arity 4 tables

of variables in the scope of the global constraint, additional variables can be
introduced to represent the successive states visited in the automaton. For a
regular constraint with scope x1 . . . xr, those state variables are q0 . . . qr. For
all 0 ≤ i < r, a constraint links the variables in the scope and the additional
variables qi+1 = Trans(qi, xi+1), where Trans is the transition function of the
automaton. These constraints are posted using table constraints to encode the
transition function. The tables are computed based on the transition function
and the reachable states. Two additional constraints are posted: q0 = s and
qn ∈ F, where s is the starting state of the automaton and F is its set of final
states.

For these experiments, we generated 100 instances with regular constraints.
These instances contain 20 regular constraints on 10 different variables. Each
regular constraint has a scope of 5 variables, chosen randomly. The domains of
the variables are of size 10. Each regular constraint contains 20 states and has a
randomly created transition table, hence the name of the benchmark: RandReg-
ular. Amongst the states, 30% are randomly chosen to be final. The parameters
were chosen to produce instances with a significant number of fails and choice
points. The regular constraints were transformed into ternary table constraints.
The search strategy used during the resolution was dom/deg variable ordering
with lexicographic variable ordering.

The results of the experiments on the RandRegular instances can be found
in Table 4.6. Figure 4.17 gives the percent best quantities for this instance set.
On this instance set, all our propagators are faster than the existing state-of-the-

90 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

GAC3-Allowed 68 0.1 2 M 205 200 1 M 0 1 M

AC5TC-Bool 40.5 0.0 8 M 122 121 137 462 k 955 k

AC5TC-Sparse 42.6 0.0 8 M 128 128 137 462 k 955 k

AC5TC-Recomp 36.4 0.0 8 M 110 109 288 k 0 766 k

AC5TCOpt-Tr 42.5 0.1 8 M 128 129 137 0 367 k

AC5TCOpt-Sparse 33.2 0.1 8 M 100 100 137 0 0

MDDc 105 0.6 2 M 316 313 0 0 1 M

STR2+ 96 0.0 2 M 288 283 371 k 0 0

STR3 69 0.1 8 M 208 207 137 0 0

Table 4.6: Experimental Results on RandRegular Instances

art ones. The winning strategy is our optimal AC5TCOpt-Sparse. Despite the
large variability in resolution times for a single technique between different
instances, the small differences between the %best and µ%best indicates that
the performances of the propagators are proportional through the whole set.
The arity of the tables (all tables have an arity of 3) as well as their medium
size, which is constant through the set, could explain the good performance of
our algorithms on this instance set.

Scatter plots for the RandReg benchmark are given in Figure 4.18. We can
observe that the solving times are well spread for those instances. We can
also see that AC5TCOpt-Sparse is linearly faster than both STR2+ and STR3,
STR3 being faster than STR2+.

Random Instances These instances contain table constraints randomly gen-
erated by the RD-model [XBHL07]. The parameters were chosen to generate
instances in or close to the phase transition, using Theorems 1 and 2 from
[XBHL07]. The phase transition is the space where the generated instances
transition from being trivially solvable to being trivially unsolvable. Instances
in the phase transition are the hardest to solve. The instances have 10 variables,
a uniform domain size of 10, and 15 table constraints of arity 5. The expected
number of tuples in each table is 20,000. The 10 instances of the set were
generated with those settings. The search strategy was the dom heuristic with
lexicographic value ordering.

4.5 E X P E R I M E N TA L R E S U LT S 91

0 50 100 150 200 250 300 350
Percent Best

RandRegular

GAC3_A

MDD

STR2+

STR3

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.17: Percent best quantities for the RandRegular instance set

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

GAC3-Allowed 3 000 1.5 614 k 2 725 2 660 523 M 0 523 M

AC5TC-Bool 4 636 1.0 2.8 M 4 211 4 070 19 k 257 M 481 M

AC5TC-Sparse 3 991 0.8 2.8 M 3 626 3 538 19 k 257 M 481 M

AC5TC-Recomp 3 874 0.8 2.4 M 3 519 3 357 98 M 0 305 M

AC5TCOpt-Tr 994 5.2 2.8 M 903 930 19 k 0 16 M

AC5TCOpt-Sparse 469 1.7 2.8 M 426 440 19 k 0 0

MDDc 110 12.4 614 k 100 100 0 0 12 M

STR2+ 483 0.7 614 k 439 455 22 M 0 0

STR3 913 2.1 2.8 M 829 839 19 k 0 0

Table 4.7: Results of the propagators on fully random instance set (times in seconds)

92 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 50 100 150 200
STR2+: 0

0

50

100

150

200

A
C

5
T
C

O
p

tS
p

a
rs

e
:

0

0 20 40 60 80 100 120 140 160
STR3: 0

0

20

40

60

80

100

120

140

160

A
C

5
T
C

O
p

tS
p

a
rs

e
:

0

Figure 4.18: Scatter plots of the RandRegular instance set

4.5 E X P E R I M E N TA L R E S U LT S 93

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Percent Best

Random

GAC3_A

MDD

STR2+

STR3

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.19: Percent best quantities for the Random instance set

Table 4.7 summarizes the results. Figure 4.19 plots the percent best quan-
tities for this instance set. The results are similar for other parameter settings
which also generate instances close to the phase transition. The standard MDDc

algorithm outperforms our value-based propagators on all instances, as it has a
µ%best of 100. The performance of our optimal AC5TCOpt-Tr is comparable
to the performance of the optimal STR3 but AC5TCOpt-Sparse is significantly
faster than both. AC5TCOpt-Sparse is the most efficient value based propa-
gator. Observe the large number of validity checks of AC5TC-Recomp and
Q-validity checks of AC5TC-Bool and AC5TC-Sparse, as well as the number
of times they follow a pointer. The two AC5TCOpt implementations perform
the same number of validity checks at post time as the two AC5TC ones, but
they do not require any Q-validity checks afterwards. The difference in perfor-
mance between AC5TCOpt-Tr and AC5TCOpt-Sparse reflects the additional
cost AC5TCOpt-Tr has to pay for trailing its larger data structures. The perfor-
mances of our propagators seems to suffer from the larger arity of the tables as
well as their larger size. Indeed, AC5TC-Recomp, AC5TC-Sparse and AC5TC-
Bool can revisit each tuple r times in the worst case and the trailable structures
of AC5TCOpt-Tr are proportional to r · t.

Figure 4.20 shows the scatter plots of AC5TCOpt-Sparse versus STR2+ and
AC5TCOpt-Sparse versus STR3. In these graphs, we can see that STR2+ and

94 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 100 200 300 400 500 600 700 800
STR2+: 0

0

100

200

300

400

500

600

700

800

A
C

5
T
C

O
p

tS
p

a
rs

e
:

0

0 200 400 600 800 1000 1200 1400
STR3: 0

0

200

400

600

800

1000

1200

1400

A
C

5
T
C

O
p

tS
p

a
rs

e
:

0

Figure 4.20: Scatter plots of the Random Benchmark

AC5TCOpt-Sparse perform similarly. On the other hand, AC5TCOpt-Sparse
is faster than STR3.

The Crossword Problem The Crossword problem is the problem of filling a
predefined grid with words from a dictionary. We used four instance sets from
[Lec]. Those instances were also used to test table constraint propagators in
[Lec11] and [LLY12]. The instances in those sets differ in which dictionary
they use to get the words from. The grids are all the same, and empty. Inside a
set, different grid sizes are used, varying the arity of the table constraints. The
instance set lexVg uses the dictionary defined in [SS05]. Instances in ogdVg
use a French dictionary. The set ukVg uses the UK cryptic solvers dictionary.
The last instance set, wordsVg, uses the dictionary in /usr/dict/words under

4.5 E X P E R I M E N TA L R E S U LT S 95

Linux. The dictionaries used in lexVg and wordsVg are small, leading to small
tables. In contrast, ogdVg and ukVg use large dictionaries, leading to large
tables. Since, for these problems, the same word can be used several times,
only table constraints are used to encode the problem.

The search heuristic used for this problem was dom/deg variable ordering
with lexicographic value ordering. A timeout of 20 minutes was set on the
resolution of the instances. The results concern only the instances for which
none of the propagators timeouts. The grid sizes used in the experiments are:

• for lexVg, 42 instances: 4x{4..8}, 5x5, 6x6, 7x{10..11}, 8x{9..12},
9x{9..13}, 10x{10..14}, 11x{11..15}, 12x{12..16}, 13x{13..17},
14x{14..18}, 15x{15..18}, 16x{16..20}

• for ogdVg, 27 instances: 4x{4..8}, 5x{5..9}, 6x6, 7x7, 13x{16..17},
14x{16..18}, 15x{15..19}, 16x{16..20}

• for ukVg, 23 instances: 4x{4..8}, 5x{5..7}, 6x{6}, 13x17, 14x{16..18},
15x{15..19}, 16x{16..20}

• for wordsVg, 47 instances: 4x{4..8}, 5x{5..7}, 6x6, 7x11, 8x{11..12},
9x{10..13}, 10x{10..14}, 11x{11..15}, 12x{12..16}, 13x{13..17},
14x{14..18}, 15x{15..17}, 16x{16..18}

The four sets contain a total of 139 instances. The arity of each table is fixed
by its grid size. An instance with a grid size of x × y has table constraints of
arity x and y.

The results of the propagators on the Crossword instances can be found
in Table 4.8. The percent best quantities are plotted in Figures 4.21, 4.22,
4.23, and 4.24, for, respectively, the sets of instances lexVg, ogdVg, ukVg,
and wordsVg. Except for AC5TCOpt-Sparse on the lexVg set, both STR3 and
STR2+ are faster than all the other propagators. However, the quantity µ%best
indicates that neither of them is the best on each instance. When compared to
AC5TCOpt-Sparse, they are faster on the easiest and the hardest instances of
the sets but AC5TCOpt-Sparse is faster on the instances of medium difficulty.
On the sets lexVg and ukVg, the two AC5TC propagators have smaller µ%best
than STR2+ and STR3, meaning that they are generally closer to being the best,
instance by instance. Another observation is that although AC5TCOpt-Tr is op-
timal, the non-optimal AC5TC-Bool and AC5TC-Sparse are faster on the four
sets of crossword instances. On the lexVg and the wordsVg sets, AC5TCOpt-
Sparse is the best of our propagators. Surprisingly, on the ogdVg and ukVg, the
best of our propagators is AC5TC-Sparse, followed by AC5TC-Bool. Those

96 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 50 100 150 200 250 300
Percent Best

lexVg

GAC3_A

MDD

STR2+

STR3

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.21: Percent best quantities for the lexVg instance set

two instance sets are the ones where the dictionaries used are the largest, re-
sulting in larger tables. The cost of its large maintained structures seems to
disadvantage AC5TCOpt-Tr on this problem. This characteristic of this bench-
mark, with large arity tables, seems to disadvantage our propagators.

Scatter Plots for ogdVg and wordsVg are given in Figures 4.25 and 4.26, re-
spectively. The integer next to each algorithm is the number of instances solved
by it triggering a timeout for the other algorithm. These two instance sets have
been chosen because ogdVg instances have a large dictionary and wordsVg in-
stances have a small one. For ogdVg, STR2+ is faster than AC5TCOpt-Sparse
except on some instances where their performance is comparable. The STR3
propagator is clearly faster than AC5TCOpt-Sparse except on three non-easy
instances, where AC5TCOpt-Sparse is significantly faster than STR3. AC5TC-
Opt-Sparse is able to solve one instance that STR3 can’t within the time limit.
On wordsVg, the performances of STR2+ and AC5TCOpt-Sparse are compara-
ble, STR2+ being faster in average. STR3 is also faster than AC5TCOpt-Sparse
on this instance set (except for two non-easy instances) but the relative differ-
ence is smaller here than in ogdVg. AC5TCOpt-Sparse is able to solve one
wordsVg instance that caused both STR2+ and STR3 to timeout.

4.5 E X P E R I M E N TA L R E S U LT S 97

propagator totTime postTime nProp %best µ%best valChk QvalChk pFollow

lexVg

GAC3-Allowed 61 0.2 35 k 234 283 9 M 0 9 M
AC5TC-Bool 44.9 0.1 611 k 171 150 2 k 5 M 7 M
AC5TC-Sparse 41.2 0.1 611 k 157 139 2 k 5 M 7 M
AC5TC-Recomp 50 0.1 543 k 192 170 4 M 0 6 M
AC5TCOpt-Tr 66 0.6 611 k 252 378 2 k 0 847 k
AC5TCOpt-Sparse 30.3 0.2 611 k 116 191 2 k 0 0
MDDc 77 7.8 35 k 293 1321 0 0 3 M
STR2+ 31.8 0.2 35 k 121 160 957 k 0 0
STR3 26.2 0.2 611 k 100 167 2 k 0 0

ogdVg

GAC3-Allowed 55 2.9 4 k 264 263 6 M 0 6 M
AC5TC-Bool 41.5 1.2 61 k 200 168 12 k 3 M 4 M
AC5TC-Sparse 37.7 1.0 61 k 182 151 12 k 3 M 4 M
AC5TCRecomp 53 0.9 51 k 254 182 2 M 0 4 M
AC5TCOpt-Tr 122 14.7 61 k 589 563 12 k 0 348 k
AC5TCOpt-Sparse 52 2.8 61 k 249 212 12 k 0 0
MDDc 146 82.0 4 k 704 1703 0 0 1 M
STR2+ 33.6 1.6 4 k 162 180 548 k 0 0
STR3 20.7 3.1 61 k 100 151 12 k 0 0

ukVg

GAC3-Allowed 76 1.3 14 k 244 290 6 M 0 6 M
AC5TC-Bool 67 0.6 373 k 216 243 7 k 4 M 6 M
AC5TC-Sparse 58 0.5 373 k 186 212 7 k 4 M 6 M
AC5TC-Recomp 83 0.4 292 k 267 275 3 M 0 5 M
AC5TCOpt-Tr 175 4.3 373 k 565 482 7 k 0 506 k
AC5TCOpt-Sparse 77 1.2 372 k 247 203 7 k 0 0
MDDc 222 56.0 14 k 713 1110 0 0 3 M
STR2+ 41.9 0.6 14 k 135 128 583 k 0 0
STR3 31.1 1.3 373 k 100 150 7 k 0 0

wordsVg

GAC3-Allowed 63 0.3 20 k 246 296 8 M 0 8 M
AC5TC-Bool 49.5 0.2 362 k 193 161 2 k 5 M 6 M
AC5TC-Sparse 43.9 0.1 362 k 171 148 2 k 5 M 6 M
AC5TC-Recomp 56 0.1 317 k 219 173 3 M 0 5 M
AC5TCOpt-Tr 88 1.1 362 k 345 466 2 k 0 734 k
AC5TCOpt-Sparse 39.6 0.3 362 k 155 207 2 k 0 0
MDDc 84 11.8 20 k 328 1840 0 0 2 M
STR2+ 35.4 0.3 20 k 138 180 921 k 0 0
STR3 25.6 0.4 362 k 100 169 2 k 0 0

Table 4.8: Experimental Results on Crosswords instances

98 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 100 200 300 400 500 600 700 800
Percent Best

ogdVg

GAC3_A

MDD

STR2+

STR3

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.22: Percent best quantities for the ogdVg instance set

0 100 200 300 400 500 600 700 800
Percent Best

ukVg

GAC3_A

MDD

STR2+

STR3

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.23: Percent best quantities for the ukVg instance set

4.5 E X P E R I M E N TA L R E S U LT S 99

0 50 100 150 200 250 300 350
Percent Best

wordsVg

GAC3_A

MDD

STR2+

STR3

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.24: Percent best quantities for the wordsVg instance set

The Modified Renault Problem The modified Renault problem instances
originate from a Renault Megane configuration problem. This problem has
been modified in order to generate a series of instances. These instances have
large tables (up to 50 k tuples) of large arities (up to arity 10). These instances
can be found in [Lec]. The search strategy used was dom/deg variable ordering
with lexicographic value ordering. A timeout of 20 minutes was set. The results
concern only the instances for which none of the propagators timed out. The set
of instances found on [Lec] has 50 instances. Amongst them, 16 were solved
by all propagators within the time limit. The percentage of those 50 instances
solved by each individual propagator is also given in the table.

The experimental results for the Modified Renault Problem are given in Ta-
ble 4.9. Figure 4.27 plots the percent best quantities for this instance set. STR2+
is the fastest propagator on this instance set and it is the fastest on each in-
stance. Our optimal AC5TCOpt-Sparse is faster than STR3 and it solves one
instance more. However, STR3 is faster than our other propagators. Observe
the difference in the number of calls to the propagator between the value based
and constraint based propagators, giving advantage to the constraint based ap-
proaches. The difference in the number of calls between AC5TCOpt-Sparse
and the group AC5TCOpt-Tr, AC5TC-Sparse and AC5TC-Bool comes from
the order in which the tuples are visited during propagation. Indeed, all our

100 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 200 400 600 800 1000
STR2+: 0

0

200

400

600

800

1000

A
C

5
T
C

O
p

tS
p

a
rs

e
:

0

0 200 400 600 800 1000
STR3: 2

0

200

400

600

800

1000

A
C

5
T
C

O
p

tS
p

a
rs

e
:

1

Figure 4.25: Scatter plots of the crossword instance set ogdVg

4.5 E X P E R I M E N TA L R E S U LT S 101

0 200 400 600 800 1000
STR2+: 0

0

200

400

600

800

1000

A
C

5
T
C

O
p

tS
p

a
rs

e
:

1

0 200 400 600 800 1000 1200
STR3: 0

0

200

400

600

800

1000

1200

A
C

5
T
C

O
p

tS
p

a
rs

e
:

1

Figure 4.26: Scatter plots of the crossword instance set wordsVg

102 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

propagator totTime postTime nProp %best µ%best %solved valChk QvalChk pFollow

GAC3-Allowed 16.5 1.4 39 k 307 215 34 286 k 0 286 k

AC5TC-Bool 14.4 0.8 268 k 268 202 32 1 k 128 k 221 k

AC5TC-Sparse 13.2 0.6 268 k 244 178 32 1 k 128 k 221 k

AC5TC-Recomp 12.1 0.5 227 k 224 174 32 67 k 0 155 k

AC5TCOpt-Tr 14.5 4.5 268 k 269 389 36 1 k 0 33 k

AC5TCOpt-Sparse 7.6 1.6 275 k 141 176 36 1 k 0 0

MDDc 17.9 15.4 39 k 332 642 36 0 0 21 k

STR2+ 5.4 0.6 39 k 100 100 36 25 k 0 0

STR3 10.4 1.7 268 k 193 198 34 1 k 0 0

Table 4.9: Experimental Results on the modified Renault problem

propagators visit the tuples in the order of the table, except AC5TCOpt-Sparse.
This results in a difference in the order of the values in the propagation queue,
and hence a difference in the number of calls to the propagators. AC5TC-
Recomp has less calls due to its use of the validity, allowing it to compute a
larger4. Although the large arity of the tables seems to slow our propagators,
AC5TCOpt-Sparse is the less impacted.

Scatter plots for these instances can be found in Figure 4.28. Next to each al-
gorithm is the number of instances solved by it that the other algorithm was un-
able to solve within the time limit. Although the spreading of the solving time
is not good, these plots confirm the tendency exhibited by the average solving
time in the table: STR2+ is faster than AC5TCOpt-Sparse, and AC5TCOpt-
Sparse is faster than STR3. We can also observe that AC5TCOpt-Sparse solves
one instance that STR3 was unable to solve within the time limit.

Summary Table 4.10 gives a summary of the per benchmark percent to the
best mean time. The names of our propagators have been shortened by remov-
ing the prefix ’AC5TC’. GAC3_Allowed has been shortened to ’GAC3_A’.
This table shows the effect of the arity of the table constraints on the propa-
gators. The benchmarks are put into three categories, depending on the arity
of the table constraints: binary benchmarks, small arity benchmarks (arities 3
and 4), and large arity benchmarks. For the benchmarks containing only binary
table constraints, AC3rm is clearly the fastest propagator. However, on those
benchmarks, our propagators are generally faster than the existing state-of-the-

4.5 E X P E R I M E N TA L R E S U LT S 103

0 50 100 150 200 250 300 350
Percent Best

modRenault

GAC3_A

MDD

STR2+

STR3

AC5TCBool

AC5TCSparse

AC5TCRecomp

AC5TCOptTr

AC5TCOptSparse

Figure 4.27: Percent best quantities for the modified Renault instance set

art MDDc, STR2+ and STR3. AC3rm has been designed for binary constraints.
For the benchmarks where the tables have arities of up to 4, our propagators
are globally the fastest propagators. However, when the arity of the tables in
the benchmarks increases, our propagators become slower than the state of
the art. The existing state-of-the-art propagators considered in this chapter are
well suited for problems where the arity is large. The MDDc propagator is the
fastest on the random instances. On this set, despite the random tables, its com-
pressed table is small, allowing it to outperform the other propagators. The
optimal STR3 propagator is the fastest on the crossword instances. STR2+ is
the fastest on the modified Renault benchmark. Although it would be statisti-
cally meaningless to average the %best in Table 4.10, it is clear that on these
benchmarks, our optimal AC5TCOpt-Sparse is the fastest among our propa-
gators. It stays competitive with AC3rm on half of the binary benchmarks, it
is globally the best on the small arity benchmarks, and on some of the large
arity benchmarks, its performances are competitive with the state of the art.
The non-optimal AC5TC-Recomp and the optimal propagator AC5TCOpt-Tr
are the next fastest ones of our propagators. AC5TC-Tr outperforms AC5TC-
Recomp on difficult instances. However, on easier instances, the cost of its
trailable nextTr data structure makes it slower than AC5TC-Recomp. AC5TC-
Bool and AC5TC-Sparse are generally slower than AC5TC-Recomp since they

104 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 100 200 300 400 500 600 700 800
STR2+: 0

0

100

200

300

400

500

600

700

800

A
C

5
T
C

O
p

tS
p

a
rs

e
:

0

0 200 400 600 800
STR3: 0

0

200

400

600

800

A
C

5
T
C

O
p

tS
p

a
rs

e
:

1

Figure 4.28: Scatter plots of the modified Renault instance set

4.6 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S 105

Benchmark GAC3_A Bool Sparse Recomp OptTr OptSparse MDDc STR2+ STR3 AC3 AC3rm

geom 276 341 295 216 263 178 401 680 413 283 100

Langford(2) 315 358 323 195 182 126 512 514 456 218 100

Langford(3) 395 553 398 244 342 227 608 585 639 223 100

Langford(4) 477 867 608 347 445 250 637 677 802 238 100

TSP-20 1 073 251 207 146 162 100 614 536 305 - -

TSP-25 931 370 273 185 153 100 701 527 325 - -

TSP-Quat-20 623 745 600 504 362 100 782 207 265 - -

RandRegular 205 122 128 110 128 100 316 288 208 - -

Random 2 725 4 211 3 626 3 519 903 426 100 439 829 - -

CW-LexVg 234 171 157 192 252 116 293 121 100 - -

CW-ogdVg 264 200 182 254 589 249 704 162 100 - -

CW-ukVg 244 216 186 267 565 247 713 135 100 - -

CW-wordsVg 246 193 171 219 345 155 328 138 100 - -

modified Renault 307 268 244 224 269 141 332 100 193 - -

Table 4.10: Summary of the experimental results: %best

test Q-validity, not validity, and hence make smaller jumps in the table. How-
ever, on the crossword instances, the two AC5TC algorithms are faster than
AC5TC-Recomp on all instance sets and even than AC5TCOpt-Sparse on two
of the four sets. Also, AC5TCOpt-Sparse is always faster than AC5TCOpt-
Tr, confirming the additional cost AC5TCOpt-Tr has to pay for its backtrack-
able structures. AC5TC-Sparse is also always faster than AC5TC-Bool, for the
same reasons.

4.6 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S

This section is concerned with the application of the statistical procedure pre-
sented in Chapter 3 to the experimental results for the propagators in this chap-
ter. In this context, as timeouts are present and there are several classes of in-
stances, we will use the θ5 statistic of interest. Recall that θ5 is the mean width
of the area between the multi-class cumulative distributions of the algorithms
being compared. This represents the mean, over the different proportions of the
whole instance set, of the differences of the times the algorithms take to solve
the given proportions of the set. In multi-class empirical distributions, each

106 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

class of instances has a weight. The weights used in this section are designed
to give similar importances to each type of set of instances, with the excep-
tion of the non-academic data sets (modified Renault and TSP), which receive
more importance, and the fully random data sets, which receive less impor-
tance. For instance, each Langford dataset (Langford 2,3 and 4) gets one-third
of the weight given to the geom dataset, in order to give the same importance
to the Langford type as to the geom one. Larger datasets do not have a larger
impact than small ones, as the number of instances in each dataset appears as
the denominator of the contribution of the dataset in θ̂5. In order to illustrate
the bootstrapped results, the non-bootstrapped multi-class empirical cumula-
tive distributions of the algorithms are given in Figures 4.29 and 4.30. Recall
that the multi-class empirical cumulative distribution for an algorithm A gives,
for each time t, the weighted proportion of the full instance set solved by A
in a time less than or equal to t. Figure 4.29 gives the MECDs of all the algo-
rithms developed in this chapter. In this figure, we can see that the two optimal
propagators, AC5TCOpt-Tr and AC5TCOpt-Sparse, are clearly faster than the
other non-optimal ones. AC5TCOpt-Sparse is globally the fastest and it is the
one that solves the largest proportion of instances at the end. Among the non-
optimal propagators, AC5TC-Recomp seems to be the fastest. This may be
explained by the fact that the structures that AC5TC-Recomp is able to reach
the (same) fixed point faster by performing more pruning at each call of the
propagator. Figure 4.30 gives the MECDs of our best propagator (AC5TCOpt-
Sparse) versus the state of the art. As we can see, AC5TCOpt-Sparse is globally
the fastest propagator and solves the largest proportion of instances at the end.
However, for small solving times, the MDDc propagator seems to be faster
than AC5TCOpt-Sparse. Among the state of the art, MDDc is the fastest for
small solving times and STR3 becomes the faster for large solving times.

Bootstrapping was used on the estimator of θ5 to get a confidence interval.
The results of the pairwise comparisons of the algorithms are given in Table
4.31. The confidence intervals are written with the lower bound on top of the
upper bound. To obtain these confidence intervals, 10,000 bootstrap samples
were drawn from the full set of experiments and a confidence level α of 0.05
was used. The numbers correspond to seconds. The entry in the table in the line
of algorithm A and the column of algorithm B gives the confidence interval on
θ5(A, B). Positive values correspond to A’s being faster than B in general (all
the instances included). If 0 is outside the confidence interval for θ5(A, B),
then A and B have significant performance differences. As AC3 and AC3rm
are designed for binary constraints only, they are left out of the comparison.
The convention for naming the algorithms is the same as the one used in Table

4.6 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S 107

0 2000 4000 6000 8000 10000 12000 14000
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

proportion
 instances

 solved

AC5TCRecomp
AC5TCBool
AC5TCSparse
AC5TCOptTr
AC5TCOptSparse

Figure 4.29: Non bootstrapped multi-class empirical cumulative distributions of the
algorithms developed in this chapter

108 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

0 5000 10000 15000 20000 25000 30000
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

proportion
 instances

 solved

STR2+
MDD
STR3
AC5TCOptSparse

Figure 4.30: Non bootstrapped multi-class empirical cumulative distributions of
AC5TCOptSparse and the state of the art

4.6 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S 109

GAC3_A Recomp Bool Sparse OptTr STR2+ MDD STR3 OptSparse

GAC3_A – -936.5 -339.6 -684.5 -1476.5 -1246.4 -1025.5 -1304.5 -1624.3

29 441.6 163.1 -349.7 -337.6 -360.3 -320 -404.9

Recomp -29 – 124.9 12.2 -725.7 -639.7 -530.5 -583.2 -874.5

936.5 462.6 220.2 -242.3 -24 214.9 -124.4 -329.7

Bool -441.6 -462.6 – -294.9 -1113.6 -1015.1 -987.8 -1018.8 -1244.7

339.6 -124.9 -98.4 -425.3 -383.4 -292.1 -417.9 -476.3

Sparse -163.1 -220.2 98.4 – -873.5 -776.5 -715.9 -735.6 -994

684.5 -12.2 294.9 -321.3 -224.7 -31.8 -264 -404.6

OptTr 349.7 242.3 425.3 321.3 – -14.5 -83 11.9 -220.7

1476.5 725.7 1113.6 873.5 440.7 608.9 236.3 -90.8

STR2+ 337.6 24 383.4 224.7 -440.7 – -153.9 -200.8 -632.2

1246.4 639.7 1015.1 776.5 14.5 305.6 108.5 -62.9

MDD 360.3 -214.9 292.1 31.8 -608.9 -305.6 – -426.9 -764.4

1025.5 530.5 987.8 715.9 83 153.9 137.8 -23.5

STR3 320 124.4 417.9 264 -236.3 -108.5 -137.8 – -408.4

1304.5 583.2 1018.8 735.6 -11.9 200.8 426.9 -101.7

OptSparse 404.9 329.7 476.3 404.6 90.8 62.9 23.5 101.7 –

1624.3 874.5 1244.7 994 220.7 632.2 764.4 408.4

Figure 4.31: Confidence intervals for the θ5 statistic of interest on the GAC propa-
gators for table constraints. The values correspond to seconds and the
confidence intervals are given with the lower bound on top of the upper
bound.

4.10. In bold are the confidence intervals that are significant (0 outside the
interval) and positive (algorithm in the row is faster).

In Table 4.31, we can see that AC5TCOpt-Sparse is significantly faster
than all the other propagators. Our propagators AC5TCOpt-Tr and AC5TCOpt-
Sparse (optimal time complexity) are significantly faster than all our other
propagators (non-optimal time complexities) and than the STR3 propagator.
The only optimal propagator significantly faster than MDDc and STR2+ is
our AC5TCOpt-Sparse. The confidence intervals for the other optimal prop-
agators versus MDDc and STR2+ contain 0. GAC_allowed is significantly
slower than all the algorithms except our non-optimal propagators (AC5TC-
Recomp, AC5TC-Bool and AC5TC-Sparse), as 0 is in the confidence interval.
Despite recomputing information, AC5TC-Recomp is significantly faster than
all our propagators that do not have an optimal time complexity. The non-
optimal STR2+ is significantly faster than all our non-optimal propagators.

110 Chapter 4 G AC P RO PAG ATO R S F O R TA B L E C O N S T R A I N T S

The non-optimal MDDc propagator is significantly faster than AC5TC-Bool
and AC5TC-Sparse, but not AC5TC-Recomp. The optimal STR3 propagator
is only significantly slower than our optimal propagators AC5TCOpt-Tr and
AC5TCOpt-Sparse.

5
T H E S M A RT TA B L E
C O N S T R A I N T

The biggest problem with table constraints are their size and lack of structure.
Several approaches have been proposed to cope with their sizes (see Section
2.2). Among those approaches, some propose an alternative representation of
the tables that involves compression. Such propagators are called compression-
based. Some compression-based propagators propose modifying the definition
of the tuples inside the table to obtain tables with fewer tuples. Compressed
tuples [KW07, Rég11, XY13] introduce sets of values inside the tuples. A
single compressed tuple represents all the tuples in the Cartesian product of
the sets. This modification of the definition of tuples reduces the sizes of the
tables and re-introduces structure inside the table constraints: similar tuples
can be compressed into one compressed tuple. Another compression-based
propagator [JN13], applying short supports to table constraints, allows vari-
ables to be left out of the tuples. A single short support tuple represents all
the tuples where left-out variables take any values of their domains, the other
variables taking the same values. Again, the tables are shorter and structure
is re-introduced into the tables. These two modifications of the definition of
tuples allow the development of efficient propagators, using their definition
of tuples to advantage. In this chapter, we propose to generalize both com-
pressed tuples and short supports in table constraints by introducing simple

111

112 Chapter 5 T H E S M A RT TA B L E C O N S T R A I N T

arithmetic constraints inside the tuples. We call such tuples smart tuples, and
tables containing smart tuples smart tables. For instance, the following set of
tuples {(1, 2, 1), (1, 3, 1), (2, 2, 2), (2, 3, 2), (3, 2, 3), (3, 3, 3)} on the vari-
ables {x1, x2, x3} with domains {1, 2, 3} can be represented by a smart table
containing only one smart tuple:

x1 x2 x3

= x3 ≥ 2 ∗

or in an equivalent form by (x1 = x3, x2 ≥ 2). A symbol ∗ in the tabular form
of a smart tuple means that if not occurring anywhere else, the corresponding
variable is not constrained at all by the tuple (which is not the case here).

To motivate the employment of smart tables, let us consider a car configura-
tion problem. We assume that the cars to be configured have two colors (one
for the body, colB, and the other for the roof, colR), a model number modNum,
an option pack optPack, and an onboard computer comp. A configuration rule
might state that, for a particular model number a and some fancy body color
set S, an option pack less than a certain pack b implies that the onboard com-
puter cannot be the most powerful one, c, and that the roof color has to be the
same as the body color. This configuration constraint can be written as

modNum = a ∧ colB ∈ S ∧ optPack < b

⇒

comp 6= c ∧ colR = colB

The encoding of this constraint with a smart table consists of four smart
tuples: (modNum 6= a), (colB 6∈ S), (optPack ≥ b) and (comp 6= c, colR =

colB), which gives under tabular form:

modNum colB colR optPack comp

6= a ∗ ∗ ∗ ∗

∗ 6∈ S ∗ ∗ ∗

∗ ∗ ∗ ≥ b ∗

∗ ∗ = colB ∗ 6= c

Encoding this constraint with classical tuples is exponentially larger, and
even using compressed tuples or short supports results in a table that is strictly

5.1 S Y N TA X A N D S E M A N T I C S 113

longer because none of these techniques can be used to encode compactly the
relation existing between colB and colR (they require, for this case, one distinct
tuple for each possible color). On the other hand, using reification (decomposi-
tion by adding auxiliary variables) of the configuration rule does not guarantee
the same level of pruning as the smart table encoding, since there is a cycle to
handle.

Related Publication

[MDL15] Jean-Baptiste Mairy, Yves Deville and Christophe Lecoutre,
"The Smart Table Constraint", Integration of AI and OR Techniques in
Constraint Programming (CPAIOR) 2015

5.1 S Y N TA X A N D S E M A N T I C S

A table constraint is a constraint whose semantics is defined in extension by
listing the set of allowed (or forbidden) tuples. These tuples are classical. In
this chapter, we introduce smart table constraints. A smart table constraint sc
is defined semantically from a set of smart tuples, called a smart table and
denoted by table(sc). A smart tuple σ is a set of tuple constraints, where a
tuple constraint can take four possible forms:

1. <var> <op> a

2. <var> ∈ S, <var> 6∈ S

3. <var> <op> <var>

4. <var> <op> <var> + b

where <var> is a variable in the scope of the smart table constraint, a and
b are constants, S is a set of constants, and <op> is an operator on the set
{<,≤,=, 6=,≥,>}.

The semantics of smart table constraints is simple and natural: a classical
tuple τ is allowed by a smart table constraint sc iff there exists at least one
smart tuple σ ∈ table(sc) such that τ satisfies σ. A variable can be constrained
multiple times. Note that when a variable x ∈ scope(sc) is not involved in any
tuple constraint of a smart tuple σ ∈ table(sc), then x can take any value
in its domain: such a variable is said to be unrestricted on σ and the set of
unrestricted variables on σ is denoted by unres(σ). Note also that any classical
tuple (a1, . . . , ar) on a set of variables {x1, . . . , xr} can be re-written as a smart
tuple: {x1 = a1, . . . , xr = ar}.

114 Chapter 5 T H E S M A RT TA B L E C O N S T R A I N T

As seen in the Introduction, smart tuples can help model constraints in a
compact and natural way, when disjunction is needed. Smart table constraints
can also be used to encode some global constraints. The encodings of Lex,
Max, Element and NotAllEqual are smart table constraint versions of the ones
proposed in [BW05]. In the examples below, tuple constraints are written di-
rectly inside the tables to ease reading. A tuple constraint of the form xi <op>
a (resp. xi <op> xj + b) is written as <op> a (resp. <op> xj + b) in the
column of the table corresponding to xi. The following global constraints il-
lustrate the modeling power of the smart table constraint. Their equivalent rep-
resentation with classical tuples are exponentially larger. For instance, in the
table for the element constraint, each smart tuple corresponds to dm classical
tuples. For compressed tuples, if only one variable is the target of all the tuple
constraints, each smart tuple can be translated as d compressed tuples. This is
the case for all the global constraints presented below except for Lex. For this
constraint, the smart table is O(dm) times smaller than the table using com-
pressed tuples. Short supports applied to table constraint can only efficiently
encode unrestricted variables, making the encoding of each smart tuple O(dm)

tuples with short supports for Lex, Max, Min, Exactly1 and AtMost1. Global
constraints are of course not the sole purpose of the smart table constraints but
being able to efficiently encode those constraints has many advantages.

Lex([x1, . . . , xm], [y1, . . . , ym]): x̄ > ȳ

x1 x2 . . . xm y1 y2 . . . ym

> y1 ∗ . . . ∗ ∗ ∗ . . . ∗

= y1 > y2 . . . ∗ ∗ ∗ . . . ∗

. .

= y1 = y2 . . . > ym ∗ ∗ . . . ∗

5.1 S Y N TA X A N D S E M A N T I C S 115

Max ([x1, x2, . . . , xm], M): max(x̄) = M

x1 x2 . . . xm M

∗ ≤ x1 . . . ≤ x1 = x1

≤ x2 ∗ . . . ≤ x2 = x2

.

≤ xm ≤ xm . . . ∗ = xm

Min([x1, x2, . . . , xm], M): min(x̄) = M

x1 x2 . . . xm M

= M ≥ M . . . ≥ M ∗

≥ M = M . . . ≥ M ∗

.

≥ M ≥ M . . . = M ∗

Element(I, [x1, x2, . . . , xm], R): X[I] = R

I x1 x2 . . . xm R

= 1 ∗ ∗ . . . ∗ = x1

= 2 ∗ ∗ . . . ∗ = x2

.

= m ∗ ∗ . . . ∗ = xm

116 Chapter 5 T H E S M A RT TA B L E C O N S T R A I N T

Exactly1 ([x1, x2, . . . , xm], Y): #{1 ≤ i ≤ m|xi = Y} = 1

x1 x2 . . . xm Y

= Y 6= Y . . . 6= Y ∗

6= Y = Y . . . 6= Y ∗

.

6= Y 6= Y . . . = Y ∗

AtLeast1 ([x1, x2, . . . , xm], Y): #{1 ≤ i ≤ m|xi = Y} ≥ 1

x1 x2 . . . xm Y

= Y ∗ . . . ∗ ∗

∗ = Y . . . ∗ ∗

.

∗ ∗ . . . = Y ∗

AtMost1([x1, . . . , xm], Y): #{1 ≤ i ≤ m|xi = Y} ≤ 1

x1 x2 . . . xm Y

∗ 6= Y . . . 6= Y ∗

6= Y ∗ . . . 6= Y ∗

.

6= Y 6= Y . . . ∗ ∗

5.1 S Y N TA X A N D S E M A N T I C S 117

NotAllEqual(x1, . . . , xm): ∃1 ≤ i, j ≤ m : xi 6= xj

x1 x2 x3 . . . xm

∗ 6= x1 ∗ . . . ∗

∗ ∗ 6= x1 . . . ∗

.

∗ ∗ ∗ . . . 6= x1

VectorDiff([x1, . . . , xm], [y1, . . . , ym]): x̄ 6= ȳ

x1 x2 . . . xm y1 y2 . . . ym

∗ ∗ . . . ∗ 6= x1 ∗ . . . ∗

∗ ∗ . . . ∗ ∗ 6= x2 . . . ∗

. .

∗ ∗ . . . ∗ ∗ ∗ . . . 6= xm

Diffn([x1, . . . , xm], [i1, . . . , im], [y1, . . . , ym], [j1, . . . , jm]):
no overlap between orthotopes defined in Rm from points x̄ and ȳ with lengths
along axes of ī and j̄ respectively.

x1 x2 . . . xm y1 y2 . . . ym

∗ ∗ . . . ∗ ≥ x1 + i1 ∗ . . . ∗

≥ y1 + j1 ∗ . . . ∗ ∗ ∗ . . . ∗

∗ ∗ . . . ∗ ∗ ≥ x2 + i2 . . . ∗

∗ ≥ y2 + j2 . . . ∗ ∗ ∗ . . . ∗

. .

∗ ∗ . . . ∗ ∗ ∗ . . . ≥ xm + im

∗ ∗ . . . ≥ ym + jm ∗ ∗ . . . ∗

118 Chapter 5 F I LT E R I N G S M A RT TA B L E C O N S T R A I N T S

5.2 F I LT E R I N G S M A RT TA B L E C O N S T R A I N T S

This section presents a filtering algorithm to establish GAC on smart table
constraints. As explained in Section 2.1, GAC is a property that relies on the
concept of support. In general, identifying the set of supports of a constraint
allows us to enforce GAC. All literals appearing in the set of supports are
supported and thus GAC. This is the technique we will use to filter smart table
constraints. The set of supports for a classical table constraint is the set of valid
tuples. For smart table constraints, the set of supports is the union of the sets of
supports of each smart tuple. Indeed, a single smart tuple can represent several
classical tuples. Actually, for any smart table constraint sc, each smart tuple σ

corresponds to a small CSP Pσ = (Xσ, Cσ), with Xσ = scope(sc) and Cσ = σ.
The classical tuples that are supports of sc from σ are exactly the solutions in
sols(Pσ). Hence, the full set of supports of sc is equal to

⋃
σ∈table(sc) sols(Pσ).

This is similar to the way sets of supports are computed for constructive dis-
junction.

Our objective is to efficiently identify and remove valid literals of sc without
any support. It may seem costly to compute sols(Pσ) for every smart tuple σ.
Obtaining the set of supports for an arbitrary logical combination of constraints
is NP-hard [BW05]. However, we impose that the constraint graph of any CSP
Pσ that is associated with a smart tuple σ, is acyclic. We also have that the
constraints in Pσ form one conjunction, as all the constraints of a CSP have to
be respected. This restriction allows an efficient processing of the smart tuples
when used for filtering.

Property 1. Let σ be a smart tuple of a smart table constraint. P′σ, the GAC
closure of Pσ, is globally consistent, i.e., each literal of P′σ appears in at least
one solution of Pσ.

This property is derived from [MF85] and the acyclic nature of the constraint
graphs defined by smart tuples. This means that the set of literals in sols(Pσ)

is the set of generalized arc consistent literals of Pσ.
Obtaining the GAC closure on each of the Pσ and taking their union at the

end to have the set of supported literals corresponds exactly to an application
of the filtering rules defined in [BW05], when seeing the smart table constraint
as a logical combination of basic arithmetic constraints. The acyclic nature of
the conjunctions in the smart tuples guarantees that the set of supported literals
computed by this procedure is the set of GAC literals for the logical combina-
tion of arithmetic constraints by Theorem 3 in [BW05]. Hence, this procedure
is correct and computes the GAC literals for the smart table constraint.

F I LT E R I N G S M A RT TA B L E C O N S T R A I N T S 119

Moreover, the complexity of filtering Pσ can also benefit from the form of
the smart tuples, as expressed below.

Property 2. The GAC closure of an acyclic binary CSP with e constraints can
be obtained in O(e · F), where filtering an individual constraint if O(F).

The procedure for obtaining the GAC closure of an acyclic binary CSP
P = (X, C) is the following. As the CSP is acyclic, its constraint network
forms a set of trees. Each tree is a connected component of the constraint net-
work of the CSP. Each tree corresponds to an independent CSP, as two trees
do not share variables (different connected components). We will call the set
of CSPs resulting from the decomposition of a CSP P the forest of P (as it is a
set of trees). Each CSP in a forest can be filtered independently since no vari-
able is shared between them. For each tree T in a forest, revising constraints
in turn from the deepest ones to the shallowest ones, and then the other way
around, achieves GAC on T, thanks to its tree shape. Each constraint in C is
thus revised two times and no fixed point needed. Revising a constraint c con-
sists in removing the literals that have no support on c. We call this procedure
GAC_tree. GAC_tree, as well as properties 1 and 2, are not original to this
work, but they justify the filtering procedure of the smart table constraints.

Applying GAC_tree to a smart tuple σ of a constraint sc requires decompos-
ing σ according to its connected components: the result of this decomposition
will be denoted by forest(σ). More precisely, for each subset cc ⊆ σ that rep-
resents a connected component, there is an associated tree T in forest(σ) that
defines an independent sub-CSP (XT, CT) with XT = vars(cc) and CT = cc.
We shall refer to such sub-CSPs with tree shape as treeCSPs. An additional
void tree T defining a trivial sub-CSP (XT, CT) with XT = unres(σ) and
CT = ∅ is introduced if unres(σ) 6= ∅. This guarantees that sols(Pσ) =

ΠT∈trees(σ)sols(T), which results from the independence of the trees w.r.t. each
other.

The filtering algorithm proposed for smart table constraints, called smart-
STR, works with the decompositions into treeCSPs instead of working di-
rectly with the smart tuples. It is inspired by STR (Simple Tabular Reduction)
[Ull07, Lec11]. STR works by scanning constraint tables, going through each
tuple sequentially. The validity of each row is checked. When a row is not
valid, it is removed from the table. Otherwise, all the literals of the row are
marked as having a support. After scanning the whole table, all the literals for
which no support has been found are removed. The difference between STR
and smartSTR is the way the validity checks and the collection of supported
literals are performed. A smart tuple σ is valid iff Pσ admits at least one solu-
tion. A smart tuple σ is thus valid iff each treeCSP in forest(σ) admits at least

120 Chapter 5 F I LT E R I N G S M A RT TA B L E C O N S T R A I N T S

one solution. The literals supported by σ are the literals in sols(Pσ) (obtained
with GAC_tree). The supported literal set is then the union of the supported
literal sets of each individual treeCSP in forest(σ).

Algorithm 13 presents the pseudo-code of smartSTR. It uses a data structure
sl that contains all the literals without any found support (sl stands for support-
less). Line 3 initializes sl with all valid literals (no support has been found yet).
Then the algorithm loops over all the smart tuples of the constraint (line 4).
The test at line 5 checks the validity of the current smart tuple by testing the
validity of all its treeCSPs. If the smart tuple σ is valid, each of its independent
treeCSP removes from sl the literals they support (loop at lines 6–7). The loop
at line 8 empties the sets sl of all unrestricted variables on σ, as there is no
restriction on those variables (actually, this corresponds to dealing with the
void tree that is not in practice included in forest(σ)). If the smart tuple is
invalid, it is removed from the table (line 9). The table has to be maintained
during the search as it depends on the current domains. To have an efficient
removal and restoration procedure, the table of the constraint is encoded with
a sparse set data structure, as in STR1 and STR2. After going through all the
smart tuples of the constraint, smartSTR removes the literals that are still left
without a support (loop at line 10).

1 smartSTR(SmartTableConstraint sc):
2 // post: the constraint sc is GAC
3 forall x ∈ scope(sc): sl(sc)[x]← D(x)
4 forall σ ∈ table(sc):
5 if (∧T∈forest(σ)T.isValid()):
6 forall T ∈ forest(σ):
7 T.collect(sl(sc))
8 forall x ∈ unres(σ): sl(sc)[x]← ∅
9 else: remove σ from table(sc)

10 forall x ∈ scope(sc):
11 D(x)← D(x) \ sl(sc)[x]

Algorithm 13: smartSTR

As seen in Algorithm 13, each treeCSP is responsible for checking its va-
lidity and removing from sl the literals it supports. This is done through the
methods isValid and collect. Their specifications can be found in Inter-
face 1, called TreeCSP. Note that a treeCSP involves a set of variables vars and
belongs to the forest of a smart tuple σ.

From now on, the treeCSPs that are composed of only one constraint will
be called branches. In the code presented below, we have specific classes for

F I LT E R I N G S M A RT TA B L E C O N S T R A I N T S 121

1 interface TreeCSP
2 fields: Variable[] vars
3 isValid()
4 // post: returns true iff the treeCSP is valid
5 collect(Set{Value}[] sl)
6 // pre: the smart tuple σ, such that the treeCSP
7 // is in forest(σ), is valid
8 // post: ∀x ∈ vars, ∀a ∈ D(x), (x, a) has a
9 // support in the treeCSP⇒ a 6∈ sl[x]

Interface 1: Interface for treeCSPs

unary branches (containing a tuple constraint of the form <var> <op> a, or
<var> ∈ S), and binary branches (containing a tuple constraint of the form
<var> <op> <var> , or <var> <op> <var> + b). There is one unary and
binary branch class for each value of <op> . We also introduce one class for
simple trees (trees of height 1 consisting of multiple branches all sharing the
same root variable) and another one for general trees (trees of height > 1).

Algorithms 14, 15, 16 and 17 present the classes for unary branches with op-
erations =, 6=, < and ∈ respectively. The pseudo-code for the other operators
is very similar. The additional method filterX, not contained in Interface
1, is responsible for filtering the (pseudo) domain Dx given as argument. It
is used by simple and general trees, where GAC has to be enforced on sev-
eral branches. Dx is used to avoid filtering directly D(x), because an effective
filtering can only be done when all smart tuples have been processed.

1 class UnaryBranchEq:TreeCSP /* x = a */
2 fields: Variable x, Value a
3 isValid(): return a ∈ D(x)
4 collect(sl): sl[x]← sl[x] \ {a}
5 filterX(Dx): Dx ← Dx ∩ {a}

Algorithm 14: Classes for unary branche =

Algorithms 18, 19 and 20 present the classes introduced for binary branches
with operations =, 6= and <, respectively. Again, the pseudocode for the other
operators is very similar. In their pseudocode, S ⊕ b, where S is a set and
b a value, represents the addition of the constant to all the values in the set.
The definition of 	 is similar. When the domain of a variable x contains only
one value, D(x) is considered as a value, and classical operators + and −
are applied. They all implement the method filterX, as unary branches do,

122 Chapter 5 F I LT E R I N G S M A RT TA B L E C O N S T R A I N T S

1 class UnaryBranchNe:TreeCSP /* x 6= a */
2 fields: Variable x, Value a
3 isValid(): return #D(x) > 1∨ a 6∈ D(x)
4 collect(sl): sl[x]← sl[x] ∩ {a}
5 filterX(Dx): Dx ← Dx \ {a}

Algorithm 15: Classes for unary branche 6=

1 class UnaryBranchLt:TreeCSP /* x < a */
2 fields: Variable x, Value a
3 isValid(): return min(D(x)) < a
4 collect(sl):
5 sl[x]← sl[x] \ {b ∈ D(x) : b < a}
6 filterX(Dx): Dx ← Dx \ {b ∈ Dx : b ≥ a}

Algorithm 16: Classes for unary branche <

1 class UnaryBranchIn:TreeCSP /* x ∈ S */
2 fields: Variable x, Set S
3 isValid(): return ∃a ∈ S : a ∈ D(x)
4 collect(sl):
5 sl[x]← sl[x] \ S
6 filterX(Dx): Dx ← Dx∩ S

Algorithm 17: Classes for unary branche ∈

F I LT E R I N G S M A RT TA B L E C O N S T R A I N T S 123

but with two parameters (Dx and Dy). Dx is the copy of the domain of x to
filter and Dy is a domain for y to use to filter Dx. The second parameter is
needed during the execution of GAC_tree to use an already filtered copy of the
domain of y to filter the copy of D(x). Again, the filtering of the real domains
of the variables can only occur after all the smart tuples have been processed.
Those classes also implement a filterY method which is the counterpart of
filterX for y. They implement a method collectY, used by simple trees
to collect values, but only for the second involved variable y with respect to a
(pseudo) domain Dx, given as a parameter, for the first involved variable x. It
is called after Dx, which is initially a copy of D(x), has been filtered through
the entire simple or general tree.

1 class BinaryBranchEq:TreeCSP /* x = y + b */
2 fields: Variable x, y
3 Value b
4 isValid(): return D(x) ∩ D(y)⊕ b 6= ∅
5 collect(sl):
6 I ← D(x) ∩ D(y)⊕ b
7 sl[x]← sl[x] \ I
8 sl[y]← sl[y] \ I 	 b
9 collectY(sl, Dx):

10 I ← Dx∩ D(y)⊕ b
11 sl[y]← sl[y] \ I
12 filterX(Dx,Dy): Dx ← Dx∩ Dy⊕ b
13 filterY(Dx,Dy): Dy ← Dx	 b ∩ Dy

Algorithm 18: Classes for binary branche =

Algorithm 21 gives the pseudo-code for simple trees where all involved
branches share the same root variable x (see the assertion at line 4). Since we
can change the order of the variables in binary branches (x1 < x2 → x2 > x1,
etc.), this is not a requirement on the form of the smart tuples. This is enforced
at the creation of the smart tuple’s trees. The validity test at line 5 starts by mak-
ing a copy Dx of D(x). As Dx is a field of the algorithm, its value can be used
in other methods. Then, Dx is filtered through all branches (loop starting at line
7). The unary branches are treated at lines 8–9 and the binary ones, at lines 10–
11. For the binary branches, filterX is called with the full domain of y as
argument for y. If Dx does not become empty, that means that the simple tree
has at least one solution. The method collect at line 13 uses Dx (which has
already been filtered by isValid). Since all values in Dx have a support in
the simple tree, they are removed from sl[x] (line 14). The loop at line 15 goes

124 Chapter 5 F I LT E R I N G S M A RT TA B L E C O N S T R A I N T S

1 class BinaryBranchNe:TreeCSP /* x 6= y + b*/
2 fields: Variable x, y
3 Value b
4 isValid():return #D(x) > 1∨ #D(y) > 1
5 ∨ D(x) 6= D(y) + b
6 collect(sl):
7 if #D(x) > 1: sl[y]← ∅
8 else: sl[y]← sl[y] ∩ D(x)− b
9 if #D(y) > 1: sl[x]← ∅

10 else: sl[x]← sl[x] ∩ D(y) + b
11 collectY(sl, Dx):
12 if #Dx > 1: sl[y]← ∅
13 else: sl[y]← sl[y] ∩ Dx− b
14 filterX(Dx,Dy):
15 if #Dy = 1: Dx ← Dx \ Dy+ b
16 filterY(Dx,Dy):
17 if #Dx = 1: Dy ← Dy \ Dx− b

Algorithm 19: Classes for binary branche 6=

1 class BinaryBranchLt:TreeCSP /* x < y + b */
2 fields: Variable x, y
3 Value: b
4 isValid(): return min(D(x)) < max(D(y)) + b
5 collect(sl):
6 sl[x]← sl[x] \ {a ∈ D(x) : a < max(D(y)) + b}
7 sl[y]← sl[y] \ {c ∈ D(y) : c > min(D(x))− b}
8 collectY(sl, Dx):
9 sl[y]← sl[y] \ {c ∈ D(y) : c > min(Dx)− b}

10 filterX(Dx,Dy):
11 Dx ← Dx \ {a ∈ Dx : a ≥ max(Dy) + b}
12 filterY(Dx,Dy):
13 Dy ← Dy \ {c ∈ Dy : c ≤ min(Dx)− b}

Algorithm 20: Classes for binary branches <

F I LT E R I N G S M A RT TA B L E C O N S T R A I N T S 125

through every binary branch (i.e., with a scope containing two variables) to
collect the supported values for the second involved variables (y) from the fil-
tered domain Dx. The supported values for the variables y are directly removed
from sl instead of copying their domain and filtering it. Note that isValid
and collect are adaptations of the two-pass filtering GAC_tree. During the
first pass, only the domain of x (actually, Dx) is filtered. Indeed, as it may
change at each new processed branch, filtering the domains of variables y (ac-
tually, updating sl) is useless at that time. The validity test is not concerned in
the second pass because if x still has values in its domain after the first pass,
the simple tree is guaranteed to have at least one solution.

1 class SimpleTree:TreeCSP
2 fields: Variable x, TreeCSP[] branches,
3 Domain Dx
4 assert ∀T ∈ branches : T.x = x
5 isValid():
6 Dx ← D(x)
7 forall T ∈ branches:
8 if #T.vars = 1
9 T.filterX(Dx)

10 else
11 T.filterX(Dx,D(y))
12 return Dx 6= ∅
13 collect(sl):
14 sl[x]← sl[x] \ Dx
15 forall T ∈ branches : #T.vars = 2
16 T.collectY(sl,Dx)

Algorithm 21: Class for simple trees

The class for general trees is given in Algorithm 22. This algorithm uses sev-
eral fields. The array allVars contains all the variables appearing in the tree.
The two-dimensional array branches contains all the branches for each level
of the tree, from 1 (branches containing the root variable) to treeHeight.
The array domCopy contains the copies of the domains of the variables of the
tree that are used during the procedure GAC_tree. For this algorithm, we will
suppose that for all the binary branches, the variable x is always the closest to
the root. This is again enforced during the creation of the smart tuple’s trees.
The assertion of line 5 thus checks that all the variables x have a correspond-
ing variable as y at the level below (closer to the root). The isValid method
(line 7) realizes the first pass of GAC_tree (using copies of the domains), filter-
ing the domains of the different x variables from the leaves to the root. If the

126 Chapter 5 F I LT E R I N G S M A RT TA B L E C O N S T R A I N T S

variable at the root (branches[1][1].x) of the tree still has values, it returns true.
Its collect method (line 17) then carries out the second pass by filtering
the (copies of the) domains of the y variables of the branches. It also removes
supported values from sl. At this point, it is important to note that the code
presented for unary branches, binary branches, and simple trees already covers
all the examples given in this chapter.

1 class GeneralTree:TreeCSP
2 fields: Variable[] allVars, TreeCSP[][] branches,
3 Value treeHeight, Domain[] domCopy
4 assert ∀1 < l ≤ treeHeight, ∀b ∈ branches[l],
5 ∃b2 ∈ branches[l − 1] : b.x = b2.y
6 isValid():
7 forall x ∈ allVars :
8 domCopy[x]← D(x)
9 forall l ∈ treeHeight..1 :

10 forall T ∈ branches[l]:
11 if #T.vars = 1
12 T.filterX(domCopy[T.x])
13 else
14 T.filterX(domCopy[T.x],domCopy[T.y])
15 return domCopy[branches[1][1].x] 6= ∅
16 collect(sl):
17 forall l ∈ 1..treeHeight :
18 forall T ∈ branches[l]:
19 sl[T.x]← sl[T.x] \ domCopy[T.x]
20 if #T.vars = 2:
21 T.filterY(domCopy[T.x],domCopy[T.y])
22 forall T ∈ branches[treeHeight] : #T.vars = 2
23 sl[T.y]← sl[T.y] \ domCopy[T.y]

Algorithm 22: Class for general trees

We now study the complexity of our approach. The complexity of filtering a
smart tuple depends on the complexity of filtering each of its treeCSPs, as they
are independent. For a smart tuple σ (on variables with maximal domain size
d), the time complexities for the different operators are

F I LT E R I N G S M A RT TA B L E C O N S T R A I N T S 127

• for the unary branches:

<op> isValid collect filterX

= O(1) O(1) O(1)

6= O(1) O(1) O(1)

>≥<≤ O(1) O(d) O(d)

∈ O(d) O(d) O(d)

• for the binary branches:

<op> isValid collect/ filterX/

collectY filterY

= O(d) O(d) O(d)

6= O(1) O(1) O(1)

>≥<≤ O(1) O(d) O(d)

Each tuple constraint is either its own tree or belongs to a larger tree. If the
branch is its own tree, the time complexities of isValid and collect are
O(d) for any operator. If the branch is included in a simple or general tree, then
GAC_tree guarantees that the collectY, filterX and filterY methods
are called a constant number of times. The time spent testing the validity and
performing value collection in one branch is thus O(d). This makes the treat-
ment of one smart tuple with k tuple constraints O(k · d + r), where r is the
arity of the table constraint. The last term comes from the treatment of un-
restricted variables. Initializing sl at the beginning of smartSTR and removing
the unsupported values from the domains at the end are O(r · d). The total time
complexity of one call to smartSTR for a smart table constraint of arity r with
t smart tuples is thus O(r · d + t · k · d + t · r). For a classical table constraint
of arity r with t′ tuples, STR2 then has a time complexity of O(r · d+ t′ · r). In
all the examples given, k ≤ r (less tuple constraints than variables). Also, the
number of smart tuples is at least d + 1 times less than the number of classical
tuples. In these conditions, the complexity of filtering the smart table is less
than the complexity of using STR2 on the table without smart tuples. Indeed,
t · k · d + t · r ≤ t′ · r.

128 Chapter 5 L O G I C A L C O M B I NAT I O N S O F C O N S T R A I N T S

5.3 L I N K W I T H L O G I C A L C O M B I NAT I O N O F C O N S T R A I N T S

A table constraint can be viewed as a disjunction of tuples. Indeed, to satisfy
a table constraint, its variables have to take values corresponding to one of
the tuples of the table. Smart constraints can also be viewed as large disjunc-
tion. The difference is that smart tuples are conjunctions of basic arithmetic
constraints. Smart table constraints can thus be viewed as large disjunctions of
conjunctions of basic arithmetic constraints. Indeed, each smart tuple contains
a conjunction of basic arithmetic constraints and the table is a disjunction of
such tuples, since the variables can satisfy any of the smart tuples. The filtering
of logical combinations of constraints has already been studied in the literature
[CC95, WM96, VHSD98, BR98, KB01, Lho04, BW05, JMNP10, Lho12]. Fil-
tering general logical combinations of constraints is NP-Hard in general. How-
ever, smart table constraints are particular kinds of logical combinations. In
this chapter, we showed how Simple Tabular Reduction (STR) [Ull07, Lec11]
can be adapted for smart table constraints to produce an efficient filtering pro-
cedure to enforce GAC in polynomial time. Smart table constraints encode a
subset of the logic algebra defined in [BW05]: the form of the logical com-
binations (disjunction of conjunction, conjunctions forming acyclic networks)
is a subset of the logical combinations defined in [BW05] and we restrict the
constraints that can be combined to be simple arithmetic constraints. The rules
for the filtering are however directly derived from [BW05]. While restricting
the expressive power compared to [BW05], smart tuples greatly increase the
expressive power over classical tuples. More importantly, those restrictions
allows our propagator, smartSTR, to efficiently compute the GAC maximal
inconsistent set of the constraint, using the GAC maximal inconsistent sets
of all the smart tuples. GAC maximal inconsistent sets cannot be guaranteed
in general for the full logic algebra from [BW05]. The novelty in the present
approach lies in the introduction of a concrete propagator for such a subset
of the logic algebra. These restrictions also allow the filtering of smart tuples
to be much simpler than the filtering for the general conjunctions defined in
[BR98, KB01, Lho04]. The pruning achieved by the disjunction is equivalent
to the pruning of constructive disjunction [WM96, VHSD98]. The propaga-
tion of a whole table constraint can even be seen as the propagation of a large
constructive disjunction. The ability to leave variables out of the constraints
in the smart tuple makes their filtering as efficient as the improved construc-
tive disjunction filtering defined in [Lho04]. In [CC95], the authors proposed a
filtering for constructive disjunction based on indexicals as well as a stronger
filtering, considering disjunctions together with other constraints. In this chap-
ter, we do not investigate propagating more than one table constraint at a time.

5.4 E X P E R I M E N TA L R E S U LT S 129

The filtering for both conjunctions and disjunctions proposed in this chapter is
stronger than the light filtering proposed in [JMNP10], thanks to the hypothesis
made on the form of the smart tuples.

5.4 E X P E R I M E N TA L R E S U LT S

The optimizations present in STR2 can also be included in smartSTR. The
obtained algorithm is then called smartSTR2. Comparing SmartSTR2 with all
the specialized algorithms developed over the years for the global constraints
mentioned earlier is clearly beyond the scope of this chapter. However, we
shall show the interest of SmartSTR2 with a few case studies. Comparing a
propagator F with SmartSTR2 on a global constraint means that in the same
CSP, all the instances of the global constraint are either propagated with F
or their encoding in a smart table constraint is propagated with SmartSTR2.
We conducted experiments (with the solver AbsCon) on a laptop computer,
equipped with Intel(R) Core(TM) i7-2820QM CPU @ 2.30GHz, under Linux.
The results are given in seconds, or correspond to the number of visited nodes
per second. We have checked that all the tested approaches were traversing
the exact same search trees (most of the time using dom/ddeg as the variable
ordering heuristic for this purpose). As the algorithms compared are different
from one instance set to one another, we will present the results of the statistical
treatment of the experimental data (single class setting) for each of the instance
sets separately.

TAL instances In natural language processing, one possible task is to mea-
sure how well-formed a sentence is (i.e., to what extent it respects a grammar).
A constraint model (R. Coletta, personal communication) has been recently
developed for this problem, denoted here by TAL. It involves the Element con-
straint (with R as a variable, as described earlier in the chapter). Instances
for this optimization problem are defined by entering an input sentence. In this
model, Element constraints represent about 8% of the constraints. We compare
SmartSTR2 with GACElt, which corresponds to the GAC propagator based on
watched literals [GJM06]. In this context, the two algorithms show very close
performances as shown by Table 5.1. Figure 5.1 plots the percent bests for this
instance set (and also for the BIBD instance set). The percent best of one al-
gorithm is the percentage of the mean time taken by the algorithm to solve the
instances with respect to the mean time taken by the fastest algorithm. For the
statistical treatment of those results we used the θ1 statistic of interest (arith-
metic mean of differences) with 10,000 bootstrap sets and a confidence level
α of 0.05, since no timeouts were present in the experimental data. The con-

130 Chapter 5 L O G I C A L C O M B I NAT I O N S O F C O N S T R A I N T S

sentence GACElt SmartSTR2

phrase1 3.6 3.7

phrase2 17.6 17.9

phrase3 54.4 54.2

phrase4 46.8 46.8

phrase5 82.4 82.6

Table 5.1: CPU time to solve TAL instances.

fidence interval for θ1(SmartSTR2, GACElt) is [-0.24, 0.06] (positive values
correspond to SmartSTR2 being faster). This indicates that no propagator is
significantly faster than the other on those instances, as 0 is inside the (very
small) confidence interval.

BIBD instances A BIBD is a standard combinatorial problem. We consider
here the model introduced in [MT99] and the series of instances tested in
[FHK+02]. There is a lexicographic constraint between any two adjacent rows
or columns. We compare SmartSTR2 with GACLex, which corresponds to the
filtering procedure described in [Lec09] and is a variant of [FHK+06]. Table
5.2 shows the results we have obtained with both algorithms. Figure 5.1 plots
the percent bests for this instance set. Interestingly, one can observe that us-
ing SmartSTR2 instead of GACLex has a very limited cost. This is interesting
because SmartSTR2 is general-purpose while GACLex is a specialized prop-
agator. Similar results are obtained with the social golfer problem. For the
statistical treatment of the results, as for the previous instance set, we used the
θ1 statistic of interest with the same parameters. The confidence interval for
θ1(SmartSTR2, GACLex) is [-4.4, -0.77], indicating that GACLex is signifi-
cantly faster than SmartSTR2 on those instances but only slightly (the values
in the confidence intervals correspond to seconds).

Rectangle Packing instances The RectanglePacking problem [SO08] con-
sists of placing all squares from size 1× 1 to n × n into a rectangle of size
w × h without overlap between the squares. We adopt the model and search
parameters given in [NGJM13, JN13]. Table 5.3 shows the nodes searched per
seconds within a given time limit, as the problems are too complicated to be

5.4 E X P E R I M E N TA L R E S U LT S 131

0 20 40 60 80 100 120
Percent Best

TAL

BIBD

SmartSTR2

SmartSTR2

GACElt

GACLex

Figure 5.1: Percent best quantities for the TAL and BIBD instance sets

v-b-r-k-λ GACLex SmartSTR2

6-50-25-3-10 1.3 1.6

6-60-30-3-12 1.5 2.1

6-70-35-3-10 2.2 2.8

10-90-27-3-6 5.8 7.3

9-108-36-3-9 11.4 14.2

15-70-14-3-2 7.4 7.9

12-88-22-3-4 7.0 8.3

9-120-40-3-10 17.9 25.1

10-120-36-3-8 10.6 14.0

13-104-24-3-4 99.1 108.6

Table 5.2: CPU time to solve BIBD instances.

132 Chapter 5 L O G I C A L C O M B I NAT I O N S O F C O N S T R A I N T S

n-w-h GAC-valid ShortSTR2 SmartSTR2

18-31-69 1, 821 2, 784 57, 249

19-47-53 2, 003 3, 166 57, 221

20-34-85 1, 324 1, 579 45, 600

21-38-88 849 1, 295 40, 600

22-39-88 981 1, 035 41, 162

23-64-68 983 1, 292 40, 495

24-56-88 446 790 32, 758

25-43-129 661 347 30, 544

26-70-89 544 703 31, 374

27-47-148 326 175 26, 786

Table 5.3: Nodes searched per second for RectanglePacking instances.

solved completely. Figure 5.2 plots the percent bests for this instance set (and
also for the AllDistinctVector instance set). In this context of nodes searched
per second, the percent best of algorithm A is the percentage of the best algo-
rithm with respect to A. These results suggest that SmartSTR2 is very efficient
on this problem. It clearly outperforms ShortSTR2, and seems to be at least
as efficient as the other methods proposed in [NGJM13] (not implemented in
our system) when we compare their results with ours. Note that GAC-valid
(sometimes called GAC-schema) is another general approach, given here as a
baseline. For the statistical treatment of the experimental data, no timeout was
enforced, and hence we used θ1 with the same configuration as for the previous
instance sets. However, as a larger node count per second is better, we aggre-
gate the difference between the first algorithm’s node count and the second.
This is the opposite of what was done for time differences. This was done so
as to make a positive value indicate that the first algorithm is faster. The con-
fidence interval θ1(SmartSTR2, GAV-valid) is [33308.5, 45122.6] and the one
for θ1(SmartSTR2, ShortSTR2) is [33157.4, 44445.8]. The values corresponds
to nodes searched per second. This indicates that SmartSTR2 is significantly
faster than both GAC-valid and ShortSTR2 on those instances.

5.4 E X P E R I M E N TA L R E S U LT S 133

0 2000 4000 6000 8000 10000
Percent Best

Rect Packing

AllDistinct

SmartSTR2

SmartSTR2

GAC-Valid

ShortSTR2

ShortSTR2

Figure 5.2: Percent best quantities for the Rectangle Packing and AllDistinctVectors
instance sets

AllDistinctVectors instances For our last experiment, we consider the Case
Study 4 in [JN13], where a problem, denoted by AllDistinctVectors here, in-
volves the VectorDiff constraint. An instance p-a-d of this problem has exactly
p vectors (arrays of variables), each vector has length a and the domain of each
variable has a size of d. For any pair of vectors, the two vectors must be dis-
tinct. In [JN13], it has been shown that ShortSTR2 is an interesting competitor
to HaggisGAC. The results are given in Table 5.4 and the percent best quan-
tities are plotted in Figure 5.2. For instances where all variables are Boolean
(i.e., d = 2), SmartSTR2 is slightly slower than ShortSTR2 (because the ta-
bles are small). However, when we increase d, Table 5.4 shows that just when
applying GAC stand-alone, SmartSTR2 is clearly faster than ShortSTR2. This
can be explained by the size of the constraint tables. For example, for 40-100-
40, the tables contain 156, 000 and 100 tuples in ShortSTR2 and SmartSTR2,
respectively. As for the previous instance sets, the statistical treatment of the
experimental data is performed with the θ1 statistic of interest with the same
parameters. The confidence interval for θ1(SmartSTR2, ShortSTR2) is here
[2.25, 27.3], indicating that SmartSTR2 is significantly faster than ShortSTR2
on those instances, but only slightly.

134 Chapter 5 L O G I C A L C O M B I NAT I O N S O F C O N S T R A I N T S

p-a-d ShortSTR2 SmartSTR2

40-100-2 0.07 0.07

40-100-8 1.55 0.18

40-100-16 6.49 0.18

40-100-24 14.7 0.19

40-100-32 28.1 0.20

40-100-40 44.5 0.21

Table 5.4: CPU time to enforce GAC on AllDistinctVectors instances.

There is no global statistical treatment of the experimental data presented
for this section. The reason is that the algorithms compared to SmartSTR2
are different for each dataset (except for ShortSTR2 on the last two datasets
where the measurement is the number of nodes for the first and the time for the
second), making the integration of all the datasets in one multi-class bootstrap
test impossible.

6
E F F I C I E N T F I LT E R I N G
P RO C E D U R E F O R D O M A I N
k - W I S E C O N S I S T E N C Y O N
TA B L E C O N S T R A I N T S

As we have seen in the previous chapters, propagation is an important concept
in constraint programming. The target consistency of chapters 4 and 5 is gen-
eralized arc consistency. While this consistency provides the strongest pruning
one can achieve by inspecting the constraints independently, the pruning ob-
tained can be increased by considering several constraints at a time, which
integrates the information of several constraints at once and hence performs a
more global reasoning. The more global the reasoning, the better the pruning.
One consistency considering several constraints at a time is called k-wise con-
sistency (kWC) (see Section 2.3). In a nutshell, k-wise consistency considers
all possible groups of k constraints. For each group, it ensures that the allowed
tuples of the constraints are consistent with each other. Accepting a tuple that
is inconsistent with the accepted tuples of a group of constraint is useless. kWC
thus removes from the constraints the allowed tuples that cannot be extended
to a larger tuple respecting all the constraints of the group. At the end, kWC
ensures that when a tuple is accepted by a constraint, it will not be ruled out

135

136 Chapter 6 F I LT E R I N G P RO C E D U R E F O R D K W C

later, when extended to any group of k constraints. The k-wise consistency fil-
ters the constraints, while GAC filters the domains of the variables. Filtering
the constraints is another way to reduce the search space. K-wise consistency
is incomparable to GAC: there are CSP that are k-wise consistent but not GAC,
and vice versa. In this chapter, we combine k-wise consistency and GAC for
table constraints. The restriction to table constraints is driven by their adequacy
to k-wise consistency. Indeed, the explicit access to the list of tuples allowed
by the constraints is particularly useful for k-wise consistency. The constraint
filtering nature of k-wise consistency may render its integration into existing
solvers difficult. The combination proposed in this chapter, already presented
in Section 2.3, thus filters the domains of the variables without changing the
constraints. It is called domain k-wise consistency, and is the focus of this
chapter. Often, consistencies stronger than GAC require complex propagators
to be enforced. In this chapter, we propose a filtering procedure for our strong
consistency solely relying on existing GAC propagators for table constraints.
We start by recalling the definition of domain k-wise consistency. Section 6.2
presents a filtering procedure for k-wise consistency that is useful for the filter-
ing procedure of domain k-wise consistency, presented in Section 6.3. Section
6.4 then presents two variants of our filtering procedure, reducing their cost in
practice. This chapter ends with experimental results of our filtering procedure.
Again, the definitions and the filtering procedure are presented for CSPs but
can be used in the context of constraint optimization problems.

Related Publication

[MDL14] Jean-Baptiste Mairy, Yves Deville and Christophe Lecoutre,
"Domain k-Wise Consistency Made as Simple as Generalized Arc Con-
sistency" Integration of AI and OR Techniques in Constraint Program-
ming (CPAIOR) 2014, pages 235-250

6.1 D O M A I N k -W I S E C O N S I S T E N C Y

Combinations of generalized arc consistency with kWC have already been
studied in the literature. Indeed, to integrate the filtering of the constraints
into the domains of the variables, and hence speed the search up, GAC is the
perfect consistency. Generalized arc consistency and 2-, 3- and k-wise con-
sistency have been combined in [Jég91, JJNV89, BSW08, Ste08, KWR+10,
Ste07]. One such combination is GAC+kWC (see Section 2.3), where a CSP
is GAC+kWC iff it is both GAC and kWC. But, as kWC is constraint filter-
ing, GAC+kWC is both domain and constraint filtering. Interestingly, from

6.2 F I LT E R I N G P RO C E D U R E F O R k -W I S E C O N S I S T E N C Y 137

GAC+kWC, we can derive our domain-filtering consistency: the domain k-
wise consistency, or DkWC in short. Intuitively, for DkWC, all literals are
required to have a k-wise consistent support (while for GAC, they are only re-
quired to have a support). When a CSP P is domain k-wise consistent, it means
that all variable domains of P cannot be reduced when enforcing GAC+kWC.
The formal definition of DkWC from Section 2.3 is given below.

Definition 12. (DkWC) A CSP P = (X, D, C) is domain k-wise consistent
(DkWC) iff GAC+kWC(P) is a CSP Q = (X, DQ, CQ) such that D = DQ.

The remainder of this chapter will be devoted to a filtering procedure for
DkWC for table constraints using solely existing GAC propagators. The filter-
ing is based on a filtering procedure for kWC, which is presented in the next
section.

6.2 F I LT E R I N G P RO C E D U R E F O R k -W I S E C O N S I S T E N C Y

The filtering procedure for DkWC, presented in the next section, is based on a
filtering technique for kWC. This filtering technique for kWC is thus presented
in this section. It is a technique that uses an alternative form of the CSP called
the k-dual CSP. The k-dual CSP focuses on constraints where the CSP focuses
on variables. Filtering the k-dual with GAC achieves kWC constraint filtering
on the original CSP. This is the reason why we used this technique as a base
for our DkWC filterign.

The filtering procedure for kWC is a generalization to the k-wise case of the
filtering process presented in [JJNV89], and different from the one presented in
[Jég91]. Due to explicit access to the list of allowed tuples, table constraints are
particularly adapted for strong constraint-filtering consistencies. The filtering
procedures proposed in this chapter are thus designed for such table constraints.
From now on, until the end of the chapter, all constraints will be assumed to
be table constraints.

As kWC is a constraint-filtering consistency, the idea is to define and use
a special dual form of the given CSP in order to obtain kWC by enforcing
GAC on the dual representation. Because this dual form depends on k, we call
it k-dual CSP. This is a generalization of the dual used in [JJNV89] that is
equivalent to the order k constraint graph defined in [Jég91].

Specifically, the k-dual of a CSP contains one dual variable x′i per constraint
ci in the original CSP and one k-dual constraint c′j per group of k original dis-
tinct constraints. Each variable x′i has a domain which is the set of indexes of
the tuples in the original constraint ci, and each constraint c′j is a table con-
straint representing the join of k original constraints. Note that the tuples in

138 Chapter 6 F I LT E R I N G P RO C E D U R E F O R D K W C

those new tables are represented with the indexes of the tuples in the original
constraints, which allows the new constraints to have arity k only.

Definition 13. (k-dual CSP) Let P = (X, D, C) be a CSP. The k-dual of P is
the CSP Pkd = (Xkd, Dkd, Ckd) where:

• for each constraint ci ∈ C, Xkd contains a variable x′i with its domain
defined as Dkd(x′i) = {1, 2, . . . , ci.length},

• for each subset S of k constraints of C, Ckd contains a constraint c′

such that scope(c′) = {x′i | ci ∈ S} and c′ is a k-ary table constraint
containing the join of all constraints in S (represented with the indexes
of the original tuples).

If Pkd is the k-dual of P, then variables and constraints of P are said to
be original whereas variables and constraints of Pkd are said to be dual. An
example of a k-dual CSP for k = 3 can be found in Example 7.

Example 7. Let P = (X, D, C) be a CSP such that X = {u, v, w, x, y, z},
D = {1, 2, 3, 4}6 and C = {c1, c2, c3} where:

• scope(c1) = {u, v, w} and table(c1) = {(1, 2, 3), (1, 2, 4)},
• scope(c2) = {u, x, y} and table(c2) = {(1, 3, 4), (2, 3, 4)},
• scope(c3) = {v, x, z} and table(c3) = {(2, 3, 1), (3, 3, 2)}.

The 3-dual of P is a CSP Pkd = (Xkd, Dkd, Ckd) such that Xkd = {x′1, x′2, x′3},
Dkd = {1, 2}3, and Ckd = {c′} with scope(c′) = {x′1, x′2, x′3} and table(c′) =
{(1, 1, 1), (2, 1, 1)}. It represents the full join of the original constraints on
{u, v, w, x, y, z}, which is composed of the tuples (1, 2, 3, 3, 4, 1) and (1, 2, 4,
3, 4, 1). For example, the first tuple is obtained by joining the first tuple of c1,
the first tuple of c2 and the first one of c3.

Property 3. A CSP is kWC iff its k-dual CSP is GAC. [JJNV89, Jég91].

Property 3 was introduced in [JJNV89] for k = 2 and the general result
was established in [Jég91] for a similar k-dual CSP. A filtering procedure to
enforce GAC+2WC (i.e., both pairwise consistency and generalized arc con-
sistency) on a CSP P consists in (1) enforcing GAC on the 2-dual of P, then (2)
restraining the constraints of P in order to only contain tuples corresponding
to valid dual values, and finally (3) establishing GAC on P [Jég91, BSW08].
The generalization of this procedure to the k-wise case uses the k-dual instead
of the 2-dual.

6.3 D O M A I N k -W I S E C O N S I S T E N C Y F I LT E R I N G 139

6.3 D O M A I N k -W I S E C O N S I S T E N C Y F I LT E R I N G

In this section, we propose to reformulate the CSP to be solved in order to
be able to enforce DkWC in a single step, just by applying classical GAC fil-
tering. Basically, to enforce DkWC solely with GAC propagators, we merge
the CSP with its k-dual. GAC on the merged CSP ensures the DkWC of the
original CSP. For a CSP P, the merge is done by adding to P all variables and
all constraints from the k-dual CSP of P; the dual variables and the original
constraints are then linked. Without this link, the removal of a value from a
dual variable would not leverage its corresponding original constraint (and re-
ciprocally). In the definition of GAC+kWC (on which DkWC is based), only
valid tuples can serve as supports either for values (generalized arc consistency
part) or for other tuples (k-wise consistency part). The link we make guarantees
that original tuples corresponding to invalid dual values are invalidated, and re-
ciprocally, ensuring that original constraints and dual variables keep the same
pace during filtering. This ensures that the k-wise inconsistent tuples cannot be
used as supports for values and that invalid tuples cannot be used as k-wise sup-
port for tuples. The link we propose is integrated directly into the constraints.
Each original constraint ci is thus transformed into a hybrid constraint φ(ci)

involving the original variables in the scope of ci as well as the dual variable x′i
that is associated with ci. For each tuple τ in table(ci), we generate a tuple in
table(φ(ci)) by simply appending to τ its position in table(ci). In the follow-
ing definition, if τ is a r-tuple (a1, . . . , ar) then τ� b denotes the (r + 1)-tuple
(a1, . . . , ar, b).

Definition 14. (Hybrid Constraints) Let P = (X, D, C) be a CSP. The set of
hybrid constraints φ(C) of P is the set {φ(ci) | ci ∈ C} where:

• scope(φ(ci)) = scope(ci) ∪ {x′i}
• table(φ(ci)) = {τj � j | τj is the jth tuple of table(ci)}

with x′i denoting the dual variable associated with ci.

In this way, the removal of a value j from D(x′i) will be reflected in φ(ci),
as the tuple τj � j will be invalidated. Also, when the tuple τj � j becomes
invalid due to a value removed from the domain of an original variable, j will
be removed from D(x′i) as τj � j is the only support of (x′i , j) in φ(ci). We
can now introduce k-interleaved CSPs, containing both the original CSP with
hybrid constraints and the k-dual CSP.

Definition 15. (k-Interleaved CSP) Let P = (X, D, C) be a CSP. The k-inter-
leaved of P is the CSP Pki = (Xki, Dki, Cki) = (X ∪ Xkd, D ∪ Dkd, φ(C) ∪

140 Chapter 6 F I LT E R I N G P RO C E D U R E F O R D K W C

Ckd) where (Xkd, Dkd, Ckd) is the k-dual of P and φ(C) the hybrid constraints
of P.

As a constraint optimization problem is a CSP with an objective function,
the k-interleaved COP is defined similarly, with the objective unchanged. The
properties defined hereafter on the k-interleaved CSP are trivially also valid for
the k-interleaved COP.

The following property shows an interesting connection: enforcing GAC on
the k-interleaved CSP of a CSP P is equivalent to enforcing GAC+kWC on P,
when the focus is only on the domains of the variables of P.

Property 4. Let P = (X, D, C) be a CSP and Pki = (Xki, Dki, Cki) be the k-
interleaved CSP of P. If Q = (X, DQ, CQ) is the GAC+kWC-closure of P and
R = (Xki, DR, Cki) is the GAC-closure of Pki, then we have DQ = DR[X]

(i.e., DQ(x) = DR(x), ∀x ∈ X).

Proof.

(a) ∀x ∈ X : (x, a) ∈ DR ⇒ (x, a) ∈ DQ:

From the definition of GAC applied to Pki, we know that:

(x, a) ∈ DR ⇔
∀ci ∈ C, x ∈ scope(ci) : ∃τ ∈ table(φ(ci)),

τ ∈ DR(scope(φ(ci))) ∧ τ[x] = a

We also have that:

τ ∈ DR(scope(φ(ci)))

⇒ ∀x ∈ scope(ci) : τ[x] is GAC in Pki

⇒ ∀x ∈ scope(ci) : τ[x] are GAC+KwC in P because
each support in Pki includes a k-dual variable, precisely en-
coding the k-wise consistency (Property 3).

By Property 3, since τ[x′i] ∈ DR(x′i) (x′i being the dual variable
of ci), τ is kWC.

We thus have τ[scope(ci)] ∈ DQ(scope(ci)) and kWC, which im-
plies (x, a) ∈ DQ

(b)∀x ∈ X : (x, a) ∈ DQ ⇒ (x, a) ∈ DR:

6.3 D O M A I N k -W I S E C O N S I S T E N C Y F I LT E R I N G 141

From the definition of GAC+kWC, we know that:

(x, a) ∈ DQ ⇔
∀ci ∈ C, x ∈ scope(ci) : ∃τ ∈ table(cQ

i),

τ ∈ DQ(scope(ci)), τ[x] = a

where cQ
i ∈ CQ is the filtered version of ci ∈ C.

By Property 3, we have that

τ ∈ table(cQ
i)⇒ (x′i , j) ∈ DR(x′i)

where x′i ∈ Xki is the dual variable of ci and j the tuple index of τ.

We also have that

τ ∈ DQ(scope(ci))

⇒ ∀x ∈ scope(ci) : τ[x] has a valid kWC support in P.

⇒ ∀x ∈ scope(ci) : τ[x] is GAC in Pki

We thus have τ ⊕ j ∈ DR(scope(φ(ci))), which implies
(x, a) ∈ DR

The intuition of the proof is as follows. On the one hand, each literal (x, a)
of DR[X] is supported on each constraint cki involving x by a valid tuple in
R. As all supports on constraints of Cki include a valid dual variable, we have
that (x, a) ∈ DQ. On the other hand, each literal (x, a) of DQ is supported
on each constraint cQ involving x by a valid tuple in Q. This tuple is k-wise
consistent in Q. By Property 3, the dual variables in Xki precisely encode this
k-wise consistency.

Then, we can deduce the following corollary.

Corollary 1. If the k-interleaved CSP of a CSP P is GAC then P is DkWC.

It is important to note that the relation between a CSP and its k-interleaved
CSP is preserved through value refutation. In the following properties, for any
value refutation x 6= a, P|x 6=a denotes the CSP P where the value a is removed
from D(x), and for any set of value refutations ∆, P|∆ is defined similarly. The
preservation of “k-interleavedness” is stated by the following property.

142 Chapter 6 F I LT E R I N G P RO C E D U R E F O R D K W C

Property 5. Let P = (X, D, C) be a CSP and Pki be the k-interleaved CSP of
P. ∀x ∈ X, ∀a ∈ D(x), Pki|x 6=a is the k-interleaved CSP of P|x 6=a.

Proof. From the definition of k-interleaved CSPs, it is obvious that Pki|x 6=a is
the k-interleaved CSP of P|x 6=a.

From Properties 4 and 5, we can derive the following important corollary.

Corollary 2. Let P = (X, D, C) be a CSP and Pki = (Xki, Dki, Cki) be the
k-interleaved CSP of P. Let ∆ be a set of value refutations on variables of X. If
Q = (X, DQ, CQ) is the GAC+kWC-closure of P|∆ and R = (Xki, DR, Cki)

is the GAC-closure of Pki|∆, then we have DQ = DR[X].

Corollary 2 is central to our approach. It allows us to achieve DkWC indi-
rectly using GAC at any stage of a backtracking search with the k-interleaved
CSP generated at the beginning of the search. So, it is important to note that
the generation of the k-interleaved CSP is only performed once since it can be
used during the whole search.

The complexity of enforcing DkWC during the search (not considering the
cost of the generation of the k-interleaved CSP) is the complexity of enforcing
GAC on the k-interleaved CSP. As the k-interleaved CSP only contains table
constraints, the complexity analysis will use the optimal time complexity for a
table constraint given in [MVHD14b] and presented in Section 4.4. Let P be
a CSP with n variables, a maximum domain size d, e constraints, a maximum
number t of tuples allowed by a constraint, and a maximum constraint arity r.
The k-interleaved CSP of P is a CSP with n′ = n + e variables, a maximum
domain size d′ = max(d, t), e′ = e + (e

k) constraints1, an upper bound t′ = tk

on the maximum number of allowed tuples by a constraint, and a maximum
constraint arity r′ = max(r + 1, k) Enforcing GAC on the k-interleaved CSP
with optimal table constraint propagators has a complexity of O(e′ · (r′ · t′ +
r′ · d′)) = O(((e

k) + e) · (r′ · t′ + r′ · d′)).

Necessity of Hybrid Constraints. It is important to note that the filtering
procedure for DkWC presented in this chapter is stronger than the propagation
that would be obtained by simply replacing the original constraints by their
joins. The reason is that in the second setting, the invalidation of a tuple in
a join is not reflected in the other joins, whereas with the k-interleaved CSP,
the supports for the tuples on a join must themselves be supported. This is
illustrated by Example 8.

1 (e
k) is the binomial coefficient corresponding to the number of subsets of size k that can be

formed using elements from a set of size e.

6.3 D O M A I N k -W I S E C O N S I S T E N C Y F I LT E R I N G 143

x y u v

1 1 1 0

0 0 0 1

0 1 0 0

1 0 1 1

u v

1 1

1 0

0 0

x y

1 1

0 0

0 1

c1

c2 c3

x y u v

1 1 1 0

0 0 0 1

0 1 0 0

J12

x y u v

1 1 1 0

0 1 0 0

1 0 1 1

J13

x y u v x’1

1 1 1 0 1

0 0 0 1 2

0 1 0 0 3

1 0 1 1 4

u v x’3

1 1 1

1 0 2

0 0 3

x y x’2

1 1 1

0 0 2

0 1 3

(c1)

(c2) (c3)

x’1 x’2

1 1

2 2

3 3

x’1 x’3

1 2

3 3

4 1

J’12 J’13

(a) Original CSP (b) Classical Joins

(c) 2-interleaved CSP

Figure 6.1: Illustration of (a) the CSP, (b) the classical joins and (c) the 2-interleaved
CSP from Example 8

Example 8. Let P = (X, D, C) be a CSP such that X = {x, y, u, v}, D =

{0, 1}4 and C = {c1, c2, c3} with scope(c1) = {x, y, u, v}, scope(c2) =

{x, y} and scope(c3) = {u, v}, and table(c1), table(c2) and table(c3) defined
as in Figure 8(a).

Let us compare domain pairwise consistency (D2WC) with the joins of
any two pairs of constraints: in this CSP, the two possible joins and the 2-
interleaved CSP are depicted in Figure 6.1. On the one hand, enforcing GAC
on the two join constraints J12 and J13 has no effect (observe that values 0 and 1
are present in each column of both tables). On the other hand, enforcing GAC
on the 2-interleaved CSP reduces D(y) to {1} and D(v) to {0}. The reduction
of D(y) comes from the tuple (0, 0) in table(c2) which is the only support for
y = 0 on c2. This tuple is only supported in J′12 by the second tuple of c1:
(0, 0, 0, 1). As (0, 0, 0, 1) has no support on J′13, we can safely remove 0 from
D(y).

144 Chapter 6 P R AC T I C A L U S E O F T H E D K W C

6.4 P R AC T I C A L U S E O F T H E D O M A I N k -W I S E C O N S I S T E N C Y

Enforcing GAC on the k-interleaved CSP may be expensive. One cause is the
number of constraints from the k-dual CSP that are added to the k-interleaved
CSP: (e

k) for an original CSP with e constraints. Some of those constraints
can be ignored without degrading the pruning. For instance, this is trivially
the case for k-dual constraints that are based on original constraints sharing
no variables. Of course, a trade-off can be made between propagation strength
and time complexity by integrating a subset of the possible (e

k) constraints. In
that case, the pruning achieved will be weaker than DkWC. Suppose that we
limit the integration to the p most promising constraints from the k-dual CSP.
The complexity, following our analysis performed above, becomes O((e+ p) ·
(r′ · t′ + r′ · d′)): the term (e

k) has been replaced by p. The most promising
constraints can be selected, for example, according to the size of the joins.
Indeed, small joins are more likely to prune more the search space whereas
large joins are a cause of inefficiency, as it is related to t′.

Following this discussion, we propose two weak variants of DkWC, and
refer to them as weak DkWC: they only consider a subset of all possible k-
dual constraints. The first one, called DkWCcy only considers constraints from
the k-dual CSP corresponding to cycles in the original constraint graph (i.e.,
sequences of constraints at least sharing variables with previous and next con-
straints in a circular manner). There are typically far less cycles of k constraints
than combinations of k constraints and besides they usually form smaller joins.
The consistency level attained by DkWCcy is weaker than DkWC but in prac-
tice, as we shall see, it shows good performances. Since all the original con-
straints are included in DkWCcy, the consistency level attained is stronger than
GAC. Unsurprisingly, for some problems, the size of the joins of some cycle
constraints may be too large to be treated efficiently. For instance, in the mod-
ifiedRenault benchmark, some joins computed from cycles of length 3 exceed
106 tuples. This is why the second variant of DkWC, called DkWCcy−, only
considers constraints from the k-dual CSP corresponding to cycles in the orig-
inal constraint graph and for which the size of the join constraint is smaller
than a specified parameter (e.g., a percentage of the size of the largest table).
In other words, a maximum size is imposed on the size of the joins and the
joins exceeding that limit are not included in the k-interleaved CSP. The con-
sistency level attained by DkWCcy− is weaker than DkWC and DkWCcy, but
its practical interest will be shown on some problems. DkWCcy− attains a level
of consistency stronger than GAC.

6.5 E X P E R I M E N TA L R E S U LT S 145

6.5 E X P E R I M E N TA L R E S U LT S

This section presents some experimental results concerning DkWC. For each
test, we propose to maintain DkWC on the CSP (i.e., GAC on the k-interleaved
CSP) at each node of the search trees developed by a backtracking search. How-
ever, as discussed in Section 6.4, including all k-dual constraints is unpractical
for many problems, because of the number of additional constraints and/or be-
cause of their size. In our experiments, we thus only use the weaker versions of
the filtering, namely, DkWCcy and DkWCcy−, and we have focused our atten-
tion on weak D3WC and weak D4WC. Those values of k allow a significant
search space reduction with respect to GAC while keeping the number and size
of k-dual constraints tractable. Notice that labeling is only performed for the
original variables during a search, and that all solutions are searched for. The
GAC propagator used for the original constraints as well as the k-dual ones is
the optimal state-of-the-art propagator from [MVHD14b], presented in Section
4.4.

Our filtering procedure is compared with the GAC propagator AC5TCOpt-
Sparse from Section 4.4, the maxRPWC3 procedure from [BSW08], and the
state-of-the-art eSTRw propagator from [LPS13]. The eSTRw propagator is
weaker than eSTR but easier to incorporate into an existing solver, and is at
least as good as eSTR on the benchmarks used in [LPS13]. All the algorithms
are (re-)implemented on top of Comet but it is unfortunately impossible to
implement the filtering algorithm from [KWR+10] in this solver. The reason
is that the context management of Comet prohibits the start of an indepen-
dent backtracking search inside a propagator, as [KWR+10] requires. Eight
different benchmarks have been used. Two of them contain only binary table
constraints, five of them contain binary and ternary table constraints, and the
last benchmark contains table constraints up to arity 10. The tests were exe-
cuted on an Intel Xeon 2.53GHz using Comet 2.1.1. A timeout of 20 minutes
on the total execution time was used for each instance. When comparing differ-
ent techniques in terms of CPU time and search space sizes, we can only use
the subset of instances for which none of the techniques timed out. In the re-
sults, we thus do not report measurements for some of the techniques on some
benchmarks because including them would cause the common instance set to
be empty or too small for a meaningful comparison. In the tables, a ’-’ thus
represents a technique that timed out on the set of instances considered. The
global percentage of the instance set that is solved is however given for each
technique on each benchmark.

The results are presented in Table 6.1. For each instance set and each tech-
nique, we present the means of different quantities (times are in seconds): the

146 Chapter 6 P R AC T I C A L U S E O F T H E D K W C

execution time (T), the “posting” time (pT), the join selection time (jST) that
corresponds to the amount of time used to select the joins for the k-interleaved
CSPs, the join computation time (jT), the number of propagator calls (nP), the
number of fails (nF), and the number of choice points (nC). Table 6.1 also
presents the percentage to the best with respect to execution time (%b), the
mean of the percentage to the best instance by instance (µ%b), and the per-
centage of instances from the sets that are solved (%sol). The total time (T)
includes all precomputations the algorithms have to perform before the search.
This means that both the times of join selection (jST) and the join computation
(jT) for our DkWC algorithm are included in T. The posting time (pT) is the
time taken between the loading of the instance file and the start of search with-
out the time for jT. It thus includes the time for all the precomputations except
for the join computation. The difference between %b and µ%b is the follow-
ing. For %b, all execution times are averaged before computing it: there is thus
one identified best algorithm. For µ%b, the percentages are first computed in-
stance by instance, and then aggregated with a geometric mean (as suggested
in [FW86]): this measure takes into account the fact that different instances
may have different best algorithms.

Binary Random Instances This instance set contains 50 instances involving
binary table constraints. These instances have 50 variables, a uniform domain
size of 10, and 166 constraints, whose proportion of allowed tuples is 0.5. They
have been generated using the model RD [XBHL07], in or close to the phase
transition. The search strategy used to solve them (for all techniques) was a
lexicographic variable and value ordering. A plot of the percent best quantities
can be found in Figure 6.2. In this figure, wDkWC represents D3WCcy. On this
benchmark, D3WCcy includes on average 48.4 3-dual constraints, and their ta-
bles contain on average 111.5 tuples. We can see that the pruning obtained by
D3WCcy on this benchmark allows it to drastically reduce the search space.
Moreover, since the mean number of added constraints from the 3-dual CSP
and their size is small, D3WCcy has the lowest overall computation time. Prop-
agators maxRPWC3 and eSTRw also reduce the search space with respect to
GAC (partly due to the presence of constraints with identical scopes), but this
reduction comes at the price of a greater total computation time.

Ternary Random Instances This instance set contains 50 instances involv-
ing ternary table constraints. These instances have 50 variables, a uniform do-
main size of 5, and 75 constraints, whose proportion of allowed tuples is 0.66.
They have been generated using the model RD [XBHL07], in or close to the
phase transition. The search strategy used to solve them was a lexicographic

6.5 E X P E R I M E N TA L R E S U LT S 147

propagator T pT jST jT nP nF nC %b µ%b %sol

Binary Random
GAC 9.9 0.0 0.0 0.0 3 M 7.7 k 1 213.2 337 218 100
maxRPWC3 72 0.7 0.0 0.0 148 k 2.2 k 340.1 2448 1833 98
eSTRw 11.4 0.1 0.0 0.0 293 k 2.2 k 340.1 389 283 100
D3WCcy 2.9 0.1 0.0 0.1 963 k 0.5 k 68.4 100 113 100

Ternary Random
GAC 23.1 0.0 0.0 0.0 4 M 42.4 k 11.8 k 183 223 100
maxRPWC3 124 0.2 0.0 0.0 237 k 8.2 k 2.2 k 982 1455 90
eSTRw 16.6 0.0 0.0 0.0 409 k 7.7 k 2.1 k 131 189 100
D3WCcy 12.6 0.5 0.1 0.4 2 M 0.6 k 0.1 k 100 143 100

AIM
GAC 82 0.1 0.0 0.0 35 M 941.6 k 522 k 6745 460 46
maxRPWC3 14.7 1.0 0.0 0.0 46 k 1.2 k 0.7 k 1204 1481 46
eSTRw 1.2 0.3 0.0 0.0 35 k 0.7 k 0.4 k 100 208 50
D3WCcy 3.4 2.4 1.2 0.5 139 k 0.1 k 0.1 k 279 497 88

Pret
GAC 160 0.0 0.0 0.0 58 M 7 M 5 M 121 121 50
maxRPWC3 977 0.0 0.0 0.0 26 M 7 M 5 M 741 741 50
eSTRw 504 0.0 0.0 0.0 30 M 7 M 5 M 382 382 50
D3WCcy 132 0.0 0.0 0.0 57 M 4 M 3 M 100 100 50

Langford-2
GAC 0.5 0.0 0.0 0.0 171 k 1.4 k 1 k 100 100 58
maxRPWC3 44.6 2.2 0.0 0.0 43 k 1.4 k 1 k 9637 3863 46
eSTRw 1.5 0.1 0.0 0.0 65 k 1.4 k 1 k 326 233 54
D3WCcy 10.5 0.9 0.1 3.2 2 M 0.7 k 0.7 k 2270 1782 50

Dubois
GAC 793 0.0 0.0 0.0 158 M 42 M 37 M 394 390 15
maxRPWC3 - - - - - - - - - 8
eSTRw 598 0.0 0.0 0.0 37 M 5 M 3 M 297 294 15
D4WCcy 201 0.1 0.0 0.0 68 M 2 M 1 M 100 100 30

TSP-20
GAC 52 0.5 0.0 0.0 14 M 17 k 7 k 100 100 93
maxRPWC3 - - - - - - - - - 33
eSTRw 233 1.5 0.1 0.0 5 M 17 k 7 k 447 438 80
D3WCcy - - - - - - - - - 40
D3WCcy− 94 4.3 0.6 0.1 40 M 17 k 7 k 180 270 93

Modified Renault
GAC - - - - - - - - - 6
eSTRw - - - - - - - - - 0
maxRPWC3 743 0.0 0.0 0.0 23.7 0.0 0.0 148 417 26
D3WCcy - - - - - - - - - 0
D3WCcy− 502 497 3.9 5.1 33 k 0.0 0.0 100 111 34

Table 6.1: Experimental results of our weak DkWC propagators.

148 Chapter 6 P R AC T I C A L U S E O F T H E D K W C

0 500 1000 1500 2000 2500
Percent Best

BinRandom

GAC

maxRPWC3

eSTRw

wDkWC

Figure 6.2: Percent best quantities for the binary random instance set

variable and value ordering. A plot of the percent best quantities can be found
in Figure 6.3. In this figure, wDkWC represents D3WCcy. On this benchmark,
D3WCcy includes, on average 112.3 3-dual constraints, and their tables con-
tain on average 529.5 tuples. As for the binary case, the search space reduction
obtained by D3WCcy is important. On this benchmark, the size and number of
added constraints is small enough to allow D3WCcy to be the fastest technique.
Note that the search space reduction obtained by maxRPWC3 doesn’t repay
its cost, in contrast to eSTRw.

AIM Instances This instance set contains 24 instances from the AIM se-
ries used in the CSP solver competition [vDLR] (100 variables, a majority
of ternary constraints and binary ones). The search strategy used was a lex-
icographic variable and value ordering. D3WCcy includes 3000 constraints
from the 3-dual, on average, and the added constraints contain on average
30.3 tuples. Plots of the percent best quantities can be found in Figure 6.4.
In this figure, wDkWC represents D3WCcy. On this benchmark, the filter-
ing obtained by maxRPWC3, eSTRW and D3WCcy allows each of them to
be significantly faster than GAC. Although D3WCcy achieves the best search
space reduction, eSTRw remains the fastest technique. The greater computa-
tion time for D3WCcy is due to the number of 3-dual constraints included in the

6.5 E X P E R I M E N TA L R E S U LT S 149

0 200 400 600 800 1000
Percent Best

TernRandom

GAC

maxRPWC3

eSTRw

wDkWC

Figure 6.3: Percent best quantities for the ternary random instance set

3-interleaved CSPs: 3000 on average while the number of original constraints
lies between 150 and 570. Even if the 3-dual constraints have small tables, they
still have to be propagated during the search. Interestingly, D3WCcy solves sig-
nificantly more instances than the other techniques.

Pret Instances This instance set also comes from the CSP solver competi-
tion [vDLR] and has 8 instances (only ternary table constraints). The search
strategy used was a lexicographic variable and value ordering. D3WCcy in-
cludes on average 13 constraints, that have a mean size of 8 tuples. Figure 6.5
plots the percent best quantities for this benchmark. In this figure, wDkWC
represents D3WCcy. On this benchmark, neither maxRPWC3 nor eSTRw is
able to reduce the search space with respect to GAC. Their additional compu-
tations make them slower than GAC. The small number of small constraints
from the 3-dual CSP included by D3WCcy allows it to significantly reduce the
search space and to be the fastest on this series. The mean percentage to the
best (µ%b) of D3WCcy means that it is the best technique on average but also
on each instance. Note that the join selection, join computation and posting
times are negligible for this problem.

150 Chapter 6 P R AC T I C A L U S E O F T H E D K W C

0 1000 2000 3000 4000 5000 6000 7000
Percent Best

AIM

GAC

maxRPWC3

eSTRw

wDkWC

Figure 6.4: Percent best quantities for the aim instance set

0 100 200 300 400 500 600 700 800
Percent Best

Pret

GAC

maxRPWC3

eSTRw

wDkWC

Figure 6.5: Percent best quantities for the pret instance set

6.5 E X P E R I M E N TA L R E S U LT S 151

0 2000 4000 6000 8000 10000
Percent Best

Langford2

GAC

maxRPWC3

eSTRw

wDkWC

Figure 6.6: Percent best quantities for the Langford-2 instance set

Langford Number Problem The Langford number problem is Problem 24
of CSPLIB2, here modeled with binary table constraints only. We used the
set Langford-2 containing 24 instances that can be found in [Lec]. The search
strategy used was dom/deg combined with a lexicographic value ordering. On
this set, D3WCcy includes, on average, 328 3-dual constraints, whose tables
contain 274.7 tuples on average. Figure 6.6 plots the percent best quantities for
this benchmark. In this figure, wDkWC represents D3WCcy. On this bench-
mark, GAC is the fastest propagator on each instance. Neither maxRPWC3 nor
eSTRw is able to reduce the search space with respect to GAC. However, they
have a lower propagator call count. This is due to their ability to reach the fixed
point faster. The number of constraints added from the 3-dual by D3WCcy

is large compared to the number of original constraints (the non-timeout in-
stances are the smallest ones). The small search space reduction obtained by
D3WCcy does not compensate for the cost of propagating all the added con-
straints. The number of propagator calls is significantly larger for D3WCcy.
We can also see that, on this benchmark, the time required to compute the
joins is larger than the time required by GAC to solve the instances.

2 www.csplib.org

www.csplib.org

152 Chapter 6 P R AC T I C A L U S E O F T H E D K W C

0 50 100 150 200 250 300 350 400
Percent Best

Dubois

GAC

eSTRw

wDkWC

Figure 6.7: Percent best quantities for the Dubois instance set

Dubois Instances Those 13 instances also comes from the CSP solver com-
petition [vDLR] (ternary table constraints). These instances do not contain any
cycle of original constraints of length 3. We thus present the results of D4WCcy.
A plot of the percent best quantities can be found in Figure 6.7. In this plot, wD-
kWC represents D4WCcy. On this series, D4WCcy adds on average 156 4-dual
constraints and their tables contain, on average, 15.2 tuples. Clearly, D4WCcy

is the fastest approach here and solves more instances than the other techniques.
D4WCcy is also the fastest on each instance, as shown by the mean percentage
to the best (µ%b). The search space reduction obtained by eSTRw is less than
that obtained by D4WCcy but it allows it to be faster than GAC.

Travelling Salesman Problem We used the set of 15 Travelling Salesman
satisfaction instances tsp-20 from [Lec] (table constraints of arity 2 and 3).
The search strategy used here was dom/deg combined with a lexicographic
value ordering. On this instance set, there are, on average, 1000 cycles of
length 3 in the 3-dual CSP and they contain up to 2000 tuples. In that con-
text, D3WCcy only solves 40% of the instances. We thus present the results
for D3WCcy− where the limit on the size of the joins is set to one percent of
the maximal original constraint size (200). Figure 6.8 plots the percent best
quantities for this benchmark. In this figure, wDkWC represents D3WCcy−.

6.5 E X P E R I M E N TA L R E S U LT S 153

0 50 100 150 200 250 300 350 400 450
Percent Best

TSP20

GAC

eSTRw

wDkWC

Figure 6.8: Percent best quantities for the travelling salesman instance set

D3WCcy− includes 59.8 constraints from the 3-dual CSP on average, and their
tables contain, on average, 26 tuples. As we can see, on those instances, nei-
ther eSTRw nor D3WCcy− is able to reduce the search space. The extra com-
putations of eSTRw and the extra propagation effort of D3WCcy− make them
slower than GAC (which is also the fastest approach on each instance). How-
ever, D3WCcy− is faster than eSTRw and it is the only one able to solve the
same number of instances as GAC.

Modified Renault Problem The modified Renault problem instances origi-
nate from a real Renault Megane configuration problem, modified to generate
50 instances [Lec] (large tables and arities up to 10). The search strategy used
was dom/deg variable ordering combined with a lexicographic value ordering.
Since the tables of the original problem can have up to 50K tuples, D3WCcy

is unpractical because of the size of the joins. We thus present the results for
D3WCcy− where the limit on the size of the joins has been set to one percent
of the largest original constraint size (500), as in the TSP benchmark. Plots of
the percent best quantities can be found in Figure 6.9. In this figure, wDkWC
represents D3WCcy−. On those instances, D3WCcy− includes 481.6 3-dual
constraints on average, and their tables contain on average 253.9 tuples. As
we can see, both maxRPWC3 and D3WCcy− detect the inconsistencies of all

154 Chapter 6 P R AC T I C A L U S E O F T H E D K W C

0 20 40 60 80 100 120 140 160
Percent Best

modRenault

maxRPWC3

wDkWC

Figure 6.9: Percent best quantities for the modified Renault instance set

instances without performing any search (nC = nF = 0). However, despite the
fact that D3WCcy− has a larger propagator call count, it is faster than maxR-
PWC3. D3WCcy− is also able to solve more instances than maxRPWC3.

Summary of the Experimental Results A summary of the experimental re-
sults can be found in Table 6.2. This table contains the total execution time
(T) and the percentage of instances solved (% sol) for each technique. The col-
umn wDkWC represents our weak DkWC approach: it is D3WCcy for binary
random, ternary random, AIM, Pret and Langford-2 instances, D4WCcy for
Dubois instances and D3WCcy− for TSP-20 and modified Renault instances.
Weak DkWC is faster than maxRPWC3 and eSTRw, except for two bench-
marks. It is also faster than GAC on all but two benchmarks, where GAC is
faster than all strong consistencies. Weak DkWC is also the strong consistency
leading to the largest reductions of search space. Except on Langford-2, weak
DkWC solves the largest number of instances within the time limit.

For all these benchmarks, we insist that (full) DkWC cannot be used in prac-
tice because of the number of possible joins and/or their size. This is the rea-
son why we have introduced weak DkWC. On the majority of benchmarks, we
used DkWCcy but on two benchmarks, even D3WCcy suffers from the number
of 3-dual constraints and their sizes. Consequently, we also used DkWCcy−,

6.6 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S 155

Benchmark GAC maxRPWC3 eSTRw wDkWC

T %sol T %sol T %sol T %sol

Binary Random 9.9 100 72 98 11.4 100 2.9 100

Ternary Random 23.1 100 124 90 16.6 100 12.6 100

AIM 82 46 14.7 46 1.2 50 3.4 88

Pret 160 50 977 50 504 50 132 50

Langford2 0.5 58 44.6 46 1.5 54 10.5 50

Dubois 793 15 - 8 598 15 201 30

TSP-20 52 93 - 33 233 80 94 93

ModRenault - 6 743 0 - 26 502 34

Table 6.2: Summary of the results of the experimental section. T is the total solving
time in seconds and %sol is the percentage of the instances solved

for which the best limit on the joins size has been empirically found to be
equal to 1 percent of the maximum original constraint size. This parameter
value allows D3WCcy− to include a significant number of small (highly filter-
ing) 3-dual constraints without including too many of them. All these results
show, on a large variety of benchmarks with constraints of various arities, that
the weak DkWC filtering procedures defined in this chapter are competitive.

6.6 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S

This section is concerned with the application of the statistical procedure pre-
sented in Chapter 3 to the experimental results for the propagators in this chap-
ter. In this context, as timeouts are present and there are several classes of in-
stances, we will use the θ5 statistic of interest. Recall that θ5 is the mean width
of the area between the multi-class cumulative distributions of the algorithms
being compared. This represents the mean, over the different proportions of the
whole instance set, of the differences in the times the algorithms take to solve
given proportions of the set. In the multi-class empirical distributions, each
class of instances has a weight. The weights used in this section are designed
to give less importance to the fully random datasets and to give more impor-
tance to the non-academic ones (modified Renault and TSP). The same rule has
been used in Chapter 4 to determine the weights of the datasets. Again, larger
classes of instances do not weigh more in the value of θ̂5 since the number of

156 Chapter 6 P R AC T I C A L U S E O F T H E D K W C

0 200 400 600 800 1000 1200
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

proportion
 instances

 solved

GAC
maxRPWC3
eSTRw
wDkWC

Figure 6.10: Non-bootstrapped multi-class empirical cumulative distributions of the
weak DkWC filtering procedure versus the state of the art

instances of each class is inluded in the denominator of the class contribution
to θ̂5. To illustrate the results, Figure 6.10 gives the non-bootstrapped multi-
class empirical cumulative distribution of our weak DkWC filtering procedure
versus the state of the art. Recall that the multi-class empirical cumulative dis-
tribution of algorithm A gives, for each time t, the weighted proportion of the
full instance set that has been solved by A in a time less than or equal to t. As
we can see in Figure 6.10, our weak DkWC filtering procedure is the fastest
and is also the technique resulting in the largest number of instances solved at
the end. Surprisingly, GAC is the second fastest filtering technique on the full
instance set.

Bootstrapping was used on the estimator of θ5 to get a confidence interval.
The results of the pairwise comparisons of the algorithms are given in Table
6.3. The confidence intervals are written with the lower bound on top of the
upper bound and significant positive confidence intervals are written in bold.
For those confidence intervals, 10,000 bootstrap samples were drawn from the
sets of all experimental results and a confidence level α of 0.05 was used. The
numbers correspond to seconds. The entry in the table in the line of algorithm

6.6 S TAT I S T I C A L T R E AT M E N T O F T H E E X P E R I M E N T S 157

GAC maxRPWC3 eSTRw wDkWC

GAC – 286.5 77.1 -110.5

473.8 194.4 -32.3

maxRPWC3 -473.8 – -395.1 -498.6

-286.5 -237.4 -302.4

eSTRw -194.4 237.4 – -224.4

-77.1 395.1 -94.7

wDkWC 32.3 302.4 94.7 –

110.5 498.6 224.4

Table 6.3: Confidence intervals for the θ5 statistic of interest on the propagators from
this Chapter. The values correspond to seconds and the confidence intervals
are given with the lower bound on top of the upper bound.

A and the column of algorithm B gives the confidence interval for θ5(A, B).
Positive values correspond to A’s being faster than B in general (all the in-
stances included). If 0 is outside the confidence interval for θ5(A, B), A and B
perform significantly differently. As in table 6.2, wDkWC stands for our weak
DkWC approach.

In Table 6.3, we can see that when aggregating the results of all the datasets,
our weak DkWC propagator is significantly faster than all the other propaga-
tors. The GAC propagator is the second fastest propagator: it is significantly
faster than all the propagators, except our weak DkWC one. MaxRPWC3 is
significantly slower than all the other propagators. The big difference between
Table 6.3 and Table 6.2 is that Table 6.3 includes the information of all the
instances, including instances for which one or more algorithm timeouts. In
Table 6.2, the algorithms are only compared on the set of instances that are
solved by all of them. The information on the other instances is only reflected
through the %sol quantity. In Table 6.3, those two pieces of information are
combined: if an instance is in a bootstrap set and solved by only one of the two
compared algorithm, it will advantage the algorithm solving it since it will be
included in its MECD before the timeout.

C O N C L U S I O N A N D P E R S P E C T I V E S

159

C O N C L U S I O N A N D P E R S P E C T I V E S 161

C O N C L U S I O N

This thesis presented different chapters, each of which has its own conclusion.

Efficient and Optimal GAC Propagators for Table Constraints

This chapter proposed five different value-based GAC propagators for table
constraints, using the AC5 generic framework. Two of them (AC5TCOtp-Tr
and AC5TCOpt-Sparse) have an optimal time complexity. Those propagators
record, for every value of the variables, the index of its first current support in
the table. They also use, for each variable of a tuple, the index of the next tuple
sharing the same value for this variable. They differ in their use of the informa-
tion on the validity of the tuples as well as the order of the tuples in the formed
next chains. AC5TCOpt-Sparse is the best of our value-based algorithms. As
does AC5TCOpt-Tr, AC5TCOpt-Sparse embeds the Q-validity information
into the indexing structure, avoiding unnecessary visits of invalid tuples and
leading to an optimal algorithm with a time complexity of O(r · t + r · d)
per table constraint. However, AC5TCOpt-Sparse relaxes the requirement that
the tuples in the structure are ordered as they are in the table. Doing that al-
lows AC5TCOpt-Sparse to have far less backtrackable structures. While not
changing its theoretical complexity, this relaxation allows AC5TCOpt-Sparse
to be more efficient in practice. Our other algorithms have a time complexity
of O(r2 · t + r · d) per table constraint. The experimental results show that
on instances containing only binary table constraints, our algorithms are out-
performed by AC3rm. AC3rm is designed only for binary constraints. How-
ever, they are faster than the other state of the art table constraint propagators
STR2+, STR3 and MDDc. As the arity of the tables in the instances goes up
to 4, our propagators are the fastest ones. However, when the arity of the table
increases further, the conclusion changes. The existing state-of-the-art propa-
gators STR2+, STR3 and MDDc are faster than our algorithms on one different
benchmark each. When all the benchmarks are used together to assess the per-
formances of the algorithms with the statistical procedure defined in Chapter
3, our optimal AC5TCOpt-Sparse is significantly faster than all the other prop-
agators.

The Smart Table Constraint

This chapter presented a new constraint, the Smart Table Constraint, general-
izing existing table constraints by replacing tuples with smart tuples. Smart

162 Chapter 9 C O N C L U S I O N A N D P E R S P E C T I V E S

tuples are allowed to contain simple arithmetic constraints, making the repre-
sentation of constraints compact and natural. A variable in a smart tuple can
thus take many values, reducing the length of the table, as with the use of
compressed tuples and short supports for table constraints. Furthermore, the
constraints in the smart tuples encode the relations that exist between columns
in the table, further reducing the length of the smart tables. Each smart tuple
is a small CSP and the literals that it supports are the solution to its small
CSP. Hence, for the sake of keeping the propagation tractable, a restriction on
the form of the smart tuples is imposed: the smart tuples have to form binary
acyclic networks. A GAC propagator, based on STR/STR2, has been defined
for smart table constraints. It is called SmartSTR2: it efficiently processes the
smart tuples, using the restriction on their form to do so. The experimental re-
sults on the encoding into smart table constraints of global constraints versus
their dedicated propagators show the interest of SmartSTR2.

Efficient Filtering Procedure for Domain k-Wise Consistency on Table Con-
straints

In this chapter, we combined two consistencies: generalized arc consistency
and k-wise consistency. Generalized arc consistency filters the domains of the
variables, while k-wise consistency filters directly the constraints. The inte-
gration of a constraint filtering consistency in an existing solver can be com-
plicated. We have thus derived a domain-filtering consistency, the Domain k-
wise Consistency, from the combination of kWC and GAC. This consistency
is stronger than GAC. More importantly for such a strong consistency, we
have shown how to establish and maintain it by establishing and maintain-
ing GAC on a modified CSP, called the k-interleaved CSPs. Such reformulated
CSPs incorporate dual variables representing the original constraints, hybrid
constraints linking the original constraints and dual variables, and k-dual con-
straints constraining the dual variables. The k-interleaved CSPs are simple to
generate, and need to be generated only once before the search. Enforcing GAC
on the k-interleaved CSP enforces domain k-wise consistency on the original
CSP. The k-dual constraints represent the joins of the original constraints. To
manage the complexity and the number of join operations, we have proposed a
few solutions, such as the ones relying on the presence of cycles in the original
constraint graph or on the use of a limit on the maximal size of joins. The ex-
perimental results that we have obtained show, for a large variety of problems,
that our weak DkWC filtering procedures are competitive. When aggregating
all the experimental data with the statistical procedure from Chapter 3, we can

P E R S P E C T I V E S 163

see that our weak DkWC filtering procedure is significantly faster than the
other approaches.

P E R S P E C T I V E S

There exist many different perspectives opened up by the research presented
in this thesis. Some of them are listed below:

• Development of non-optimal but efficient GAC propagators for ta-
ble constraints: the performances of the AC5TC-Recomp, STR2+ and
MDDc GAC propagators for table constraints are competitive on many
benchmarks. This suggests that there is room to develop propagators
for table constraints that are non-optimal but efficient. Indeed, the opti-
mality of many propagators is based on large data structures that have
to be backtracked. Without the optimality requirement, the need for
data structures could be reduced, leading to more efficient propagators.
A starting point could be to inspect the effects of not backtracking some
structures in the optimal propagators. The information would have to
be recomputed.

• Propagators using the collect and propagate paradigm: value-based
propagators have information on the literal being removed at call time.
However, this requires them to be called for each removed literal. In
contrast, constraint-based propagators only have the information that
some literal(s) have been removed. Having less information allows
those propagators to be called far less often than value-based ones. The
collect and propagate paradigm lies between the constraint and the
value-based ones: propagators have information about all the literals
that have been removed since their last call. This paradigm could lead
to propagators that combine the efficiency of the value-based ones (in-
formation on the literals removed) with the advantage of the constraint
based ones (one call summarizes many literal removals).

• Combination of smart tables: a smart table constraint can be seen as a
disjunction of smart tuples. They allow efficiently encoding many well
known global constraints. Combining two smart tables into one table
constraint would encode the conjunction of the two constraints, since
the shared variables would have to agree. Combining two smart table
constraints corresponding to global constraints would thus represent
the conjunction of the global constraints into one constraint. Combined

164 Chapter 9 B I B L I O G R A P H Y

smart table constraints would hence improve the pruning of the search
tree.

• Automatic translation of table constraints into smart table con-
straints: The smart table constraints presented in this thesis are directly
encoded by the user. As a smart table constraint can encode any con-
straint efficiently, it would be interesting to investigate the possibility
of automatically translating classical table constraints into smart ones.
Smart table constraints could reduce the space and time consumption
of table constraints. However, this task would require detecting the re-
lations between the columns in classical table constraints, which is not
an easy task.

• Practicality of domain k-wise consistency: as seen in Chapter 6, the
full DkWC is too costly for most practical applications. This is even
more true as k increases. As a consequence, two weak variants of our
filtering have been proposed, relying on the selection of interesting con-
straints and a limit on their size. However, the choice of constraints, as
well as the parameter k, has a tremendous effect on the effectiveness
of the technique. A very interesting perspective for DkWC would be
to investigate the best set of constraints to include in the k-interleaved
CSP, and which k to use for which problem.

• Strong consistency for hard problems: the practical use of strong con-
sistency levels is more and more studied. The problem with strong con-
sistency is that it is expensive to compute and only pays off when the
search space reduction is large enough to cover the cost of the propaga-
tion. Perspectives for this concern are multiple. One could concentrate
on the development of efficient procedures, achieving a (maybe unchar-
acterized) relaxed version of a strong consistency level. This is the case
for our weak DkWC propagators. Another possible perspective for the
strong consistency levels would be the characterization of the problem-
s/instances where a given strong consistency level is beneficial. This
would allow selecting the appropriate level of consistency based on the
characteristics of the problem or the instance. A last perspective would
be to use different levels of propagation at different stages of the search
in order to only pay the cost of strong propagation where it has more
chances of greatly pruning the search space.

B I B L I O G R A P H Y

[BCDP05] Nicolas Beldiceanu, Mats Carlsson, Romuald Debruyne, and
Thierry Petit. Reformulation of global constraints based on con-
straints checkers. Constraints, 10(4):339–362, 2005.

[Bee06] Peter van Beek. Backtracking search algorithm. In Rossi et al.
[RBW06].

[Bes94] Christian Bessière. Arc-consistency and arc-consistency again.
Artificial intelligence, 65(1):179–190, 1994.

[Bes06] Christian Bessière. Constraint propagation. In Rossi et al.
[RBW06].

[BFR99] Christian Bessière, Eugene C Freuder, and Jean-Charles Ré-
gin. Using constraint metaknowledge to reduce arc consistency
computation. Artificial Intelligence, 107(1):125–148, 1999.

[BR97] Christian Bessière and Jean-Charles Régin. Arc consistency for
general constraint networks: Preliminary results. In IJCAI (1),
pages 398–404, 1997.

[BR98] Christian Bessière and Jean-Charles Régin. Local consistency
on conjunctions of constraints. In Proceedings of ECAI’98
Workshop on Non-binary constraints, pages 53–59, 1998.

[BR99] C. Bessière and J.-C. Régin. Enforcing arc consistency on
global constraints by solving subproblems on the fly. In Pro-
ceedings of CP’99, pages 103–117, 1999.

165

166 Chapter 9 B I B L I O G R A P H Y

[BR01] Christian Bessière and Jean-Charles Régin. Refining the basic
constraint propagation algorithm. In IJCAI, volume 1, pages
309–315, 2001.

[BRYZ05] Christian Bessière, Jean-Charles Régin, Roland HC Yap, and
Yuanlin Zhang. An optimal coarse-grained arc consistency al-
gorithm. Artificial Intelligence, 165(2):165–185, 2005.

[BSW08] C. Bessière, K. Stergiou, and T. Walsh. Domain filtering consis-
tencies for non-binary constraints. Artificial Intelligence, 72(6-
7):800–822, 2008.

[BT93] P. Briggs and L. Torczon. An efficient representation for sparse
sets. ACM Letters on Programming Languages and Systems
(LOPLAS), 2(1-4):59–69, 1993.

[BW05] Fahiem Bacchus and Toby Walsh. Propagating logical combi-
nations of constraints. In IJCAI, pages 35–40, 2005.

[Car06] Mats Carlsson. Filtering for the case constraint. Talk given at
the advanced school on global constraints, 2006.

[CC95] Björn Carlson and Mats Carlsson. Compiling and executing
disjunctions of finite domain constraints. In Proceedings of
ICLP’95, pages 117–131, 1995.

[CJ98] Assef Chmeiss and Philippe Jégou. Efficient path-consistency
propagation. International Journal on Artificial Intelligence
Tools, 7(02):121–142, 1998.

[CY10] Kenil Cheng and Roland Yap. An mdd-based generalized
arc consistency algorithm for positive and negative table con-
straints and some global constraints. Constraints, 15:265–304,
2010.

[Dav97] Anthony Christopher Davison. Bootstrap methods and their
application, volume 1. Cambridge university press, 1997.

[DB01] R. Debruyne and C. Bessière. Domain filtering consistencies.
Journal of Artificial Intelligence Research, 14:205–230, 2001.

[DM02] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimiza-
tion software with performance profiles. Mathematical pro-
gramming, 91(2):201–213, 2002.

B I B L I O G R A P H Y 167

[dSMDS11] Vianney le Clément de Saint-Marcq, Yves Deville, and Chris-
tine Solnon. An efficient light solver for querying the semantic
web. In Principles and Practice of Constraint Programming–
CP 2011, pages 145–159. Springer, 2011.

[dSMDSC12] Vianney le Clément de Saint-Marcq, Yves Deville, Christine
Solnon, and Pierre-Antoine Champin. Castor: a constraint-
based sparql engine with active filter processing. In The Seman-
tic Web: Research and Applications, pages 391–405. Springer,
2012.

[DV10] Yves Deville and Pascal Van Hentenryck. Domain consistency
with forbidden values. In Proceedings of CP 2010, pages 191–
205. Springer, 2010.

[DVHM13] Yves Deville, Pascal Van Hentenryck, and Jean-Baptiste Mairy.
Domain consistency with forbidden values. Constraints,
18(3):377–403, 2013.

[Efr79] Bradley Efron. Bootstrap methods: another look at the jack-
knife. The annals of Statistics, pages 1–26, 1979.

[ET94] Bradley Efron and Robert J Tibshirani. An introduction to the
bootstrap, volume 57. CRC press, 1994.

[FHK+02] A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh.
Global constraints for lexicographic orderings. In Proceedings
of CP’02, pages 93–108, 2002.

[FHK+06] A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Prop-
agation algorithms for lexicographic ordering constraints. Arti-
ficial Intelligence, 170(10):803–834, 2006.

[FW86] Philip J. Fleming and John J. Wallace. How not to lie with statis-
tics: the correct way to summarize benchmark results. Commun.
ACM, 29(3):218–221, March 1986.

[GHLR14] Nebras Gharbi, Fred Hemery, Christophe Lecoutre, and Olivier
Roussel. Sliced table constraints: combining compression and
tabular reduction. In Proceedings of CPAIOR’14, pages 120–
135, 2014.

[GJM06] Ian P. Gent, Chris Jefferson, and Ian Miguel. Watched literals
for constraint propagation in minion. In Proceedings of CP
2006, pages 182–197. Springer-Verlag, 2006.

168 Chapter 9 B I B L I O G R A P H Y

[GJMN07] Ian P. Gent, Chris Jefferson, Ian Miguel, and Peter Nightingale.
Data structures for generalised arc consistency for extensional
constraints. In Proceedings of the AAAI 07, pages 191–197.
AAAI Press, 2007.

[GSS11] Graeme Gange, Peter J. Stuckey, and Radoslaw Szymanek.
Mdd propagators with explanation. Constraints, 16(4):407–
429, 2011.

[Jég91] P. Jégou. Contribution à l’étude des Problèmes de Satisfaction
de Contraintes: Algorithmes de propagation et de résolution.
Propagation de contraintes dans les réseaux dynamique. PhD
thesis, Université de Montpellier II, 1991.

[JJNV89] P. Janssen, P. Jégou, B. Nouguier, and M.-C. Vilarem. A filter-
ing process for general constraint-satisfaction problems: achiev-
ing pairwise-consistency using an associated binary representa-
tion. In Proceedings of IEEE Workshop on Tools for Artificial
Intelligence, pages 420–427, 1989.

[JMNP10] Christopher Jefferson, Neil CA Moore, Peter Nightingale, and
Karen E Petrie. Implementing logical connectives in con-
straint programming. Artificial Intelligence, 174(16):1407–
1429, 2010.

[JN13] Christopher Jefferson and Peter Nightingale. Extending sim-
ple tabular reduction with short supports. In Proceedings of
IJCAI’13, pages 573–579, 2013.

[KB01] George Katsirelos and Fahiem Bacchus. GAC on conjunctions
of constraints. In Proceedings of CP’01, pages 610–614, 2001.

[KW07] George Katsirelos and Toby Walsh. A compression algorithm
for large arity extensional constraints. In Proceedings of CP
2007, pages 379–393. Springer-Verlag, 2007.

[KWR+10] S. Karakashian, R. Woodward, C. Reeson, B. Choueiry, and
C. Bessière. A first practical algorithm for high levels of rela-
tional consistency. In Proceedings of AAAI’10, pages 101–107,
2010.

[Lec] Ch. Lecoutre. Instances of the constraint solver competition.
http://www.cril.fr/∼lecoutre/.

B I B L I O G R A P H Y 169

[Lec09] Christophe Lecoutre. Constraint Networks: Techniques and Al-
gorithms. ISTE/Wiley, 2009.

[Lec11] Christophe Lecoutre. Str2: optimized simple tabular reduction
for table constraints. Constraints, 16:341–371, 2011.

[LH+07] Christophe Lecoutre, Fred Hemery, et al. A study of residual
supports in arc consistency. In Proceedings of IJCAI 2007, vol-
ume 7, pages 125–130, 2007.

[Lho04] Olivier Lhomme. Arc-consistency filtering algorithms for log-
ical combinations of constraints. In Proceedings of CPAIOR
2004, pages 209–224, 2004.

[Lho12] O. Lhomme. Practical reformulations with table constraints. In
Proceedings of ECAI’12, pages 911–912, 2012.

[LLY12] C. Lecoutre, C. Likitvivatanavong, and R.H.C. Yap. A path-
optimal gac algorithm for table constraints. In Proceedings of
ECAI 2012, pages 510–515, 2012.

[LLY14] Christophe Lecoutre, Chavalit Likitvivatanavong, and
Roland HC Yap. Improving the lower bound of simple
tabular reduction. Constraints, pages 1–9, 2014.

[LPS13] C. Lecoutre, A. Paparrizou, and K. Stergiou. Extending STR to
a higher-order consistency. In Proceedings of AAAI’13, pages
576–582, 2013.

[LR05] Olivier Lhomme and Jean-Charles Régin. A fast arc consis-
tency algorithm for n-ary constraints. In Proceedings of the
Nationnal Conference on Artificial Intelligence, pages 405–410.
AAAI Press, 2005.

[LS06] Christophe Lecoutre and Radoslaw Szymanek. Generalized arc
consistency for positive table constraints. In Proceedings of CP
2006, pages 284–298, 2006.

[LXY14] Chavalit Likitvivatanavong, Wei Xia, and Roland HC Yap.
Higher-order consistencies through gac on factor variables. In
Principles and Practice of Constraint Programming, pages
497–513. Springer, 2014.

[Mac77a] A.K. Mackworth. Consistency in networks of relations. Artifi-
cial Intelligence, 8(1):99–118, 1977.

170 Chapter 9 B I B L I O G R A P H Y

[Mac77b] Alan K Mackworth. On reading sketch maps. In IJCAI, vol-
ume 77, pages 598–606, 1977.

[McG79] James J McGregor. Relational consistency algorithms and their
application in finding subgraph and graph isomorphisms. Infor-
mation Sciences, 19(3):229–250, 1979.

[MDL14] Jean-Baptiste Mairy, Yves Deville, and Christophe Lecoutre.
Domain k-wise consistency made as simple as generalized arc
consistency. In Integration of AI and OR Techniques in Con-
straint Programming, pages 235–250. Springer International
Publishing, 2014.

[MDL15] Jean-Baptiste Mairy, Yves Deville, and Christophe Lecoutre.
The smart table constraint. In Integration of AI and OR Tech-
niques in Constraint Programming. Springer International Pub-
lishing, 2015.

[MDVH11] Jean-Baptiste Mairy, Yves Deville, and Pascal Van Hentenryck.
Reinforced adaptive large neighborhood search. The Seven-
teenth International Conference on Principles and Practice of
Constraint Programming (CP 2011), page 55, 2011.

[MF85] Alan K Mackworth and Eugene C Freuder. The complexity
of some polynomial network consistency algorithms for con-
straint satisfaction problems. Artificial intelligence, 25(1):65–
74, 1985.

[MH86] Roger Mohr and Thomas C Henderson. Arc and path consis-
tency revisited. Artificial intelligence, 28(2):225–233, 1986.

[MM88] Roger Mohr and Gérald Masini. Good old discrete relaxation.
In Proceedings of ECAI 1988, pages 651–656, 1988.

[MSD10] Jean-Baptiste Mairy, Pierre Schaus, and Yves Deville. Generic
adaptive heuristics for large neighborhood search. In Seventh
International Workshop on Local Search Techniques in Con-
straint Satisfaction (LSCS2010). A Satellite Workshop of CP,
2010.

[MT99] P. Meseguer and C. Torras. Solving strategies for highly sym-
metric CSPs. In Proceedings of IJCAI’99, pages 400–405,
1999.

B I B L I O G R A P H Y 171

[MVHD12] Jean-Baptiste Mairy, Pascal Van Hentenryck, and Yves Deville.
An optimal filtering algorithm for table constraints. In Princi-
ples and Practice of Constraint Programming, pages 496–511.
Springer Berlin Heidelberg, 2012.

[MVHD14a] Jean-Baptiste Mairy, Pascal Van Hentenryck, and Yves Deville.
Optimal and efficient filtering algorithms for table constraints.
Constraints, 19(1):77–120, 2014.

[MVHD14b] Jean-Baptiste Mairy, Pascal Van Hentenryck, and Yves Deville.
Optimal and efficient filtering algorithms for table constraints.
Constraints, 19(1):77–120, 2014.

[NGJM13] Peter Nightingale, Ian Philip Gent, Christopher Anthony Jeffer-
son, and Ian James Miguel. Short and long supports for con-
straint propagation. Journal of Artificial Intelligence Research,
46:1–45, 2013.

[Pes04] Gilles Pesant. A regular language membership constraint for
finite sequences of variables. In Proceedings of CP 2004, pages
482–495. Springer, 2004.

[PF] Laurent Perron and Vincent Furnon. or-tools. http://
code.google.com/p/or-tools.

[PR14] Guillaume Perez and Jean-Charles Régin. Improving GAC-4
for table and MDD constraints. In Proceedings of CP’14, pages
606–621, 2014.

[PS12] A. Paparrizou and K. Stergiou. An efficient higher-order con-
sistency algorithm for table constraints. In Proceedings of
AAAI’12, pages 335–541, 2012.

[QW06] Claude-Guy Quimper and Toby Walsh. Global grammar con-
straints. In Proceedings of CP 2006, pages 751–755. Springer,
2006.

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors.
Handbook of Constraint Programming (Foundations of Artifi-
cial Intelligence). Elsevier Science Inc., New York, NY, USA,
2006.

[Rég94] J. C. Régin. A filtering algorithm for constraints of difference in
CSP. In Proceedings of the AAAI National Conference, pages
362–367, Seattle, Wash., 1994.

172 Chapter 9 B I B L I O G R A P H Y

[Rég11] Jean-Charles Régin. Improving the expressiveness of table con-
straints. In In proceedings of ModRef 2011 Workshop held with
CP 2011, 2011.

[SO08] H. Simonis and B. O’Sullivan. Search strategies for rectangle
packing. In Proceedings of CP’08, pages 52–66, 2008.

[SS05] Nikolaos Samaras and Kostas Stergiou. Binary encodings of
non-binary constraint satisfaction problems: Algorithms and ex-
perimental results. Journal of Artificial Intelligence Research,
24(1):641–684, 2005.

[Ste07] K. Stergiou. Strong inverse consistencies for non-binary CSPs.
In Proceedings of ICTAI’07, pages 215–222, 2007.

[Ste08] K. Stergiou. Strong domain filtering consistencies for non-
binary constraint satisfaction problems. International Journal
on Artificial Intelligence Tools, 17(5):781–802, 2008.

[Ull07] Julian R. Ullmann. Partition search for non-binary constraint
satisfaction. Information Sciences, 177(18):3639–3678, 2007.

[vDLR] M. van Dongen, C. Lecoutre, and O. Roussel. 2008 CSP solver
competition. http://www.cril.univ-artois.fr/CPAI08/.

[VDT92] Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A
generic arc-consistency algorithm and its specializations. Arti-
ficial Intelligence, 57(2-3):291–321, 1992.

[VHR95] P. Van Hentenryck and V. Ramachandran. Backtracking with-
out Trailing in CLP(<lin). ACM Transactions on Programming
Languages and Systems, 17(4):635–671, July 1995.

[VHSD98] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. De-
sign, implementation, and evaluation of the constraint language
cc(fd). The Journal of Logic Programming, 37(1-3):139–164,
1998.

[VPJ11] J. Vion, T. Petit, and N. Jussien. Integrating strong local consis-
tencies into constraint solvers. Recent Advances in Constraints,
6384:90–104, 2011.

[Wal05] Richard Wallace. Factor analytic studies of csp heuristics.
In Proceedings of CP 2005, volume 3709, pages 712–726.
Springer Berlin / Heidelberg, 2005.

B I B L I O G R A P H Y 173

[WKCB11] R. Woodward, S. Karakashian, B. Choueiry, and C. Bessière.
Solving difficult CSPs with relational neighborhood inverse
consistency. In Proceedings of AAAI’11, pages 112–119, 2011.

[WM96] Jörg Würtz and Tobias Müller. Constructive disjunction revis-
ited. In Proceedings of KI’96, pages 377–386, 1996.

[WPB00] Ron Wehrens, Hein Putter, and Lutgarde Buydens. The boot-
strap: a tutorial. Chemometrics and intelligent laboratory sys-
tems, 54(1):35–52, 2000.

[XBHL07] Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe
Lecoutre. Random constraint satisfaction: Easy generation
of hard (satisfiable) instances. Artificial Intelligence, 171(8-
9):514–534, 2007.

[XY13] Wei Xia and Roland H. C. Yap. Optimizing STR algorithms
with tuple compression. In Proceedings of CP’13, pages 724–
732, 2013.

[You94] G Alastair Young. Bootstrap: More than a stab in the dark?
Statistical Science, pages 382–395, 1994.

[ZY01] Yuanlin Zhang and Roland H. C. Yap. Making AC3 an Opti-
mal Algorithm. In International Joint Conference on Artificial
Intelligence, pages 316–321, 2001.

	Contents
	Background
	1 Constraint Programming
	1.1 Constraint Satisfaction Problems
	1.2 Constraint Optimization Problems
	1.3 Table Constraints

	2 Propagation in Constraint Programming
	2.1 Generalized Arc Consistency
	2.2 GAC for Table Constraints
	2.3 Consistencies Stronger than GAC

	3 Statistical Treatment of the Experiments
	3.1 Problem Definition
	3.2 Treatment of Data Without Censoring
	3.3 Treatment of Data With Censoring

	Propagation for Table Constraints
	4 Efficient and Optimal GAC Propagators for Table Constraints
	4.1 The AC5 Algorithm
	4.2 Efficient GAC Propagators
	4.3 A Variation Based on Recomputation
	4.4 Optimal GAC Propagators
	4.5 Experimental Results
	4.6 Statistical Treatment of the Experiments

	5 The Smart Table Constraint
	5.1 Syntax and Semantics
	5.2 Filtering Smart Table Constraints
	5.3 Link with Logical Combination of Constraints
	5.4 Experimental Results

	6 Efficient Filtering Procedure for Domain k-Wise Consistency on Table Constraints
	6.1 Domain k-Wise Consistency
	6.2 Filtering Procedure for k-Wise Consistency
	6.3 Domain k-Wise Consistency Filtering
	6.4 Practical Use of the Domain k-Wise Consistency
	6.5 Experimental Results
	6.6 Statistical Treatment of the Experiments

	Conclusion and Perspectives
	Bibliography

