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ABBREVIATION

In this thesis, we use the following abbreviations:

• ALAP: agricultural land allocation problem

• ATSP: asymmetric traveling salesman problem

• B&B: branch-and-bound

• B&I: branch-and-infer

• B&C: branch-and-cut

• B&P: branch-and-price

• CBLS: constraint-based local search

• COP: combinatorial optimization problem

• COPs: combinatorial optimization problems

• CP: constraint programming

• CPP: constraint programming problem

• DP: dynamic programming

• ESPP: elementary shortest path problem on graphs with many
negative-cost cycles

• ELPP: elementary longest path problem on graphs with many
positive-cost cycles

iii
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• IP: integer programming

• LP: linear programming

• LPR: linear programming relaxation

• LS: local search

• MIP: mixed Integer programming

• QRP: quorumcast routing problem

• SECs: subtour elimination constraints

• STSP: symmetric traveling salesman problem



NOTATIONS

In this thesis, we use the notations D = (VD, ED, cD) for an undirected
graph and G = (VG, AG, cG) for a directed graph (or digraph). An edge
between two nodes u, v in an undirected graph is denoted by (v, u) or
(u, v); while an arc from i to j is always denoted by (i, j). For the cost
functions, an edge (v, u) or (u, v) is associated with a cost cD(v, u) or
cD(u, v)(= cD(v, u)); and an arc (i, j) is associated with a cost cG(i, j).
On an undirected graph D = (VD, ED, cD), we define the following
notations:

• ED(S): All edges with both endpoints in the node set S

• VD(i): Set of nodes {j ∈ VD|(i, j) ∈ ED}

• δD(S): All edges with one endpoint in S and the other in VD \ S

Given a directed graph G = (VG, AG, cG), we define the following
notations:

• AG(S): All arcs with both endpoints in the node set S

• V −G (S): Set of nodes {v ∈ VG|u ∈ S, (v, u) ∈ AG}

• V +
G (S): Set of nodes {v ∈ VG|u ∈ S, (u, v) ∈ AG}

• δ−G(S): All arcs going from a node not in S to a node in S

• δ+G(S): All arcs going from a node in S to a node not in S

• δG(S) = δ+G(S) ∪ δ−G(S) v
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• For any vector x ∈ R|AG| and a subset W of A, where each arc
(i, j) ∈ A is associated with an element xij of the vector, x(W ) =∑

(i,j)∈W xij .

• For any subset of arcs X ⊂ AG, cG(X) =
∑

(i,j)∈W cG(i, j)



ABSTRACT

Combinatorial optimization is a branch of optimization. Its domain is
Combinatorial Optimization Problems (COPs) where the set of feasible
solutions is discrete and finite. Dealing with a COP is to find optimal
solutions in the set of feasible solutions such that the value of a given
cost function is minimized or maximized. In the literature, there exist
both complete and incomplete methods for solving COPs. The complete
(or exact) methods return the optimal solutions with the proof of the
optimality, for example the branch-and-cut search method. Incomplete
methods, such as local search, try to find hight-quality solutions which
are as close to the optimal solutions as possible.

In this thesis we focus on solving four distinct COPs: the quorum-
cast routing problem, the elementary shortest path problem on graphs
with negative-cost cycles, the elementary longest path problem on graphs
with positive-cost cycles, and the agricultural land allocation problem.
In order to solve these problems with the complete methods, we use
the branch-and-infer search method, the branch-and-cut search method,
and the branch-and-price search method. We also solve the agricul-
tural land allocation problem using incomplete methods, such as local
search, Tabu search and constraints-based local search combined with
metaheuristics. The experimental evaluations on well-known bench-
marks show that all proposed algorithms for four COPs are better than
the-state-of-the-art algorithms.

We introduce the agricultural land allocation problem, formulate it
as a COP. To solve this problem, we divide it into three independent
subproblems and propose several incomplete and complete methods for
each subproblem. Our solution approach overcomes the limitations of
the solution approach of the government.
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1
INTRODUCTION

This thesis aims at modeling and solving completely combinatorial prob-
lems: QRP, ESPP, ELPP and ALAP. Except ALAP, these problems are
complex problems dealing with paths and trees in graphs.

1.1 Combinatorial Optimization Problem
COPs appear in many fields in our real-life including routing, schedul-
ing, packing, timetabling, sequencing, resources allocation, network de-
sign, etc. COP is modeled by a set of variables with discrete domains,
and we have to find solutions satisfying a given set of constraints while
optimizing an objective function. These problems are computationally
very hard.

COP = 〈X,D,C, f〉 where

• X = {x1, ..., xn} is the set of variables;

• D = {D(x1), ..., D(xn)} is the set of domains of variables,D(Xn)
is the domain of Xn;

• C = {C1, ..., Ck} is the set of constraints over variables;

• f is the objective function to be optimized.

Example Given a COP = 〈X,D,C, f〉 where
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• X = {x1, x2};

• D(x1) = {0, 1, 2, 3}, D(x2) = {0, 1, 2, 3, 4, 5};

• C1 : 3x1 + x2 ≤ 11, C2 : −x1 + 2x2 ≤ 5;

• f : maximize 6x1 + 5x2.

Clearly, the assignment x1 = 3, x2 = 2 is an optimal solution to that
COP.

Approaches for solving COPs are divided into two categories: com-
plete methods and incomplete methods. The aim of the complete meth-
ods is the find an optimal solution with the proof its optimality. Gener-
ally, the time complexity of these methods is exponential. The complete
methods used in this thesis are B&I search method, B&C search method
and B&P search method. The incomplete methods aim at finding high-
quality solution in a reasonable time but without information on the
quality of the solution. These include Greedy Algorithms, Approx-
imation Algorithms, Local Search, Metaheuristic methods like Tabu
Search, Simulated Annealing, Large Neighborhood Search, Very Large-
Scale Neighborhood Search, Genetic Algorithms, Ant Colony Opti-
mization, etc. Constraint-based Local Search and Tabu Search are the
incomplete search methods that appear in this thesis.

In the following section, we describe problems to be solved in this
thesis.

1.2 Applications
Some COPs, which are considered as applications in this thesis, are
QRP, ESPP, ELPP and ALAP. Each of them is briefly described in a
following subsection.

1.2.1 Quorumcast Routing Problem
Multicasting is the problem of delivering a message from a source to a
given subset of nodes, called the multicast nodes, in a network. This
thesis deals with QPR which is a generalization of multicasting. This
multicasting is formulated as follows [23, 67, 34, 105, 85].
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Given an undirected graph D = (VD, ED, cD), where VD, ED are
respectively the set of nodes, the set of edges and each edge (i, j) ∈ ED
is associated with a positive cost cD(i, j) ∈ R+; a set of multicast nodes
S ⊆ VD; an integral value q ≤ |S|; and a root node r; the objective of
QRP is to find a minimum-cost tree T that spans r and at least q nodes
of S.

QRP is NP-hard, as it reduces to the Steiner tree problem [41] when
q = |S|. It appears in many distributed applications, for example, dis-
tributed synchronization and updating a replicated resource.

1.2.2 Elementary Shortest and Longest Path Problems
We consider in this thesis the elementary shortest path problem on graphs
with negative-cost cycles and the elementary longest path problem on
graphs with positive-cost cycles where the source and the destination
node can be fixed or non-fixed. The most general version of the prob-
lem is stated as follows.

Given a directed graph (also called a digraph) G = (VG, AG, cG),
where VG is the set of nodes, AG is the set of arcs and each arc (u, v) ∈
AG is associated with a cost cG(u, v) which can be negative, positive
or zero; a set of source nodes S ⊆ VG and a set of destination nodes
T ⊆ VG; ESPP is to find an elementary shortest path starting from
a node in S and terminating at a node in T and ELPP is to find an
elementary longest path starting from a node in S and terminating at a
node in T (a path is called elementary if only if it visit each node at
most once).

1.2.3 Agricultural Land Allocation Problem
In most provinces of Vietnam, agricultural land is still fragmented. One
household owns too many plots which belong to various land categories
and locate at different fields. These plots are very small and scattered.
For example, in Vinh Phuc province, one household has 47 plots, each
of which has an area of only about ten square meters.

The land fragmentation results in a lot of difficulties for Vietnam.
First, households can not use machines for cultivating their small plots,
which leads to a high cost of production. Second, fragmented plots
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require a very high cost for visiting and controlling them. Third, the
excessive number of tracks between the plots give rise to a waste of
agricultural land. Finally, projects of agricultural development are con-
fronted with many difficulties caused by the huge number of small plots
[83, 78, 48, 65, 72].

The government of Vietnam considers land fragmentation to be “a
significant barrier to achieving further productivity gains in agriculture”
[32]. So, the government promulgated a policy to do the land reform.
This policy consists of reducing the number of land categories and of
merging small plots into large fields then repartitioning these fields into
larger plots for households in hope to reduce the number of separate
plots. In provinces where the land reform was carried out, the results
obtained were very promising. After the land reform, the number of
plots held by a household markedly decreases (e.g., Bac Ninh [83], a
reduction by a factor of 10) and the area of each plot increased, with the
rice output increasing considerably (e.g., Quang Nam [83], an increase
of 20%–25%). Today, this land reform process has only been applied
in some provinces in Vietnam, where the land reform has not just done
and where the agricultural land is changed frequently.

In the land reform problem in Vietnam, there are two distinct and
consecutive tasks: the first task is to merge small plots into large fields
and the second task is to split the large fields into plots. The first task
is very easy. Consequently we can forgot the first task and focus on the
second task which is officially named by Agricultural Land Allocation
Problem (ALAP). This problem is briefly described as follows. In a
region, such as a municipality, there are a set of agricultural fields, each
field belongs to a land category, that is its land quality. We also have
a set of households living in that region and owning those fields. For
each land category, a household is associated with an expected area.
It means that the household will be distributed one or several plots of
the land category and the total area of these plots equal the expected
area of the household. The objective of ALAP is to specify, for each
household, the number of plots assigned to that household, the area of
the plots and the geographical position of the plots. The objective is to
minimize the number of plots. There is an additional constraint; a field
should be split into smaller fields by long parallel tracks before dividing
them into plots. This simplifies the use of machines in the inner plots
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(the machines reach to plots by the long parallel tracks), see Figure 1.1
to understand well this constraint.

Figure 1.1: Households desire the solution on the left hand side of the
figure. While the solution on the right hand side of the figure is not
acceptable because the shape of some plots is not beautiful (not close to
a square), the plots are not separated to others by parallel tracks.

1.3 Contributions

The main contributions of this thesis are as follows.

1. For QRP,

• we propose four MIP formulations and use them to solve
QRP by B&C algorithms that outperform the-state-of-the-
art algorithm based on CP;

• moreover through the experimental results, we show the ef-
fect of the values q and |S| on the performance of the B&C
algorithms.

2. For ESPP,

• we introduce valid inequalities for ESPP, some of which are
derived from ATSP;

• we propose a separation algorithm for SECs which is simple
and heuristic;
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• we propose a B&C algorithm with a proposed cut filter that
solves this problem more quickly than the-state-of-the-art
algorithm in [33];

• we extend the decomposition technique in [84] to propose
a DP algorithm for solving efficiently this problem on undi-
rected graphs with many bridges and directed graphs whose
corresponding undirected graphs consist of many bridges;

• we propose a decomposition technique and a DP algorithm
for solving efficiently this problem on directed graphs with
many strongly connected components.

3. For ELPP,

• we adapt the B&C algorithm proposed in this thesis for ESPP
to obtain a B&C algorithm for ELPP, which is faster than
the-state-of-the-art exact algorithm based on CP in [84];

• we adapt our previous preprocessing schema [84] that de-
composes the undirected graph with many bridges into bridge-
blocks so that it can be used for directed graphs with both
positive-cost and negative-cost arcs;

• by applying our B&C algorithm (instead of applying a CP-
based algorithm) on each bridge-block, the overall perfor-
mance is better than that of paper [84].

4. For ALAP,

• we introduce this problem with an abstract single formula-
tion;

• we propose a formulation of ALAP in terms of three sub-
problems (PArea, PPos1 and PPos2) that are clearly formu-
lated;

• we propose various models for the subproblems (three CP
models and five MIP models);

• different optimization algorithms have been designed, using
different optimization techniques (two B&I algorithms, four
B&C algorithms, two B&P algorithms, four LS algorithms,
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one CP large neighborhood search algorithm and one hybrid
algorithm);

• experimental results compare the different approaches, they
show that for the different subproblems, LS approach is here
almost as accurate as the complete approaches, while being
much more efficient in terms of computational time;

• experimental results compare the solutions computed by the
government algorithm with ones computed by our approaches,
they show that our solutions are much better than solutions
of the government.

Lastly, all our models, algorithms, test instances and experiments
are made Open and Public; and are available at http://becool.info.ucl.ac.be/

1.4 Publications
The content of this thesis leads to two papers accepted in refereed inter-
national conferences and two articles under review.

• Q.T. Bui, Q.D. Pham, Y. Deville. Solving the Quorumcast Rout-
ing Problem as a Mixed Integer Program, 11th International Con-
ference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR
2014), Cork, Ireland, May 2014, Lecture Notes in Computer Sci-
ence, Springer, 2014.

• Q.T. Bui, Q.P. Dung, Y. Deville. Solving the Agricultural Land
Allocation Problem by Constraint-Based Local Search, 19th In-
ternational Conference on Principles and Practice of Constraint
Programming (CP 2013), Uppsala, Sweden, October 2013. Lec-
ture Notes in Computer Science, Springer, 2013.

• Q.T. Bui, Q.P. Dung, Y. Deville. Exact Methods for Solving the
Elementary Shortest and Longest Path Problems. Under review.

• Q.T. Bui, Q.P. Dung, Y. Deville. Optimization Approaches for
the Agricultural Land Allocation Problem. Under review.



8 Chapter 1. Introduction

1.5 Outline
The remainder of this thesis is organized as follows:

Chapter 2 presents briefly search methods which are used in this
thesis. Three famous complete methods, which are summarized here,
are B&I search method, B&C search method and B&P search method.
The principle of LS, CBLS, TB and metaheuristics are also presented
in this chapter.

Chapter 3 focuses on solving QRP to optimality by branch-and-cut
algorithms. In this chapter, four MIP formulations for this problem are
proposed in Section; five branch-and-cut algorithms based on the pro-
posed formulation are proposed in Section 3.3; and the experimental
section compares the proposed algorithms to the-state-of-the-art algo-
rithm which bases on CP approach and point out the influence of the
parameter q and the size of the multicast node set on the performance
of the proposed algorithms.

Chapter 4 aims at solving two problems: ESPP and ELPP. In this
chapter, the equivalence between some problems is given in Section
4.1; while Section 4.2 presents the related works; all Section 4.3 is used
to represent three MIP formulations for ESPP(s, t, G); some classes
of inequalities that are valid for ESPP(s, t, G) are presented in Section
4.4; Section 4.5 describes in details our proposed algorithm for solving
ESPP(s, t, G). Section 4.6 proposes decomposition techniques allowing
the use of a dynamic programming schema for solving ESPP(s, t, G)
and ELPP(G) on directed graphs with bridges; the experimental results
are reported in Section 4.7.

Chapter 5 introduces and solves ALAP. After Section 5.1 describ-
ing the government’s solution to ALAP and a short introduction to the
different optimization techniques, this chapter dedicates one section to
each of the three subproblems: PArea, PPos1 and PPos2. In each sec-
tion, we present the problem formulation, propose algorithms for the
problem, and give the experimental results.

The last chapter concludes this thesis and draw some research direc-
tions in the future.



2
OPTIMIZATION TECHNIQUES

This chapter aims at presenting briefly complete and incomplete search
methods which will be used in the next chapters of the thesis.

• The complete search methods search for optimal solutions to COPs
with the proof of the optimality. The complete search meth-
ods appearing in this thesis are B&I search method, B&C search
method, and B&P search method.

• The objective of the incomplete search methods is to find hight-
quality solutions to COPs which are as close to the optimal so-
lutions as possible in reasonable time but without information on
the quality of the solution. Local search, the constraint-based lo-
cal search, Tabu search are the incomplete search methods used
in this thesis.

2.1 Complete search methods
A search method is called complete or exact if only if it returns optimal
solutions to given problems with the proof of the optimality. This sec-
tion presents three well-known complete search methods: B&I search
method, B&C search method and B&P search method. The common
feature of these methods are all basing on branching search method
which is presented in the following subsection.
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2.1.1 Branching search method

Branching search method implements a recursive dived-and-conquer
strategy. If the given problem P0 is too hard to solve, then this method
creates a series of subproblems P1, . . . , Pm of P0 and tries to solve each
of them. This partition is called branching at P0. Each Pi is solved,
if possible. If a solution obtained, it becomes a candidate solution of
P0. The best candidate solution found so far is the incumbent solu-
tion. If Pi is too hard to solve, this method treats Pi in the same way as
P0(branching at Pi), and so on, recursively. This method begins with a
single unprocessed problem (the original problem) and terminates when
no unprocessed problem remains. When no unprocessed problem re-
mains, the incumbent solution computed so far is an optimal solution
[51].

Outline of the branching search method

Algorithm 1 summaries basic steps of a branching search algorithm for
a minimum combinatorial optimization problem.

Algorithm 1: A basic branching search algorithm for a minimum
COP
1 Let S ← {P0} and vUB ←∞ ;
2 while S is nonempty do
3 Select a subproblem P ∈ S and remove P from S ;
4 if P is too hard to solve then
5 Define subproblem P1, . . . , Pm of P and add them to S ;

6 else
7 Let v be the optimal value of P and let

vUB ← min{v, vUB} ;

8 The optimal value of P0 is vUB;

To ensure an exhaustive search, the subproblem P1, . . . , Pm of P
created should be exhaustive. Normally, their feasible sets also partition
the feasible set of P (i.e., they are pairwise disjoint) [51].
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To ensure that the search terminates, the branching mechanism must
be designed so that problems become easy enough to solve as they are
increasingly restricted. For instance, if the variable domains are finite,
then branching on variables will eventually reduce the domains to sin-
gletons, thus fixing the value of each variable and making the restriction
trivial to solve [51].

2.1.2 Branch-and-infer search method
B&I search method is a combination of the branching search method
with inference, in which the inference is performed at each node of the
search tree to infer new constraints that make the problem at hand eas-
ier. This method is widely in CP for solving not only COPs but also
Constraint Satisfaction Problems (CSPs). In a CP model of a CSP or
COP, there are a set of decision variables whose domain is finite and
a set of constraints defined over the variables. Normally the inference
component of this method tries to reduce the size of the variables’ do-
main by exploiting the set of constraints. B&I search method is very
useful to attack COPs where the constraints are hard to formulate, such
as for example in scheduling problems.

Outline of the B&I search method

A simple outline of a B&I search algorithm is given in Algorithm 2.
There are many strategies for branching (line 12), for example, do-

main splitting. And there are also many strategies for choosing the next
node to exploit (line 5), for example, depth-first search [92]. The opera-
tion of the inference (line 6) bases on the constraint set of the problem.
During the inference, a constraint may be considered many times in
hope of reducing as much as possible the size of variable domain. After
the inference step, one of three following situations can be happened:

• There exists a variable whose domain is empty. The current sub-
problem has no solution, so the algorithm tries to solve another
subproblem in S.

• The domain of every variable remains only one value, so a feasi-
ble solution of P0 is found, and this solution is compared to the
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Algorithm 2: A general B&I search algorithm for a minimum
COP
1 P0 = 〈X,D0, C0, f〉 ← the original COP, in which X0 is the set

of variables, D0 is the set of variable domains and C0 is the set of
new constraints ;

2 f ← objective function that is minimized;
3 S ← {P0} and vUB = +∞ ;
4 while S is nonempty do
5 Select a subproblem P = 〈X,Dp, Cp, f〉 ∈ S and remove P

from S;
6 Perform the inference using C to infer a set of constraints C ′;
7 Cp ← Cp ∪ C ′ ∪ f ≤ vUB;
8 if ∀x ∈ X, |D(x)| = 1 then
9 Let v be the solution value of P ;

10 vUB ← min{v, vUB} ;

11 else if ∀x ∈ X, |D(x)| ≥ 1 and ∃x ∈ X, |D(x)| > 1 then
12 Define subproblem P1, . . . , Pm of P and add them to S;

for each Pi, in addition to C, it has own branching
constraints;

13 The optimal value of P0 is vUB;

current incumbent solution to ensure that the incumbent solution
is always the best solution found so far.

• Every variable has a nonempty domain and there exists at least
a variable whose domain contains more than one value, so the
branching occurs.

A simple example

In order to illustrate the operation of the B&I search method, we con-
sider an instance of the graph coloring problem. This instance can be
described as follows. We need at most how many different colors to
color the graph in Figure 2.1 such that there does not exist any arc con-
necting two nodes with the same color ? As the result of some heuristic
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search in the preprocessing step, we know that for this instance, we do
not need more than 4 different colors.

This instance is formulated as follows.
COP = 〈X,D,C, f〉, where

• X = (x1, . . . , x6) (one variable for each node of the graph);

• D(xi) = {r, g, b, y} with i ∈ {1, 2, . . . , 6} (we do not need more
than 4 different colors, so the domain of the variable contains at
most 4 values.);

• C = {c1, . . . , c11}where c1 : x1 6= x2, c2 : x1 6= x3, c3 : x2 6= x3,
c4 : x2 6= x4, c5 : x2 6= x5, c6 : x2 6= x6, c7 : x3 6= x5,
c8 : x3 6= x6, c9 : x4 6= x5, c10 : x4 6= x6, and c11 : x5 6= x6

• f : the number of colors used to color the graph is minimized.

A B&I search algorithm for solving this instance creates a part of the
search tree that is given in Figure 2.2. And the domain of the variables
at each node of this part of the search tree is given in Figure 2.1.

1 2 3

4 5 6

Figure 2.1: The graph of the instance

2.1.3 Branch-and-cut search method
B&C search method is a combination of branch-and-bound (B&B) search
method with cutting plane method. This search is frequently used in in-
teger programming. This method works by solving a sequence of LP
relaxations of an integer programming problem. Cutting plane methods
are invoked at each node of the search tree to find new cutting planes
(constraints) in hope of improving the relaxation of the program to more
closely approximate the integer programming problem [76].
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Figure 2.2: A part of the search tree constructed by the B&I search
algorithm

Domain of the variables
Nodes v1 v2 v3 v4 v5 v6

A r,g,b,y r,g,b,y r,g,b,y r,g,b,y r,g,b,y r,g,b,y
B r g,b,y g,b,y r,g,b,y r,g,b,y r,g,b,y
C r g,b,y g,b,y r g,b,y g,b,y
D r b g,y r g,y g,y
E r b g r y y
F r b y r g g
G r g,y g,b,y b r,g,y r,g,y
H r g b,y b r,y r,y
I r g b b r y

Table 2.1: Domain of the variables at the nodes of the part of the search
tree in Figure 2.2

In the literature, many COPs can be formulated as an integer pro-
gramming problems which can be well solved by the B&C search method.
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The name “branch-and-cut” was coined by Padberg and Rinaldi [80].
The first and best known B&C search computer code for solving STSP
was written by Hong [50, 7].

The B&B search method integrates the branching search method
and bounding procedure. The bounding procedure calculates lower
and/or upper bounds for the objective function value of the subproblem
in hope of eliminating unpromising subproblems [26].

The cutting plane method for a general integer programming prob-
lem were firstly proposed by Gomory [45]. Unfortunately, the cutting
planes proposed by Gomory are not very strong, consequently these al-
gorithms converge slowly, so the algorithms were neglected for many
years. However, the development of polyhedral theory makes a resur-
gence of cutting plane methods in the 1980’s, and now they are the first
choice for a vast variety of COPs. Typically, we can determine theo-
retically a partial polyhedral description of the convex hull of a set of
integer feasible points [76].

Outline of the B&C search method

The schema of B&C method, which is given Algorithm 3, comes from
John E. Mitchell’s work [76].

In Step 5 of this schema, a very large number of violated cutting
planes are found, so they should be sorted in some ways, for example
by violation, and just a subset should be added.

The objective of Step 4 of the schema is to choose the next node
to expand. A naive node selection strategy might lead to a huge search
tree. By contrast, an intelligent node selection strategy leads quickly to
a good feasible solution that sharply reduces the gap between the upper
bound and lower bound and proves the optimality of the current incum-
bent. There exist some well-known node-selection strategies, such as
depth-first-search, breadth-first-search, and best-bound search. In order
to minimize the size of the search tree, the best-bound search strategy,
which selects the node with the best lower bound, is carried out. Its
advantage is that, for a fixed sequence of branching decisions, it mini-
mizes the number of nodes that are explored, because all nodes that are
explored would have been explored independently of the upper bound
[13].
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There exist many strategies for the branching (for Step 9). A sim-
ple branching strategy applied is to select the variable with the largest
integer violation: this is known as maximum fraction branching [62, 9].
In practice, this rule is not efficient: it performs about as well as ran-
domly selecting a branching variable [4]. The most successful branch-
ing strategies estimate the change in the lower bound after branching.
Because we prune a node of the branch-and-bound tree whenever the
lower bound of the node is greater than the current upper bound, we
want to increase the lower bound as much as possible. In [4], Achter-
berg et al. also experimented with strong branching rules, pseudocost
branching, strong branching, a hybrid of strong/pseudocost branching,
pseudo cost branching with strong branching initialization, and reliabil-
ity branching.

A simple example

This simple example comes from the article of John E. Mitchell in [76].
The integer programming problem is illustrated in Figure 2.3. The feasi-
ble integer points are marked. The LP relaxation is obtained by remov-
ing the integral constraints and is indicated by the polyhedron contained
in the solid lines.

min z = −6x1 − 5x2 (2.1a)
s.t 3x1 + x2 ≤ 11 (2.1b)

−x1 + 2x2 ≤ 5 (2.1c)
x1, x2 ≥ 0, integer (2.1d)

A B&C search algorithm first solves the LP relaxation giving the
point (23

7
, 35

7
, with objective value−331

7
. Now there is a choice: should

the LP relaxation be improved by adding a cutting plane, for example,
x1 + x2 ≤ 5, or should the problem be divided into two by splitting on
a variable?
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Algorithm 3: A general B&C search algorithm for a minimum
COP
1 Step 1. Initialization: Denote the initial integer programming

problem by ILP 0 and set of the active nodes to be L← {ILP 0}.
Set the upper bound to be z ← +∞. Set zl ← −∞ for the one
problem l ∈ L.

2 Step 2. Termination: If L = ∅, then solution x∗ which yielded
the incumbent objective value z is optimal. If no such x∗ exists
(i.e., z = +∞) then ILP 0 is infeasible.

3 Step 3. Problem selection: Select and delete a problem ILP l

from L.
4 Step 4. Relaxation: Solve the LP relaxation of ILP l. If the

relaxation is infeasible, set zl ← +∞ and go to Step 6. Let zl
denote the optimal objective value of the relaxation if it is finite
and let xlR be an optimal solution; otherwise set zl = −∞.

5 Step 5. Adding cutting planes: If desired, search for cutting
planes that are violated by xlR; if any are found, add them to the
relaxation and return to Step 4.

6 Step 6. Fathoming and Pruning:
(a) If zl ≥ z go to Step 2.
(b) If zl < z and xlR is integral feasible, update z = zl, delete
from L all problems with zl ≥ z, and go to Step 2.

7 Step 7: Partitioning: Let Sl1, . . . , Slk be a partition of the
constraint set Sl of problem ILP l. Add ILP li, . . . , ILP lk to L,
where ILP lj is ILP l with feasible region restricted to Slj and zlj
for j = 1, . . . , k is set to the value of zl for the parent problem l.
Go to Step 2.

If the search splits on x1, two new subproblems are obtained:

min z = −6x1 − 5x2 (2.2a)
s.t 3x1 + x2 ≤ 11 (2.2b)

−x1 + 2x2 ≤ 5 (2.2c)
x1 ≥ 3 (2.2d)

x1, x2 ≥ 0, integer (2.2e)
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Figure 2.3: A two dimensional integer programming problem

and

min z = −6x1 − 5x2 (2.3a)
s.t 3x1 + x2 ≤ 11 (2.3b)

−x1 + 2x2 ≤ 5 (2.3c)
x1 ≤ 2 (2.3d)

x1, x2 ≥ 0, integer (2.3e)

The optimal solution to the original problem will be better than the
solutions to these two subproblems. The solution to the linear relaxation
of (2.2) is (3,2), with objective value -28. This solution is integral, so
it solves (2.2), and becomes the incumbent best know feasible solution.
The LP relaxation of (2.3) has optimal solution (2, 3.5), with objective
value -29.5. This point is nonintegral, so it does not solve (2.3), and it
must be attacked further.

Assume the B&C search algorithm uses a cutting plane method and
adds the inequality 2x1 + x2 ≤ 7 to (2.3). This is a valid inequality,
in that it is satisfied by every integral point that is feasible in (2.3).
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Further, this inequality is violated by (2, 3.5), so it is a cutting plane.
The resulting subproblem is

min z = −6x1 − 5x2 (2.4a)
s.t 3x1 + x2 ≤ 11 (2.4b)

−x1 + 2x2 ≤ 5 (2.4c)
x1 ≤ 2 (2.4d)

2x2 + x2 ≤ 7 (2.4e)
x1, x2 ≥ 0, integer (2.4f)

The LP relaxation of (2.4) has optimal solution (1.8, 3.4), with ob-
jective value -27.8. Notice that the optimal value for this modified re-
laxation is larger than the value of the incumbent solution. The value of
the optimal integral solution to the second subproblem must be at least
as large as the value of the relaxation. Therefore, the incumbent solu-
tion is better than any feasible integral solution for (2.4), so it actually
solves the original problem.

The progress of the B&C search algorithm is illustrated in Figure
2.4.

2.1.4 Branch-and-price search method
B&P search method integrates column generation and B&B search method.
Similar to the B&C search method, this method is also for solving large
integer programming problems, and it also solves a sequence of LP re-
laxations of the integer programming problem. At each node of the
search tree, cutting planes (or constraints) may be generated to tighten
the LP relaxation in the B&C search method, by contrast columns (or
variables) must be generated to improve the LP relaxation in the B&P
search method.

In the B&P search method, sets of columns (or variables) are left
out of the LP relaxation of large integer programming problems be-
cause there are too many columns to handle efficiently and most of them
might will be assigned to zero in the optimal solution. At each node of
the search tree, in order to check for optimality, a subproblem, which is
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Figure 2.4: Progress of branch-and-cut on the two dimensional integer
programming problem

also called the “pricing problem”, is solved to identify columns to enter
the basis. If such columns are found then the LP relaxation is reopti-
mized. The branching occurs when no columns “prices” out to enter the
basis and the solution to the LP relaxation is not integral. Otherwise (no
columns “prices” out to enter the basis and the solution to the LP relax-
ation is integral) a feasible solution is found. When all subproblems are
already solved, the best solution found so far (incumbent) is an optimal
solution.

Outline of the B&P search method

Outline of a B&P search algorithm is given in Algorithm 4. In compar-
ison with the outline of a B&C algorithm (Algorithm 3), we can easily
find out two following significant differences.
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1. In Step 5, the cutting plane method in the B&C search algorithm
tries to find valid inequalities (row generation) which are violated
by the optimal solution to the LP relaxation. While, in the B&P
search algorithm, a subproblem (differing from the restriction of
the original problem) is solved to find new variables to enter the
basic (column generation).

2. In Step 4, the LP relaxation of a restricted master problem in the
B&P search algorithm is always feasible, while this property is
not true for the B&C search algorithm.

A simple example

To understand well the operation of a B&P search algorithm, let us
solve an instance of the Generalized Assigment Problem by a simple
B&P search algorithm. The objective of this task is to maximum profit
assignment of 3 jobs to 2 machines, such that each job is assigned to
precisely one machine subject to capacity restrictions on the machines.

The instance details: the profit matrix is given Table 2.2, the capaci-
ties of machines (Ci) are given in Table 2.3, and the amount of capacity
of machine i taken up by each job j is also given in Table 2.4.

We denote ki the set of possible feasible assignments to machine
i, thus k1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)} and k2 = {(1, 0, 0),
(0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 0, 1)}. As the results, the Mas-
ter Problem is now formulated as follows:

max z = 5y11 +7y12 +3y13 +8y14 +2y21 +10y22 +5y23 +12y24 +15y25 +7y26
(2.5)

s.t.
y11 + y14 + y21 + y24 + y26 = 1 (u1) (2.6)

y12 + y22 + y24 + y25 = 1 (u2) (2.7)

y13 + y14 + y23 + y25 + y26 = 1 (u3) (2.8)
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Algorithm 4: A general B&P search algorithm for a minimum
COP
1 Step 1. Initialization:MP ← the master problem; RMP 0 ← the

initial restricted master problem; set of active nodes,
L← RMP 0; the upper bound, z ← +∞; for each
l ∈ L, zl ← −∞.

2 Step 2. Termination: If L = ∅, then the current incumbent
solution x∗ with the objective value z is optimal. If no such x∗

exists then MP is infeasible.
3 Step 3. Problem selection: Select and delete a restricted master

problem RMP l from L.
4 Step 4. Relaxation: Solve the LP relaxation of RMP l. Let zl

and xRl be the value of the optimal solution to the relaxation and
the optimal solution, respectively.

5 Step 5. Generating and adding columns: Generate dual values
from the restricted master problem. Solve the subproblem using
the dual values in hope of identifying new columns to add to the
restricted master problem. If there exist any columns found by
solving the subproblem that have positive reduced cost, add them
to the restricted master problem RMP l and go to Step 4. If no
such column exists, the algorithm goes to one of two following
situations. If xRl is an integral solution, go to Step 6. Otherwise,
xRl is not integral, go to Step 7.

6 Step 6. Fathoming and Pruning: If zl ≥ z go to Step 2. If zl ≥ z
and xRl is integral, update z ← zl, delete from L all problems
with zl ≥ z, and go to Step 2.

7 Step 7: Branching: Let Sl1, . . . , Slk be a partition of the
constraint set Sl of problem RMP l. Add RMP li, . . . , RMP lk to
L, where RMP lj is RMP l with feasible restricted to Slj and zlj
for j = 1, . . . , k is set to the value of zl for the parent problem l.
Go to Step 2.

y11 + y12 + y13 + y14 ≤ 1 (v1) (2.9)



2.1. Complete search methods 23

Job (j)
1 2 3

Machine i = 1 5 7 3
Machine i = 2 2 10 5

Table 2.2: Profit matrix

i Ci
1 5
2 8

Table 2.3: The capacity of the machines

Job (j)
1 2 3

Machine i = 1 3 4 2
Machine i = 2 4 3 4

Table 2.4: The matrix of the capacity of machine by job

y21 + y22 + y23 + y24 + y25 + y26 ≤ 1 (v2) (2.10)

In this master problem, the first three constraints indicate that each
job must be taken by machines; the last two constraints present that
each machine can be used at most once; uj and vi denote the dual values
associated with job j and machine i respectively.

Let us arbitrarily choose column y11 and y25 , which is a feasible solu-
tion. Now, the Restricted Master Problem (RMP) is as follows:

max z = 5y11 + 15y25 (2.11)

s.t.
y11 + 0 = 1 (u1) (2.12)

0 + y25 = 1 (u2) (2.13)
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0 + y25 = 1 (2.14)

y11 + 0 = 1 (2.15)

0 + y25 = 1 (2.16)

The last three constraints are redundant, hence their corresponding
dual values are 0.

Now B =

[
1 0

0 1

]
, therefore B−1 =

[
1 0

0 1

]
and cBB−1 =

[
5 15

]
Hence u1 = 5, u2 = 15, v1 = 0, v2 = 0.

Subproblem for Machine 1
max (5− 5)x11 + (7− 15)x21 + (3− 0)x31
s.t. 3x11 + 4x21 + 2x31 ≤ 5
Optimal solutions are (1,0,1) and (0,0,1) with z = 3
Hence the reduced cost z(KP1)− v1 = 3− 0 = 3

Subproblem for Machine 2
max (2− 5)x12 + (10− 15)x22 + (3− 0)x32
s.t. 5x12 + 3x22 + 4x32 ≤ 8
Optimal solution is (0,0,1) with z = 5
Hence the reduced cost z(KP2)−v2 = 5−0 = 5 Since the reduced

cost for machine 2 is higher, so sequence (0,0,1) for machine 2 is the
column generated.

Now the new Restricted Master Problem is:

max z = 5y11 + 15y25 + 5y23 (2.17)

s.t.
y11 + 0 + 0 = 1 (u1) (2.18)

0 + y25 + 0 = 1 (u2) (2.19)

0 + y25 + y23 = 1 (u3) (2.20)



2.2. Local search 25

y11 + 0 + 0 = 1 (2.21)

0 + y23y
2
5 = 1 (2.22)

The last two constraints are redundant, hence their corresponding
dual values are 0.

Now B =

1 0 0

0 1 0

0 0 1


Therefore B−1 =

1 0 0

0 1 0

0 0 1

 and cBB−1 =
[
5 15 5

]
Hence u1 = 5, u2 = 15, u3 = 5, v1 = 0, v2 = 0.

Subproblem for Machine 1
max (5− 5)x11 + (7− 15)x21 + (3− 5)x31
s.t. 3x11 + 4x21 + 2x31 ≤ 5
Optimal solutions are (1,0,0) and (0,0,0) with z = 0
Hence the reduced cost z(KP1)− v1 = 0− 0 = 0

Subproblem for Machine 2
max (2− 5)x12 + (10− 15)x22 + (5− 5)x32
s.t. 5x12 + 3x22 + 4x32 ≤ 8
Optimal solutions are (0,0,1) and (0,0,0) with z = 0
Hence the reduced cost z(KP2)− v2 = 0− 0 = 0
Therefore, the reduced costs for all columns are 0. Hence the solu-

tion y11 = 1, y25 = 1, y23 = 0 is optimal.

2.2 Local search
In the literature, there exist many incomplete methods. However, in
this thesis, we only focus on LS for solving COPs. LS is an efficient
method that can find high quality solutions to COP in polynomial time
[74]. A LS algorithm for a COP typically starts from an initial solution
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and moves from solutions to neighboring solutions by changing some
features of the solutions. The goal of the movement is to obtain solu-
tions which are better than solutions found so far. The search process
terminates when some criteria are met, for example no one constraint
is violated. In this section, we first discus the principles of a LS al-
gorithm, then we present CBLS, lastly we describe some fundamental
metaheuristics which can be combined with LS to improve the LS per-
formance.

2.2.1 Local search algorithm
We give here some discussion about designing an efficient LS algorithm
for a general COP.

Mathematical problem formulation

The first step of designing a LS algorithm for the COP is to give a math-
ematical formulation for that problem. For a problem, there may exist
many different formulations. Two LS algorithms, which are suitable for
two different formulations, may be very distinct. A good formulation
helps the corresponding LS algorithm find out high quality solutions in
a small amount of computation time.

Normally, proposing a formulation for a COP contains two consec-
utive steps. In the first step, we have to define clearly decision variables
and their domain. We formulate all constraints and the objective func-
tion of the COP over the decision variables in the second step.

Initial solution generation

From the mathematical problem formulation proposed in the previous
step, we define a solution to problem. A solution of the problem is an
assignment of values to the decision variables. A feasible solution is
a solution of the problem which does not violate any constraint of the
problem. A LS algorithm starts from an initial solution, so we need an
initial solution generation.

Initial solutions can be generated randomly or by applying some
heuristics in hope of obtaining high quality initial solutions. Initial so-
lutions should be on different regions of the solution space. When the
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constraints of the problem are many and complicated, random initial so-
lutions may violated many constraints, as consequently we may loose a
large amount of computational time to obtain a feasible solution, in this
case initial solutions should be generated by applying some heuristics.

Neighborhood construction

The main step of a LS algorithm is moving from a solution to a neigh-
boring solution. So, the definition of neighboring solutions of a solution
is very important in designing a LS algorithm. A neighbor can be ob-
tained by changing some components (or parts or features) of the given
solution. Moreover, the size of neighborhood has a strong influence on
the performance of the LS algorithm. A small-size neighborhood may
lead to the LS algorithm be trapped on low-quality solutions. Otherwise
a large-size neighborhood takes a costly computation time to select a
neighboring solution to move on.

Neighbor selection

The task of this component is to select a neighboring solution from one
or various neighborhoods. This step can be done randomly or based
on a quality evaluation of each neighboring solution. There are some
heuristic strategies for the selection, such as first improvement, best im-
provement, random selection. A good-design LS algorithm should keep
the balance between the size of neighborhoods and the time complexity
of neighbor selection.

Metaheuristics are often implemented in this component to guide
the search. Several metaheuristics will be described later in this chapter.

Move

Move step transforms the current solution into its neighboring solution
which is already selected by the neighbor selection component. This
step is done by local modifications of solution components and of the
value of the objective function.



28 Chapter 2. Optimization techniques

Termination criteria

This component decides when the LS algorithm should be ended, for
example, a given number of iterations has been exceeded. In order to
obtain hight quality solutions in an appropriate amount of computation
time, the termination criteria should be carefully decided, for example a
LS algorithm can not obtain good solution if it ends before the algorithm
converge.

2.2.2 Constraint-based local search
CBLS uses constraints to describe and control local search [103]. In a
COP, in addition to an objective functions, there is a set of constraints,
so a solution to the COP have to satisfy the set of constraints and have
an optimal objective function value. CBLS for a COP, the search is
directed by a clever combination of the constraints with the objective
function.

2.2.3 CP-Large neighborhood search
The goal of LNS is to avoid being stuck in a region of the search tree for
too long by restarting frequently to explore other regions. The principle
is the following [99]:

• Keep a current best solution to your problem, repeat the following
two steps (relax + restart) until a stopping criteria is met.

• Relax: relax the current best solution (typically by fixing only a
fraction of the decision variables to their value in the current best
solution).

• Restart: Try to improve the current best solution with CP and
replace it if a better solution can be found. This restart has a
limited number of failures.

2.2.4 Metaheuristics
The goal of heuristics in LS is to reach hight quality local minima
quickly. Metaheuristics have a fundamentally role: they aim at escaping
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these local minima and at directing the search toward global optimality
[103]. This objective can be reached in many different ways.

Iterated local search

Iterated Local Search (ILS) is a ubiquitous metaheuristic that iterates
a specific local search from different starting points in order to sample
various regions of the search space and to avoid returning a low-quality
local minimum [103]. Different starting points increase the diversifi-
cation the search. Different heuristics can be used to generate starting
points. Figure 2.5 depicts an example of ILS. With the different restart
points, LS can explore different regions of the search space. Obviously,
the opportunity to achieve the global optimum is larger.

Figure 2.5: Iterated Local Search

Tabu Search

Tabu Search (TS) [42] is a metaheuristic offering a diversified search
in each of its search steps. It is very popular and effective. TS tries
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to prevent the search from visiting the same points in the search space.
There are two interesting features of tTS: first, the definition of legal
moves imposes no constraint on the objective value and allows LS to
select moves degrading the quality of the current solution, thus escaping
local minima; second, the greedy nature of TS ensures that the objective
function does not degrade too much at any step [103].

TS can not keep track of all visited solutions (lacks of memory and
costly time computation for checking revisiting), so TS uses a short-
term memory to prevent the search from returning the recently visited
solutions. A popular technique is the transition abstraction that stores
the transitions, not the states (solutions) when the difference between
states is only a few variables.

Since TS stores a sequence of abstractions and not a sequence of
states, it may forbid transition to a solution that has not been visited
before and may be quite desirable. To overcome this limitation, TS
often features an aspiration criterion that specifies when the tabu status
may be overridden [103].

Other metaheuristics are often used for solving the combinatorial
optimization problems such as Genetic Algorithms, Variable Neighbor-
hood Search, Simulated Annealing or Ant Colony Optimization.



3
QUORUMCAST ROUTING

PROBLEM

In this chapter, we solve QRP as different IPPs and MIPPs by B&C
algorithms. The experimental results show that these B&C algorithms
outperform the-state-of-the-art algorithm that solved this problem as a
CPP.

Moreover, in this chapter, a sensitivity analysis is also performed on
values of m (the number of multicast nodes in the given graph) and q
(the at least number of multicast nodes in the solution).

3.1 Related works

QRP is NP-hard, as it reduces to the Steiner tree problem [41] when
q = |S|. QRP appears in many distributed applications, for example,
distributed synchronization and updating a replicated resource (see [23]
for more details).

For solving QRP, various incomplete approaches to computing an
approximation of the optimal solution have been proposed in [23, 34,
105, 85], in which the CBLS algorithm in [85] is currently the-state-of-
the-art incomplete algorithm. In addition, two exact algorithms in [67,
85] have been proposed for solving this problem to optimality. In [67], a
partial solution is defined to be a set of sub-trees that spans the root and
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some multicast nodes; a partial solution is extended by adding one edge
at each step until a feasible solution is constructed; a Confined Area
Pruning scheme was introduced that allows reducing that search space.
CP approach in [85] is currently the-state-of-the-art exact algorithm.
In this chapter, we will compare our approach with this CP approach,
where the problem is modeled as follows [85].

Two variables are defined for each node v ∈ VD,

• x(v) represents the successor of v on the unique path from v to
the root r on the solution tree T ; the domain of x(v) is denoted
by D(x(v)) and is defined to be the set of adjacent nodes of v on
graph D plus ⊥: D(x(v)) = {u ∈ VD|(u, v) ∈ δD(v)} ∪ {⊥}. If
v is not in T , then x(v) = ⊥. Moreover, for the root r, we have
x(r) = r.

• y(v) represents the length of the path (number of arcs) from v to
r on T . It is undefined if v /∈ T .

minimize
∑

v∈V \{r}

cD(v, x(v)) (3.1a)

x(v) 6= ⊥ ⇒ y(v) = y(x(v)) + 1,∀v ∈ VD \ {r} (3.1b)
x(u) = ⊥ ⇒ x(v) 6= u,∀u, v ∈ VD \ {r} (3.1c)∑

v∈S

(x(v) 6= ⊥) ≥ q (3.1d)

y(r) = 0 (3.1e)
x(r) = r (3.1f)

In the objective function we assume that cD(v,⊥) = 0,∀v ∈ VD.
The constraint (3.1b) plays the role of eliminating cycles. Constraint
(3.1c) specifies that if a node u is not included in the solution, then it
cannot be a successor of any other node v. The constraint (3.1d) states
that the number of multicast nodes must be at least q (called the quorum
constraint). By convention, constraints (3.1d) and (3.1f) impose the
successor of the root and the length of the path from the root to itself.
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3.2 Mathematical models

In this section, we propose four mathematical models for QRP. One
is proposed directly on the undirected graph D = (VD, ED, cD), and
the others are proposed on the corresponding directed graph of G =
(VG, AG, cG) that is formed by replacing each edge of D by two oppo-
site arcs with the same cost as the original edge.

These models can exploit the properties of QRP solutions. Let T be
a solution of an instance of QRP with r, q, S on a graph D. One can
easily show that

1. all leaf nodes of T are multicast nodes [67];

2. T spans exactly q multicast nodes.

3.2.1 Edge-based formulation: Model 1

In this section, we propose a formulation on the undirected graph D =
(VD, ED, cD), called “edge-based formulation”. Many problems have
been modeled by similar formulations [6, 71, 49, 40, 69, 5]. This model
introduces binary variables yi stating whether node i is in T and the
binary variables xe stating whether edge e ∈ E is in the solution tree T .

In this model (Figure 4.1), the constraints (3.2b) are connectivity
constraints (or SECs). The constraints (3.2c) and (3.2d) ensure that if
v ∈ T , then yv = 1, and if v /∈ T , then yv = 0. The constraint (3.2e)
presents a basic property of a tree that requires the relation between
the number of nodes and the number of edges. The constraints (3.2g)
ensure that T includes exactly q multicast nodes (Property (2)). Finally,
the constraint (3.2f) ensures that the root r is always in T . Notice that
Property (1), stating that all leaf nodes are multicast nodes, could also
be included, but experimental results have shown that it is useless here
as well as in all subsequent models. It is therefore not considered.

In this model, there are |ED| + |VD| variables and an exponential
number of constraints in the number of nodes.
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Minimize
∑
e∈E

cD(e)xe (3.2a)

∑
e∈δD(W )

xe ≤ |W | − 1,∀W ⊂ VD, 2 ≤ |W | ≤ |VD| − 1 (3.2b)

∑
e∈δD(i)

xe ≥ yi,∀i ∈ VD (3.2c)

∑
e∈δD(i)

xe ≤ (|VG| − 1)yi,∀i ∈ VD (3.2d)

1 +
∑
e∈ED

xe =
∑
v∈VD

yv (3.2e)

yr = 1 (3.2f)

∑
v∈S

yv = q (3.2g)

xe ∈ {0, 1},∀e ∈ ED (3.2h)

yi ∈ {0, 1},∀i ∈ VD (3.2i)

Figure 3.1: Edge-based formulation
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Minimize
∑

(i,j)∈AG

cG(i, j)xij (3.3a)

∑
(r,i)∈AG

(ykri − ykir) ≤ 1,∀k ∈ VG (3.3b)

∑
k∈S,k 6=r,(r,i)∈AG

(ykri − ykir) = q − 1 (3.3c)

∑
(k,i)∈AG

(ykki − ykik) ≥ −1,∀k ∈ VG (3.3d)

∑
k∈S,k 6=r,(k,i)∈AG

(ykki − ykik) = −(q − 1) (3.3e)

∑
(j,i)∈AG

(ykij − ykji) = 0,∀k ∈ VG, i ∈ VG \ {k, r} (3.3f)

ykij ≤ xij,∀(i, j) ∈ AG,∀k ∈ VG ∪ {r} (3.3g)

ykij ≥ 0, ∀(i, j) ∈ AG,∀k ∈ VG ∪ {r} (3.3h)

xij ∈ {0, 1},∀(i, j) ∈ VG (3.3i)

Figure 3.2: Multi-commodity flows formulation

3.2.2 Multi-commodity flows formulation: Model 2

In this section, we propose a multi-commodity flow formulation on the
corresponding directed graphG = (VG, AG, cG). In the literature, many
problems have been modeled using multi-commodity flows [49, 30, 25,
54]. However, this problem is slightly more complex, as we do not
know which multicast nodes are spanned.

This model introduces variables ykij ∈ R+ measuring the flow, through
arc (i, j) ∈ AG, from the root node r to a node k ∈ VG \ {r} and the
binary variables xij stating whether arc (i, j) is in the solution tree T .

In this model (Figure 4.2), the constraints (3.3g) ensure that a flow
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Minimize
∑

(i,j)∈AG

cG(i, j)xij (3.4a)

x(δ−G(r)) = 0 (3.4b)

x(δ+G(r)) ≥ 1 (3.4c)

x(δ+G(W )) ≥ x(δ+G(v)),∀W ⊂ VG, 2 ≤ |W | ≤ |VG|−1,∀v ∈ W, r /∈ W
(3.4d)

x(δ−G(j)) ≤ 1, ∀j ∈ VG (3.4e)

x(δ−G(S \ {r})) = q − 1 (3.4f)

xij ∈ {0, 1},∀(i, j) ∈ AG (3.4g)

Figure 3.3: Arborescence tree formulation

is sent along an arc only if the arc is traversed. The constraints (3.3c),
(3.3e) and (3.3f) ensure that there exists a flow from the root r to q
nodes in the set of multicast nodes S (note that we assumed that r is
a multicast node). The constraints (3.3b), (3.3d) and (3.3f) are flow
conserving constraints.

In this model, there are |AG| × |S| variables and a polynomial num-
ber of constraints.

3.2.3 Arborescence tree formulation: Model 3
In this model, we propose a formulation, called “arborescence tree for-
mulation”, on the corresponding directed graph G = (VG, AG, cG). In
the literature, many similar formulations have been proposed for prob-
lems related to finding a spanning tree [43, 66, 69, 85].

This model introduces variables the binary variables xij stating whether
arc (i, j) is in the solution tree T .
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In this model (Figure 4.3), the constraints (3.4b) indicate that there
are no arcs arriving at r. The constraint (3.4c) ensures that there ex-
ists at least one arc leaving r. The constraints (3.4d) are connectivity
constraints (see [33, 24, 62, 66] for more details about the connectiv-
ity constraints). The constraint (3.4f) ensures that the optimal tree T
includes exactly q multicast nodes.

In this model, there are |AG| variables corresponding to the num-
ber of arcs in the corresponding directed graph G, and an exponential
number of constraints in (3.4d).

3.2.4 Miller–Tucker–Zemlin formulation: Model 4
In this model, we propose a formulation using Miller–Tucker–Zemlin
constraints as connectivity constraints on the corresponding directed
graph G = (VG, AG, cG) [75, 64].

This model introduces variables ti constrained by ti ≤ tj if arc
(i, j) ∈ T (these constraints prevent subtours in the solution); the vari-
ables pi state whether or not node i is in T ; and the binary variables xij
stating whether arc (i, j) is in the solution tree T .

In this model (Figure 3.4), the constraints (3.5g) present the relative
position of the nodes in the tree. They state that if xij = 1, then ti < tj .
This prevents the solution from containing subtours. The constraints
(3.5d) ensure that the root node r must connect to other nodes in the
arborescence tree.

In this model, there are (|AG|+2×|VG|) variables and a polynomial
number of constraints.

3.3 Solving QRP as mixed integer programs

In this section, we propose four different approaches, based on the
above models, to solve QRP. Model 2 and Model 4 have a polynomial
numbers of variables and constraints. They can be directly used in a
MIP solver (CPLEX). These approaches will be denoted Mod2_B&B
and Mod4_B&B. Model 1 and Model 3 have an exponential number of
constraints. The constraints are relaxed, and B&C algorithms are em-
ployed.
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minimize
∑

(i,j)∈AG

cG(i, j)xij (3.5a)

pr = 1 (3.5b)

x(δ−G(r)) = 0 (3.5c)

x(δ+G(r)) ≥ 1 (3.5d)

x(δ−G(v)) = pv,∀v ∈ VG \ {r} (3.5e)

xij ≤ pi,∀(i, j) ∈ AG (3.5f)

|V |xij + ti + 1 ≤ tj + |VG|,∀(i, j) ∈ AG (3.5g)

1 + x(AG) =
∑
v∈VG

pv (3.5h)

∑
i∈S

pi = q (3.5i)

xij ∈ {0, 1},∀(i, j) ∈ AG (3.5j)

pi ∈ {0, 1},∀i ∈ VG (3.5k)

ti ∈ {1 . . . |V |},∀i ∈ VG (3.5l)

Figure 3.4: Miller–Tucker–Zemlin formulation
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3.3.1 Lazy constraint approach

This approach is applicable to Model 1 and Model 3, where connec-
tivity constraints (3.2b) and (3.4d) are considered as lazy constraints.
The linear programming relaxation of the initial model without lazy
constraints is solved. All isolated components are identified for every
feasible integral solution that is not yet feasible. If a solution to a linear
programming relaxation is feasible, then there is no isolated component.
To check for isolated components, we use the union-find data structure
[28, 60]. If there is only one component, then the solution is feasible.
Otherwise, there is a cycle in some components, a lazy constraint is then
added for each component as follows. For Model 3, C is the set of all
nodes of the component and i is a random node in C; for Model 1, C
is the set of all nodes of the component. All these lazy constraints are
then added directly to the model, and the linear programming relaxation
of the current model is reoptimized. This procedure is repeatedly exe-
cuted until an optimal solution has been found. The two corresponding
approaches will be denoted Mod1_B&C_lazy and Mod3_B&C_lazy.

3.3.2 Dynamic constraint separation approach

This approach can be applied to Model 3, where connectivity constraints
(3.4d) are dynamically separated [33]. This approach, denoted by Mod3_B&C_dyn,
finds violated connectivity constraints on the support graph. Given a
solution x∗ to a LPRP (containing all connectivity constraints sepa-
rated so far), the support graph D∗ of x∗ has all nodes VD∗ and edges
{(i, j) ∈ ED∗ : cD∗(i, j) = x∗ij + x∗ji > 0}[7].

This approach consists of two stages. First, the support graph is
checked for isolated components not connected to the root node. For
each isolated component, only constraint (3.4d) is added to the current
model, where C is the set of all nodes in the isolated component and i
is a random node in C. Second, if the support graph has only one com-
ponent that includes the root node r, a maximum r− v−flow/minimum
r − v−cut problem is solved for each node v 6= r in the component.
To solve maximum-flow/minimum-cut problems, we use code written
by Skorobohatyj [95]. A maximum flow that is less than the absolute
inflow to v indicates a violated connectivity constraint (3.4d), in which
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C are all nodes on the same side of the r − v cut as v (of course node i
in the constraint is the node v).

3.3.3 Preprocessing

Different reduction checks have been proposed for the minimum Steiner
tree problem and others [66, 62, 68, 102, 66, 29]. In the preprocessing of
QRP, the following check for useless nodes is useful. It is performed on
the undirected graph D. If a node is not a multicast node and its degree
is only one, then this node (and its edge) can be removed from the graph
D. If a node v is not a multicast node with exactly two neighbors u and
w, then the node v and the edges (u, v) and (v, w) can be removed.
If there exists an edge (u,w) with cost cD(u,w), this cost is updated to
min(cD(u,w), cD(u, v)+cD(v, w)). Otherwise, an edge (u,w) is added
with cost cD(u, v) + cD(v, w). These checks can be applied iteratively
until the graph remains unchanged. In practice, we limit ourselves to
three iterations. Other reductions were considered, but they had only
very marginal impact. This preprocessing is carried out in all algorithms
in this paper.

3.4 Computational experiments

In [85], CP approach was tested on 960 random instances with the
largest graph having 60 nodes. It was shown that the CP approach was
better than the existing state-of-the-art complete approaches. We reuse
these instances. We collect these instances into a class called C1.

We also collect 2500 instances in a class C2, generated from 100
undirected graphs of 160 nodes and 25 couples 〈q, |S|〉, ranging from
{〈3, 20〉 to 〈119, 140〉 }. These 100 undirected graphs were extracted
from 100 minimum Steiner tree instances of test set I160 in the library
SteinLib [63]. The multicast nodes were randomly chosen.

All B&C algorithms were implemented in C++, using IBM Ilog
Cplex Concert Technology, version 12.4. The standard Cplex cuts were
automatically added and the default setting of Cplex is used. The CP
approach in [85] was implemented in Comet [1]. Finally, all experi-
ments were performed on XEN virtual machines with 1 core of a CPU
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Class Approach %opt I N C T
C1 CP 97.1 na. na. na. 80.47

Mod1_B&C_lazy 100 441.7 50.43 6.58 0.57
Mod2_B&B 100 2159 1.38 na. 1.06
Mod3_B&C_lazy 100 398.8 77.51 81.42 0.35
Mod3_B&C_dyn 100 308.2 3.69 158.1 1.94
Mod4_B&B 100 506.2 55.9 na. 0.64

C2 CP 0.08 na. na. na. 9.74
Mod1_B&C_lazy 78.6 92804 8507 1110 150.9
Mod2_B&B 60.2 66716 7.05 na. 318.6
Mod3_B&C_lazy 94.4 30938 2312 1077 97.6
Mod3_B&C_dyn 77.2 8408 54.64 6089 153.0
Mod4_B&B 95.2 50327 6138 na. 92.8

Figure 3.5: A summary of computational results for two classes of in-
stances

Intel Core2 Quad Q6600 @2.40GHz and 1GB of RAM. The time limit
for each execution of an algorithm was 30 minutes.

3.4.1 Comparing the approaches

We first compare the MIP approaches as well as the CP approach from
[85]. Figure 3.5 gives a summary of the experimental results. The
columns have the following meanings: %opt is the percentage of in-
stances solved to optimality within the time limit of 30 minutes; I is the
average number of iterations; N is the average of the number of nodes
in the search tree; C is the average of the number of separated con-
straints; T is the average computational time in seconds (on the solved
instances). Figure 3.6 shows the evolution of the percentage of solved
instances in C2 with respect to the time limit.

It is clear that all the MIP approaches significantly outperform the
CP approach. In the class C1, the MIP approaches are two orders of
magnitude faster than CP. In the class C2, CP only solved two instances
out of 2500, while Mod4_B&B solved 95.2% of the instances. In Fig-
ures 3.5 and 3.6, there is no major difference between Mod3_B&C_lazy
and Mod4_B&B, nor between Mod1_B&C_lazy and Mod3_B&C_dyn.
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Figure 3.6: Percentage of solved instances in C2 in given times

It is clear that Mod3_B&C_lazy and Mod4_B&B are the best two ap-
proaches, both in the percentage of solved instances and in the exe-
cution time. Normally, the use of Miller-Tucker-Zemlin subtour con-
straints leads to a large amount of computation time and a large search
tree; however for this problem it works well. This may be explained
by the small-size solution tree and the fact that the path from the root
to each node in the solution tree is quite short in term of the number
of nodes in the path. The approach Mod2_B&B is the worst among
the MIP approaches, although it develops few nodes.The low number
of nodes results from the fact that the integer relaxation version of this
model is quite close to the optimal solution [54]. It is worth noting that
Mod3_B&C_dyn has the smallest number of iterations. This mainly
comes from the dynamic constraint separation approach, which pro-
duces smaller and thinner B&B trees. However, the number of added
constraints is much larger.

Although not reported here for reasons of space, the experimental
results also showed that Property (2) of the QRP solutions (Section 3.2)
is very useful in all the models proposed in this chapter. For example,
this property helps this model to solve 6.2% more instances of class C2.
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3.4.2 Effect of the values of q and |S| on the perfor-
mance of the approaches

We analyze the sensitivity of the performance to the value of q and the
size of the multicast node set. We divided the instances of class C2
into two sets of groups. In the first set, a group contains instances of the
same size of multicast node set. The groups G20 (resp. G50, G80, G110
and G140) consist of all instances with |S| = 20 (resp. 50, 80, 110 and
140). In the second set, a group contains 500 instances with similar q

|S| .
The groups G1 through G5 split the instances from the smallest to the
largest values of q

|S| .The experimental results for each group are given in Figure 3.7.
First, the different approaches have differing sensitivities to q. The in-
stances in group G5 are more difficult to solve than those in the other
groups, except for the algorithm Mod2_B&B. When considering the ra-
tio q

|S| , Mod3_B&_lazy and Mod3_B&_dyn are better for high value
of this ratio, while the other approaches are worse. These results also
confirm that Mod3_B&C_lazy and Mod4_B&B are the two best ap-
proaches. However, there is a significant difference between these two
approaches when the number of multicast nodes varies. A portfolio ap-
proach could be used to select Mod4_B&B for low values of |S|, and
Mod3_B&C_lazy for high values.

3.5 Conclusion
This chapter solved the quorumcast routing problem to optimality as a
mixed integer program. In this chapter, we proposed four mathematical
formulations for QRP. We then solved QRP to optimality as a mixed
integer program, introducing two constraint relaxations. The compu-
tational results showed that the MIP approaches are much more effi-
cient than the state of the art approach (which is based on Constraint
Programming). In addition, we showed that two of the approaches,
Mod3_B&C_lazy and Mod4_B&B, are the two best ones. Finally, ex-
perimental results pointed out that the different approaches have differ-
ent sensitivities to the parameters q and the size of the multicast node
set. As future research, new separation constraints could be investi-
gated.
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Figure 3.7: Comparing MIP approaches in solving groups of instances
with respect to the percentage of solved instances



4
ELEMENTARY SHORTEST AND

LONGEST PATH PROBLEMS

This chapter deals with ESPP and ELPP. These problems are NP-hard.
We propose complete algorithms based on MIP for their solution, em-
ploying different valid inequalities. Moreover, we propose decomposi-
tion techniques which are very efficient for cases with special structure.
Experimental results show the efficiency of our algorithms compared
with the-state-of-the-art-exact algorithms.

4.1 Equivalence between the problems

Different cases of these problems depending on the cardinality of S and
T have been considered in the literature. For instance, when S = {s}
and T = {t} with s 6= t, ESPP is the elementary shortest path problem
on a digraph from a specified source node to a specified destination
node [54, 33]; when S = T = {d} (d is a node in G), ESPP becomes
the profitable tour problem [31, 14, 44, 77]; when S = {s} and T = {t}
with s 6= t, ELPP is the elementary longest path problem on a directed
graph from a specified source node to a specified destination node [84];
and when S = T = VG, ELPP becomes the longest elementary path
problem [106, 61, 86, 84].

All these problems are NP-hard. Note that when G does not con-
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tain negative-cost cycles (resp. positive-cost cycles), then ESPP (resp.
ELPP) is polynomially solvable, for example, by the well-known Bellman–
Ford algorithm.

We show in this section some equivalences between these problems
in the sense that the problems can be polynomially transformed into
each other.

4.1.1 Equivalence between ESPP and ELPP

Suppose given a graph G = (VG, AG, cG), S, T ⊆ VG. Construct the
graph G′ = (VG′ , AG′ , cG′) where VG′ = VG, AG′ = AG, c′G(i, j) =
−cG(i, j),∀(i, j) ∈ AG′ . Clearly, if p is an optimal solution to ESPP(S, T,G),
then p is also an optimal solution to ELPP(S, T,G′), and vice versa.

4.1.2 Equivalence between ESPP(S, T,G) and ESPP(s, t, G)

Given a graph G = (VG, AG, cG), and S, T ⊆ VG, construct the graph
G′ = (VG′ , AG′ , cG′) where VG′ = VG ∪ {s, t} (s, t /∈ VG are artificial
nodes), AG′ = AG ∪ {(s, v) | v ∈ S} ∪ {(v, t) | v ∈ T}, cG′(u, v) =
cG(u, v),∀(u, v) ∈ AG and cG′(s, v) = 0, ∀v ∈ S, cG′(v, t) = 0, ∀v ∈
T . It is evident that if p = 〈s, v1, . . . , vk, t〉 is an optimal solution to
ESPP(s, t, G′), then p′ = 〈v1, . . . , vk〉 is an optimal solution to ESPP(S, T,G),
and vice versa.

4.1.3 Equivalence between ESPP(S, T,G) and PTP(d,G)

When S = T = {d} for d a node in G, ESPP(S, T,G) becomes
PTP(d,G).

Given a graphG = (VG, AG, cG), construct the graphG′ = (VG′ , AG′ , cG′)
where VG′ = VG ∪ {d} (d /∈ VG is an artificial node), AG′ = AG ∪
{(d, v) | v ∈ S} ∪ {(v, d) | v ∈ T}, cG′(u, v) = cG(u, v),∀(u, v) ∈ AG
and cG′(d, v) = 0,∀v ∈ S, cG′(v, d) = 0,∀v ∈ T . It is evident that
if the tour T = 〈d, v1, . . . , vk, d〉 is an optimal solution to PTP(d,G),
then p′ = 〈v1, . . . , vk〉 is an optimal solution to ESPP(S, T,G), and vice
versa.
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4.2 Related works

ESPP(s, t, G) is a special case of a well-studied problem: the elemen-
tary shortest path problem with resource constraints (ESPPRC), in which
all resource constraints are removed. ESPPRC appears as a sub-problem
in column-generation solution approaches for solving vehicle-routing
problems (VRP) [100]. Dror in [70] proved that the ESPPRC is NP-
hard. There are well-known labelling algorithms for solving the ESP-
PRC, based on dynamic programming, for example, [96]. Several tech-
niques have been proposed for improving these labelling algorithms,
such as dominance rules to prevent the search from considering paths
that are shorter than the others already found [37], state space relax-
ation [15, 91], and bounding [12]. In order to use labelling algorithms
to solve ESPP(s, t, G), Drexl and Irnich [33] added a virtual resource as
a limitation on the number of visited nodes, but this addition could not
prevent the labelling algorithm from considering all subsets of nodes.
In their chapter, the authors stated that dynamic programming exact al-
gorithms for ESPP(s, t, G) are not appropriate for complete graphs con-
taining more than 20 nodes. This might be the case for problems with-
out additional constraints. Using the bi-directional method of Gighini
and Salani in [90], it can solve slightly larger cases. In short, labelling
algorithms are not very good at solving ESPP(s, t, G).

Ibrahim et al. in [54] presented two mixed integer programming for-
mulations for ESPP(s, t, G) and compared them in terms of the strength
of their respective linear relaxations. These formulations have been
tested on small graphs (containing no more than 25 nodes). The re-
sults obtained show that the commodity-flow formulation is stronger
than the arc-flow formulation. Most recently, in [33], Drexl et al. have
compared the integer versions of the formulations in terms of their com-
putation times, memory requirements, and have assessed the quality of
the lower bounds provided by an integer relaxation of the commodity-
flow formulation. Some constraint relaxation techniques have been pro-
posed for solving ESPP(s, t, G) to optimality. The approach of dynamic
separation of sub-tour elimination constraints (SECs) applied to the arc-
flow formulation outperforms the others1. A formulation applying tra-

1This arc-flow formulation is presented in Section 4.3.1.
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ditional dynamic SEC separation schemata in [33] will be presented in
detail later in this chapter.

PTP(d,G) was first presented by Dell’Amico et al. [31], as a vari-
ant of the STSP with profits. In the STSP with profits, each node is
associated with a certain quantity of profit, and the overall goal is to
find a sub-tour that maximizes the profits collected from the visited
nodes but that simultaneously minimizes the travel costs. The STSP
with profits becomes PTP(d,G) when the two objectives are combined
into one (minimizing the travel costs less the profits). Volgenan and
Jonker in [104] showed that PTP(d,G) can be polynomially reduced
to the much more studied NP-complete ATSP. When the cost matrix
is symmetric and satisfies the triangle inequality, three approximation
algorithms were developed in [14, 44, 77] for PTP(d,G) with approxi-
mation factors of 5

2
, 2− 1

n−1 and 1 + log(n) (n is the number of nodes).
In the [36], Feillet et al. reviewed other heuristic and exact approaches
for solving the STSP with profits.

Wong et al. [106] mentioned ELPP(G) on graphs in the context of
peer-to-peer information retrieval networks where weights are associ-
ated with nodes. They also proposed a genetic algorithm for solving
this problem. ELPP(G) has also been addressed in [94] for evaluating
the worst-case packet delay of Switched Ethernet. The given Switched
Ethernet is transformed into a delay computation model represented by
a directed graph. On this particular directed acyclic graph, the longest
path can be computed using dynamic programming. ELPP(G) also ap-
pears in the domain of high-performance printed circuit board design in
which one needs to find the longest path between two specified nodes
on a rectangle grid routing [101]. In [87], ELPP(G) was described in the
context of multi-robot patrolling and [86] proposed a genetic algorithm
for solving ELPP(G).

In [61], approximating algorithms for ELPP(G) (unweighted graph)
were considered, and it was shown that no polynomial-time algorithm
can find a constant factor approximation for the longest path problem
unless P=NP. In [46], a heuristic algorithm was proposed for ELPP(G),
based on the strongly connected components of the graph.

In our previous work in [84], we considered ELPP(G) on arbitrary
undirected graphs and proposed two constraint-based techniques for its
solution: an exact algorithm based on constraint programming (CP) and
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a constraint-based local search algorithm. To solve ELPP(G) on sparse
undirected graphs with many bridges, we also proposed an efficient al-
gorithm combining constraint-based techniques and dynamic program-
ming.

4.3 MIP formulations for ESPP(s, t, G)

Given a directed graph G = (VG, AG, cG) with set of nodes VG, set of
arcs AG, each arc (i, j) ∈ AG being associated with a cost cG(i, j) ∈ R,
suppose that s, t ∈ VG are the source node and the destination node. An
elementary path from s to t inG is a sequence of nodes p = 〈v1, . . . vn〉,
in which v1 = s, vn = t, (vk, vk+1) ∈ AG,∀k ∈ {1, . . . , n − 1},
vi 6= vj,∀i, j ∈ {1, . . . , n}, i 6= j, and the cost of the path is cG(p) =∑n−1

i=1 cG(vi, vi+1).

4.3.1 Arc-flow formulation: Model 1

This formulation defines only one type of binary variable xij , which
represents whether or not the arc (i, j) is included in the solution. [54,
58, 56, 33].

In this formulation (Figure 4.1), (4.1a), (4.1b), (4.1d) and (4.1e)
represent, respectively, the objective function, the constraints of flow
conservation, the SECs, and the integer constraints. In this formulation,
there are |VG|2 variables. However, (4.1d) has an exponential number
of constraints.

4.3.2 Commodity-flow formulation: Model 2

The following formulation has been studied in [54, 33] for ESPP(s, t, G).
This formulation has three types of variables: binary variables xij equal
to 1 iff arc (i, j) is used in the shortest path; binary variables yi equal
to 1 iff node i is traversed by the shortest path; and binary variables zk
equal to 1 iff a flow from the source node s travels to node k ∈ VG \{s}
using the arc (i, j). The following formulation (Figure 4.2) is presented
in [33].
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Minimize
∑

(i,j)∈AG

cG(i, j)xij (4.1a)

subject to

x(δ+G(i))− x(δ−G(i)) =


1, i = s
−1, i = t
0, i ∈ VG \ {s, t}

(4.1b)

x(δ−G(s)) + x(δ+G(t)) = 0 (4.1c)

x(δ+G(S))− x(δ+G(i)) ≥ 0,∀S ⊆ VG, |S| ≥ 2, t /∈ S,∀i ∈ S (4.1d)

xij ∈ {0, 1}, ∀(i, j) ∈ AG (4.1e)

Figure 4.1: Arc-flow formulation

The justification of the constraints in this formulation is given in
[54, 33]. This formulation contains O(|VG|3) variables and constraints.
A weakness of this formulation is the large number of variables.

4.3.3 Miller–Tucker–Zemlin formulation: Model 3

This formulation uses another type of SEC, introduced in [75, 64] intro-
duced for the STSP. The SECs are in (4.3d), in which the constant num-
ber M is large enough (e.g., M = |VG|), the binary variables xij repre-
sent whether the arc (i, j) is visited, and each integer variable pi denotes
the relative position of the visited node. In this formulation (Figure 4.3),
the constraints (4.3d), the SECs, state that pi < pj if xij = 1.

In [33], Model 2 was shown to be less efficient than Model 1 when
solving the ESPP(s, t, G). In addition to the variables of Model 1,
Model 3 has |VG| more variables (pi, i ∈ AG). In this chapter, we inves-
tigate Model 1, exploiting various valid inequalities that have not been
considered so far and a new separation strategy. We will show that our
proposed algorithm is better than the state of the art algorithm of [33] in
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Minimize
∑

(i,j)∈AG

cG(i, j)xij (4.2a)

subject to

zkij ≤ xij,∀k ∈ VG \ {s, t}, (i, j) ∈ AG, i 6= k, s 6= j, j 6= t (4.2b)

∑
i∈V +

G (s)

zksi = yk,∀k ∈ VG \ {s, t} (4.2c)

∑
j∈V +

G (v)

zkvj−
∑

i∈V −G (v)

zkiv = 0,∀k ∈ VG\{s, t}, v ∈ VG\{s, k, t} (4.2d)

∑
i∈V −G (k)

zkik = yk,∀k ∈ VG \ {s, t} (4.2e)

x(δ+G(i)) = yi,∀i ∈ VG \ {t} (4.2f)

x(δ−G(i)) = yi,∀i ∈ VG \ {s} (4.2g)

x(δ+G(s)) = 1 (4.2h)

x(δ−G(t)) = 1 (4.2i)

x(δ−G(s)) + x(δ+G(t)) = 0 (4.2j)

xij ∈ {0, 1},∀(i, j) ∈ AG (4.2k)

yi ∈ {0, 1},∀i ∈ VG (4.2l)

zkij ≥ 0,∀k ∈ VG \ {s, t}, (i, j) ∈ AG, i 6= k, s 6= j, j 6= t (4.2m)

Figure 4.2: Commodity-flow formulation
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minimize
∑

(i,j)∈AG

cG(i, j)xij (4.3a)

subject to

x(δ+G(i))− x(δ−G(i)) =


1, i = s
−1, i = t
0, i ∈ VG \ {s, t}

(4.3b)

x(δ−G(s)) + x(δ+G(t)) = 0 (4.3c)

pi +Mxij + 1 ≤ pj +M, ∀(i, j) ∈ AG (4.3d)

xij ∈ {0, 1}, ∀(i, j) ∈ AG (4.3e)

pi ∈ {1, . . . , |VG|},∀i ∈ VG (4.3f)

Figure 4.3: Miller–Tucker–Zemlin formulation

most cases. Although Model 3 has a polynomial number of constraints,
we show, in the experimental section, that that approach performs very
poorly.

4.4 Valid inequalities for ESPP(s, t, G)

In [104], Volgenant and Jonker showed that PTP(d,G) can be polyno-
mially reduced to ATSP. Based on this, we will show that ESPP(s, t, G)
can be polynomially reduced to ATSP. Hence, some valid inequalities
of ATSP can be applied to ESPP(s, t, G).

First of all, we construct a new directed graph G′ = (VG′ , AG′ , cG′)
(called the transformed graph) from the directed graphG = (VG, AG, cG)
(called the original graph) with |VG| − 1 new nodes. That is, assuming
that VG = {s, v1, . . . vn, t}, we put G′ = (VG′ , AG′ , cG′), with VG′ =
VG ∪ NV and NV = {v′1, . . . , v′n, v′n+1}. We also put AG′ = AG ∪ NA,
where NA consists of 3n−1 arcs: (v′1, v

′
2), (v

′
1, v1), (v1, v

′
2), . . . , (v

′
n−1, v

′
n),

(v′n−1, vn−1), (vn−1, v
′
n) and (t, v′1), (v

′
n+1, s). In addition, cG′(i, j) =

cG(i, j) ∀(i, j) ∈ G and cG′(i, j) = 0 ∀(i, j) ∈ NA.
Figure 4.4 gives a simple example of the transformation: the origi-
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Figure 4.4: Transformation from ESPP(s, t, G) to ATSP

nal graph of 6 nodes is transformed to a graph of 11 nodes, which trans-
formed graph has 5 new nodes 1′, 2′, 3′, 4′, 5′ and 14 new arcs (t, 1′),
(1′, 1), (1, 2′), (1′, 2′) , . . . (5′, s).

The ATSP(G′) problem can be modeled by a set of binary variables
X ′ = {xij|(i, j) ∈ AG′} indicating whether the arc (i, j) is included in
the solution [39]:

minimize
∑

(i,j)∈AG′

cG′(i, j)xij (4.4a)

subject to
x(δ+G′(i)) = x(δ−G′(i)) = 1, ∀i ∈ X ′ (4.4b)

x(δ+G′(S)) ≥ 1, S ⊂ VG′ , S 6= ∅ (4.4c)

xij ∈ {0, 1}, ∀(i, j) ∈ AG′ . (4.4d)

We put X = {xij ∈ X ′|(i, j) ∈ AG}.

Theorem 1 If X ′∗ = {x∗ij | (i, j) ∈ AG′} is an optimal solution to
ATSP(G′), then X∗ = {x∗ij | (i, j) ∈ AG} is an optimal solution to
ESPP(s, t, G)
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Proof Suppose that X ′∗ corresponds to the shortest Hamiltonian cycle
C = 〈(s, u1), (u1, u2), . . . , (up, t), (t, up+1), . . . , (u2n+1, s)〉 (starting
and terminating at s) on the transformed graph G′. We will show that
the elementary path P = 〈(s, u1), (u1, u2), . . . , (up, t)〉 corresponds to
X∗ and is an optimal solution to ESPP(s, t, G). We have:

• Due to v′j is in C, so either (v′j, v
′
j+1) or (v′j, vj) is in C.

• Due to v′j+1 is in C, so either (v′j, v
′
j+1) or (vj, v

′
j+1) is in C.

It follows that we have that node v′j+1 always stands after node v′j
in C (the cycle starting and terminating at s). In addition, node v′1 is
always after node t in the cycle (there is only one arc (t, v′1) coming
to node v′1). We have that all nodes in NA stand after the node t in C.
Hence, all nodes of P belong to G. Thus, X∗ models P and the cost of
P is equal to the cost of C. We now show that P has minimal cost.

Suppose that the cost of P is not minimal, and P ′ = 〈(s, x1),
(x1, x2), . . . , (xp, t)〉 is an elementary path in G whose cost is smaller
than that of P . We extend P ′ to establish a Hamiltonian cycle C ′ in
Algorithm 5.

Algorithm 5: Extend(P ′, G′)
1 C ′ ← P ′;
2 Add arc (t, v′1) to C ′;
3 foreach j ∈ 1..n+ 1 do
4 if vj ∈ P ′ then
5 Add the arc (v′j, v

′
j+1) to C ′

6 else
7 Add (v′j, vj) and (vj, v

′
j+1) to C ′;

8 return C ′;

Clearly, the cost of C ′ is equal to that of P ′ and is thus smaller than
the cost ofC (a contradiction, asC is an optimal solution to ASTP(G′)).

So, P is the shortest elementary path in G.

As a result of Theorem 1, we can tackle ESPP(s, t, G) on the graph
G by solving ATSP in G′. However, in this approach, the input size of
the problem is increased by a factor of two (the number of nodes of G′

is about twice as large as that of G). We therefore do not follow this
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approach. Instead, we exploit different valid inequalities of the model
of ATSP(G′) and integrate them into the model of ESPP(s, t, G). It is
clear that if I(Y ′) is a valid inequality of Model 4.3.1, with Y ′ ⊆ X ′,
then I(Y ) is a valid inequality of (1a)–(1e) with Y ⊆ X .

Dk, 2-Matching, and Tk are classes of valid inequalities for ASTP
in variables in X ′ (see [47, 39, 9, 38, 35, 81, 11] for more details about
these valid inequalities). From Dk and Tk, we can extract inequali-
ties in variables in X and apply these inequalities to the solution of
ESPP(s, t, G). In addition, we adapt the 2-Matching valid inequalities to
establish valid inequalities for ESPP(s, t, G). As far as we know, these
valid inequalities have not yet been exploited for solving ESPP(s, t, G).
Moreover, we propose a simple class of valid inequalities which will be
experimentally shown to be effective (see Section 4.4.4).

4.4.1 Dk-inequalities
For each cycle 〈(i1, i2), . . . , (ik, i1)〉 of G (k ∈ {3, |VG| − 1}), the two
following inequalities are valid for ESPP(s, t, G):

D−k -inequalities:

k−1∑
j=1

xijij+1
+ xiki1 + 2

k∑
j=3

xi1ij +
k∑
j=4

j−1∑
h=3

xijih ≤ k − 1 (4.5)

and the D+
k -inequalities:

k−1∑
j=1

xijij+1
+ xiki1 + 2

k∑
j=3

xiji1 +
k−1∑
j=3

j−1∑
h=2

xijih ≤ k − 1. (4.6)

4.4.2 Tk-inequalities
The Tk-inequalities that are valid for ESPP(s, t, G) on the original graph
G are as follow.

For any W ⊂ VG \ {s, t}, 2 ≤ |W | ≤ |VG| − 4, w ∈ W, p, q ∈
VG \W , we have

xpw + xpq + xwq + x(AG(W )) ≤ |W |. (4.7)
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4.4.3 2-Matching inequalities
The 2-Matching inequalities discovered by Edmonds [35] are widely
used in B&C algorithms for STSP and its variations [47, 81, 9]. We
adapt the 2-Matching to be valid inequalities for ESPP(s, t, G) as fol-
lows:

x(δG(S)) ≥ 2x(F )+1−|F |,∀S ⊂ VG, s /∈ S, t /∈ S, F ⊂ δG(S), |F | odd.
(4.8)

Theorem 2 Inequalities (4.8) are valid for ESPP(s, t, G).

Proof Let P be the set of nodes of an elementary shortest path on the
original graph G. We have x(δG(S)) ≥ x(F ) as F ⊆ δG(S) and
x(F ) ≤ |F |. Hence x(δG(S))− x(F ) + |F | − x(F ) ≥ 0.

In addition, because neither s and t are in S, we have x(δG(S)) =
2|P ∩S|, which is even. So we have x(δG(S))−x(F )+|F |−x(F ) ≥ 1,
as |F | is odd. Then inequalities (4.8) are true.

Finally, we conclude that inequalities (4.8) are valid for ESPP(s, t, G).

4.4.4 Maximum outflow inequalities
We propose using the class of so-called maximum outflow inequalities:

x(δ+G(v)) ≤ 1,∀v ∈ VG \ {t}. (4.9)

This class imposes a constraint on the maximum outflow at each
node of the graph as in each solution to ESPP(s, t, G), there is at most
one arc leaving each node of G.

4.5 Solving ESPP(s, t, G) to optimality

Models 2 and 3 described in Section 4.3 have a polynomial number of
constraints. It is thus possible to solve the problem by a MIP solver
with these models. We will assess the performance of these B&C algo-
rithms (two algorithms correspond to two models) in the experiments
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section. We denote these two B&C algorithms by ESP_ComFlow and
ESP_MTZ.

In this section, we concentrate on proposing a B&C algorithm for
solving ESPP(s, t, G) with Model 1. For the sake of readability, we
denote that algorithm by ESP_FltC.

4.5.1 B&C algorithm schema of ESP_FltC

We present here a generic B&C procedure of ESP_FltC, (see [80, 10,
53] for more information on B&C procedures).

At a generic step of the B&C procedure, the original linear program-
ming relaxation, 0 ≤ xij ≤ 1, is enriched by additional valid inequali-
ties for ESPP(s, t, G), and some of the binary variables are fixed either
at their upper or lower bound. We denote by C the current family of
valid inequalities for ESPP(s, t, G) and we assume that the linear sys-
tem Ax ≥ b defining C contains at least all the inequalities in (4.1b) and
(4.1c) of Model 1.

We denote by F0 and F1 the sets of variables that have been fixed at
0 and 1, respectively.

Let K(C,F0,F1) = {x : Ax ≥ b

xij = 0 for xij ∈ F0

xij = 1 for xij ∈ F1}
and let LP (C,F0,F1) denote the linear program

Min cx : x ∈ K(C,F0,F1)

which is assumed to be feasible, with a finite minimum.
The active nodes of the enumeration tree are represented by a list

NL of ordered pairs (F0,F1). Let x∗ be the best known solution to
ESPP(s, t, G) and UB stand for the current upper bound (the value of
the best known solution x∗).

During the solution process, the B&C procedure maintains an in-
equality pool IP containing the inequalities generated. This procedure
is depicted in Figures 4.5. Its different steps are developed in the fol-
lowing sections.
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1. Preprocessing: Removing useless nodes and arcs from the graph
G.

2. Initialization: Let C be the set of constraints in the linear pro-
gramming relaxation of ESPP(s, t, G) (containing only the in-
equalities in (4.1b) and (4.1c) of Model 1). Set IP = ∅,
F0 = F1 = ∅, x∗ = NULL, UB = +∞, and two temporary
inequality sets SI = GI = ∅.

3. Lower bounding: Solve the linear problem LP (C ∪SI,F0,F1).
Clear the set of separated inequalities SI. If there exists an opti-
mal solution to the linear problem, denote it by x. If the solution
x is an elementary path, update the best known solution x∗ = x
and the upper bound value UB = cx. If the solution x is not an
elementary path, go to Step 5 (Inequality generation).

4. Node selection: If NL = ∅, stop; otherwise, choose an ordered
pair (F0,F1) and remove it from NL. Go to Step 3 (Lower
bounding).

5. Inequality generation: Clear the set of generated inequalities
GI. Generate inequalities valid for ESPP(s, t, G) but violated by
x and add them to GI. If x is an integer-feasible solution, do
C = C ∪ GI and go to Step 3 (Lower bounding).

6. Inequality selection: Select some most violated inequalities
from GI and then add them to IP .

7. Inequality detection: All inequalities in IP that are violated by
the solution x are inserted into SI.

8. Branching/Cutting decision: If SI is not empty, go to Step 3
(Lower bounding).

9. Branching: Select an appropriate variable xij such that xij is
fractional. Generate two subproblems corresponding to (F0 ∪
{xij},F1) and (F0,F1 ∪{xij}), insert them intoNL. Go to Step
4 (Node selection).

Figure 4.5: B&C schema of ESP_FltC
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4.5.2 Preprocessing

Preprocessing is a very important algorithmic tool for solving large
scale combinatorial problems. The main idea is to detect unnecessary
information in the problem and to reduce the size of the problem by
logical implications. In ESP_FltC, we apply some of following simple
reduction methods [66, 62, 68, 102, 66, 29].

Removing useless nodes

We can erase nodes that cannot be in any path from the source node to
destination node. Such nodes can be detected by a simple search, for
example, depth-first search.

• A forward search is used to find nodes connected from the source
node, these nodes are collected into a set denoted by S1.

• A backward search is used to find nodes connected to the desti-
nation node, these nodes are collected into a set denoted by S2.

We can remove nodes in VG \ {S1 ∩ S2} because they can not be in
a path from the source node to the destination node.

Removing nodes of degree 1

A node with only one flow that arrives or leaves it is useless and can be
removed.

1. Let v be a node such that δ+G(v) = {u} (there is only one flow
going out from v). Then each arc (i, v) ∈ δ−G(v) can be replaced
by an arc (i, u) of cost cG(i, v) + cG(v, u).

2. Let v be a node such that δ−G(v) = {u} (there is only one flow
arriving to v). Then each arc (v, i) ∈ δ+G(v) can be replaced by an
arc (u, i) of cost cG(u, v) + cG(v, i).
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4.5.3 Node selection

The objective of the node selection step (Step 4) is to choose the next
node to expand. A naive node selection strategy might lead to a huge
search tree. By contrast, an intelligent node selection strategy leads
quickly to a good feasible solution that sharply reduces the gap between
the upper bound and lower bound and proves the optimality of the cur-
rent incumbent. There exist some well-known node-selection strategies,
such as depth-first-search, breadth-first-search, and best-bound search.

In order to minimize the size of the search tree, in ESP_FltC, the
best-bound search strategy, which selects the node with the best lower
bound, is carried out. Its advantage is that, for a fixed sequence of
branching decisions, it minimizes the number of nodes that are ex-
plored, because all nodes that are explored would have been explored
independently of the upper bound [13].

4.5.4 Branching variable selection

In the branching step (Step 9), a fractional variable is chosen and two
new subproblems are generated by setting in turn the value of the vari-
able to 0, and to 1. Selecting the right branching variable is an important
component of a B&C algorithm. Ideally, we would like to choose the
branching variables that minimize the size of the search tree. A simple
branching strategy applied is to select the variable with the largest inte-
ger violation: this is known as maximum fraction branching [62, 9]. In
practice, this rule is not efficient: it performs about as well as randomly
selecting a branching variable [4].

The most successful branching strategies estimate the change in
the lower bound after branching. Because we prune a node of the
branch-and-bound tree whenever the lower bound of the node is greater
than the current upper bound, we want to increase the lower bound as
much as possible. In [4], Achterberg et al. also experimented with
strong branching rules, pseudocost branching, strong branching, a hy-
brid of strong/pseudocost branching, pseudo cost branching with strong
branching initialization, and reliability branching.

ESP_FltC is implemented in C++, using IBM Ilog Cplex Concert
Technology, version 12.2. The default variable selection strategy of
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CPLEX is a variant of hybrid branching [4, 3]. Based on the experi-
ments in [4], we decided that ESP_FltC should carry out that default
strategy.

4.5.5 Inequality generation
Given a solution x to LP (C,F0,F1) at a node of the branch-and-bound
tree, we try to find valid inequalities that are not satisfied by x, and add
them to the model. Algorithms for finding these inequalities often rely
on a support graph G = (VG, AG, cG) with VG = V , AG = {(i, j)|xij >
0} and each arc (i, j) ∈ AG is associated with a cost cG(i, j) = xij .

Algorithms for separating valid inequalities Dk, Tk are presented in
[39, 9]. For the generation of 2-Matching valid inequalities, we only
separate inequalities with |S| = 1 in order to reduce the computational
complexity [82, 81, 55].

Subtour elimination constraint generation

In model 1, the goal of generating an SEC that is violated by x (see
Section 4.3.1) means finding a pair 〈S, i〉 in which S ⊆ VG \ {t} and
i ∈ S such that x(δ+G(S)) < x(δ+G(i)). The algorithm for generating
SECs in [33] works on the undirected auxiliary support graph D =
{VD, ED, cD} in which VD = V , ED = {(i, j)|xij + xji > 0} with a
cost cD(i, j) = xij + xji associated to each edge (i, j) ∈ ED2. We call
this algorithm the traditional separation algorithm for finding SECs.

The traditional separation algorithm for finding SECs works as fol-
lows. In the first step, it checks whether there exist any isolated com-
ponents in D that are not connected to s and t. If such an isolated
component is found, an SEC (4.1d) is generated in which S contains
all nodes of the isolated component, and i is randomly selected from
S. Otherwise (i.e., no isolated component is found), the algorithm per-
forms the second step which solves, for each node v ∈ VG \ {t}, the
maximum v − t-flow/minimum v − t-cut problem on D. If the maxi-
mum flow v − t is less than the outflow from this node with respect to
x (i.e.,

∑
u∈V +

G (v) xvu), then one SEC (4.1d) is generated; in this SEC

2We would like to thank Michael Drexl, the author of [33], for this information.
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〈S, i〉, S is the set of nodes that are on the same side of the v − t-cut
than v and i is the node v.

Figure 4.6: In this example, the traditional separation algorithm for
SECs cannot find any SECs.

In some cases, the traditional algorithm cannot detect any SECs:
this is illustrated in Figure 4.6: there are violated SECs (4.1d) in this
support graph that cannot be detected by the traditional algorithm, for
example, with S = {3, 4, 5} and i being the node 3 or 4.

As the traditional algorithm cannot always find SECs even if they
exist, we propose in this section another heuristic algorithm for finding
SECs which is simple but efficient. Our proposed algorithm extends
from a promising node (node i in (4.1d)) to obtain the set of nodes (set
S in (4.1d)) until an SEC is found or until the current set of nodes cannot
be extended anymore. In our proposed algorithm, a promising node is
an endpoint of an arc (u, v) such that x(δ+

G
(u)) ≥ 2. For example, in

Figure 4.6, nodes 1, 2, 3, 4, and 5 are promising nodes.
The first step of our heuristic separation algorithm for SECs is sim-

ilar to the traditional separation algorithm, which checks for isolated
components that are not connected to the source and the destination
nodes. The second step of our heuristic algorithm tries to find an SEC
by extending a promising node (as described in Algorithm 6) instead of
finding the max flow from every node v ∈ VG to t in G.

In Algorithm 6, the procedure extends from a promising node i. At
each iteration, a new node is added to the set S (lines 7–8), the outflow
from S is firstly recomputed (lines 9–10), then it checks for a violation
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of the SECs (lines 11–12). If a violated SEC is found, the procedure
immediately stops. The procedure also stops immediately when S can
not be extended (lines 13–15).

Algorithm 6: FindSEC(G = (VG, AG, cG), i, t)

Input: Support graph G = (VG, AG, cG), the destination node t
and a promising node i

Output: A pair 〈S, i〉 (if S 6= ∅ we have a violated SEC,
otherwise, no violated SEC found corresponding to i)

1 Insert the promising node i into node set S and a queue Q;
2 ∆←

∑
v∈V +

G
(i) cG(i, v) ;

3 OutF lowS ← ∆;
4 Extend← true;
5 while Extend do
6 Get and Remove top node u from the queue Q ;
7 foreach v ∈ V +

G
(u) : v /∈ S, v 6= t, Extend = true do

8 Insert v into S and Q;
9 OutF lowS ← OutF lowS +

∑
u∈V +

G
(v) cG(v, u);

10 OutF lowS ← OutF lowS −
∑

u∈S(cG(u, v) + cG(v, u));
11 if OutF lowS < ∆ then
12 Extend← false;
13 break ;

14 if Q is empty then
15 Extend = false;
16 S ← ∅;

17 return 〈S, i〉 ;

Clearly, our proposed heuristic separation algorithm for SECs can
find two SECs from the support graph in the Figure 4.6: 〈{3, 4, 5}, 3〉
and 〈{4, 5}, 4〉.

Generation of maximum outflow inequality

It is clear that maximum outflow inequalities can easily be computed by
an algorithm with complexity of O(|VG|), checking for a violation of a
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maximum outflow inequality at each node of the support graph G.

Generating other inequalities

We also use other families of inequalities that are valid for a general
mixed integer program. They are MIP mixed integer rounding inequal-
ities, MIP zero-half inequalities, MIP Gomory fractional inequalities,
etc.. Our algorithm ESP_FltC is implemented in CPLEX solver that
provides an option for either generating these inequalities or not.

4.5.6 Inequality selection
The execution of ESP_FltC maintains an inequality pool IP that col-
lects the inequalities generated. At each node, each time the algo-
rithm produces a solution, the inequalities in the pool are checked as
to whether they are violated by the solution. If some inequalities are
violated by the solution, the algorithm adds them to the model of the
current node and then re-optimizes. This procedure is iteratively exe-
cuted until no inequality in the pool is violated.

The pool IP has an important role in ESP_FltC that becomes much
stronger if its pool contains just the most violated inequalities. To reject
useless violated inequalities, ESP_FltC must answer the two following
questions:

1. When there are various classes of valid inequalities, how to decide
whether one class is better than another? Although many B&C
solvers report computational experience on this issue, it mostly
remains an open question. In general, all valid inequalities are
separated.

2. In a class of inequalities, is one inequality better than another?
This is also an open question. However, two widely used mea-
sures of the quality of an inequality in the same class are presented
in [10]. Given an inequality αx ≥ β, its quality is computed by
one of the two following measures:

(a) The value β − αx measures the traditional violation of the
inequality.
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(b) The geometric measure uses the Euclidean distance between
x and the hyperplane αx = β, namely the distance between
x and its orthogonal projection onto this hyperplane.

In this chapter, we use the traditional measure to order the in-
equalities belonging to the same class. However, we must deter-
mine a good threshold for each class of inequalities to arrange
that the pool IP contains only the most violated inequalities.

4.6 Decompositions

In [84], Pham et al. proposed an efficient dynamic algorithm to solve
ELPP on undirected graphs of positive-cost edges, which have many
bridge-blocks. The dynamic algorithm decomposes such graph into
blocks; then uses CP approach to solve ELPP smaller-size instances on
the blocks; lastly computes dynamically optimal solutions to the ELPP.
In this thesis, we extend that decomposition to solve ESPP and ELLPP
on directed graphs of positive-cost and negative-cost arcs, which consist
of many bridges-blocks. Moreover, this thesis proposes a decomposi-
tion technique to solve ESPP and ELPP on directed graphs of positive-
cost and negative-cost arcs, which contain many strongly connected
components.

Before describing the decompositions, we give some definitions and
notations. Given a directed graph G = (VG, AG) and a set of nodes
S ⊆ VG, we denote by G(S) = (VG(S), AG(S)) the sub-graph induced
by S in which VG(S) = S and AG(S) = {(u, v) ∈ AG|u, v ∈ S}. An
auxiliary graph of G is a graph D = {VD, ED} where ED = {(u, v) |
(u, v) ∈ AG ∨ (v, u) ∈ AG}. In a rooted tree, T , T (v) denotes the set
of descendant nodes of v in T , including v.

4.6.1 Computing bridge-blocks

Without loss of generality, we assume that the graph G is connected.
The computation of bridges and bridge-blocks can be realized with a
variant of theO(|V |+ |A|) depth-first search algorithmDFS(r) of [97]
on an auxiliary graph ofG, denoted byD. The variant algorithm we de-
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veloped requires fixing a root node r of VG and produces the following
results:

• The set B(D) of bridges of D;

• A spanning tree T of D, rooted at r, in which f(v) is the father
of a node v (by convention f(r) = r); the spanning tree will
be composed of k spanning subtrees (one per each bridge-block),
connected by the bridges;

• The set {S1, . . . , Sk}, where Si is the set of nodes of bridge-
blocks of D;

• The set R of roots of the different subtrees T (Si), i.e., R = {ri|ri
is the root of T (Si), 1 ≤ i ≤ k};

• Exit(ri), the set of exit nodes of T (Si), which are nodes in Si
connected to (the root of) some other bridge-block in T plus the
node ri, i.e., Exit(ri) = {v ∈ Si|∃rj ∈ R : f(rj) = v} ∪ {ri};

• ChRoot(v), the child nodes of v in T that are outside the bridge-
blocks of v; by the definition of a bridge block, such children are
necessarily members of R, i.e., ChRoot(v) = {ri ∈ R|f(ri) =
v};

• NextRoot(ri) is the set of root nodes of bridge-blocks connected
to Si, i.e., NextRoot(ri) = ∪v∈Si

ChRoot(v);

Figures 4.7 and 4.8 illustrate the result of DFS; we give some of
the results: S1 = {1, 2, 3, 4, 5}, S2 = {6, 7, 8, 9, 36}, S3 = {17}, S4 =
{18, 19, 20, 21}, S5 = {37}, S6 = {12, 13, 14, 15, 16}, S7 = {11}, S8 =
{10}.R = {1, 6, 17, 18, 37, 12, 11, 10},NextRoot(1) = {6, 10}, NextRoot(6) =
{11, 12, 17, 37}, NextRoot(17) = {18}. The other NextRoot values
are {∅}. B(G′) = {(6, 5), (10, 4), (11, 7), (12, 9), (17, 8), (18, 17), (37, 8)}.
ChRoot(1) = {∅}, ChRoot(5) = {6}, ChRoot(8) = {17, 37} etc.
Exit(1) = {1, 4, 5}, Exit(6) = {6, 7, 8, 9}, etc.
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Figure 4.7: The auxiliary graph
D

Figure 4.8: The rooted spanning tree
T (solid arcs are in T , bold arcs are
bridges)

4.6.2 Computing strongly connected components
A directed graph is strongly connected if there exists a path from each
node in the graph to every other node. The strongly connected compo-
nents (SCCs) of a directed graph are the maximal strongly connected
subgraphs. It is evident that if each SCC is contracted to a single node,
the contracted directed graph is acyclic. When solving ESPP(s, t, G),
we could focus on the SCCs that are on paths in the contracted graph
from the SCC containing s to the SCC containing t.

Given a directed graph G = (VG, AG, cG) together with a source
node s and a destination node t, we introduce the following notation:

• S are the set of nodes connected from s by an elementary path
and T is the set of nodes that connect to t by an elementary path.

• SCC = {c1, . . . , cn} is the set of SCCs of G with ci = (Vci , Aci).

• We write I(ci) = {v ∈ Vci | (u, v) ∈ AG ∧ u /∈ Vci} and O(ci) =
{v ∈ Vci | (v, u) ∈ AG ∧ u /∈ Vci}. If ci contains s, then s is
included in I(ci). If ci contains t, then t is included in O(ci).
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• Parent(ci) is the set of SCCs connected to ci by an arc, i.e.:
Parent(ci) = {cj ∈ SCC|i 6= j ∧ ∃(u, v) ∈ VG : u ∈ Vcj , v ∈
Vci}.

• Children(ci) is set of SCCs connected from ci by an arc, i.e.:
Children(ci) = {cj ∈ SCC|i 6= j ∧ ∃(u, v) ∈ VG : u ∈ Vci , v ∈
Vcj}.

Before computing ESPP(s, t, G), the input graph is preprocessed in
the two following steps:

• Step 1 consists of removing nodes that cannot be a part of an el-
ementary path from s to t from the graph. S and T are computed
with a depth-first search algorithm [28]. Nodes in VG \ {S ∩ T }
are removed from G.

• Step 2 consists of finding all SCCs in the graph. This computa-
tion can be realized with a variant of the O(|V |+ |A|) depth-first
search algorithm in [28]. The variant of the depth-first search al-
gorithm that we propose uses s as the root node. After this step,
we have a set of SCCs: SCC = {c1, . . . , cn} and I(ci, O(ci),
Parent(ci), Children(ci) for each ci.

Figures 4.9 and 4.10 illustrate the result of the preprocessing. The
overall goal is to determine the elementary shortest path from node 1
to node 19. After Step 1, nodes 3, 11, 12, 13, 14, 15, 20 are re-
moved. After Step 2, SCC = {c1, c2, c3}, Vc1 = {1, 2, 4, 5}, Vc2 =
{6, 7, 8, 9, 10}, Vc3 = {16, 17, 18, 19}, I(c1) = {1}, I(c2) = {6}, I(c3) =
{16, 17}, O(c1) = {5}, O(c2) = {8, 10}, O(c3) = {19}, Parent(c1) =
∅, Parent(c2) = {c1}, Parent(c3) = {c2}, Children(c1) = {c2},
Children(c2) = {c3}, and Children(c3) = ∅.

4.6.3 ELPP(G) on sparse directed graphs with many
bridges

In [84], Pham et al. proposed a dynamic programming approach for
solving ELPP(G) on sparse undirected graphs with many bridges, but
limited to positive arc costs. In the thesis, we extend the approach to
directed graphs with positive and negative arc costs. This new algorithm
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based on MIP is much faster than our previous algorithm in [84] that
was based on Constraint Programming. We denote this new algorithm
by ELP_FltC_BB.

The given directed graph is decomposed into bridge-blocks as de-
scribed in Section 4.6.1. From the resulting data structures, we now
introduce the following notations.

• L(ri): the cost of the elementary longest path in G(T (ri)).

• d(u, v): the cost of the elementary longest path from u to v in
G(Si), with u, v ∈ Si. By convention, d(u, u) = 0.

• H1(ri): the cost of the elementary longest path starting from ri in
G(T (ri)).

• H2(ri): the cost of the elementary longest path ending at ri in
G(T (ri)).

• h1(v): the cost of the elementary longest path inG(T (v)) starting
from v, but without any arc in G(Si), with v ∈ Si.

• h2(v): the cost of the elementary longest path in G(T (v)) ending
at v, but without any arc in G(Si), with v ∈ Si.

These last two quantities can be computed recursively as follows:

h1(v) = max(maxri∈ChRoot(v)H1(ri) + cG(v, ri), 0)

h2(v) = max(maxri∈ChRoot(v)H2(ri) + cG(ri, v), 0)

H1(ri) = max(maxv∈Si
d(ri, v) + h1(v), 0)

H2(ri) = max(h2(v) +maxv∈Si
d(v, ri), 0)

h1(v) and h2(v) are defined to be 0 when ChRoot(v) = ∅.
Using the above values, we can now compute L(ri), the cost of the

elementary longest path in G(T (ri)), with ri ∈ R. We have L(ri) =
max{L0(ri), L1(ri), L2(ri)}, where L0(ri) (resp. L1(ri), L2(ri)) is the
cost of the elementary longest path in G(T (ri)) containing no (resp.
exactly one, at least 2) node of Si. These values can be computed as
follows.
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• L0(ri) = maxrj∈NextRoot(ri)L(rj)

• L1(ri) = maxv∈Si
l(v) where

l(v) =


0 if ChRoot = ∅
max{H2(rj) + crjv, H1(rj) + cG(v, rj)} if ChRoot(v) = {rj}
maxrk 6=rj∈ChRoot(v)H2(rk) + cG(rk, v) + cG(v, rj) +H1(rj) otherwise

• L2(ri) = maxu6=v∈Si
h2(u) + d(u, v) + h1(v)

The algorithm is composed of the sequential calls to the recursive
methods ComputeFirstStep(r) and ComputeSecondStep(r) depicted in
Algorithms 7 and 8, where r is the root node of the spanning tree T .
Algorithm 7 computes the longest path inG containing some exit nodes
and arc bridges. The variable f ∗ stores the cost of this path.

The algorithm 8 completes the search by considering pairs of nodes
without arc bridges, using f ∗ as a lower bound. The search is per-
formed only if the positive cost W (the sum of the positive arc costs)
of the bridge-block G(Si) is greater than f ∗ (see lines 4–5) because
the cost of the any longest path on Si is always less than or equal to W .
The method solveELPP(G(Si), f

∗) computes the cost of the elementary
longest path in G(Si) so that the cost of the solution path is greater than
f ∗. That method is derived from any algorithm of ELPP with a lower
bound constraint for the objective function. The data structure L(ri),
d(u, v), H1(ri), H2(ri), h1(v), h2(ri) and f ∗ is global. At the end of the
computation, f ∗ will be the cost of the optimal solution. The algorithm
can be easily extended to also return the optimal path.

To compute ELPP(G) on an undirected graph, we replace each edge
by two opposite arcs with the same cost as the edge. Our algorithm is
slightly adapted to reduce the computation time. For a pair of nodes,
it is not required to compute separately two elementary longest paths
from one to the other, as the two paths have the same the length. This
means that H1(ri) = H2(ri) ∀ root ri and h1(v) = h2(v) ∀v ∈ S.

In [84], we used a Constraint Programming search method. Here,
we use an MIP search method, adapted from ESP_FltC to solve ELPP(G).
Furthermore, ELP_FltC_BB calls only once solveELPP({ri}, Si\Exit(ri), G(Si)),
and solveELPP(Si \ Exit(ri), {ri}, G(Si)), replacing the various calls
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Algorithm 7: ComputeFirstStep(ri)
1 foreach rj ∈ NextRoot(ri) do
2 ComputeFirstStep(rj);

3 foreach u, v ∈ Exit(ri) : u 6= v do
4 d(u, v, Si)← solveELPP({u}, {v}, G(Si)); ;

5 d1(ri)← solveELPP({ri}, Si \ Exit(ri), G(Si)) ;
6 d2(ri)← solveELPP(Si \ Exit(ri), {ri}, G(Si)) ;
7 foreach v ∈ Si do
8 h1(v)←maxrj∈ChRoot(v)H1(rj) + cG(v, rj);
9 h2(v)←maxrj∈ChRoot(v)H2(rj) + cG(rj, v);

10 h1(v)← max{h1(v), 0};h2(v)← max{h2(v), 0};
11 H1(ri)← maxv∈Si\Exit(ri)d(ri, v) + h1(v) ;
12 H2(ri)← maxv∈Si\Exit(ri)d(v, ri) + h2(v) ;
13 H1(ri)← max{H1, d1(ri), 0}; H2(ri)← max{H2, d2(ri), 0} ;
14 L0 = maxrj∈NextRoot(ri)L(rj);
15 L1 ← 0;
16 foreach v ∈ Si : ChRoot(v) 6= ∅ do
17 if ChRoot(v) = {rj} then
18 l1 ← max{H2(rj) + cG(rj, v), H1(rj) + cG(v, rj)};
19 else
20 l1 ←

maxrk 6=rj∈ChRoot(v)H2(rk)+cG(rk, v)+cG(v, rj)+H1(rj);

21 L1 ← max{L1, l1};
22 L2 ← maxu6=v∈Exit(ri)h2(u) + d(u, v) + h1(v);
23 L(ri)← max{L0, L1, L2, 0};
24 f ∗ ← max{f ∗, L(ri)};

of the method solveELPP({u}, {v}, G(Si)).
Algorithm 8: ComputeSecondStep(ri)
1 foreach rj ∈ NextRoot(ri) do
2 ComputeSecondStep(rj);

3 W ← positive cost of G(Si);
4 if W > f ∗ then
5 d← solveELPP(G(Si), f

∗);
6 f ∗ ← max{f ∗, d};
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4.6.4 ESPP(s, t, G) on sparse directed graphs with many
bridge-blocks

In this section, we apply the decomposition technique described in Sec-
tion 4.6.1 to the resolution of ESPP(s, t, G). The proposed algorithm,
denoted by ESP_FltC_BB, has the following successive steps:

1. Decompose the given graph into bridge-blocks as described in
Section 4.6.1

2. Construct a contracted graph Gc = (VGc , EGc):

• VGc is the set of contracted nodes: each contracted node cor-
responds to a set of nodes of a bridge-block. We denote by
C(S) the contracted node corresponding to the bridge-block
S.

• For each pair of bridge-blocks Si and Sj , if there exist u ∈
Si and v ∈ Sj such that (u, v) is an edge of the auxiliary
graph D, then (C(Si), C(Sj)) is an edge of Gc.

3. Denote by Ss and St respectively the bridge-blocks containing s
and t.

4. Find the unique path from C(Ss) to C(St) in Gc (this path is
unique because Gc is a tree). Suppose this path is 〈C(Ss) =
C(S0), C(S1), . . . , C(Sk) = C(St)〉.

5. Two consecutive bridge-blocks Si and Si+1 are connected by one
edge (u, v) in G′. We denote by Out(Si) the node u and by
In(Si+1) the node v (i = 0, 1, 2, . . . , k − 1). We denote by In(S0)
the node s and by Out(Sk) the node t.

6. Apply the B&C algorithm proposed in Section 4.5 for finding
the shortest elementary path from In(Si) to Out(Si) in Si (∀i =
0, . . . , k).

7. Concatenate these paths, to establish the shortest elementary path
from s to t in G. Note that if there is no arc connecting Out(Si)
to In(Si+1) in G with 0 ≤ i ≤ k − 1, then there is no solution to
the original problem.
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To compute ESPP(s, t, G) on a sparse undirected graph, we replace
each edge by two opposite arcs with the same cost as the edge.

Figure 4.11 illustrates the algorithm to compute the elementary short-
est path from 1 to 20. After finding the unique path in the contracted
graph, we have the sequence of bridge-blocks corresponding to this
path: S0 = {1, 2, 3, 4, 5}, S1 = {6, 7, 8, 9, 36}, S2 = {17}, S3 = {18, 19, 20, 21}.
The solution is the concatenation of the shortest elementary paths from
1 to 5 in S0; from 6 to 8 in S1; from 17 to 17 in S2; and from 18 to 20
in S3.

4.6.5 ESPP(s, t, G) on sparse directed graphs with strongly
connected components

The algorithm ESP_FltC_SCC is depicted in detail in Algorithm 9. In
lines 1–4, the variables d(v) and d(u, v) are initially assigned a very
large value L (e.g., L is the sum of the positive arc costs in the graph). In
lines 5–6, for each SCC ci, the costs of the elementary shortest paths be-
tween a node in I(ci) and a node inO(ci) are computed by the algorithm
ESP_FltC. Note that each SCC is contracted to a single node: the con-
tracted directed graph is acyclic. Method SortTopologocialOrdering(SCC)
(line 9) sorts SCC into the sequence S[1..|SCC|] in a topological or-
dering so that if there exist u ∈ S[i] and ∈ S[j] and (u, v) ∈ AG, then
i < j. After the ordering, S[1] contains the node s and S[|SCC|] con-
tains the node t. The main idea is based on the well-known algorithm
for finding the shortest path on a directed acyclic graph. Each SCC S[i]
in the sorted list is considered at each iteration (line 10). Lines 11–20
compute the shortest elementary path from s to nodes of I(S[i]) and
O(S[i]). We use the intermediate variables d′(v) to store temporarily
the value of d(v) in order to avoid corruption in case the intersection of
I(S[i]) and O(S[i]) is not empty.

4.7 Experiments

In this section, we compare, in terms of computation time, our algo-
rithms introduced in this chapter to the state of the art algorithms in
solving the two problems ESPP(s, t, G) and ELPP(G). The characteris-
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Algorithm 9: ESP_FltC_SCC(s,t,G)
1 foreach u, v ∈ VG do
2 d(u, v)← L ;

3 foreach v ∈ VG do
4 d(v)← L; d′(v)← L;

5 SCC ← compute the set of strongly connected components of G;
6 sz ← |SCC|;
7 foreach ci ∈ SCC, u ∈ I(ci), v ∈ O(ci) do
8 d(u, v)← solveESPP (u, v, ci);

9 S[1..sz]← SortTopologocialOrdering(SCC) ;
10 for i← 1 to sz do
11 foreach v ∈ I(S[i]) do
12 foreach (u, v) ∈ AG such that u and v are not in the

same strongly connected component do
13 if d(v) > d(u) + cG(u, v) then
14 d(v)← d(u) + cG(u, v);

15 foreach v ∈ O(S[i]) do
16 foreach u ∈ I(S[i]) do
17 if d′(v) > d(u) + d(u, v) then
18 d′(v)← d(u) + d(u, v);

19 foreach v ∈ O(S[i]) do
20 d(v)← d′(v);

21 return d(t);

tics of all the compared algorithms are summarized in Figure 4.12. The
column “Reference” gives references providing experimental results.

4.7.1 Instances

We created a total of six classes of instances for the two problems to
test the algorithms.
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Instances for ESPP(s, t, G)

To test the algorithms in solving ESPP(s, t, G), we created the following
three classes of instances:

• SI1 consists of 15,000 instances, each instance was created from
one of 420 directed graphs with one random pair of source and
destination nodes. All the directed graphs were created in [33],
in which 150 directed graphs were randomly generated and 270
directed graphs were extracted from the pricing sub-problems by
a heuristic column generation algorithm for the asymmetric m-
salesman travelling salesman problem [88]. All graphs contain at
least one negative cycle. More details about the graphs are given
in Table 4.1.

Graph Type No. |V | |A| Arc Arc
group graphs cost range cost type
R_sparse_25 Random 20 26 300 [−10; 10] Integer
R_sparse_50 Random 20 51 1225 [−10; 10] Integer
R_sparse_100 Random 20 101 4950 [−10; 10] Integer
R_dense_25 Random 30 26 553 [−1000; 1000] Double
R_dense_50 Random 30 51 2353 [−1000; 1000] Double
R_dense_100 Random 30 101 9703 [−1000; 1000] Double
P_first_25 Pricing 30 28 651 [−108;−9.48.107] Double
P_first_50 Pricing 30 53 2551 [−108;−9.48.107] Double
P_first_100 Pricing 30 103 10101 [−108;−9.48.107] Double
P_penultimate_25 Pricing 30 28 651 [−107; 30000] Double
P_penultimate_50 Pricing 30 53 2551 [−107; 30000] Double
P_penultimate_100 Pricing 30 103 10101 [−107; 30000] Double
P_last_25 Pricing 30 28 651 [−30000; 30000] Double
P_last_50 Pricing 30 53 2551 [−30000; 30000] Double
P_last_100 Pricing 30 103 10101 [−30000; 30000] Double

Table 4.1: 420 directed graphs used to create 15,000 instances of the
class SI1

• SI2 consists of 5,000 instances that were created from 10 random
connected directed graphs with random pairs of source and des-
tination nodes. These directed graphs have many bridge-blocks.
In each digraph, the cost of its arcs was generated by an uniform
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distribution with the range [-100; 100] and one-third of its arcs
have a negative cost. In 5 out of 10 directed graphs, each bridge-
block includes exactly 20 nodes. In the 5 other directed graphs,
each of them has exactly 10 bridge-blocks.

• SI3 consists of 3,000 instances that were created from 15 random
connected directed graphs with many strongly connected compo-
nents (50 nodes per one strongly connected component). In each
digraph, the cost of the arcs was generated by an uniform distribu-
tion with the range [−10.06, 10.06] and one-third of the arcs have
a negative cost. More details about the directed graphs are given
in Table 4.2.

Class No. graphs |V | |A| ]SCC Arc cost range
g_scc_100 5 100 1903-2005 2 [−10.06, 10.06]
g_scc_500 5 500 10051-10068 10 [−10.06, 10.06]
g_scc_1000 5 1000 20130-20148 20 [−10.06, 10.06]

Table 4.2: 15 directed graphs with many strongly connected component
were used to generate 3,000 instances of the class SI3

Instances for ELPP(G)

• LI1 consists of 9 instances from 9 random sparse planar undi-
rected graphs without negative-cost arcs. These instances are
taken from [84].

• LI2 consists of 10 instances from 10 random planar connected
unidirected graphs without negative-cost arcs. These graphs are
built to include many bridge-blocks (10 nodes per bridge-block)
and are also taken from [84].

• LI3 consists of 10 instances created from 10 connected directed
graphs with bridges. In each digraph, the costs of the arcs were
generated by a uniform distribution with range [-100; 100] and
one-third of the arcs have a negative cost.
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4.7.2 Settings
We implemented all the algorithms in C++. For the algorithms based
on MIP, we used IBM Ilog Cplex Concert Technology version 12.4 with
appropriate settings. For the algorithms based on constraint program-
ming we use the Comet language [1]. The experiments were performed
on XEN virtual machines with 1 core of a CPU Intel Core2 Quad Q6600
@2.40GHz and 1 GB of RAM running Linux. A time limit was set, of
20 minutes of CPU time, for each instance.

As discussion in subsection 4.5.6, the step of inequality selection
keeps only really interesting violated inequalities in the inequality pool.
To do that well, two difficulty questions are raised. In order to answer
these questions in an empirical way, we use a tool for parameters tuning
irace [89]. The irace package implements the iterated racing procedure;
its main purpose is to automatically configure optimization algorithms
by finding the most appropriate settings given a set of instances of an
optimization problem. In order to achieve a fair comparison between
algorithms, we generated randomly a set of training instances which are
different from the test instances; these training instances were only used
for irace. The task of irace is to determine

• among various classes of valid inequalities, which should be sep-
arated;

• if a class of valid inequalities should be separated, what is the
threshold for this class of valid inequalities (only separated in-
equalities with violations at least equal to this threshold are kept
into the inequality pool.);

• among two separation algorithms for SECs, which should be car-
ried out.

Figure 4.13 is a configuration file for irace. It declares name of
parameters, type of parameters, value space of parameters and condition
defined on parameters. Meaning of this configuration is as follows.

• Three parameters “sec_ta”, “sec_na” and “sec_th” are associated
with the class of SECs. Parameter “sec_ta” takes the value of
1 it means that the traditional separation algorithm for SECs is
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carried out. Parameter “sec_na” takes the value of 1 if and only
if the value of parameter “sec_ta” is assigned to 0. The value
of “sec_na” is 1 it means that our heuristic separation algorithm
for SECs is used. Parameter “sec_th” represents the violation
threshold for SECs. Note that SECs are always be separated.

• Parameter “2mc” (resp. “mo”, “dk” and “tk”) represents whether
or not 2-matching inequalities (resp. maximum out flow inequali-
ties, Dk inequalities, Tk inequalities) are separated and if they are
separated (“2mc”) then parameter “2mc_th” will be tuned.

• Other classes of inequalities that are valid for a general MIPP are
separated if and only if parameter “oi” takes the value of 1.

After using irace, we decide to the following parameter for ESP_FltC
(“sec_ta” = 0, “sec_na” = 1, “sec_th” = 0.25, “2mc” = 1, “2mc_th” =
0.1, “dk” = 0, “tk” = 0, “mo” = 1, “mo_th” = 0.01, “io” = 1).

In the two algorithms ESP_FltC_BB and ESP_FltC_SCC, from Sec-
tions 4.6.4 and 4.6.5, the elementary shortest path between two specified
nodes in each block and strongly connected component is computed by
ESP_FltC.

In the algorithm ELP_FltC_BB, based on the equivalence between
the problems in Section 4.1, we slightly adapted ESP_FltC to solve
ELPP(S, T,G) by the following methods: solveELPP({u}, {v}, G(Si)),
solveELPP({ri}, Si \Exit(ri), G(Si)), solveELPP(Si \Exit(ri), {ri},
G(Si))), and solveELPP(G(Si), f

∗)).

4.7.3 Analysis of classes of valid inequalities
In order to analyze the effect of the different classes of valid inequal-
ities, we compare the respective influence of the classes. We choose
randomly 60 instances from the class of instances SI1 as test instances
in this comparison. Among these instances, 30 instances were cre-
ated from 30 distinct directed graph “P_last_100” and 30 remaining in-
stances were created from 30 distinct directed graph “P_penultimate_100”.
The comparison results are given in Table 4.3. This table reports the to-
tal computation times of ESP_FltC in the last column for solving all the
60 instances using 9 different parameter sets. In this table, columns “]”
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give the number of separated inequalities, the last column presents the
total number of separated inequalities and the last row corresponds to
the parameter set tuned by irace.

Taking individually inequalities actually increases the total number
of separated inequalities. The setting obtained by irace produces the
smallest number of separated inequalities and being the most efficient.

4.7.4 Reduction of ESPP to STSP
As showed in section 4.4, we can transform an ESPP instance of n
nodes into an equivalent ATSP instance of 2n nodes. Moreover, Roy
Jonker et al. proposed a procedure that transforms an ATSP instance
of n nodes into an equivalent STSP instance of 2n nodes [59]. So,
we can transform an ESPP instance of n nodes into a STSP instance
of 4n nodes. In order to show the interest of our algorithm ESP_FltC
for solving ESPP, we compare the total computation time needed by
ESP_FltC for solving some ESPP instances to the total computation
time needed by Concorde (the strongest solver for solving STSP [27]),
for solving equivalent STSP instances that are obtained from the ESPP
instances.

We select randomly, from the class of instances SI1, 30 instances of
“R_dense_25”, 30 instances of “R_dense_50”, 30 instances of “R_dense_100”
and 30 instances of “P_last_25” as experiment test for this comparison.
The experimental results are given in Table 4.4. In this table, last two
columns present the total computation time of ESP_FltC and the solver
Concorde to solve instances. From the result in this table, we see that
our algorithm ESP_FltC is better than a reduction to STSP. The differ-
ence is particularly significative for pricing instances.

4.7.5 Solving ESPP(s, t, G)
The state of the art algorithm for ESPP(s, t, G), proposed in [33] and
using the Arc-flow formulation (Model 1), is denoted by ESP_Drexl.
We re-implemented this algorithm to compare it with the algorithms
proposed in this dissertation: ESP_MTZ, ESP_ComFlow, ESP_FltC,
ESP_FltC_BB, and ESP_FltC_SCC. Note that in order to make a fair-
ness between algorithms in this experiment, the prepossessing proposed
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Instance type No. instances ESP_FltC (s) Concorde (s)
R_dense_25 30 0.74 7.24
R_dense_50 30 4.13 16.64
R_dense_100 30 20.03 51.78

P_last_25 30 1.37 5067.58

Table 4.4: Comparing ESP_FltC to Concorde for solving ESPP in-
stances

in subsection 4.5.2 was integrated into all algorithms.

Solving 15,000 instances of the class SI1

All instances of the class SI1 were tested to compare 4 algorithms
ESP_Drexl, ESP_ComFlow, ESP_MTZ and ESP_FltC in terms of their
computation time.

Instance Algorithm % B&B nodes Computation time
group optimal (min./avg./max.) (min./avg./max.)

Random_sparse_25

ESP_ComFlow 100 0/4.71/69 0.15/2.96/13.98
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 100 0/2.14/55 0.03/0.08/0.72
ESP_FltC 100 0/1.82/47 0.02/0.16/15.92

Random_sparse_50

ESP_ComFlow 93.6 0/9.13/136 54.18/375.77/1194.59
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 100 0/5.52/159 0.06/0.45/18.64
ESP_FltC 100 0/4.78/123 0.04/0.66/33.78

Random_sparse_100

ESP_ComFlow 0 -/-/- -/-/-
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 100 0/4.25/146 0.23/2.09/31.01
ESP_FltC 100 0/3.71/283 0.07/2.12/31.31

Table 4.5: Computational results for random sparse instances

The computational results are shown in Tables 4.5, 4.6, 4.7, 4.8, and
4.9, and summarized in Table 4.10. The tables contains the class of test
instances and the instances as described in Section 4.7.1 (Instance class
and Instances); the algorithm used to solve the problem (Algorithm);
The number of nodes (|V |), the number of arcs (|A|), the number of
edges (|E|), the number of bridge-blocks (|B|), the number of strongly
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Instance Algorithm % B&B nodes Computation time
group optimal (min./avg./max.) (min./avg./max.)

Random_dense_25

ESP_ComFlow 100 0/5.19/75 1.35/7.66/36.76
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 100 0/3/64 0.03/0.12/2.66
ESP_FltC 100 0/2.55/48 0.02/0.1/2.99

Random_dense_50

ESP_ComFlow 51.7 0/3.19/35 151.58/525.98/1199
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 100 0/10.39/154 0.08/1.25/19.56
ESP_FltC 100 0/9.6/100 0.06/0.3/1.21

Random_dense_100

ESP_ComFlow 0 -/-/- -/-/-
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 100 0/22.07/236 0.33/4.07/52.44
ESP_FltC 100 0/19.81/223 0.32/2.94/34.97

Table 4.6: Computational results for random dense instances

Instance Algorithm % B&B nodes Computation time
group optimal (min./avg./max.) (min./avg./max.)

P_first_25

ESP_ComFlow 100 0/9.16/404 1.92/9.5/63.97
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 100 0/7.65/222 0.03/0.19/14.08
ESP_FltC 100 0/3.61/147 0.02/0.09/2.35

P_first_50

ESP_ComFlow 51.7 0/6.89/61 142.13/689.63/1798.69
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 100 0/35.03/1003 0.08/1.11/55.66
ESP_FltC 100 0/24.51/1659 0.06/1.19/35.32

P_first_100

ESP_ComFlow 0 -/-/- -/-/-
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 97.4 0/917.84/10845 0/52.54/1142.01
ESP_FltC 99.2 0/871.63/15453 0.91/96.74/1181.18

Table 4.7: Computational results for pricing instances

connected components (|SCC|); the percentage of instances solved to
optimality in a given limited computation time (% Optimal); the number
of nodes in the branch-and-bound tree (B & B nodes); and the overall
CPU time in seconds (Computation time). For the rightmost columns,
we give the minimum, average, and maximum values (min./avg./max.).

First of all, from the computational results we conclude that the
algorithms ESP_ComFlow and ESP_MTZ are not efficient in solving
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Instance Algorithm % B&B nodes Computation time
group optimal (min./avg./max.) (min./avg./max.)

P_penultimate_25

ESP_ComFlow 100 0/0.93/149 0.93/3.73/18.38
ESP_MTZ 82.6 0/361033/2494670 0.06/176.94/1196.37
ESP_Drexl 100 0/7.6/109 0.03/0.11/13
ESP_FltC 100 0/1.04/62 0.02/0.09/3.57

P_penultimate_50

ESP_ComFlow 98.8 0/0.75/58 1.0/216.95/1182.66
ESP_MTZ 19.4 0/339502/1262260 0.19/385.01/1144.67
ESP_Drexl 100 0/15.89/252 0/1.16/53/04
ESP_FltC 100 0/3.86/86 0/0.53/8.09

P_penultimate_100

ESP_ComFlow 0 -/-/- -/-/-
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 97.5 9/1279.99/11565 1.42/108.71/1185.39
ESP_FltC 99.9 0/398.44/9935 0/48.74/1114.69

Table 4.8: Computational results for pricing instances (continued)

Instance Algorithm % B&B nodes Computation time
group optimal (min./avg./max.) (min./avg./max.)

P_last_25

ESP_ComFlow 100 0/1.04/74 1.45/4.74/26.52
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 100 0/13.95/285 0.04/0.13/5.02
ESP_FltC 100 0/1.76/64 0.03/0.11/4.67

P_last_50

ESP_ComFlow 95.2 0/2.99/203 0.68/256.19/1198.29
ESP_MTZ 3 0/0/0 0.36/0.44/0.57
ESP_Drexl 100 0/70.13/1859 0/4.62/215.17
ESP_FltC 100 0/15.72/600 0/1.13/33.24

P_last_100

ESP_ComFlow 0 -/-/- -/-/-
ESP_MTZ 0 -/-/- -/-/-
ESP_Drexl 95.6 9/1505.53/10256 0.88/114.62/1186.68
ESP_FltC 99.8 0/512.88/9649 0.85/58.62/1040.2

Table 4.9: Computational results for pricing instances (continued)

ESPP(s, t, G) on medium and large-sized graphs compared with the two
other algorithms ESP_Drexl and ESP_FltC. Within the time limit of 20
minutes, ESP_MTZ solved instances of 25 nodes with a large compu-
tation time and could not solve any instance of 50 and 100 nodes. A
weakness of ESP_MTZ is the number of nodes in its branch-and-bound
tree. While ESP_ComFlow can solve some instances of 50 nodes, it
cannot solve any instance of 100 nodes because the number of variables
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Algorithm % B&B nodes Computation time
optimal (min./avg./max.) (min./avg./max.)

ESP_ComFlow 62.62 0/4.25/404 0.93/183.23/1798.69
ESP_MTZ 7 0/38760.42/2494670 0.06/210.34/1196.37
ESP_Drexl 99.36 0/253.53/11565 0/18.93/1186.68
ESP_FltC 99.93 0/124.58/15453 0/14.18/1181.18

Table 4.10: Computational results over all 15,000 instances

in Model 2 (used in ESP_ComFlow) is too large.
Next, Tables (4.5–4.9) and Figures (4.14–4.16) show that ESP_FltC

outperforms ESP_Drexl in solving 15,000 instances of the class SI1.
Over all 15,000 instances, within a time limit of 20 minutes, ESP_FltC
solved 99.93% of all instances, while ESP_Drexl solved 99.36 % of all
instances. The difference is not significant. However, when solving the
3,000 difficult instances with 100 nodes of the three groups P_first_100,
P_last_but_one_100 and P_last_100, our algorithm is faster than the
state of the art algorithm. For example, in 1,000 instances of the group
P_last_100, ESP_FltC solved 998 instances with an average computa-
tion time of 58.62 seconds, while ESP_Drexl solved just 956 instances,
with an average computation time of 114.62 seconds. Moreover, Ta-
ble 4.14 shows that ESP_FltC is much better than ESP_Drexl when the
time limit is short.

Solving 5000 instances of the class SI2

We compare the algorithms ESP_Drexl, ESP_FltC and ESP_FltC_BB
in solving 5,000 instances of the class SI2. All instances were created
from connected directed graphs with many bridges. The computational
results are given in Table 4.11. Note that as ESP_FltC_BB computes
many times the elementary shortest path in blocks, the number of nodes
in the branch-and-bound tree is meaningless.

From the computational results we conclude that among the three
algorithms, ESP_FltC_BB is the best and ESP_Drexl is the worst in
solving 5,000 instances of the class SI2 in terms of computation time.
For instance,
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Instance |V | |A| |B| Algorithm % B&B nodes Computation time
group optimal (min./avg./max.) (min./avg./max.)

g_bb_500
ESP_Drexl 100 0/2.31/86 102.8/272.92/1140.66

500 6274 25 ESP_FltC 100 0/2.49/121 0.07/0.75/9.55
ESP_FltC_BB 100 na/na/na 0.05/0.33/8.25

g_bb_1000
ESP_Drexl 65 0/5.98/21 71.42/534.76/1193.88

1000 12549 50 ESP_FltC 100 0/9.26/242 0.14/1.29/20.68
ESP_FltC_BB 100 na/na/na 0.09/0.52/3.56

g_bb_1500
ESP_Drexl 2 0/1/2 632.17/879.6/1127.02

1500 18824 75 ESP_FltC 100 0/9.56/411 0.25/6.47/81.33
ESP_FltC_BB 100 na/na/na 0.15/8.65/152.08

g_bb_2000
ESP_Drexl 0 na/na/na na/na/na

2000 25099 100 ESP_FltC 100 0/9.26/210 0.39/9.87/86.22
ESP_FltC_BB 100 na/na/na 0.25/8.41/165.56

g_bb_2500
ESP_Drexl 0 na/na/na na/na/na

2500 31374 125 ESP_FltC 100 0/7.93/114 0.51/7.85/109.72
ESP_FltC_BB 100 na/na/na 0.3/15.88/185.05

g_bb_200
ESP_Drexl 100 0/2.55/39 2.57/8.37/41.4

200 2009 10 ESP_FltC 100 0/2.64/56 0.03/0.41/6.81
ESP_FltC_BB 100 na/na/na 0.03/0.62/74.5

g_bb_400
ESP_Drexl 100 0/27.42/426 5.15/144.82/1148.39

400 4009 10 ESP_FltC 100 0/13.24/447 0.06/1.97/53.13
ESP_FltC_BB 100 na/na/na 0.06/1.26/14.08

g_bb_600
ESP_Drexl 79.2 0/18.79/98 17.28/383.29/1191.95

600 6009 10 ESP_FltC 99.4 0/132.52/3147 0.12/32.83/1188.2
ESP_FltC_BB 100 na/na/na 0.09/8.65/89.19

g_bb_800
ESP_Drexl 64 0/9.55/35 38.66/554.99/1199.02

800 8009 10 ESP_FltC 99.6 0/42.33/555 0.18/22.09/1142.31
ESP_FltC_BB 100 na/na/na 0.15/9.85/199.1

g_bb_1000
ESP_Drexl 19.8 0/6.15/21 72.3/504.25/1174.62

1000 10009 10 ESP_FltC 85.8 0/115.64/1434 0.39/141.9/1189.99
ESP_FltC_BB 100 na/na/na 0.45/49.12/664.65

Table 4.11: Computational results for instances of the class SI2

• As to the 500 instances of the group g_bb_2500, ESP_Drexl could
not solve any instances because of an ‘out of memory’ error, while
ESP_FltC and ESP_FltC_BB solved all 500 instances with aver-
age computation times of 7.85 seconds and 15.88 seconds, re-
spectively.

• As to the 500 instances of the group g_bb_2500, ESP_Drexl solved
99 instances (19.8%) with an average computation time of 504.25
seconds, while ESP_FltC solved 429 instances with an average
computation time of 141.9 seconds and ESP_FltC_BB solved all
500 instances, with an average computation time of 49.12 sec-
onds.

The efficiency of ESP_FltC_BB is analyzed as follows. It is a dy-
namic programming algorithm that benefits from the properties of the
instances where graphs have many bridges. Firstly it computes many
elementary shortest paths in blocks. These computations are very fast
because the number of nodes in each block is very small, for instance,
20 nodes per one block. Finally it merges appropriately computed paths
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into a complete solution path.
The computation time for the instances in the group g_bb_2000 (in-

stances of 2,000 nodes) is much smaller than that of instances in the
group g_bb_1000 (instances of 1,000 nodes), 8.41 seconds compared
to 49.12 seconds. The reason is that the number of nodes per block for
the instances of 2,000 nodes is only 20, while there are 100 nodes in
each block of one of the instances of 1,000 nodes.

In this experiment, ESP_FltC clearly outperforms ESP_Drexl. For
example, ESP_Drexl cannot solve any instances of the groups g_bb_2000
and g_bb_2,500 while ESP_FltC solved all 1,000 instances in these two
classes. This efficiency mainly comes from the preprocessing carried
out in ESP_FltC. Table 4.12 shows the efficiency of this preprocessing.
For some instances of the group g_bb_2500, a graph of 2,500 nodes can
be reduced to a graph of 20 nodes, as both the source and destination
nodes are in the same block of 20 nodes. For some other instances of the
group g_bb_1000, the reduction does not reduce the number of nodes.
On average, the size of the graphs is greatly reduced, as illustrated in
Table 4.12 for the 500 instances of the group g_bb_2500.

Before After
Instance |V | |A| |V | |A|
group (min./avg./max.) (min./avg./max.)
g_bb_500 500 6274 20/58.35/400 219/706.5/4993
g_bb_1000 1000 12549 20/57.14/300 220/691.32/3739
g_bb_1500 1500 18824 20/75.81/380 220/925.71/4742
g_bb_2000 2000 25099 20/75.72/520 218/924.57/6499
g_bb_2500 2500 31374 20/86.82/380 220/1063.71/4745
g_bb_200 200 2009 20/51.9/200 172/500.35/1994
g_bb_400 400 4009 39/104.87/399 369/1032.39/3992
g_bb_600 600 6009 60/139.94/600 567/1380.37/5993
g_bb_800 800 8009 80/259.25/800 768/2574.26/7995
g_bb_1000 1000 10009 100/306.02/1000 967/3041.99/9993

Table 4.12: Reducing the graph size of the instances in the class SI2 by
using the preprocessing by the algorithm ESP_FltC
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Solving 3,000 instances of the class SI3

In this section, we compare the algorithms ESP_Drexl, ESP_FltC and
ESP_FltC_SCC in solving 3,000 instances of the class SI3 that are di-
rected graphs with many strongly connected components. The compu-
tational results are given in Table 4.13.

Instance |V | Algorithm % B&B nodes Computation time
class optimal (min./avg./max.) (min./avg./max.)

g_scc_100
ESP_Drexl 100 0/10.7/296 0.15/2.63/226.45

100 ESP_FltC 100 0/14/287 0.05/0.84/18.15
ESP_FltC_SCC 100 -/-/- 0.04/0.83/6.88

g_scc_500
ESP_Drexl 75.6 0/22.82/167 8.11/230.04/1195.56

500 ESP_FltC 94.1 0/124.59/4258 0.1/55.68/1197.87
ESP_FltC_SCC 99.3 -/-/- 0.06/27.58/1196.81

g_scc_1000
ESP_Drexl 7.2 0/0.19/12 53.02/118.48/1040.27

1000 ESP_FltC 77.1 0/184.82/54438 0.16/96.16/1195.28
ESP_FltC_SCC 91.5 -/-/- 0.09/84.21/1122.21

Table 4.13: Computational results for instances of the class SI3

From the computational results, we see that ESP_FltC_SCC is much
more efficient than the other two algorithms in terms of computation
time. To reach this efficiency, the dynamic programming algorithm
ESP_FltC_SCC exploits the special property of instances where the
graphs have many strongly connected components.

As for solving instances of the class SI2, we also see that ESP_FltC
is much better than ESP_Drexl at solving the 3,000 instances of the
class SI3. This mainly comes from the preprocessing by ESP_FltC, as
shown in Table 4.14.

4.7.6 Solving ELPP(G)
We showed that the two problems ESPP(s, t, G) and ELPP(G) are equiv-
alent to each other. Based on this equivalence, we slightly adapt the two
algorithms ESP_FltC and ESP_Drexl to solve ELPP(G). We obtain two
new algorithms for solving ELPP(G): ELP_FltC and ELP_Drexl.

In addition, we propose in this chapter the algorithm ELP_FltC_BB
to solve ELPP(G) on directed graphs with many bridges. This algo-
rithm uses some different MIP search methods (solveELPP({ri}, Si \
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Graph class Before After
|V | |A| |V | |A|

(min./avg./max.) (min./avg./max.)
g_scc_100 100 1903-2005 50/66.95/100 898/1276.77/1977
g_scc_500 500 10051-10068 50/218.445/500 948/4347.46/10035
g_scc_1000 1000 20130-20148 47/283.29/1000 846/5656.28/20109

Table 4.14: Reducing the size of graphs of the instances in the class SI3
by the use of preprocessing by the algorithm ESP_FltC

Exit(ri), G(Si)), solveELPP(Si\Exit(ri), {ri}, G(Si)) and solveELPP(G(Si), f
∗)).

We replace the MIP search methods by CP search methods in ELP_FltC_BB
to obtain a new algorithm denoted by ELP_CP2_BB.

In the literature, for solving ELPP(G), there exist two state of the
art algorithms, both based on CP, which were proposed in our previ-
ous chapter, [84]. The one that solves ELPP(G) on general undirected
graphs is denoted by ELP_CP. The algorithm that solves ELPP(G) on
undirected graphs with many bridges is denoted by ELP_CP_BB. Both
are implemented in the COMET programming language [1].

Solving 9 instances of the class LI1

We here compare three algorithms in solving 9 instances of the class
LI1. Two of them are based on MIP: they are ELP_FltC and ELP_Drexl.
The last one is based on CP: it is ELP_CP. The time limit has been set
here to 30 minutes to meet the experimental settings of ELP_CP in [84].
The computation time is given in Table 4.15. The two B&C algorithms
solved very successfully only the first instance. ELP_FltC solved 5 in-
stances, while two others could not solve any other instance. Although
the graph size of the instances is not too large, they are very difficult
because the costs of the edges are very similar.

Solving 10 instances of the class LI2

In this section, we compare 5 algorithms at solving ELPP(G) on undi-
rected graphs with many bridges. The results are shown in Table 4.16.
The following analysis can be made.
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Instances |V | |A| |B| ELP_FltC ELP_Drexl ELP_CP
planar-n100-m285 100 285 1 0.8 3.3 -
planar-n150-m432 150 432 1 1660.42 - -
planar-n200-m583 200 583 1 1761.42 - -
planar-n250-m731 250 731 1 1763.04 - -
planar-n300-m880 300 880 1 1760.9 - -
planar-n350-m1031 350 1031 1 - - -
planar-n400-m1182 400 1182 1 - - -
planar-n450-m1329 450 1329 1 - - -
planar-n500-m1477 500 1477 1 - - -

Table 4.15: Computation times in seconds of three algorithms in solving
9 instances of the class LI1

Instances |V | |A| |B| ELP_CP_BB ELP_CP2_BB ELP_Drexl ELP_FltC ELP_FltC_BB
planar-n100-m216 100 216 10 4.0 1.95 3.34 2.43 1.09
planar-n200-m434 200 434 20 21.32 10.17 12.73 28.23 5.21
planar-n300-m655 300 655 30 54.73 25.28 68.06 192.25 92.5
planar-n400-m870 400 870 40 121.15 59.76 95.65 790.52 1.12
planar-n500-m1089 500 1089 50 235.73 111.19 267.59 - 5.8
planar-n600-m1301 600 1301 60 364.77 169.95 626.89 - 93.85
planar-n700-m1526 700 1526 70 569.15 257.78 - - 131.3
planar-n800-m1747 800 1747 80 825.12 421.87 - - 131.88
planar-n900-m1959 900 1959 90 1161.53 554.71 - - 15.7
planar-n1000-m2177 1000 2177 100 - 186.58 - - 16.05

Table 4.16: Computation times in seconds of 5 algorithms at solving 10
instances of the class LI2

• ELP_CP2_BB solved the instances much more quickly than ELP_CP_BB,
for example, to solve the instance planar-n1000-m2177, ELP_CP_BB
needed 1649.42 seconds while ELP_CP2_BB spent only 186.58
seconds. Both algorithms are based on CP and were implemented
in the COMET programming language. The only difference be-
tween the two algorithms is that ELP_CP_BB executes only once
the methods solveELPP({ri}, Si\Exit(ri), G(Si)), and solveELPP(Si\
Exit(ri), {ri}, G(Si)), while the algorithm ELP_CP_BB must ex-
ecute many times the method solveELPP( {u}, {v}, G(Si)). There-
fore, we conclude that this speeds up computations by ELP_CP2_BB.

• ELP_FltC_BB is much faster than ELP_CP2_BB. For example,
to solve the instance planar-n900-m1959, ELP_CP2_BB needed
554.71 seconds while ELP_FltC_BB needed only 15.7 seconds.
Here, too, there is only one difference between the two: ELP_FltC_BB
uses MIP search methods while ELP_CP2_BB uses CP search
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methods. In short, the MIP approach is more efficient than the
CP approach in this problem and in this experiment.

• When we compare three dynamic algorithms, ELP_CP_BB, ELP_CP2
_BB, and ELP_FltC_BB, with the two algorithms that do not ex-
ploit the special properties of the graph (ELP_Drexl and ELP_FltC),
we conclude that our proposed dynamic algorithms for solving
ELPP(G) on graphs with many bridges is very efficient.

Solving 10 instances of the class LI3

Three algorithms were tested in this experiment: ELP_Drexl, ELP_FltC
and ELP_FltC_BB. The task is to solve ELPP(G) on a directed graph
with many bridges. The results in computation time are given in Table
4.17.

Instances |V | |A| |B| ELP_Drexl ELP_FltC ELP_FltC_BB
g_bb_500 500 6274 25 302 131.57 10.53
g_bb_1000 1000 12549 50 - - 24.13
g_bb_1500 1500 18824 75 - - 25.76
g_bb_2000 2000 25099 100 - - 33.74
g_bb_2500 2500 31374 125 - - 44.11
g_bb_200 200 2009 10 99.21 7.22 4.56
g_bb_400 400 4009 10 - 220.59 14.04
g_bb_600 600 6009 10 - - 53.15
g_bb_800 800 8009 80 - - 80.6
g_bb_1000 1000 10009 100 - - 86.19

Table 4.17: Comparing three algorithms in solving 10 instances of the
class LI3 in terms of computation time

It is easy to see that ELP_FltC_BB clearly dominates the two other
algorithms ELP_Drexl and ELP_FltC as it solves all instances with
short computation times while the two other algorithms only solve, re-
spectively, two and three instances.

In short, our proposed algorithm ELP_FltC_BB solves efficiently
ELPP(G) on directed graphs with many bridges.
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4.8 Decomposition for the support graph

In this section, we propose a decomposition technique applied on sup-
port graphs to detect faster and more violated SECs (the definition of
the support graph in subsection 4.5.5). Basically, the support graph is
decomposed into smaller-size graphs, each of them corresponds to a
strongly connected component. After that we can detect violated SECs
on these smaller-size graphs. This decomposition might be very use-
ful for large and sparse support graphs. For an easy of presentation,
we introduce additionally following notations: Given a directed support
graph G = (VG, AG, cG),

• mf(i, j, G) is the value of maximum flow from a source i to a
sink j on G;

• a minimum i − j cut of G divides VG into disjoint subsets V (i)

and VG \ V (i) such that i ∈ V (i), j ∈ V \ V (i) and total crossing
cost is minimized;

• F+

G
(S) = {i|i ∈ S, j ∈ VG \ S, (i, j) ∈ δ+

G
(S)} and F−

G
(S) =

{i|i ∈ S, j ∈ VG \ S, (j, i) ∈ δ−G(S)};

• for each strongly connected component scci of the support graph
G with the node set W , we define a directed graph called ex-
tended graph of this strongly connected component as follows:
Gi = (VGi

, AGi
, cGi

), in which VGi
= W ∪ {ti}, AGi

= {(u, v) |
(u, v) ∈ AG, u, v ∈ W} ∪ {(v, ti) | v ∈ F+

G
(W )} and the cost

function cGi
, ∀(u, v) ∈ AGi

,

cGi
(u, v) =

{
cs(u, v) u, v ∈ W∑

(u,v)∈δ+
G
(W ) cG(u, v) v = ti, u ∈ F+

G
(W )

Illustratively, Figure 4.17 presents a directed support graphs, while
Figure 4.18 presents three extended graphs corresponding to three strongly
connected components of the support graph.
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4.8.1 Properties of the support graph

In this subsection, two properties of G will be pointed out in two fol-
lowing theorems:

Theorem 3 OnG, if a node i does not belong to any cycle then mf (i, t,
G) = cG({i}).

Proof Assuming that i ∈ VG does not belong to any cycle on G.
We denote X ⊆ VG be the set of nodes that lie on a path traveling

from i to t on G (conveniently, i, t ∈ X). A directed graph G′ =
(VG′ , AG′ , cG′) is constructed for the set of nodes X as follows: the set
of nodes VG′ = X ∪ {s′}, AG′ = {(u, v)|(u, v) ∈ AG, u, v ∈ X} ∪{

(s′, v)|v ∈ F−
G

(X)
}

; and the cost function cG′

cG′(u, v) =

{
cG(u, v) u, v ∈ X, (u, v) ∈ AG∑

(j,v)∈AG,j /∈X
cG(j, v) u = s′, v ∈ F−

G
(X)

On the graph G′, we have

δ−
G′

(s′) = {∅} (4.10)

and

δ+
G′

(t) = {∅} (4.11)

We have

∀v ∈ X \ {s′, t}, cG′(δ
+

G′
(v)) = cG′(δ

−
G′

(v)). (4.12)

As results of (4.10), (4.11), (4.12) and the definition of the maxi-
mum flow value [5], we get

mf (s′, t, G) = cG′(δ
+

G′
(s′)) (4.13)

By assumption, node i does not belonging to any cycle on G, there-
fore there exists only one way to walk from s′ to i on G′, that is to travel
directly through arc (s′, i), as a result of this and (4.12),
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cG′(s
′, i) = cG′(δ

−
G′

(i)) = cG′(δ
+

G′
(i)) (4.14)

From (4.13), (4.14), the procedure used to constructG′ and the prop-
erty that node i does not belonging to any cycle onG, we have that there
exists a flow of value of δ+

G′
(i) passing from source i to sink t that uses

only arcs G.
From above result, the theorem holds.

Theorem 4 Let scci be a strongly connected component of G andGi =
(VGi

, AGi
, cGi

) be the extended graph of scci. For each node v in VGi
,

we have

• mf (v, t, G) = mf (v, ti, Gi);

• and if (V (v), VGi
\ V (v)) is a v-ti min-cut on Gi, then (V (v), VG \

V (v)) is a v-t min-cut on G.

Proof We construct a graph G′ = {VG′ , AG′ , cG′} as follows:

• VG′ = VG ∪ {ti};

• AG′ = AG∪X \δ+G(VGi
), in which X = {(u, ti), (ti, v) | (u, v) ∈

δ+
G

(VGi
)}

• and the cost function, ∀(u, v) ∈ AG′ ,

cG′(u, v) =


cG(u, v) u, v ∈ VG∑

(u,j)∈δ+
G
(VGi

) cG(u, j) u ∈ F+

G
(VGi

), v = ti∑
(j,v)∈δ+

G
(Vscci )

cG(j, v) u = ti, (u, v) ∈ AG′

An example of this construction is given in Figure 4.19.
From the way used to construct G′ and Gi, we have,

mf (v, t, G) = mf (v, t, G′) (4.15)

and
mf (v, ti, G′) = mf (v, ti, Gi) (4.16)



94 Chapter 4. Elementary Shortest and Longest Path Problems

On G′, every flow passing from v to t must travel through ti, so we
get

mf (v, t, G′) = min
(
mf (v, ti, G′),mf (ti, t, G′)

)
= min

(
mf (v, ti, Gi),mf (ti, t, G′)

) (4.17)

Because ti does not belong to any cycle of G′, so applying Theorem
3 we have

mf (ti, t, G′) = cG′(δ
+

G′
(ti)) = cG′(δ

−
G′

(ti)) (4.18)

Looking at the definition of the maximum flow in [5], we get

mf (v, ti, Gi) ≤ cGi
(δ−Gi

(ti)) (4.19)

Finally, from (4.15), (4.16), (4.17), (4.18) and (4.19), we have

mf (v, t, G) = mf (v, ti, Gi)

Finally, of course, if (V (v), VGi
\ V (v)) is a v-ti min-cut on Gi, then

(V (v), VG \ V (v)) is also a v-t min-cut on G.

From above theorems, we have two following observations:

1. If a strongly connected component ofG consists of only one node
v, then every SEC 〈S, v〉 is not violated by x.

2. We can detect SECs violated by x via solving max-flow/min-cut
problems on the extended graphs of the strongly connected com-
ponents of G and their auxiliary undirected versions instead of
solving max-flow/min-cut problems on the directed support graph
G and the auxiliary undirected support graph of G, respectively.

4.8.2 Promising separation algorithm for SECs
We created four different separation algorithms for SECs and compare
them with respect to the number of violated SECs found and the com-
putation time.
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• The first algorithm, denoted by Algo1, detects violated SECs via
solving max-flow/min-cut problems on the directed support graph.

• The second algorithm, which is denoted by Algo2, detects vi-
olated SECs via solving max-flow/min-cut problems on the ex-
tended graphs corresponding to strongly connected components
of the directed support graph.

• The third algorithm, which is denoted by Algo3, detects violated
SECs via solving max-flow/min-cut problems on the auxiliary
undirected graph of the directed support graph.

• The last algorithm, which is denoted by Algo4, detects violated
SECs via solving max-flow/min-cut problems on the auxiliary
undirected graphs of the extended graphs corresponding to strongly
connected components of the directed support graph.

In order to compare 4 separation algorithms, we collected totally
4447 directed support graphs during solving 20 random ESPP instances
of 500 nodes by a B&C algorithm. These directed support graphs are
divided into 2 groups; the first one consists of 4306 graphs which con-
tain only one strongly connected component of more than one node;
the remaining graphs, which contain more than one strongly connected
component of at least two nodes, are collected in the second group.

Algorithms Second group First group
time (s) no. SECs time (s) no. SECs

Algo1 3379.94 13649 69077.2 164681
Algo2 2231.86 13649 60045.2 164681
Algo3 6.86 0 305.4 18126
Algo4 4.04 3916 348.4 54278

Table 4.18: Comparison result of four separation algorithms

All experimental-comparison result are given in Table 4.18. In this
table, column “time (s)” presents the total computation time needed to
find out the number of violated SECs given in column “no. SECs”
from all instances of each group by the separation algorithm in the first
column. Looking at the table, we see that
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• In comparison to Algo1, Algo2 detected the same number of vi-
olated SECs (as discussed in the subsection ??) but it needed a
smaller amount of computation time, a time decrease of 13.1%
for the instances of the first group and a time decrease of 34% for
the instances of the second group;

• For 141 instances of the second group, Algo3 took 6.86 seconds
but could not detect any violated SEC, whereas Algo4 needed
only 4.04 seconds (58.9 %) to detect 3916 violated SECs;

• For 4306 instances of the first group, Algo4 took a slightly larger
computation time than Algo3 but the number of violated SECs
detected by Algo4 (54278) is up to three times of the number of
violated SECs found by Algo3 (18126).

In some separation instances, Algo4 found out some violated SECs
which could not found by Algo3. This interesting result comes from
the fact that Algo3 works directly on the auxiliary undirected support
graphs, while Algo4 works indirectly on the auxiliary undirected graphs
of the extended graphs of strongly connected components of the di-
rected support graphs.

As a message for concluding this large section, the proposed de-
composition is very promising for solving large-size ESPP and ELPP
instances.

4.9 Conclusion
In this chapter, we focus on solving two problems: the elementary short-
est path problem between two specified nodes ESPP(s, t, G) and the el-
ementary longest path problem ELPP(G). We also demonstrated some
equivalences: one between these two problems and some between other
relevant problems.

For ESPP(s, t, G), we presented three integer programming formu-
lations. We slightly adapted a few classes of inequalities that are valid
for the asymmetric traveling salesman problem and its variants, to ob-
tain new classes of inequalities that are valid for ESPP(s, t, G). The cen-
tral point of this chapter is that we proposed an exact algorithm based
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on mixed integer programming. The salient fact about this algorithm is
that it generates lots of inequalities of different classes but it uses only
the most violated inequalities as cuts to tighten relaxed solutions until it
obtains an optimal solution. Moreover, we proposed two dynamic pro-
gramming algorithms that solve the problem on directed graphs with
many bridges and many strongly connected components. The exper-
iments showed that all our proposed algorithms are more interesting
than the state of the art algorithms.

For ELPP(G), based on the equivalence between the two problems
ESPP(s, t, G) and ELPP(G), we proposed algorithms for ELPP(G) by
adapting an algorithm for ESPP(s, t, G). We also extended the dy-
namic programming algorithm from our previous chapter, which was
for solving ELPP(G) on undirected graphs with many bridges, to solve
ELPP(G) on directed graphs with many bridges. An experiment showed
that all our proposed algorithms are more efficient than the state of the
art algorithms.
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Figure 4.9: The graph G

Figure 4.10: The graph G
after the preprocessing step
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Figure 4.11: ESPP(s, t, G) on an undirected graph with many bridge-
blocks, s = 1, t = 20

Name Problem Underlying Model On Graph Reference
ESP_Drexl ESPP Model 1 + B&C Both [33]
ESP_ComFlow ESPP Model 2 + B&C Both [this chapter]
ESP_MTZ ESPP Model 3 + B&C Both [this chapter]
ESP_FltC ESPP Model 1 + B&C Both [this chapter]
ESP_FltC_BB ESPP with bridges Model 1 + B&C Both [this chapter]
ESP_FltC_SCC ESPP with SCC Model 1 + B&C + Dyn Undirected [this chapter]
ELP_Drexl ELPP Model 1 Both [33]
ELP_FltC ELPP Model 1 + B&C Both [this chapter]
ELP_FltC_BB ELPP with bridges Model 1 + B&C + Dyn Both [this chapter]
ELP_CP ELPP CP Undirected [84]
ELP_CP_BB ELPP with bridges CP + Dyn Undirected [84]
ELP_CP2_BB ELPP CP + Dyn Both [this chapter]

Figure 4.12: List of algorithms compared
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Figure 4.13: Parameter space for irace

Figure 4.14: Comparing two algorithms in terms of the number of
solved instances of the group P_first_100 in given times
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Figure 4.15: Comparing two algorithms in terms of the number of
solved instances of the group P_last_but_one_100 in given times

Figure 4.16: Comparing ESP_Drexl and ESP_FltC in terms of the num-
ber of solved instances of the group P_last_100 in given times
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5
AGRICULTURAL LAND

ALLOCATION PROBLEM

Agricultural land fragmentation, where a single field consists of a large
number of small separate plots, is a common agricultural phenomenon
in most provinces of Vietnam. The land fragmentation is considered to
be a big problem to efficient crop production and agricultural modern-
ization. In several provinces where the land allocation has been done,
the results obtained are very promising. In this chapter, we first in-
troduce and formulates the land allocation problem as an optimization
problem. We then apply several operation research techniques to pro-
pose complete and incomplete algorithms for solving this problem. The
experimental results show that solutions computed by our algorithms
are much better than solutions conducted by the government’s approach.

5.1 Background

The consolidation of land has occurred in many countries around the
world, e.g., Germany, Turkey, Japan, China [8, 17, 18, 21, 22, 52, 57,
73, 93, 98]. However, each country has its own solutions for tackling
this common problem, to meet particular specified constraints [16, 17,
18, 21, 22, 98].

After discussions with farmers and the leaders of some municipality,
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the following farmers’ expectations were formulated.

• The number of plots adjacent to water canals should be maxi-
mized. It is easy to understand this expectation as the irrigation
system in Vietnam is mainly based on these water canals; plots
next the water canals can easily be provided with water.

• The plots should have a shape close to a square. This reduces the
tracks between plots to ease the access of machines to the culture.

5.1.1 Problem formulation
In this thesis, we consider only fields with rectangular shape as it simpli-
fies the formulation of ALAP. Moreover, almost complete algorithms,
which will be proposed here, just work on the rectangular-shape fields.

For an ease of the presentation, we introduce some notations. A
field is a large agricultural land region which normally belongs to differ-
ent households. Basically, a field can be divided into zones by parallel
tracks which are also parallel to the sides of the field. A zone can then
be partitioned into plots by parallel short tracks which are perpendicular
to the tracks defining the zones. Illustratively, the field on the left hand
side of Figure 1.1 is divided into 3 zones: 2 zones of 4 plots and 1 zone
of 3 plots.

Additionally, we use two following notations: the relative position
of a plot denotes the field where the plot locates on; and the exact posi-
tion of a plot is the zone of the field where the plot locates on.

• Input:

– a set of land categories C;

– a set of rectangular-shape fields F , where each f ∈ F is
associated with a land category cf ∈ C and an area faf ∈
R+;

– a set of households H , each pair of household h ∈ H and
land category c ∈ C is associated with an area hach denoting
the expected area of land category c of household h;

– the input respect the area consistency property: for each c ∈
C,
∑

h∈H ha
c
h =

∑
f∈F,cf=c faf .
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• Output:

– each field f ∈ F is partitioned into a set of zones Zf ;

– each zone z ∈ Zf of the field f ∈ F is divided into a set of
plots P z;

– each plot p ∈ P z located in zone z ∈ Zf of field f ∈ F is
associated with an area pap and a household hp, owner of p.

• Constraints:

– conservation of the fields’ area: for each f ∈ F ,∑
z∈Zf

∑
p∈P z

pap = af

– conservation of the households’ expected area: for each house-
hold h ∈ H , for each land category c ∈ C,

hach =
∑

f∈F,cf=c

∑
z∈Zf

∑
p∈P z ,hp=h

pap

• Objective: Minimize the number of plots
∑

f∈F
∑

z∈Zf |P z|

In this formulation, the first constraint requires that the total area
of the plots located in a field must equal the area of the field; while
the second constraint states that for each land category, each household
receives plots with a total area equal to his expected area.

Note that with the above formulation, a solution provides the exact
position of the plots and not the exact geographical position of the plots.
This can easily be obtained by ordering the plots in a zone and ordering
the zones in a field. This part is not considered as it is usually done by
the farmers themselves.

5.1.2 The government’s approach to ALAP
The Vietnamese government promulgated the following instructions to
guide farmers for solving ALAP. The agricultural fields should be clas-
sified into several categories (1–4) and the farmers should use a sys-
tem of coefficients that presents the equivalence between categories.
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For example, a system of coefficients for three land categories could be
〈1.0, 1.2, 1.4〉, if 1 m2 of the first land category is equivalent to 1.2 m2

of the second land category and 1.4 m2 of the third land category. Fields
of each land category are considered in turn for division into plots, with
the following rules:

step 1: The order of the fields is determined based on their land cat-
egories and geometrical positions and this is decided by the authorities.

step 2: The order of households is determined by lot and households
are assigned plots with respect to this order. Suppose that this sorted list
is h1, . . . , hn.

step 3: Each field is divided into zones z1, . . . , zk of width 40–50
meters by lines which are parallel to one side of the field.

step 4: Each zone zi is iteratively divided into plots corresponding
to a sequence of households hj, hj+1, . . . , hp by parallel lines that are
perpendicular to the parallel lines already used to separate the field into
the zones. The next zone zi+1 will then be partitioned into plots for
households hp+1, . . .

step 5: At each step, suppose that household hi is under considera-
tion, the current zone is zj , and the current land category is c. The re-
maining area of zj is R m2. If R is greater than or equal to the expected
area of hi, then the next plot of zj will be allocated to hi. Otherwise,
hi needs a supplementary area of S m2. The following situations may
occur:

• R is smaller than 100, in which case the previous household hi−1
will receive this remaining area of R m2. An equivalent (to R m2

of category c) area of the next category c + 1 will be subtracted
from the expected area of hi−1 for the category c + 1. The next
zone zj+1 will then be considered for allocation to hi.

• Both R and S are greater than or equal to 100. The household hi
is allocated this remaining area of zj (Rm2), and will then receive
a plot of S m2 in the next considered zone or field.

• R is greater than or equal to 100, but S is less than 100. The
household hi is allocated this remaining area of R m2 and an
equivalent (to S m2 of category c) area of the next category c+ 1
will be added to the expected area of hi for the category c+ 1.
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Figure 5.1 illustrates the government’s solution to ALAP with five
households H1, H2, H3, H4, and H5, and two fields of two different
land categories with coefficients 〈1, 1〉. The expected areas of the first
land category of the five households are 300, 400, 250, 300, and 250m2

(left part of the figure) and 250, 260, 560, 250, and 180m2 of the second
land category (right part of the figure). Applying the instructions of the
government, each field is separated into three zones of width 50 m, and
the allocated areas of the households are 300, 400, 300, 300, and 200
m2 in the field on the left; and 250, 250, 500, 250, and 250 m2 in the
field on the right. In this solution, household H2 has three plots of two
land categories and households H3, H4, H5 are allocated plots whose
areas are different from their corresponding expected areas.

Figure 5.1: A solution guided by the instructions of the government

Limitations of the government’s approach First, a lot of households
have allocated areas which are different from their expected areas. The
cause of this comes mainly from dividing a field into zones of fixed
width, 40–50 m. Then, the threshold 100 m2 may be not suitable for
provinces where each household has thousands of square meters of agri-
cultural land. In that case, there may be small plots (with areas slightly
more than 100 m2) next to large plots (with areas of some thousands of
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square meters). Finally, the instructions of the government do not take
into account other expectations of the farmers, such as optimizing the
number of plots next to canals, minimizing the distance from the house
to the plot, a nice form of the plots, etc.

5.1.3 Setting for experiments
All algorithms proposed in this chapter are implemented in the C++
programming language. The B&C algorithms are written with IBM
Ilog Cplex Concert Technology, version 12.4; and the B&P algorithms
are implemented with the framework [2] (using SoPlex as the linear
programming solver). The large neighborhood search algorithm based
on CP is implemented in OSCAR solver [79]. All experiments in this
chapter were performed on a computer running Mac OS 10.9 with the
configuration of 2.3 GHz Intel Core i7 CPU, 4 GB RAM. And the com-
plete algorithms are restricted to a computational time limit of 5 hours.

5.2 Decomposing ALAP

In a given field, it is not always possible to find a subset of households
such that the sum of their expected area is not strictly equals to the
area of the field. To overcome this difficulty, we use the system of
coefficients introduced in the government’s solution. The coefficient
state equivalences between land categories; allowing solutions where a
household receive a plot with an area is different from his expected area.
This system of coefficients brings another benefit: the ALAP problem
can then be reduced to a much easier problem called rALA. In this
reduced problem, we can focus on fields belonging to the same land
category. In the rest of this thesis, we deal with rALA instead of ALAP.

Our approach prefers solutions to rALA such that each household
receives a unique plot. There are however two other side objectives:
the number of plots next to water canals should be maximized, but the
shape of plots should be close a square. To obtain our solution, we
divide rALA into three consecutive subproblems: PArea, PPos1 and
PPos2. The first subproblem, PArea computes a unique plot for each
household by indicating its area and its relative position. The remain-
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ing subproblems compute the exact position of the plots in each field:
PPos1 specifies the exact position of the plots beside water canals and
PPos2 specifies the exact position of the remaining plots. Each sub-
problem is now clearly formulated.

5.2.1 PArea

PArea is viewed as an assignment problem. Given a set of fields and a
set of households, each household is associated with an expected area
(the total expected area of households is equal to the total area of the
fields). The objective of this problem is to assign each household a
unique plot by indicating its relative position and its area. This assign-
ment should minimize the total difference between the area of the fields
and the sum of the expected area of the households assigned to those
fields.

Ideally, we partition the set of households, one subset per field. Each
subset is the assigned to a specific field such that the difference between
the area of the field and the total expected area of households assigned
to the field is minimized. From this assignment, it is then possible to
distribute the area of a field among the assigned households. If there is
a difference between the area (af ) of a field and the sum of the expected
areas (s) of the households assigned to this field, the plot assigned to a
specific household with an expected area of awill have an area of a× s

af
.

This shows that the area of the plots are derived from the assignment of
households to fields.

Input: a set of fields of the same land category F = {1, . . . ,m},
each field i ∈ F is associated with an area fai; and a set of households
H = {1, . . . , n}, each household j ∈ H has an expected area haj such
that

∑
i∈F fai =

∑
j∈H haj .

Output: the relative position of the plots assigned to the households
S = (rp1, . . . , rpn), where rph ∈ F ,∀h ∈ H.

Objective: minimize O(S) =
∑

i∈F

∣∣∣fai −∑j∈H,rpj=i haj

∣∣∣.
The objective function of this problem is to minimize the sum of

differences between the area of the fields and the total expected area of
households assigned to these fields.

Note that this formulation is independent from the shape of the
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fields. All the proposed algorithms thus handle fields of arbitrary shape.

5.2.2 PPos1
This subproblem aims to meet the expectation of the farmers to maxi-
mize the number of plots next to water canals, but with an acceptable
shape. Given a field with one side next to a water canal, the objective
of this problem is thus to specify a zone next to that side and plots for
some households located in that zone. Note that in a real-life case, e.g.,
for a field with several sides next to water canals, we solve this subprob-
lem once for each side next to a canal (the consideration of the order of
the sides next to canals is randomly determined). Figure 5.2 presents a
solution of an instance of this problem.

Figure 5.2: An illustration of PPos1

Input: a field of rectangular shape, the lengths of its sides are re-
spectively W and L, one of its side of length W stays beside a water
canal; a set of plots P = {1, . . . , n}, each plot p ∈ P has an area ap
such that W × L =

∑
p∈P ap.

Output: a subset of plots S ⊂ P
Constraints: each plot p ∈ S has a rectangular shape, one of its

sides of the length l =
∑

p∈S ap

W
and another side of the length wp =

ap
l

. So, for every p ∈ S, the value max{l,wp}
min{l,wp} is smaller or equal to a

parameter α which is decided by the households.
Objective: Maximize the number of plots in the solution |S|, that is

the number of plots next to the canal.
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Note that if the value of parameter α is too close to 1, the problem
might be unfeasible on some instances. In such a case, the value of α
must be increased. In practice, a value of α = 2 is adequate.

5.2.3 PPos2
In this subproblem we now assume that none of the sides of the field
are beside any canal. The objective is to specify the exact position of
the plots of the households in the field. The field is decomposed into
zones, each zone being decomposed into plots with an acceptable shape.
Illustratively, the photo on the left hand side of Figure 1.1 presents a
solution to an instance of this problem, where a field is divided into 3
zones: 2 zones of 4 plots and 1 zone of 3 plots.

This modeling of rALA ensures that each household receives a
unique plot.

Input: a field of rectangular shape, its lengths are respectively W
and L; a set of plots P = {1, . . . , n}, and each plot p ∈ P is associated
with an area ap ∈ Z+ such that W × L =

∑
p∈P ap.

Output: a partition of P into a set of non-empty subsets, S =
{S1, . . . , Sm}.

Constraints: the subsets in the solution are disjoint Si ∩ Sj =
{∅},∀i, j ∈ {1, . . . ,m}, i 6= j, non-empty Si 6= {∅},∀i ∈ {1, . . . ,m},
and S1 ∪ · · · ∪ Sm = P .

Objective: The shape of the plots should be close to square.

Minimize

m∑
i=1

∑
p∈Si

∣∣∣∣∣
∑

j∈Si
aj

W
− apW∑

j∈Si
aj

∣∣∣∣∣
The shape objective uses the length difference between two sides of

the field. For a plot p in a zone Si, this value is
∣∣∣∑j∈Si

aj

W
− apW∑

j∈Si
aj

∣∣∣. In
this formulation, each household receives a unique plot.

5.3 Solving PArea
We first state two important properties of optimal solutions to this sub-
problem. These properties will be used to optimize the complete algo-
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rithms for this subproblem. In the last subsection, the proposed algo-
rithms are compared on different test instances.

5.3.1 Two properties of optimal solutions of PArea
The two properties of the optimal solutions of PArea presented in this
subsection will be converted to the appropriate constraints to be used in
B&C algorithm for solving the problem.

Before presenting these two properties as two theorems, we intro-
duce some notation: maxha is the maximum expected area of the house-
holds, maxha = max{hai|i ∈ F} and minhaj is the minimum ex-
pected area of the households assigned to field j,minhaj = min{hai|rpi =
j}.

Theorem 1 If S = (rp1, . . . , rpn) is an optimal solution to PArea, then

∀j ∈ F ,
∑

i∈H,rpi=j

hai > faj −maxha. (5.1)

Proof Suppose that in the optimal solution S there exists a field j ∈ F
such that ∑

i∈H,rpi=j

hai = faj −maxha−∆,∆ ≥ 0. (5.2)

From the property
∑

i∈F fai =
∑

k∈H hak, we have that there exists
a field k ∈ F such that∑

i∈H,rpi=k

hai = fak + ∆′,∆′ > 0. (5.3)

Let h be a household that is assigned to field k in the optimal so-
lution: this means that rph = k. We produce a new solution S ′ from
S by moving household h from field k to field j (this means resetting
rph = j). Let us compare the objective values of these two solutions:

O(S)−O(S ′) = |maxha+ ∆|+ |∆′| − (|maxha− hah −∆|+ |∆′ − hah|)
= hah + ∆′ − |∆′ − hah| > 0.

(5.4)
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This is a clear contradiction of the hypothesis that S is an optimal
solution.

Theorem 2 If S = (rp1, . . . , rpn) is an optimal solution to PArea, then

∀j ∈ F ,
∑

i∈H,rpi=j

hai < faj +minhaj. (5.5)

Proof We can apply the same procedure that was used to prove Theo-
rem 1 to obtain the proof of this theorem.

5.3.2 Solving PArea by a B&C algorithm
In this section, we formulate PArea as an IPP. The proposed model
(Figure 5.3) introduces, for each household i, a binary variable xij to
indicate whether or not household i is assigned to field j and, for each
field, a continuous variable δi to express the area difference between the
total expected area of households assigned to field i and the area of field
i.

In this IPP, inequalities (5.6c) ensure that every household must be
assigned to only one field; inequalities (5.6d) and (5.6e) present the area
difference between the total expected area of the households assigned to
a field and the area of the field; inequalities (5.6f) express the property
in Theorem 1; and we can not express exactly the property in Theorem 2
by linear inequalities, so a weaker variant of this property is represented
in inequalities (5.6g).

5.3.3 Solving PArea by a CBLS algorithm
In this section, we present the CBLS algorithm for solving PArea that
was already appeared in our paper [20]. We denote this algorithm by
PA_LS. Given a solution S = (rp1, . . . , rpi, . . . , rpn) in which fi ∈ F ,
to PArea, the local search algorithm exploits the two following neigh-
borhoods:

1. Change-based neighborhood

N1(S) = {(rp1, . . . , rp′i, . . . , rpn)|rp′i 6= rpi, rp
′
i ∈ F}
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Minimize

m∑
i=1

δi (5.6a)

s.t. (5.6b)
m∑
j=1

xij = 1,∀i ∈ {1, . . . , n} (5.6c)

δj ≥ faj −
n∑
i=1

haixij,∀j ∈ {1, . . . ,m} (5.6d)

δj ≥ −faj +
n∑
i=1

haixij,∀j ∈ {1, . . . ,m} (5.6e)

n∑
i=1

haixij > faj −maxha, ∀j ∈ {1..m} (5.6f)

n∑
i=1

haixij < faj +maxha, ∀j ∈ {1..m} (5.6g)

xij ∈ {0, 1}, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} (5.6h)
δi ≥ 0,∀i ∈ {1, . . . ,m} (5.6i)

Figure 5.3: IP model for PArea

2. Swap-based neighborhood

N2(S) = {(rp1, . . . , rpi+j, . . . , rpi, . . . , rpn)|rpi 6= rpi+j,1 ≤
i < i+ j ≤ n}

The pseudo-code of PA_LS is depicted in Algorithm 10. In this
algorithm, a basic search procedure is given in lines 4–12; an inten-
sification component is given in lines 13–21, and a restarting compo-
nent is given in the last lines 22–24. In the basic search procedure, we
swap randomly two households in line 12 when the best neighbors in the
neighborhoods are not better than the current solution; this increases the
diversification of the algorithm. Note that this algorithm always returns
the best solution which was exploited by the search.
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Algorithm 10: PA_LS: A constraint-based local search algo-
rithm for PArea
1 S ← A random solution to PArea; obj ← objective of S;
2 bestSol← S; bestObj ← obj ;
3 while it < maxIt && obj > 0 do
4 S1 ← the best neighbor of S in N1(S) that is obtained by

changing field of a household such that this household is not
in tabu;

5 if S1 is better than S then
6 S ← S1;

7 else
8 S2 ← the best neighbour of S in N2(S) that is obtained

by swapping the position of a pair of households such that
this pair is not in tabu;

9 if S2 is better than S then
10 S ← S2;

11 else
12 Swap the position of two random households;

13 obj ← objective of S;
14 if obj < bestObj then
15 bestObj ← obj; bestSol← S;
16 stable← 0;

17 else
18 if stable = stableLimit then
19 S ← bestSol; stable← 0;

20 else
21 stable← stable+ 1;

22 if it%restartFreq = 0 then
23 S ← a random solution; obj ← objective of S;
24 best← obj;bestSol← S;

25 it← it+ 1;



118 Chapter 5. Agricultural Land Allocation Problem

5.3.4 Solving PArea by a large neighborhood search al-
gorithm based on CP

In this subsection, we propose a CP model and an efficient large neigh-
borhood search procedure that are jointly used in an algorithm denoted
by PA_CPLNS for solving PArea.

CP model

The CP model (Figure 5.4) introduces,

• for each household i, an integral-valued variable xi to indicate a
field where the plot of household i locates on; and

• for each field j, a real-valued variable lj to represent the total
areas of households whose plots are in field j.

Minimize
∑
i∈F

∣∣∣∣∣fai −∑
j∈H

(xj = i)haj

∣∣∣∣∣ (5.7a)

s.t. (5.7b)
binPacking(x1, . . . , xn;ha1, . . . , han; l1, . . . , lm) (5.7c)

li < faj +maxha (5.7d)
li > faj −maxha (5.7e)

xi ∈ {1, . . . ,m} ∀i ∈ {1, . . . , n} (5.7f)

li ∈ {0, . . . ,
∑
j∈F

faj} ∀i ∈ {1, . . . ,m} (5.7g)

Figure 5.4: CP model for PArea

In this model, constraint (5.7c) is the bin-packing constraint1; con-
straints (5.7d) express the property in Theorem 1; and constraints (5.7e)
represents a weaker variant of the property in Theorem 2.

In this algorithm, we used the default search of OSCAR that is very
strong for large neighborhood search algorithms.

1Many thanks to Pierre Schaus who suggested to formulate this problem with the
Bin-Packing constraints.
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5.3.5 Experiments

We begin this subsection by describing instances for the experiments.
There are two classes of instances: the first one contains 6 random in-
stances with n = 30, 50, m = 3, 4, 5, and expected areas in [100, 700];
and the second class consists of 3 real-life instances with n = 89, 100,
m = 7, 8, 9, and expected areas in [100, 1500] that appear in Dong Trung
village, Thai Binh province, Vietnam [20].

We compare all algorithms for PArea in solving all 9 instances
with respect to the quality of the computed solutions and the compu-
tational time. Due to this limitation, the complete algorithms might not
return an optimal solution: in these cases they may output feasible solu-
tions. The result of this experiment is shown in Table 5.1. In this table,
columns “t(s)” present the computational times in seconds; columns
“obj” present the objective value of the solutions found by the algo-
rithms in the time limit (bold digits signify that they are the objective
value of optimal solutions; otherwise they are the objective value of fea-
sible solutions); the column “min_obj” (resp. avg_obj, max_obj) rep-
resents the minimum (resp. average, maximum) objective value of the
best solutions found by the incomplete algorithm after 10 executions of
the algorithm; and column “avg_t(s)” presents the computational time
average of 10 executions of the incomplete algorithm.

Instances PA_CPLNS PA_IP PA_LS
n m min_obj avg_obj max_obj avg_t(s) t(s) obj min_obj avg_obj max_obj avg_t(s)
30 3 0 0 0 0.11 0.08 0 0 0 0 0.02
30 4 0 0 0 0.110 0.34 0 0 0 0 0.11
30 5 0 0 0 0.8 1.19 0 0 0 0 0.89
50 3 0 0 0 0.2 0.16 0 0 0 0 0.01
50 4 0 0 0 0.4 0.37 0 0 0 0 0.05
50 5 0 0 0 0.75 0.67 0 0 0 0 0.52
89 7 0 0 0 7.2 1.74 0 0 0 0 6.11

100 8 208 208 208 130.4 18000 212 208 210.2 212 114.22
100 9 0 0 0 31.6 18000 38 0 1 4 101.72

Table 5.1: Comparing the proposed algorithms for PArea with respect
to the quality of found solution and the computational time

The result of this experiment shows that PA_LS and PA_CPLNS,
the incomplete algorithms, yielded in a stable way very good solutions:
for the first seven instances, it always output optimal solutions; even
for last two instances, it needed a computational time of less than two
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minutes to return solutions that are better than solutions computed by
the exact algorithm in 5 hours.

5.4 Solving PPos1

We propose different algorithms for solving PPos1. All the algorithms
are then compared on various test instances.

5.4.1 Solving PPos1 by a B&I algorithm
In this subsection, we propose a CP model along with an efficient search
procedure that are jointly used in a B&I algorithm denoted by P1_CP
for solving PPos1 to optimality.

CP model

This model (Figure 5.5) introduces, for each plot, a binary variable xp
to represent whether or not plot p is in the solution S.

Minimize

n∑
i=1

xi (5.8a)

s.t. (5.8b)

W 2akxk ≤ α(
n∑
i=1

aixi)
2,∀k ∈ {1, . . . , n} (5.8c)

xk(
n∑
i=1

aixi)
2 ≤ αakW

2,∀k ∈ {1, . . . , n} (5.8d)

xi ∈ {0, 1},∀i ∈ P (5.8e)

Figure 5.5: CP model for PPos1

In this model, (5.8c) and (5.8d) present together the unique con-
straint of the problem:the ratio between two sides of a plot is always
smaller than or equal to a threshold α.
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Search procedure

It is true that, in general, a solution subset to PPos1 with small-area
plots is better than one with large-area plots. From this observation, we
propose a search procedure for P1_CP as follows.

Algorithm 11: The proposed complete search for P1_CP

1 using{
2 forall(h in 1..n) by (-pa[h] ){
3 tryall<cp>(v in 0..1: x[h].memberOf(v)) by (v)
4 label(x[h],v);
5 }
6 }

This search tries to first select smaller-area plots for the solution.
This leads quickly to a good solution for PPos1.

5.4.2 Solving PPos1 by a B&C algorithm
In this section, we propose a IP model that will be used to solve PPos1
to optimality by a B&C algorithm denoted by P1_IP. The model (Figure
5.6) introduces, for each household, one binary variable xi to indicate
whether or not plot i is in the solution S and a continuous variable wi
that presents the length of one side of plot i when this plot is in the
solution, otherwise the value of this variable is 0.

In this model, inequalities (5.9d) and (5.9e) present the relation be-
tween xi and wi (if xi = 1 then wi > 0, otherwise xi = 0 and then wi
= 0); inequalities (5.9f) and (5.9g) ensure that if xi = 1 and xj = 1
then ai

wi
=

aj
wj

; inequalities (5.9h) and (5.9i) express the constraint of
the problem; and inequality (5.9c) with inequalities (5.9f) and (5.9g)
ensure that wi presents the length of one side of plot i if this plot is in
the solution.

5.4.3 Solving PPos1 by a CBLS algorithm
In this section, for solving PPos1 by an incomplete method, we modify
slightly the bi-objective CBLS algorithm that was already introduced in
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Maximize

n∑
i=1

xi (5.9a)

s.t. (5.9b)
n∑
i=1

wi = W (5.9c)

wi ≤ Wxi, ∀i ∈ {1, . . . , n} (5.9d)
aixi ≤ Lwi, ∀i ∈ {1, . . . , n} (5.9e)

ajwi − aiwj ≤ ajW (2− xi − xj),∀i, j ∈ {1, . . . , n}, i 6= j (5.9f)
aiW (xi + xj − 2) ≤ ajwi − aiwj,∀i, j ∈ {1, . . . , n}, i 6= j (5.9g)

wi ≤ α

∑n
j=1 ajxj

W
,∀i ∈ {1, . . . , n} (5.9h)∑n

j=1 ajxj

W
≤ αwi + L(1− xi),∀i ∈ {1, . . . , n} (5.9i)

xi ∈ {0, 1},∀i ∈ {1, . . . , n} (5.9j)
wi ≥ 0,∀i ∈ {1, . . . , n} (5.9k)

Figure 5.6: IP model for PPos1

our previous paper [19, 20]. We denote this algorithm by P1_LS.
Given a subset of plots S that is a solution to PPos1, the local search

algorithm exploits the three following neighborhoods:

1. Removal-based neighborhood

N1(S) = {S \ {h} | h ∈ S}

2. Insertion-based neighborhood

N2(S) = {S ∪ {h} | h /∈ S, h ∈ H}

3. Swap-based neighborhood

N3(S) = {S \ {h1} ∪ {h2} | h1 ∈ S, h2 /∈ S, h2 ∈ H}
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The pseudo-code of this algorithm is depicted in Algorithm 12. There
are two steps in this algorithm:

The first step (lines 1–13) aims at finding a solution that respects the
constraint (the ratio between the length of the two sides of a plot in the
solution is bounded). In this step, the constraint violation of a solution
is the number of plots that violate the constraints; in line 8, a solution S ′
is considered better than another solution S ′ if and only if the constraint
violation of S ′ is strictly smaller than the constraint violation of S ′.

The second step (lines 14–29) aims at finding a solution whose con-
straint violation is less than or equal to the constraint violation of the
solution computed in the first step, additionally the number of plots in
the solution is maximized. In this step, the algorithm tries to insert more
plots into the current solution in such a way that this insertion does not
increase the constraint violation (lines 16–18); when an insertion like
that does not exist, the algorithm tries to change the current solution by
swapping randomly two plots in such a way that does not lead to an in-
crease of the constraint violation; the random swap in lines 22–24 and
the restart in line 25 help the algorithm to escape local optima. Note that
this algorithm always outputs the best solution found during the search.

5.4.4 Experiments
We begin this last subsection by describing the instances for the experi-
ments. We generated randomly 9 instances with n = 20, 30, 40, 50, 60,
70, 80, 90, 100, the area of the plots in [100, 700], the fields of rectan-
gular shape, and the parameter α = 2.

We compare all algorithms for PPos1 in solving all 9 instances with
respect to the quality of the solution found and the computational time.
Due to the time limitation of 5 hours, the complete algorithms might
not return optimal solutions: in these cases they may output feasible
solutions. The result of this experiment is reported in Table 5.2.

The result of this experiment shows that P1_LS, the incomplete al-
gorithm produced in a stable way very good solutions that satisfy the
constraint of the problem: for the first six instances, it always output
optimal solutions; for the last instance, it needed a computational time
average of 31.79 seconds to return solutions with very good quality,
even 4 among 10 solutions have the same quality as the solution com-
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puted by P1_IP in 5 hours.

5.5 Solving PPos2
We propose different complete and incomplete algorithms for solving
PPos2. All the algorithms are then compared on various test instances.

5.5.1 Solving PPos2 by a B&I algorithm
We propose, in this subsection, a CP model for PPos2 (Figure 5.7).
This model introduces, for each plot p ∈ P , the zone xp that the plot is
located in, and its domain is D(xp) = {1, . . . , n}.

Minimize
n∑
i=1

∣∣∣∣∣
∑n

j=1 aj(xj = i)

W
− Wai∑n

j=1 aj(xj = i)

∣∣∣∣∣ (5.10a)

s.t. (5.10b)
x1 = 1 (5.10c)

n∑
j=1

aj(xj = i) >=
n∑
j=1

aj(xj = i+ 1),∀i ∈ {2, . . . , n− 1} (5.10d)

RDConstraint(x1, . . . , xn) (5.10e)
xi ∈ {1, . . . , n},∀i ∈ {2, . . . , n} (5.10f)

Figure 5.7: CP model for PPos2

In this model, the objective function (5.10a) is the total difference
between the length of two sides of the plots; constraints (5.10c) and
(5.10d) are used to break symmetry; the meaning of constraintRDConstraint(x1, . . . , xn)
is as follows: the number of distinct values of {x1, . . . , xn} is equal to
the maximum value {x1, . . . , xn}. Due to the technical difficulty of the
Comet language, we implement a specific propagator for that constraint.
This propagator functions as follows: when two variables are already
assigned to the same value (which means that there exist at least two
plots assigned to the same zone) the constraintRDConstraint(x1, . . . , xn)
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is immediately invoked to remove the highest value (corresponding to
a zone in which there does not exist any plot at that moment) from the
domain of all variables that are not yet bounded.

5.5.2 Solving PPos2 by a B&C algorithm

In this section, we propose a MIP model that is used to solve PPos2 to
optimality by a B&C algorithm denoted by P2_IP. This model (Figure
5.8) introduces, for each plot j and zone i, three variables xij , wij , and
δij . The binary variable xij indicates whether or not plot j is in zone i,
in case plot j is in zone i (which means that xij = 1), the continuous
variable wij presents the length of one side of the plot and the continu-
ous variable δij presents the difference of the lengths of the two sides of
the plot, otherwise (which means that xij = 0), the value of these two
variables is set to 0. Moreover, the model also introduces n binary vari-
ables corresponding to the n zones: for each zone i, a binary variable yi
indicates whether or not the zone i contains at least one plot.

In this model, inequalities (5.11c), (5.11d) and (5.11e) are used to
break symmetry; inequalities (5.11f) ensure that each plot has to be
located in a zone; inequalities (5.11g) and (5.11h) present the relation
between xij and yi, which means that if there exists at least one plot
in zone i, then yi has to take the value of 1; inequalities (5.11i) say
that if a zone i contains plots then the sum of the wij of these plots
must be equal to W , otherwise all wij with j ∈ {1, . . . , n} must be
set to 0; inequalities (5.11j) and (5.11k) indicate the relation between
the variables xij and wij , namely, if xij = 0, then wij = 0 and if
xij = 1, then wij 6= 0; inequalities (5.11l) and (5.11m) point out the
fact that if two plots j and k are located in the same zone i, we must
have aj

wij
= ak

wik
; inequalities (5.11n) and (5.11o) are used to express the

fact that the value of δij is always greater than or equal to the difference
in the lengths of the two sides of plot j in zone i: these inequalities
combine with the objective function (5.11a) to ensure that a solution of
this model is truly optimal.
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5.5.3 Solving PPos2 by B&P algorithms
This subsection is used to propose two B&P algorithms for solving
PPos2, the difference between them is the method that is used to solve
the subproblem of the B&P algorithms. First of all, we propose another
IP model for PPos2 that will be used as the master problem. Next, we
formulate the subproblem as an IPP which can be directly and simply
implemented in any MIP solver. After that, a CBLS algorithm will be
proposed to solve the subproblem.

Master problem

The output of PPos2 is a partition of P into a set of non-empty subsets,
where each subset corresponds to a zone in the field. Ideally, if we
have at hand the set of all subsets of P , so solving this problem now
is to select some elements from the set such that the selection satisfies
some constraints and minimizes the objective function. This idea leads
to solve this problem by a B&P algorithm, where each subset of P is
considered as a “column”.

Each subset of P is represented by a vector r of n elements, where
each element vri of r takes a binary value: if plot i is in the subset then
vri = 1, otherwise vri = 0. The cost of r is denoted by cr and is computed
as follows: cr =

∑
i∈r

∣∣∣∑j∈r aj

W
− Wai∑

j∈r aj

∣∣∣.
Let Z be the set of all vectors r that encode all distinct subsets of P .

The master problem (Figure 5.9) introduces, for each r ∈ Z , a binary
variable xr that takes the value of 1 if the set r corresponding to a zone
is in the optimal solution; otherwise it takes 0.

The master problem contains n constraints (5.12c) to ensure that
every plot must appear in a zone of the optimal solution.

Subproblem

The objective of the subproblem of the B&P algorithms is to find a sub-
set of P (a comlumn). Here, we propose an integer linear formulation
for the subproblem that can be used directly to solve the subproblem as
a mixed integer programming problem.

The integer linear formulation (Figure 5.10) introduces, for each
plot i ∈ P , three variables yi,wi, and δi. The binary variable yi indicates
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whether a plot i is in the solution or not; when the plot is in the solution
(which means that yi = 1), the continuous variable wi presents the
length of one side of the plot and the continuous variable δi presents the
difference between the lengths of the two sides of the plot i, otherwise
(which means that yi = 0), the value of both continuous variables must
be set to 0.

In this formulation, the parameters πi with i ∈ {1, . . . , n} in the
objective function (5.13a) are the values of the dual variables associated
with the constraints (5.12c) of the master problem; inequalities (5.13d)
and (5.13e) present the relation between wi and yi (if yi = 1, then wi >
0, otherwise yi = 0 and so then wi = 0); inequalities (5.13f) and (5.13g)
ensure that if yi = yj = 1, then ai

wi
=

aj
wj

; inequality (5.13c) requires
that the total sum of the wi must be equal to W ; inequalities (5.13h)
and (5.13i) ensure that if plot i is in the solution, then δi represents the
difference between the lengths of the two sides of the plot, otherwise
δi = 0.

Solving the subproblem by a CBLS algorithm

Solving the subproblem to optimality as a mixed integer programming
problem may need a large amount of computational time. With the
hope of solving the subproblem in an appropriate time, we propose here
a CBLS algorithm for it.

Given a solution to the subproblem that is a subset of plots S ⊂ P ,
the CBLS algorithm for the subproblem exploits the three following
neighborhoods:

• Insertion-based neighborhood

N1(S) = {S ∪ {p}|p ∈ P \ S}

• Removal-based neighborhood

N2(S) = {S \ {p}|p ∈ S}

• Swap-based neighborhood

N3(S = {S \ {p1} ∪ {p2}|p1 ∈ S, p2 ∈ P \ S}
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The pseudo-code of this algorithm is depicted in Algorithm 13. In
this algorithm, a basic search procedure is given in lines 4–15; an in-
tensification component is given in lines 17–24, and a restarting com-
ponent is given in the last lines 25–27. In the basic search procedure,
we swap the position of two random plots in lines 13–15 when the two
best neighbors of the current solution in the three neighborhoods are
not better than the current solution: this increases the diversification of
the algorithm. Note that this algorithm always outputs the best solution
found during the search.

Two B&P algorithms for PPos2

We set up two B&P algorithms for PPos2 corresponding to the two
algorithms for solving the subproblem.

• P2_CGIP is a B&P algorithm for PPos2, in which the subprob-
lem is completely solved as a mixed integer programming prob-
lem (see Section 5.5.3).

• P2_CGLI is also a B&P algorithm for PPos2. In this algorithm,
a subproblem is first solved by the CBLS algorithm described in
the above subsection. If the reduced cost of the solution (or the
objective value of the solution) computed by the CBLS algorithm
is not negative, then the subproblem is resolved as a mixed integer
programming problem. This procedure of solving the subproblem
ensures that P2_CGLI is complete.

These B&P algorithms were implemented with SCIP solver of the
default setting where Ryan-Foster branching rule is implemented and
the pricer makes sure that the same column is added at most once in one
pricing round.

5.5.4 Solving PPos2 by a CBLS algorithm
The CBLS algorithm for solving PPos2 described in this subsection was
already presented in our papers [19, 20]. This local search algorithm is
denoted by P2_LS.

In P2_LS, there are two consecutive steps:
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• Step 1: The objective of this step is to partition the whole set
of plots into a set of subsets S = {S1, . . . , Sm}. This algorithm
repeats the execution of a procedure that is used to create subsets
Si with the smallest possible value of

∑
p∈Si

∣∣∣∑j∈Si
aj

W
− apW∑

j∈Si
aj

∣∣∣.
• Step 2: The solution computed in the first step is improved by

changing the elements in the subsets.

Step 1: Finding a solution

At the end of this step, we obtain a solution S = {S1, . . . , Sm} to
PPos2, in which each a subset Si with i ∈ {1, . . . ,m} is created in an it-
eration of the algorithm depicted in Algorithm 14 by executing the func-
tion createOneSubset(P). The paradigm of this function is exactly the
same as Algorithm 13. However, as compared with the CBLS algorithm
for the subproblem of the B&P algorithm described in Algorithm 13, the
objective function conducting the search in createOneSubset(P) does
not take into account the dual values πi.

Step 2: Improving the solution computed in step 1

The objective of this step is to improve the solution computed in the
previous step by changing plots between the subsets of the solution.
In this step, P2_LS manipulates the two following neighborhoods of a
solution S = {S1, . . . , Si, . . . , Sj, . . . , Sm}:

• Change-based neighborhood: N1(S) = {S1, . . . , S
′
i , . . . , S

′
j, . . . , Sm}|S

′
i =

Si \ {p}, Sj ∪ {p}, i 6= j, p ∈ Si}

• Swap-base neighborhood: N2(S) = {S1, . . . , S
′
i , . . . , S

′
j, . . . , Sm}|S

′
i =

Si \ {p1} ∪ {p2}, Sj \ {p2} ∪ {p1}, i 6= j, p1 ∈ Si, p2 ∈ Sj}

Step 2 of P2_LS is clearly depicted in Algorithm 15.

5.5.5 Solving PPos2 by a hybrid incomplete algorithm
In this subsection, we propose a hybrid incomplete algorithm that com-
bines a CBLS component, a column generation component, and an in-
teger programming component. We denote this algorithm by P2_LCI.
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The procedure of P2_LCI is as follows: first, the CBLS component
executes P2_LS many times, to produce many solutions to PPos2; then
the column generation component takes the subsets of the solutions gen-
erated by the CBLS component as the initial columns to compute more
columns (subsets) by executing the algorithm that is used to solve the
subproblem in P2_CGLI; lastly the integer programming component
takes all subsets of plots that are already computed in the two other
components as the input to compute a good solution to PPos2 as an in-
teger program that is similar to the program described in the subsection
5.5.3 with Z containing all subsets of plots that are already generated
in the two other components.

5.5.6 Experiments
We begin this subsection by describing the instances that are used in the
experiments. We generated in all 8 instances with the number of plots
in [8, 30] and the area of the plots in [100, 700].

The configuration for the experiments is as follows. A time limit of
5 hours is set for all complete algorithms; P2_LS is executed 10 times;
the 10 solutions computed by P2_LS are all used as initial solutions
(columns) for P2_LCI, so the computational time reported for this al-
gorithm does not take into account the computation time for computing
the initial solutions. All results of the experiments are presented in Ta-
ble 5.3.

Note that the amount of computational time needed for P2_CGIP
and P2_CGLI for solving the last four instances is greater than 5 hours,
because these algorithms could not terminate exactly at the deadline.
But the amount of computational time used by P2_IP for solving the
last three instances is less than 5 hours, because with the time limit of 5
hours the computer memory for stocking the search tree is not enough,
for example in solving the instance of n = 30 in 1 hour, the memory
used to stock nodes of the search tree is around 94 GB.

The result of this experiment yields the fact that.

• We know that P2_LCI takes 10 solutions computed by P2_LS as
initial columns, but it could not improve these solutions (the solu-
tions computed by P2_LS are always the best solutions computed
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by P2_LS after 10 executions of the algorithm), which means that
the solutions computed by the CBLS algorithm P2_LS have very
good quality.

• In comparing the two B&P algorithms, P2_CGLI is slightly stronger
than P2_CGIP: both of them solved the first four instances to op-
timality in the time limit, but P2_CGLI used much less computa-
tion time than the other for the remaining instances, the solutions
outputted from P2_CGLI are better than or equal to the solutions
computed by P2_CGIP.

• A look deep inside the B&P algorithms, almost all the compu-
tational time is used to solve the subproblem to optimality as
mixed integer programming problems. For example, solving the
instance with n = 30 with P2_CGIP, 99.98% of the computation
time is used for solving in all 29 instances of the subproblem, and
with P2_CGLI, this number is 81.79% for solving in all 1106
instances of the subproblem. The CBLS algorithm solved 8746
instances of the subproblem and needed 17.97% of the overall
computational time. We conclude that the great amount of com-
putation time spent for solving the subproblem to optimality as
mixed integer programming problems is the weakness of the B&P
algorithms.

• The efficiency of P2_LS is also confirmed when we compare it
with the three complete algorithms; the quality of the solutions
computed by P2_LS is always better than or equal to the quality
of the solutions computed by the complete algorithms. Moreover
the computation time of P2_LS is much smaller than the compu-
tation time of the complete algorithms (it is around two minutes).

As the main message of these experiments, among the proposed al-
gorithms, the incomplete algorithm P2_LS is the most suitable for solv-
ing PPos2.
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5.6 Extension to fields of arbitrary shape

The proposed algorithms are assuming a rectangular field. In this sec-
tion, we extend the algorithm to handle fields with arbitrary polygonal
shape. This is based on [20]. The PArea problem is totally independent
from the shape of the field. The extension of PPos1 and PPos2 to a non
rectangular shape needs some explanations.

Extension for PPos1 A canal is always a straight line. A field of ar-
bitrary polygonal shape is first approximated as a field of rectangular
shape. The solution produced by our algorithms for PPos1 on this rect-
angular field is then adapted to fit the exact shape near the canal. This
approximation might loose the exact property of the algorithms. This is
illustrated in Figure 5.11 where hexagon (A,E, F,B,C,D) is approxi-
mated by a rectangle (A,B,C,D) with the same area. Then one of the
algorithms proposed for PPos1 is used to decide the plots next to the
canal. Finally, these plots are adapted to obtain a real solution on the
hexagon.

Extension for PPos2 An extension is only proposed for algorithms
P2_LS. In P2_LS, the zones are computed sequencially. The idea is
then to use the same idea as the extension for PPos1 for each zone. This
is illustrated in Figure 5.11, where quadrilateral (A,B,C,D) is approx-
imated as the rectangle (A,B,G,H) for the first zone. Then quadrilat-
eral (A′, B′, C,D) is approximated as the rectangle (A′, B′, X, Y ) for
the second zone.

5.7 Comparison between the government’s ap-
proach and the proposed approach

This section compares solutions conducted by the government’s ap-
proach (called government solution) and solutions computed by our in-
complete algorithms (called our solution). In order to perform a mean-
ingful comparison, we chose a real instance of ALAP from the 10th

hamlet of Dong Trung village, Tien Hai district, Thai Binh province,
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Vietnam. In this hamlet, there are 103 households, 3 land categories
{c1, c2, c3}, and 24 fields summing to 204,744 m2 (8 fields of c1, 7
fields of c2 and 9 fields of c3). This hamlet did already the land reform
using the government’s approach. The system of coefficients was set to
〈1.0, 1.0, 1.0〉 by the farmers.

Table 5.4 compares the government solution and our solution. As
our solution is computed by an incomplete algorithm that could pro-
vide different solutions at each run, we made 20 runs and report the
minimum, average and maximum value of the 20 solutions. The ta-
ble reports the following values. The row Max(c) (resp. Avg(c) and
V ar(c)) is, for land category c, the greatest difference (resp. the aver-
age difference and the variance of differences) between the expected
area and the resulting area of the households. The row Max (resp. Avg
and V ar) is, for all three land categories, the greatest difference (resp.
the average difference and the variance of differences) between the ex-
pected area and the attributed area of the households. The row “Added
plots” reports the number of added plots.

In the government solution, most households have three plots, each
plot for a land category. However, some households (10) are allocated
four plots (added plots in Table5.4). In our solution, all household have
exactly one plot. Moreover, the values of all the other 12 criteria of our
solutions are always much smaller than those for the government solu-
tion. Our solutions are thus clearly better than the government solution.
Other experimental comparisons between the government approach and
the incomplete approach proposed in this thesis can be found in our pub-
lished papers [19, 20].

These experiments were presented to the Vice President of the Dong
Trung village (Thai Binh province). This village is composed of 1460
households, and the land has already been reallocated using the the gov-
ernment’s approach. The solutions produced by our algorithms were
considered as a significant improvement over the traditional realloca-
tion. The very low difference between the expected area and the allo-
cated area for each household, the absence of added plots and the form
of plots with a shape close to a square were particularly appreciated.
His conclusion was that our tool should be used to the land reform of
the remaining Vietnamese districts and provinces.
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5.8 Conclusion
The agricultural land allocation problem has arisen in almost every
province in Vietnam. Currently, both the Vietnamese government and
the farmers are together solving this problem to increase the efficiency
of the cultivation of agricultural land. In this paper, we formulated
the agricultural land allocation problem and applied some optimization
techniques to solve this problem with both complete and incomplete al-
gorithms. All the new models, the new complete algorithms and the
new incomplete algorithms, which appear in this paper, are the contri-
bution of this paper. Specially, we showed that solutions computed by
our algorithms are much better than solutions that is obtained by imple-
menting the government’s approach.
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Algorithm 12: P1_LS: A constraint-based local search algorithm
for PPos1
1 S ← a random subset of P; vio← the constraint violation of S;
it← 0;

2 while it < maxIt1 && vio > 0 do
3 p← the plot in S with the largest area that is not in tabu;
4 S ′ ← the neighbor of S in N1(S) that is obtained by

removing p from S;
5 S ′′ ← the best neighbor of S in N3(S) that is obtained by

swapping a pair of plots such that this pair is not in tabu;
6 if S ′ is better than S ′′ then
7 S ← S ′;
8 else
9 S ← S ′′;

10 vio← the constraint violation of S;
11 it← it+ 1;

12 iniSol ← S; bestSol← S; stable← 0;
13 while it < maxIt2 do
14 S ′ ← a neighbor of S in N2(S) such that the constraint

violation of S ′ is less than or equal to the constraint violation
of S;

15 if S ′ 6= NULL then
16 S ← S ′;
17 if |bestSol| < |S| then
18 bestSol← S;

19 else
20 S ′′ ← a neighbor of S in N3(S) such that the constraint

violation of S ′′ is less than or equal to the constraint
violation of S;

21 if S ′′ 6= NULL && stable < stableLimit then
22 S ← S ′′;
23 stable← stable+ 1;

24 else
25 stable← 0;
26 S ← iniSol;

27 it← it+ 1;
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Instances P1_CP P1_IP P1_LS
n t(s) obj t(s) obj min_obj avg_obj max_obj avg_t(s)
20 0.52 6 0.68 6 6 6 6 0.28
30 31.35 8 4.67 8 8 8 8 1.41
40 445.58 11 12.17 11 11 11 11 2.36
50 11576.74 12 69.71 12 12 12 12 4.09
60 18000 13 679.33 13 13 13 13 6.5
70 18000 14 10888.16 14 14 14 14 9.3
80 1800 16 18000 16 15 15.4 16 31.79

Table 5.2: Comparing the proposed algorithms for PPos1 with respect
to the quality of found solution and the computational time
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Minimize

n∑
i=1

n∑
j=1

δij (5.11a)

s.t. (5.11b)
x11 = 1 (5.11c)
y1 = 1 (5.11d)

n∑
j=1

ajxij ≥
n∑
j=1

ajx(i+1)j,∀i ∈ {2, . . . , n− 1} (5.11e)

n∑
i=1

xij = 1,∀j = {2, . . . , n} (5.11f)

yi ≤
n∑
j=1

xij,∀i ∈ {2, . . . , n} (5.11g)

nyi ≥
n∑
j=1

xij,∀i ∈ {2, . . . , n} (5.11h)

Wyi =
n∑
j=1

wij, ∀i ∈ {1, . . . , n} (5.11i)

wij ≤ Wxji,∀i, j ∈ {1, . . . , n} (5.11j)
Lwij ≥ ajxij,∀i, j ∈ {1, . . . , n} (5.11k)

akW (2− xij − xik) ≥ akwij − ajwik,∀i, j, k ∈ {1, . . . , n}, j 6= k
(5.11l)

ajW (2− xij − xik) ≥ ajwik − akwij,∀i, j, k ∈ {1, . . . , n}, j 6= k
(5.11m)

δij +W (1− xij) ≥ wij −
∑n

k=1 akxik
W

,∀i, j ∈ {1, . . . , n} (5.11n)

δij + L(1− xij) ≥ −wij +

∑n
k=1 akxik
W

,∀i, j ∈ {1, . . . , n} (5.11o)

xij ∈ {0, 1}, ∀i, j ∈ {1, . . . , n} (5.11p)
wij ≥ 0,∀i, j ∈ {1, . . . , n} (5.11q)
δij ≥ 0,∀i, j ∈ {1, . . . , n} (5.11r)
yi ∈ {0, 1},∀i ∈ {1, . . . , n} (5.11s)

Figure 5.8: MIP model for PPos2
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Minimize
∑
r∈Z

xrcr (5.12a)

s.t. (5.12b)∑
r∈Z

xrv
r
i = 1,∀i ∈ {1, . . . , n} (5.12c)

xr ∈ {0, 1},∀r ∈ Z (5.12d)

Figure 5.9: Master problem

Minimize
n∑
i=1

δi +
n∑
i=1

yiπi (5.13a)

s.t. (5.13b)
n∑
i=1

wi = W (5.13c)

Lwi ≥ aiyi, ∀i ∈ {1, . . . , n} (5.13d)
wi ≤ Wyi,∀i ∈ {1, . . . , n} (5.13e)

ajW (2− yi − yj) ≥ ajwi − aiwj,∀i, j ∈ {1, . . . , n}, i 6= j (5.13f)
aiW (yi + yj − 2) ≤ ajwi − aiwj,∀i, j ∈ {1, . . . , n}, i 6= j (5.13g)

δi + (1− yi)W ≥ wi −
∑n

j=1 ajyj

W
,∀i ∈ {1, . . . , n} (5.13h)

δi + (1− yi)L ≥ −wi +

∑n
j=1 ajyj

W
,∀i ∈ {1, . . . , n} (5.13i)

yi ∈ {0, 1},∀i ∈ {1, . . . , n} (5.13j)
wi ≥ 0,∀i ∈ {1, . . . , n} (5.13k)
δi ≥ 0, ∀i ∈ {1, . . . , n} (5.13l)

(5.13m)

Figure 5.10: MIP model for the subproblem
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Algorithm 13: A constraint-based local search algorithm for the
subproblem
1 S ← A random solution to the subproblem;
2 obj ← objective of S;
3 bestSol← S; bestObj ← obj ;
4 while it < maxIt do
5 S1 ← the best neighbor of S in N1(S) and N2S

corresponding to a position change of a plot not in tabu;
6 if S1 is better than S then
7 S ← S1;

8 else
9 S2 ← the best neighbour of S in N3(S) corresponding to

a position swap of a pair of plots not in tabu;
10 if S2 is better than S then
11 S ← S2;

12 else
13 p1 ← a plot in S; p2 ← a plot not in S;
14 if p1 6= NULL && p2 6= NULL then
15 S ← S ∪ {p2} \ {p1};

16 obj ← objective of S;
17 if obj < bestObj then
18 bestObj ← obj; bestSol← S;
19 stable← 0;

20 else
21 if stable = stableLimit then
22 S ← bestSol; stable← 0;

23 else
24 stable← stable+ 1;

25 if it%restartFreq = 0 then
26 S ← a random solution; obj ← objective of S;
27 bestObj ← obj;bestSol← S;

28 it← it+ 1;
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Algorithm 14: Step 1 of P2_LS
1 i← 0;
2 while P 6= NULL do
3 i← i+ 1;
4 Si ← createOneSubset(P);
5 P ← P \ Si;
6 return {S1, . . . , Si};
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Figure 5.11: Adaptation to the algorithms for PPos1
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Figure 5.12: Adaptation to the algorithms for PPos2
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Algorithm 15: Step 2 of P2_LS
1 stable← 0; it← 0;
2 bestSol← S(solution computed in step 1);
3 while it < maxIt do
4 p← the plot that is not in tabu with the largest length

difference between its two sides;
5 S ′ ← the best neighbor of S in N1(S) that is obtained by

changing the position of plot p;
6 S ′′ ← the best neighbor of S in N2(S) that is obtained by

swapping the position of plot p and some plot that is also not
in tabu;

7 if S ′ is better than S ′′ then
8 S ← S ′

9 else
10 S ← S ′′

11 if S is better than bestSol then
12 bestSol← S; stable← 0;

13 else
14 if stable = stableLimit then
15 S ← bestSol; stable← 0;

16 else
17 stable← stable+ 1;

18 if it%restartFreq = 0 then
19 S ← solution computed in step 1;
20 bestSol← S;

21 it← it+ 1;
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Ins P2_CP P2_IP P2_CGIP P2_CGLI P2_LS P2_LCI
n t(s) obj t(s) obj t(s) obj t(s) obj min_obj avg_obj max_obj avg_t(s) obj t(s)
8 0.22 34.19 0.52 34.19 3.52 34.19 0.16 34.19 34.19 34.19 34.19 0.14 34.19 0.45
9 2.49 39.87 0.75 39.87 4.34 39.87 0.19 39.87 39.87 39.87 39.87 0.15 39.87 0.4
10 13.59 43.61 3.26 43.61 8.5 43.61 0.33 43.61 43.61 43.61 43.61 0.82 43.61 1.74
11 121.94 42.58 4.52 42.58 12.17 42.58 0.33 42.58 42.58 42.58 42.58 0.25 42.58 0.89
15 18000 77.51 8652 47.98 20667 48.96 18214 50.07 47.98 47.98 47.98 1.89 47.98 2.91
20 18000 393.78 14508 69.15 20707 129.23 19598 129.23 69.15 69.15 69.15 103.23 69.15 18.71
25 18000 810.72 7491 70.12 20126 65.07 20236 65.07 63.93 63.93 63.93 83.33 63.93 148.02
30 18000 1889.63 6086 131.88 19392 2031.73 19553 162.32 122.92 123.44 123.64 13.27 122.92 580.61

Table 5.3: Comparing the proposed algorithms for PPos2 with respect
to the quality of found solution and the computational time

Criteria government solution 20 solutions of our algorithms
MIN AV G MAX

Max(c1) 88 5 7.75 15
Avg(c1) 39.51 2.06 2.39 3.21
V ar(c1) 29.37 1.22 1.87 3.27
Max(c2) 98 6 8.45 17
Avg(c2) 32.93 1.95 2.39 3.16
V ar(c2) 25.31 1.29 1.96 3.23
Max(c3) 89 1 3.35 6
Avg(c3) 13.96 0.28 0.85 1.68
V ar(c3) 17.73 0.45 0.90 1.43
Max 89 1 1.15 2
Avg 13.65 0.04 0.17 0.33
V ar 16.92 0.19 0.36 0.51

Added plots 10 0 0 0

Table 5.4: Comparison between the existent solution conducted by the
government’s approach and the solutions computed by our incomplete
algorithms
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CONCLUSION

In this section, we summarize the main achievement of this thesis in
Section 6.1 and the promising directions for the future work are indi-
cated in Section 6.2.

6.1 Results
The main achievement of this thesis is MIP formulations and algorithms
for solving four COPs (QRP, ESPP, ELPP, and ALAP) and additionally
two separation algorithms for SECs.

• Chapter 3 focused on solving QRP by proposing five B&C algo-
rithms using four distinct MIP formulations which were also pro-
posed in this thesis. All new algorithms outperform the-state-of-
the-art B&I algorithm. This chapter also showed the relationship
between the values q and |S| and the performance of the B&C
algorithms by the experimental evaluations.

• Chapter 4 dedicated to solve two problems: ESPP and ELPP.
This chapter first showed that the equivalence between few prob-
lems. Then few B&C algorithms were proposed for solving them.
These algorithms exploited new valid inequalities for ESPP (some
of which are derived from ASTP), implemented a SEC separa-
tion algorithm that was also proposed in this chapter and spe-
cially used a proposed inequality filter. These help the proposed
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B&C algorithms solve the problems more quickly than the-state-
of-the-art algorithms. In the case, the input graph consists of
many bridge-blocks or many strongly connected components, we
proposed and adapted decomposition techniques for solving the
problems more efficiently.

• Chapter 5 presented ALAP which appears in Vietnam. A careful
description of this problem was given in this chapter. In addi-
tion, we dived this problem into three subproblems and formu-
lated mathematically these subproblems. For each subproblem,
we proposed at least a B&I algorithm, a B&C algorithm, and a
CBLS algorithm. In addition, we proposed two B&P algorithms
for a subproblems.

• All the models, algorithms, data and experiments, which appeared
in this thesis, are the open source.

6.2 Future work

The following directions would be interesting.

• Facetial inequalities We are going to study facetial inequalities
for the elementary path polytope which can be used for solving
ESPP and ELPP as integer programs. After this, we will study
facetial inequalities for the quromcast rounting polytope which
will be used for solving QRP as an integer program.

• Adding SECs strategies There are fews strategies for adding
SECs in the separation step. Such as, only one violated SEC is
added or all violated SECs found are added; the violated SECs
are added as local cuts or global cuts. In the step after this thesis,
we will try to compare these different strategies in an empirical
way.

• Quality of separated inequalities There is not any research on
measuring the quality of separated inequalities. It is an interesting
research direction which focuses on measuring the quality and
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the impact of separated inequalities on the performance of the
branch-and-cut algorithm.

• Inequality filter Too many separated inequalities added in the
separation step may reduce the performance of the branch-and-
cut algorithm. So an efficient inequality filter, which keeps only
very-interesting separated inequalities can accelerate deeply the
speed of the B&C algorithm. Improving the simple inequality
filter proposed in this thesis is one of our future works.

• SEC separation In addition to measuring the quality of separated
inequalities, we also try to find out an efficient and fast separation
algorithm for SECs that are used in the B&C algorithms for solv-
ing problems of finding a tree. Moreover, we continue to improve
the decomposition the support graph (see the last section of chap-
ter 4) to solve separation problems more efficiently.

• ALAP We will package all current algorithms proposed for solv-
ing ALAP into a complete solution software and will introduce
it to the Vietnamese government in hope of applying it in Viet-
nam. However we continue to design new algorithms for cover-
ing more expectations of farmers. These new algorithms will be
multi-objective algorithms or single objective algorithms.

• We will try to apply the separation algorithms proposed in Chap-
ter 6 in branch-and-cut algorithms for solving a class of vehicle
routing problems, for example, the Generalized Vehicle Routing
Problem, Capacitated Vehicle Routing Problem (note that these
problems can be reduced to problems of finding a set of elemen-
tary paths.).

• We will try to develop some branch-and-price algorithms for solv-
ing QRP. Then, we compare the branch-and-price algorithms to
the branch-and-cut algorithms proposed in this thesis in term of
the performance.
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