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Abstract

SPARQL is the standard query language for graphs of data in the Semantic Web.
Evaluating queries is closely related to graph matching problems, and has been
shown to be NP-hard. State-of-the-art SPARQL engines solve queries with traditional
relational database technology. Such an approach works well for simple queries that
provide a clearly de�ned starting point in the graph. However, queries encompassing
the whole graph and involving complex �ltering conditions do not scale well.

In this thesis we propose to solve SPARQL queries with Constraint Program-
ming (CP). CP solves a combinatorial problem by exploiting the constraints of the
problem to prune the search tree when looking for solutions. Such technique has been
shown to work well for graph matching problems. We reformulate the SPARQL seman-
tics by means of constraint satisfaction problems (CSPs). Based on this denotational
semantics, we propose an operational semantics that can be used by o�-the-shelf
CP solvers.

O�-the-shelf CP solvers are not designed to handle the huge domains that come
with Semantic Web databases though. To handle large databases, we introduce Castor,
a new SPARQL engine embedding a specialized lightweight CP solver. Special care
has been taken to avoid as much as possible data structures and algorithms whose
time or space complexity are proportional to the database size.

Experimental evaluations on well-known benchmarks show the feasibility and
e�ciency of the approach. Castor is competitive with state-of-the-art SPARQL engines
on simple queries, and outperforms them on complex queries where �lters can be
actively exploited during the search.
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Résumé

SPARQL est le langage de requête standard pour les graphes de données du Web Sé-
mantique. L’évaluation de requêtes est étroitement liée aux problèmes d’appariement
de graphes. Il a été démontré que l’évaluation est NP-di�cile. Les moteurs SPARQL
de l’état-de-l’art résolvent les requêtes SPARQL en utilisant des techniques de bases
de données traditionnelles. Cette approche est e�cace pour les requêtes simples qui
fournissent un point de départ précis dans le graphe. Par contre, les requêtes couvrant
tout le graphe et impliquant des conditions de �ltrage complexes ne passent pas bien
à l’échelle.

Dans cette thèse, nous proposons de résoudre les requêtes SPARQL en utilisant
la Programmation par Contraintes (CP). La CP résout un problème combinatoire en
exploitant les contraintes du problème pour élaguer l’arbre de recherche quand elle
cherche des solutions. Cette technique s’est montrée e�cace pour les problèmes
d’appariement de graphes. Nous reformulons la sémantique de SPARQL en termes de
problèmes de satisfaction de contraintes (CSPs). Nous appuyant sur cette sémantique
dénotationnelle, nous proposons une sémantique opérationnelle qui peut être utilisée
pour résoudre des requêtes SPARQL avec des solveurs CP génériques.

Les solveurs CP génériques ne sont cependant pas conçus pour traiter les domaines
immenses qui proviennent des base de données du Web Sémantique. A�n de mieux
traiter ces masses de données, nous introduisons Castor, un nouveau moteur SPARQL
incorporant un solveur CP léger et spécialisé. Nous avons apporté une attention
particulière à éviter tant que possible les structures de données et algorithmes dont la
complexité temporelle ou spatiale est proportionnelle à la taille de la base de données.

Des évaluations expérimentales sur des jeux d’essai connus ont montré la faisabilité
et l’e�cacité de l’approche. Castor est compétitif avec des moteurs SPARQL de l’état-
de-l’art sur des requêtes simples, et les surpasse sur des requêtes complexes où les
�ltres peuvent être exploités activement pendant la recherche.
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Chapter 1

Introduction

The Internet has become the privileged means of looking for information in everyday’s
life. While the information abundantly available on the Web is increasingly accessible
for human users, computers still have trouble making sense out of it. Developers
have to rely on fuzzy machine learning techniques [CHM11] or site-speci�c APIs
(e.g., Google APIs), or resort to writing a specialized parser that has to be updated on
every site layout change.

The Semantic Web is an initiative of the World Wide Web Consortium (W3C) to
enable sites to publish computer-readable data aside of the human-readable documents.
Merging all published Semantic Web data results in one large global database. The
global nature of the Semantic Web implies a much looser structure than traditional
relational databases. A loose structure provides the needed �exibility to store unrelated
data, but makes querying the database harder.

Amongst the various technologies related to the Semantic Web, we will focus on
RDF and SPARQL. The Resource Description Framework (RDF) [KCM04] allows us to
describe knowledge as a graph. Nodes are resources (e.g., people, objects, web pages,
concepts, etc.) and literal values (e.g., numbers, strings, dates, etc.). Nodes are linked
together with labeled edges to represent properties of a resource or relations between
two resources. SPARQL [PS08] is the standard query language for RDF graphs. A
SPARQL query basically consists of a pattern graph to be matched with the RDF graph
containing the knowledge. The pattern graph may contain alternative or optional
parts, as well as �ltering conditions on the variables, making the evaluation more
complex. Evaluating SPARQL queries in the general case has been shown to be
PSPACE-complete [PAG09].

Example 1.1. Suppose we want to know which places are near each other, but have a
big di�erence in average high temperature in August. The Wikipedia project contains
a lot of facts about various places around the world. Those facts have been made
available in the Semantic Web through the DBpedia project [Leh+13]. Figure 1.1
shows a subset of what can be found about Cotonou city. Now, we can write the
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Cotonou
dbpedia-owl:Place

27.8

dbpedia:Cotonou

dbpedia:Benin

rdfs:label

rdf:type

dbpprop:augHighC

dbpedia-owl:country

Figure 1.1: The DBpedia project [Leh+13] publishes facts found in Wikipedia as

RDF data. This small excerpt shows information about the Cotonou city.

SPARQL query shown in listing 1.1 to solve our question. The query makes heavy
use of �lters and involves two initially unde�ned places. It is likely a complex query.

State-of-the-art SPARQL engines rely on relational database technology to solve
queries. The RDF graph is usually stored in one big three-column table. Each row
corresponds to an edge with its source node, destination node, and edge label. Every
edge in the pattern graph of the query is mapped to a query on this table. The
result sets then have to be joined together. Such operation can be costly if those
intermediate result sets are large, e.g., if the pattern graph has no well-de�ned anchor
in the RDF graph. Furthermore, �ltering conditions involving di�erent edges of the
pattern graph can only be processed after the corresponding result sets have been
joined. Hence, state-of-the-art engines do not perform well on complex queries. On
the author’s system, the query of example 1.1 was solved in 52 seconds using the
state-of-the-art Virtuoso engine.1

Constraint Programming (CP) is a technique to solve hard combinatorial problems.
Basically, it enumerates all solutions by traversing a search tree. To speed up such a
search, it exploits the constraints of the problem to prune parts of the search tree that
do not contain any solution. CP is an e�ective technique to solve graph matching
problems [CDS09; ZDS10]. Filtering conditions can also be exploited early on during
the search. Hence, we investigate whether CP could provide a good alternative to solve
complex SPARQL queries. On the author’s system, the same query of example 1.1
was solved in under 5 seconds with Castor, our CP-based engine.

Scope of the thesis

This thesis focuses on the database aspects of the Semantic Web, i.e., how data is stored
and queried. We aim at exploring an alternative computation model for SPARQL

1On a Core i5 520M laptop with SSD and 8 GB RAM, running Arch Linux. The queried graph is
a concatenation of the article-categories, category-labels, geo-coordinates, infobox-properties, infobox-
property-de�nitions, instance-types, mappingbased-properties, persondata, skos-categories, and speci�c-
mappingbased-properties datasets of the English DPpedia 3.8.
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SELECT * WHERE {

?place1 rdf:type dbpedia-owl:Place ;

dbpprop:augHighC ?temp1 ;

geo:lat ?lat1 ;

geo:long ?lon1 .

?place2 rdf:type dbpedia-owl:Place ;

dbpprop:augHighC ?temp2 ;

geo:lat ?lat2 ;

geo:long ?lon2 .

FILTER ( ?lat1 - ?lat2 < 0.1 && ?lat1 - ?lat2 > -0.1 &&

?lon1 - ?lon2 < 0.1 && ?lon1 - ?lon2 > -0.1 &&

?temp1 - ?temp2 > 5 &&

?place1 != ?place2 )

} LIMIT 10

Listing 1.1: SPARQL allows one to ask rich queries. Here, we are looking for places

that are near each other, and whose average high temperature in August di�er by

more than 5°C.

queries, resulting in more e�cient handling of complex queries.
Other Semantic Web aspects are left as future work. In particular, we do not

consider reasoning on the data. With reasoning, one can infer more knowledge from
the data, possibly changing the results of the queries. The conclusion chapter gives
some leads on how the work of this thesis could be extended with reasoning.

Contributions

The �rst contribution of this thesis is the modeling of SPARQL queries in the CP frame-
work. We reformulate the SPARQL semantics by means of Constraint Satisfaction
Problems (CSPs), which is a declarative way to state combinatorial problems. The
CSP reformulation extends the CSP framework slightly to accommodate for SPARQL
features such as optional or alternative parts in the pattern graph. Based on the CSP
reformulation, we propose an operational semantics that can be easily implemented
in o�-the-shelf solvers.

The second contribution is Castor, a SPARQL engine embedding a specialized
lightweight CP solver. The CP models corresponding to SPARQL queries usually
have few variables and constraints, but huge domains including all nodes of the
RDF graph. O�-the-shelf solvers do not handle large domains well. Hence, we
introduce a lightweight solver designed to cope with large domains. To achieve such a
design goal, we avoid as much as possible data structures and algorithms whose time
or space complexity is proportional to the domain sizes. All operations on the domains
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are performed in constant time. Constraints achieve forward-checking consistency,
except where we can do better without maintaining costly internal structures.

Experimental evaluations on well-known benchmarks show the e�ectiveness
of the approach and design. Castor is competitive with state-of-the-art engines on
simple queries, thanks to its lightweight design. It is able to outperform them on
complex queries involving �lters on multiple variables, thanks to exploiting those
�lters during the search.

Outline

The �rst part gives background information about RDF and SPARQL (chapter 2),
state-of-the-art SPARQL engines (chapter 3), and Constraint Programming (chapter 4).
The second part details our contributions. Chapter 5 de�nes the reformulation of
SPARQL queries by means of CSPs and gives a proof of correctness. It also shows
the CP operational modeling. Chapter 6 explains the inner working of Castor and its
lightweight solver. Finally, chapter 7 evaluates the e�ectiveness of our approach.

Publications

Parts of this thesis have been presented at the 17th International Conference on
Principles and Practice of Constraint Programming [CDS11], at the 9th Extended
Semantic Web Conference [Clé+12], and at the TRICS workshop collocated with
the 19th International Conference on Principles and Practice of Constraint Program-
ming [Clé+13].

[CDS11] Vianney le Clément de Saint-Marcq, Yves Deville, and Christine Solnon.
“An E�cient Light Solver for Querying the Semantic Web”. In: Principles
and Practice of Constraint Programming – CP 2011. Ed. by Jimmy Lee.
Vol. 6876. Lecture Notes in Computer Science. Springer, 2011, pp. 145–
159. isbn: 978-3-642-23785-0.

[Clé+12] Vianney le Clément de Saint-Marcq, Yves Deville, Christine Solnon, and
Pierre-Antoine Champin. “Castor: A Constraint-Based SPARQL Engine
with Active Filter Processing”. In: The Semantic Web: Research and Appli-
cations. Ed. by Elena Simperl et al. Vol. 7295. Lecture Notes in Computer
Science. Springer, 2012, pp. 391–405. isbn: 978-3-642-30283-1.

[Clé+13] Vianney le Clément de Saint-Marcq, Pierre Schaus, Christine Solnon,
and Christophe Lecoutre. “Sparse-Sets for Domain Implementation”. In:
Techniques for implementing constraint programming systems (TRICS)
workshop at CP 2013. 2013.
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The Castor system is available under the GPLv3 open-source license on the
following web sites.

• https://github.com/vianney/castor

• http://becool.info.ucl.ac.be/castor

https://github.com/vianney/castor
http://becool.info.ucl.ac.be/castor
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Chapter 2

The Semantic Web

The main idea of the Semantic Web is best de�ned by Berners-Lee et al. [BHL01]:

The Semantic Web is not a separate Web but an extension of the
current one, in which information is given well-de�ned meaning, better
enabling computers and people to work in cooperation.

The Semantic Web aims at complementing the web of documents by a web of data.
As with the Hypertext Markup Language (HTML), data coming from various sources
in the Semantic Web can be freely linked together.

To enable such linked data, publishers have to agree on common vocabularies.
Many vocabularies have been proposed for various domains, e.g., for social net-
works [BM10], electronic publishing [Wei+98], bioinformatics [Bel+08], personal data
management [Sce+07], geospatial data [BK11], etc.

Figure 2.1 shows the stack of technologies involved. The rest of this chapter
focuses on the technologies used in the thesis.

2.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [KCM04] allows one to model knowledge
as a set of statements about things. Things described in RDF can be any arbitrary
resource, ranging from real-world entities such as people, companies, objects, etc., to
virtual things such as web pages, electronic documents, etc., or abstract concepts such
as topics of interest, properties, categories, etc. In this section, we �rst provide a high-
level overview of RDF (section 2.1.1). Then, we de�ne RDF formally (section 2.1.2).

2.1.1 Overview

As a running example used throughout the thesis, �g. 2.2 shows the relations be-
tween some characters appearing in PhD Comics.1 The graph encodes the following

1http://www.phdcomics.com/

http://www.phdcomics.com/
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URI/IRI

RDF
XML

SPARQL
RDF Schema

Ontology: OWL

Ru
le

:R
IF

Unifying logic

Proof

Cr
yp

to
gr

ap
hy

Trust

User Interface & Applications

Figure 2.1: The Semantic Web includes a stack of technologies (schema from [Bra07]).

This chapter covers the technologies wri�en in bold. The thesis focuses on SPARQL

and its underlying technologies.

knowledge by means of relations between resources:

Tajel, Cecilia, and Mike are students who are respectively 29, 26, and
35 years old. Tajel and Cecilia know each other. Tajel also knows Mike,
whose name is Michael Slackenerny. Mike knows Brian S. Smith, aged 56.
Mike is interested in procrastination and free food. Smith is interested in
research. Cecilia is interested in procrastination and maintains a blog on
that topic at http://www.phdcomics.com/blog.php, created on 10 July
2005 at 8:20 AM. The blog’s subjects are �rst about comics, and second
about procrastination.

The “Friend of a Friend” (FOAF) vocabulary [BM10] is used to describe properties of
the characters, such as name and age, group membership and topics of interest. The
“Dublin Core Metadata Initiative” (DCMI) vocabulary [Wei+98] is used to describe
properties on electronic documents, such as creation date and subject.

Resources are identi�ed by Uniform Resource Identi�ers (URIs) [BFM05]. A web
address, such as http://www.phdcomics.com/blog.php, is an example of URI. URIs
are de�ned as US-ASCII strings. As such encoding poses problems in an international
environment, the RDF standard de�nes RDF URI references to be Unicode strings that
can be mapped to ASCII URIs by a well-de�ned encoding. Such Unicode URIs were
later standardized as Internationalized Resource Identi�ers (IRIs) [DS05]. The SPARQL
standard is de�ned using IRIs. This thesis considers all resources to be identi�ed
by IRIs. In the Semantic Web, IRIs are often abbreviated. For example, foaf:name is
an abbreviation for http://xmlns.com/foaf/0.1/name, as de�ned in the header of
listing 2.1.
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Figure 2.2: An RDF graph representing relations between PhD Comics characters.

Rounded rectangles are IRIs, square rectangles are literals, circles are blank nodes.

The datatypes of the literals are not shown in the graph.
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An RDF graph may be encoded as a set of statements. A statement is encoded
as a triple (subject,predicate,object). Such triple expresses a relation, de�ned by the
predicate, between the subject and the object. For example, the triple (phd:Tajel,

foaf:member,phd:Students) states that Tajel is a member of the students group. All
three elements may be any IRI. A predicate may thus appear as a subject in another
statement. Note that the graph and triples representations are equivalent. This means
that isolated nodes in the graph are not allowed.

Besides IRIs, subjects and objects may also be blank nodes. A blank node is a
resource whose name is not known. A blank node can also be considered as an
existential quanti�er, i.e., indicating something should be here, but we do not know
what. Even though the RDF standard de�nes blank nodes as existential quanti�ers,
using blank nodes as anonymous resources is more widespread [ACM10]. In �g. 2.2,
a blank node is used to group the subjects of the blog (comics and procrastination) in
an ordered sequence.

Finally, objects may also be literals. A literal is a string with an optional type IRI
or an optional language tag. The type IRI indicates how the string shall be interpreted.
For example, ("29",xsd:integer) represents the integer number 29.

Listing 2.1 shows the triple representation of �g. 2.2 in N-Triples syntax. Full
IRIs are enclosed in angled brackets, e.g., <http://www.phdcomics.com/blog.php>.
Literals are surrounded by quotes, e.g., "Tajel". The optional type IRI of the literal
is appended with the ^^ operator, e.g., "29"^^xsd:integer. Other popular syntaxes
include XML (the original syntax), Turtle (used in SPARQL queries), and RDFa (for
embedding RDF data inside HTML documents).

An RDF graph may be assembled from various sources. IRIs serve as globally
unique identi�ers. The same IRI appearing in di�erent RDF documents refers to the
same node in the combined graph.

2.1.2 Formal Definition

Let I, B, L, and S be pairwise disjoint in�nite sets respectively representing IRIs,
blank nodes, literals, and Unicode strings. The set of all RDF terms is denoted by
T = I ∪ B ∪ L. These notations will be used throughout this document.

An RDF triple is a triple (s,p,o) ∈ (I ∪B) × I × (I ∪B ∪L). An RDF graph G is a
set of RDF triples. We denote TG the �nite set of RDF terms appearing in graph G.

De�nition 2.1. An RDF graph (or RDF dataset) is a �nite set of triplesG ⊂ (I∪B) ×
I × (I ∪ B ∪ L).

Literals are partitioned in plain literals (denoted by Lp) and typed literals (de-
noted by Lt ). Plain literals are strings with an optional language tag. Typed literals
are strings with a mandatory type IRI. In contrast to plain literals, typed literals
can be further interpreted according to the type IRI. For example, the typed literal
"29"^^xsd:integer represents the integer number 29. Note that there are two kinds of
strings: plain literals, e.g., "Tajel", and typed strings, e.g., "Cecilia"^^xsd:string.
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@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix dc: <http://purl.org/dc/terms/> .

@prefix dbp: <http://dbpedia.org/resource/> .

@prefix phd: <http://phdcomics.com/#> .

phd:Students rdf:type foaf:Group .

# From Tajel’s foaf.rdf

phd:Tajel foaf:member phd:Students .

phd:Tajel foaf:name "Tajel" .

phd:Tajel foaf:age "29"^^xsd:integer .

phd:Tajel foaf:knows phd:Cecilia .

phd:Tajel foaf:knows phd:Mike .

# From Cecilia’s homepage

phd:Cecilia foaf:member phd:Students .

phd:Cecilia foaf:name "Cecilia"^^xsd:string .

phd:Cecilia foaf:age "26"^^xsd:integer .

phd:Cecilia foaf:knows phd:Tajel .

phd:Cecilia foaf:interest dbp:Procrastination .

phd:Cecilia foaf:weblog <http://www.phdcomics.com/blog.php> .

<http://www.phdcomics.com/blog.php> foaf:topic dbp:Procrastination .

# From embedded RDFa on the page

<http://www.phdcomics.com/blog.php> dc:created

"2005-07-10T08:20:00"^^xsd:dateTime .

<http://www.phdcomics.com/blog.php> dc:subject _:a .
_:a rdf:type rdf:Seq .
_:a rdf:_1 "comics" .
_:a rdf:_2 "procrastination" .

# From Mike’s foaf.rdf

phd:Mike foaf:member phd:Students .

phd:Mike foaf:name "Michael Slackenerny" .

phd:Mike foaf:age "35"^^xsd:decimal .

phd:Mike foaf:interest dbp:Procrastination .

phd:Mike foaf:interest phd:Free%20Food .

phd:Mike foaf:knows phd:Smith .

# Generated from the department’s database

phd:Smith foaf:name "Brian B. Smith" .

phd:Smith foaf:age "56"^^xsd:integer .

phd:Smith foaf:interest dbp:Research .

Listing 2.1: Triples notation of the RDF graph depicted in fig. 2.2. The graph has been

constructed by combining smaller graphs from various fictional sources. IRIs serve

as globally unique identifiers.
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A plain literal is a couple (s,l ) where s ∈ S is the lexical form and l ∈ S the
language tag, representing the language in which s is written. A simple literal is a
plain literal with the empty string as language tag (l = ""). We denote Lps the set of
simple literals, and Lpl the set of plain literals that are not simple literals, i.e., plain
literals with a non-empty language tag. A typed literal is a tuple (s,t ) where s ∈ S is
the lexical form and t ∈ I the datatype, de�ning how s should be interpreted.

To conveniently access the di�erent parts of literals, we de�ne the str, lang and
datatype functions. Given a literal a ∈ L, str(a) is the lexical form of a. For an
IRI i ∈ I, we also de�ne str(i ) to be the string representation of i . Given a plain
literal a = (s,l ) ∈ Lp , lang(a) , l is the language tag of a. Given a typed literal
a = (s,t ) ∈ Lt , datatype(a) , t is the datatype IRI of a.

RDF itself does not care about the interpretation of typed literals, but SPARQL han-
dles some standard datatypes. We further partition the set of typed literals into strings
(Lts ), boolean values (Ltb ), numeric values (Ltn), dates (Ltd ) and other values (Lto).
The partitioning is based on the datatype IRI. The sets Ltb , Ltn and Ltd may contain
ill-formed literals that cannot be interpreted. For example, ("z",xsd:integer) ∈ Ltn

is a valid literal, but not a valid number. Figure 2.3 shows a summary of the type
hierarchy.

Let a ∈ Lt , we denote value(a) the interpreted value of the typed literal a. If a ∈
Lto or if a is ill-formed, value(a) is the special value error. If a ∈ Lts , value(a) = str(a).
If a ∈ Ltb ∪ Ltn ∪ Ltd , value(a) is respectively the interpreted boolean, numeric or
date value of str(a). Boolean values are denoted by true and false. Note that di�erent
lexical forms may have the same interpreted value. The value function is not injective.

The reverse operation, i.e., converting an interpreted value into an RDF term, is
handled by the RDF function. For any typed literal a and interpreted value v , we have
RDF(v ) = a ⇒ value(a) = v . As a convenience for propagating errors, we de�ne
RDF(error) = error.

2.2 Vocabularies and Inference

In its most basic form, a vocabulary consists of a set of RDF terms. Most vocabularies
designed for reuse in the Semantic Web, come with additional information describing
relations between vocabulary terms. For example, if a resource is a member of
another resource, that other resource is a group. Such rules are often described with
RDF Schema [Hay04] or the Web Ontology Language (OWL) [DS04].

RDF Schema allows to de�ne a hierarchy of classes and to specify the domain and
the range of properties. For example, �g. 2.4 shows a part of the RDF Schema rules
for the FOAF vocabulary. The rules state the following:

• If x is the subject or object of a triple with predicate foaf:knows, then we can
infer the triple (x ,rdf:type,foaf:Person), i.e., resources knowing each other
are persons.

• If we have (x ,rdf:type,foaf:Person), then we can infer the triple (x ,rdf:type,
foaf:Agent), i.e., a person is an agent.
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RDF terms (T)

IRIs (I) Blank nodes (B) Literals (L)

Plain literals (Lp)

Simple (Lps )

with language tags (Lpl )

Typed literals (Lt )

Strings (Lts )

Booleans (Ltb )

Numbers (Ltn)

Dates (Ltd )

Others (Lto)

phd:Cecilia _:a

("Tajel", "")

("Thèse", "fr")

("Cecilia",xsd:string)

("true",xsd:boolean)

("29",xsd:integer)

("2005-07-10T08:20:00",
xsd:dateTime)

("D0D4C5D8",
xsd:hexBinary)

Figure 2.3: RDF terms are partitioned into a type hierarchy. Examples are shown

below the classes.
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foaf:knows foaf:Person foaf:Agent

rdfs:Property rdfs:Class

rdfs:domain

rdfs:range

rdfs:subClassOf

rdf:type rdf:type rdf:type

Figure 2.4: With RDF Schema, one can specify that if two resources know each other,

then both are persons. Every person is also an agent. This graph is part of the FOAF

specification [BM10].

foaf:Person foaf:Organization

owl:Class

owl:disjointWith

owl:disjointWith

rdf:type rdf:type

Figure 2.5: With OWL, one can specify that a resource cannot be a person and an

organization at the same time. This graph is part of the FOAF specification [BM10].

RDF Schema has if-semantics [Hor05], i.e., it cannot add contradictory knowledge.
An RDF graph can never be invalid in such semantics.

OWL extends RDF Schema to allow rules such as equivalences between classes
or properties, mutual exclusions, cardinality constraints, etc. OWL has i�-semantics,
meaning some RDF graphs may be incoherent. For example, �g. 2.5 states that
an RDF graph may not contain both (x ,rdf:type,foaf:Person) and (x ,rdf:type,

foaf:Organization) at the same time for any resource x .
RDF de�nes the notion of entailment [Hay04]. A graph G1 entails a graph G2,

noted by G1 |= G2, if G1 contains more knowledge than G2. Formally, entailment
is de�ned by means of interpretations. The exact de�nition depends on the used
entailment regime, e.g., RDF Schema or OWL rules. When no such regime is used, i.e.,
when simple entailment is used, G1 |=G2 if and only if there exists a homomorphism
from G2 into G1. A homomorphism exists if there exists a mapping µ from the blank
nodes ofG2 to the terms ofG1 such that µ[G2] ⊆ G1, where µ[G2] is the graph obtained
by replacing the blank nodes of G2 by their value in µ [Bag05]. From the entailment
perspective, any blank node is an existential quanti�er. If there are no blank nodes in
G2, G1 |=G2 ⇔ G2 ⊆ G1.

Example 2.1. Consider the graph G shown in �g. 2.2, and the graphs G1 consisting of
the single triple (phd:Tajel,foaf:member,phd:Students), and G2 consisting of the
single triple (b,foaf:member,phd:Students), whereb is a blank node. We haveG |=G1,
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because the triple set of G1 is a subset of the triple set of G . Let µ = { (b,phd:Tajel) },
we have µ[G2] ⊂ G, and thus G |=G2. Note that other mappings µ are possible.

For the RDF Schema and OWL entailment regimes, G1 |= G2 if and only if G2
is entailed by the deductive closure of G1 with respect to the considered regime.
The deductive closure of a graph is obtained by adding all triples inferred by the
RDF Schema or OWL rules. In practice, the deductive closure is not necessarily
computed entirely.

Example 2.2. Using the RDF Schema entailment regime with the rules of �g. 2.4, the
graph consisting solely of the triple (phd:Tajel,rdf:type,foaf:Agent) is entailed
by the graph of �g. 2.2. Because phd:Tajel is the subject of a triple with predicate
foaf:knows, we infer that Tajel is of type foaf:Person. As every person is an agent,
we further infer that Tajel is of type foaf:Agent.

Verifying that G1 |= G2 under simple entailment or the RDF Schema regime is
NP-complete, except when there are no blank nodes in G2 [Hor05]. Entailment under
the OWL regime is undecidable. OWL DL is a decidable subset of OWL designed to
circumvent this drawback.

2.3 SPARQL �ery Language

SPARQL [PS08] is a query language for RDF. In its simplest form, a query is a set of
triple patterns, i.e., triples where elements may be replaced by variables. Figure 2.6
shows an example querying the names of all PhD students. The set of triple patterns,
called the basic graph pattern, de�nes a pattern graph that has to be matched with the
target dataset. A solution consists of a mapping of the variables of the pattern graph
to terms of the dataset. This is similar to the entailment of RDF graphs explained in
section 2.2. However, we are now interested in the mappings themselves instead of
merely their existence.

SPARQL queries combine basic graph patterns into compound patterns with
composition, optional or alternative parts. Filters add constraints on the variables.

SELECT ?name WHERE {

?p foaf:member phd:Students .

?p foaf:name ?name .

}

(a) SPARQL query

p name

phd:Students

foaf:name

foaf:member

(b) Associated pa�ern graph

Figure 2.6: Simple SPARQL query for the dataset shown in fig. 2.2. The query returns

the names of all the PhD students.
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Similarly to SQL, from which SPARQL borrows its syntax, the results may be sorted,
projected, �ltered from duplicates, etc.

This section presents the abstract syntax (section 2.3.1) and the semantics (sec-
tion 2.3.2) of the SPARQL language, based on Pérez et al. [PAG09]. In order to cover
a broader part of the SPARQL speci�cation, we de�ne the full semantics of the
expressions, and explain the solution modi�ers. Compared to the o�cial W3C rec-
ommendation [PS08], the following de�nition makes some simplifying assumptions
without restricting the expressiveness of the language, as explained by Angles and
Gutierrez [AG08]. For the sake of readability, this chapter uses set semantics instead
of the bag semantics described in the recommendation. Such simpli�cations are also
done by Pérez et al. [PAG09]. The results can be easily extended to bag semantics.

2.3.1 SPARQL Syntax

A SPARQL query consists of two parts: a graph pattern and solution modi�ers. The
graph pattern is to be matched with the RDF graph. The resulting solution set is
transformed into a list according to the solution modi�ers.

To avoid dealing with parsing speci�cities, we present here an algebraic syntax
for SPARQL queries. We �rst present expressions that may appear in various parts of
the query. Then we de�ne graph patterns and solution modi�ers.

Let V be an in�nite set representing variables. The set of variables is disjoint from
the set of RDF terms, i.e., V ∩ T = ∅.

De�nition 2.2. An expression is recursively de�ned as follows.

• If a ∈ I ∪ L, then (a) is an expression.

• If x ∈ V, then (x ) and (bound(x )) are expressions.

• If E is an expression, then (¬E), (isIRI(E)), (isBlank(E)), (isLiteral(E)), (str(E)),
(lang(E)) and (datatype(E)) are expressions.

• If E1 and E2 are expressions, then (E1 ∧ E2), (E1 ∨ E2), (E1 = E2), (E1 , E2),
(E1 < E2), (E1 6 E2), (E1 > E2), (E1 > E2), (sameTerm(E1,E2)), (E1 ∗ E2),
(E1/E2), (E1 + E2) and (E1 − E2) are expressions.

To summarize, an expression consists of IRIs, literals and variables, but not blank
nodes, composed together with logical connectives, comparison operators, arithmetic
operators, unary functions and unary and binary predicates. The SPARQL standard
also de�nes the langMatches and regEx predicates, as well as type casting operators.
For concision, we do not consider such operators in this chapter.

The building block of a graph pattern is a triple pattern. A triple pattern is an
RDF triple, where components may be replaced by variables. A set of triple patterns
is called a basic graph pattern (BGP). BGPs may be composed together with binary
operators to build more complex graph patterns. Patterns may also be �ltered by
expressions.
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Let P be a graph pattern, we denote vars(P ) the set of variables appearing in P .
Similarly, if E is an expression, we denote vars(E) the set of variables appearing in E.

De�nition 2.3. A triple pattern is a tuple (s,p,o) where s ∈ I ∪ V, p ∈ I ∪ V, and
o ∈ I ∪ L ∪ V.

De�nition 2.4. A graph pattern is recursively de�ned as follows.

1. P ⊂ (I ∪V) × (I ∪V) × (I ∪ L ∪V) is a basic graph pattern, i.e., a set of triple
patterns.

2. Let P1 and P2 be graph patterns. (P1 and P2), (P1 union P2), (P1 diff P2) and
(P1 opt P2) are compound graph patterns.

3. Let P be a graph pattern and E be an expression, such that vars(E) ⊆ vars(P ),
(P filter E) is a constrained graph pattern.

Without loss of generality, we have excluded blank nodes from appearing in triple
patterns. Blank nodes appearing in a query are considered as existential quanti�ers
and may be replaced by fresh variables [Mal+11].

The and, union and opt operators map respectively to the period (.), UNION and
OPTIONAL keywords in SPARQL. The W3C recommendation does not de�ne a diff
operator. However, such operator can be obtained by combining opt and filter
operators as shown in Angles and Gutierrez [AG08].

For reasons of simplicity, we also restrict the scope of a �lter expressions to the
pattern it constrains. Such approach is also followed by Pérez et al. [PAG09] and does
not alter the expressive power of the language [AG08].

Solution modi�ers determine which variables of which solutions should be re-
turned and in what order. A set of solution modi�ers may contain at most one solution
modi�er of each type.

De�nition 2.5. A solution modi�er is one of

• project(X ), where X ⊂ V,

• distinct,

• limit(n), where n ∈ N,

• offset(n), where n ∈ N,

• order(〈O〉), where 〈O〉 is a sequence of couples (E,D) with E an expression
and D ∈ { asc,desc }.

A graph pattern and a set of modi�ers together is a complete SPARQL query. The
W3C recommendation also speci�es three query forms: select, ask and construct.
The select form returns the list of solutions as mappings between variables and RDF
terms. The ask form implies the limit(1) solution modi�er. The result is “yes” if
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there is a solution and “no” otherwise. The construct form generates an RDF graph
for every solution, by replacing variables with their values in a template graph. Query
forms are mostly cosmetic and do not alter the way the query is solved. As such, we
restrict ourselves to the select query form.

De�nition 2.6. A query is a couple Q = (P ,M ), with P a graph pattern and M a set
of solution modi�ers. A query instance is a couple (Q ,G ), with Q a query and G an
RDF graph.

2.3.2 SPARQL Semantics

A solution of a query instance is an assignment of variables to RDF values. The
solutions of a query instance are de�ned in two steps. Evaluating the graph pattern,
results in a set of solutions. The solution modi�ers determine how to transform this
set into a list.

De�nition 2.7. A solution mapping is a partial function µ : V→ T. The domain of
the mapping is denoted by dom(µ ).

A solution mapping is also represented as a set of assignments (x ,v ). Set opera-
tions, like the union of two sets, can be applied on solution mappings, provided the
operands are compatible.

De�nition 2.8. Two mappings µ1 and µ2 are said to be compatible, denoted by µ1 ∼ µ2,
if ∀x ∈ dom(µ1) ∩ dom(µ2),µ1 (x ) = µ2 (x ).

Two mappings are compatible if they agree on their shared variables. Intuitively,
one mapping can be extended into the other by assigning more variables. Note that
the ∼ relation is re�exive and symmetric, but not transitive.

Before de�ning the evaluation of a graph pattern, we show the evaluation of
an expression. Expressions are evaluated when handling constrained patterns and
solution modi�ers. Given a solution mapping µ, we �rst substitute each variable
assigned by µ by its assigned value. Then, we get the value of the resulting expression.
Any variable left is unbound and results in an error.

De�nition 2.9. The substitution of a solution mapping µ in an expression E, denoted
by µ[E], is the expression obtained by applying the following operations on E for any
x ∈ dom(µ ).

1. Replace each occurrence of bound(x ) by the value RDF(true).
2. Replace each occurrence of x that is not the operand of a bound() predicate by

the value µ (x ).

As the evaluation of an expression may result in an error, a three-state Boolean
logic is used. The states true and false have their usual meaning. An additional state
error indicates an evaluation error. Negating error has no e�ect, i.e., ¬error = error.
The semantics of the ∧ and ∨ connectives are given by the truth tables in table 2.1.
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a ∧ b true false error

true true false error

false false false false

error error false error

a ∨ b true false error

true true true true

false true false error

error true error error

Table 2.1: Truth tables for logical connectives in a three-state boolean logic. Note

that the error propagation may seem counter-intuitive.

The value of an expression E, denoted by ~E�, is either an RDF term or error. Any
RDF term can be used as a Boolean predicate. The conversion of an RDF term v into
a Boolean value is called the e�ective Boolean value of the RDF term, denoted by
EBV(v ). For convenience, we also de�ne EBV(error) = error.

De�nition 2.10. The e�ective Boolean value of a value v ∈ T ∪ { error }, denoted by
EBV(v ), is

EBV(v ) ,



true if (v ∈ Ltb ∧ value(v ) = true)∨

(v ∈ Ltn ∧ value(v ) < { 0,NaN })∨

(v ∈ Lp ∪ Lts ∧ str(v ) , "")
error if t < Ltb ∪ Ltn ∪ Lp ∪ Lts

false otherwise

where NaN is the special not-a-number value of standard IEEE 754 �oating point
arithmetic.

De�nition 2.11. The value of an expression E, denoted by ~E�, is an RDF term or
an error, recursively de�ned as follows.

1. If E ≡ (a), where a ∈ T, ~E� , a.

2. If E ≡ (x ), where x ∈ V, ~E� , error.

3. If E ≡ (¬E ′), ~E� , RDF
(
¬EBV(~E ′�)

)
.

4. If E ≡ (E1 • E2), where • ∈ { ∧,∨ }, ~E� , RDF
(

EBV(~E1�) • EBV(~E2�)
)
.

5. If E ≡ sameTerm(E1,E2),

~E� ,


RDF(true) if ~E1� = ~E2�

error if ~E1� = error ∨ ~E2� = error

RDF(false) otherwise.
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6. If E ≡ (E1 = E2),

~E� ,



RDF(true) if ~E1� = ~E2�

RDF
(

value(~E1�) = value(~E2�)
)

if (~E1� ,~E2�) ∈

L2
ts ∪ L2

tb ∪ L2
tn ∪ L2

td

RDF
(

str(~E1�) = str(~E2�)
)

if (~E1� ,~E2�) ∈ L2
ps

RDF(false) if (~E1� ,~E2�) < L2∧

~E1� , ~E2�

error otherwise.

7. If E ≡ (E1 , E2), ~E� =
�
¬(E1 = E2)

�.
8. If E ≡ (E1 • E2), where • ∈ { <,6,>,> },

~E� ,



RDF
(

value(~E1�) • value(~E2�)
)

if (~E1� ,~E2�) ∈

L2
ts ∪ L2

tb ∪ L2
tn ∪ L2

td

RDF
(

str(~E1�) • str(~E2�)
)

if (~E1� ,~E2�) ∈ L2
ps

error otherwise.

9. If E ≡ (E1 • E2), where • ∈ { ∗,/,+,− },

~E� ,


RDF
(

value(~E1�) • value(~E2�)
)

if (~E1� ,~E2�) ∈ L2
tn

error otherwise.

10. If E ≡ bound(x ), ~E� , false.

11. If E ≡ f (E ′), where f = isIRI (resp. isBlank and isLiteral),

~E� ,


RDF(true) if ~E ′� ∈ I (resp. B and L)
error if ~E ′� = error

RDF(false) otherwise.

12. If E ≡ str(E ′), ~E� ,

(str(~E ′�), "") if ~E ′� ∈ I ∪ L
error otherwise.

13. If E ≡ lang(E ′), ~E� ,

(lang(~E ′�), "") if ~E ′� ∈ Lp

("", "") if ~E ′� ∈ Lt

error otherwise.

14. If E ≡ datatype(E ′), ~E� ,


datatype(~E ′�) if ~E ′� ∈ Lt

xsd:string if ~E ′� ∈ Lps

error otherwise.
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Note that the SPARQL speci�cation distinguishes between identity and equiva-
lence. The (sameTerm(E1,E2)) predicate asserts the identity of E1 and E2, i.e., whether
they refer to the exact same RDF term. The (E1 = E2) predicate asserts the equivalence
of E1 and E2, i.e., whether their interpreted values are equal. The notion of equivalence
is only de�ned on pairs of literals of the same type that SPARQL understands, i.e.,
simple literals, strings, booleans, numbers and dates. If E1 and E2 do not have the
same type, or they have a type that is not understood by SPARQL, they are said to
be incomparable. Plain literals with non-empty language tags are also incomparable.
In such cases, ~E1 = E2� falls back on the identity. If the values of E1 and E2 are not
identical, the result is false, except if both operands are literals, in which case the
result is error.

Similarly to expressions, we de�ne the substitution of a solution mapping in a
graph pattern. The evaluation of a graph pattern P over a graph G is denoted by
~P�G .

De�nition 2.12. The substitution of a solution mapping µ in a graph pattern P ,
denoted by µ[P], is the graph pattern obtained by applying the following operations
on P .

1. Replace any variable x ∈ dom(µ ) occurring in triple patterns appearing in P by
the value µ (x ).

2. Replace any expression E appearing in P by the substitution µ[E].

De�nition 2.13. The evaluation of a graph pattern P over a graph G, denoted by
~P�G , is a set of solution mappings recursively de�ned as follows.

1. If P is a basic graph pattern, ~P�G , { µ | dom(µ ) = vars(P ) ∧ µ[P] ⊆ G }.

2. If P ≡ (P1 and P2), ~P�G , { µ1 ∪ µ2 | µ1 ∈ ~P1�G ∧ µ2 ∈ ~P2�G ∧ µ1 ∼ µ2 }.

3. If P ≡ (P1 union P2), ~P�G , { µ | µ ∈ ~P1�G ∨ µ ∈ ~P2�G }.

4. If P ≡ (P1 diff P2), ~P�G , { µ1 | µ1 ∈ ~P1�G ∧ ¬∃µ2 ∈ ~P2�G ,µ1 ∼ µ2 }.

5. If P ≡ (P1 opt P2), ~P�G ,
�
(P1 and P2) union (P1 diff P2)

�
G .

6. If P ≡ (P ′ filter E), ~P�G , { µ | µ ∈ ~P ′�G ∧ EBV(
�
µ[E]�) = true }.

Evaluating a basic graph pattern involves �nding a matching subset of the RDF
graph. Such de�nition assumes no entailment regime is used. When using an entail-
ment regime such as RDF Schema or OWL, evaluating a BGP amounts to �nding an
instance of the pattern graph that is entailed by the target RDF graph. Formally, the
de�nition becomes ~P�G , { µ | dom(µ ) = vars(P ) ∧G |= µ[P] }. IfG is the deductive
closure of the target RDF graph, the de�nitions are equivalent.
Example 2.3. Consider the target RDF graph G depicted in �g. 2.2, and the BGP
{(p,rdf:type,foaf:Person)}, where p is a variable. Under the simple entailment
regime, the evaluation of the BGP yields no solution. When using the RDF Schema
entailment regime with the rules depicted in �g. 2.4, the results are phd:Tajel,
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phd:Cecilia, phd:Mike, and phd:Smith. Indeed, we infer they are persons as they
are involved in foaf:knows relations.

The and operator is the concatenation of two patterns. The union operator
produces the union of the solution sets of the operand patterns. The diff operator
returns all the solutions of the left-hand operand that cannot be extended with a
solution of the right-hand operand. Intuitively, (P1 opt P2) tries to extend solutions
of P1 with solutions of P2. However, if the extension of a solution µ1 ∈ P1 fails
(i.e., µ1 ∈ ~P1 diff P2�G ), that solution µ1 becomes a solution of the opt pattern
too. Figure 2.7 shows examples of the evaluation of compound patterns. The filter
pattern only keeps the solutions of the subpattern for which the condition expression
is satis�ed.

Corollary. Any solution mapping in the evaluation of a pattern P does not cover more
variables than appear in P , i.e., dom(µ ) ⊆ vars(P ) for all µ ∈ ~P�G .

By construction, the domain of a solution of a basic graph pattern is the set of
variables appearing in the pattern. The evaluation of a compound pattern combines
the evaluation of the subpatterns without adding new variables.

The set of solution modi�ers of a query is transformed into a modi�er function.
That function is applied on the evaluation of the graph pattern and returns the
(modi�ed) solutions in a sequence. The modi�er function is composed of the Sort,
Project, FilterDups and Slice functions.

The Sort(〈O〉,Ω) function returns all the elements of the set Ω in a sequence
ordered by 〈O〉 lexicographically. For every ordering criterion (E,D) in 〈O〉, the sort
key is given by �µ[E]� with µ ∈ Ω. If D = asc, the order direction is ascending. If
D = desc, the direction is descending.

The Project(X ,〈µ1, . . . ,µn〉) function returns a sequence 〈µ ′1, . . . ,µ ′n〉, where ∀i ∈
{ 1, . . . ,n } ,dom(µ ′i ) = dom(µi ) ∩ X and ∀i ∈ { 1, . . . ,n } ,x ∈ dom(µ ′i ),µ

′
i (x ) = µi (x ).

The FilterDups(〈µ1, . . . ,µn〉) function returns the input sequence without dupli-
cate elements. If there are duplicate elements at di�erent positions of the input
sequence, it is not speci�ed which element to keep.

The Slice(nO ,nL,〈µ1, . . . ,µn〉) function returns the sequence 〈µnO+1, . . . ,µnO+nL〉.

De�nition 2.14. The modi�er functionm, mapping a set of solutions Ω to a sequence
of solutions, associated with a set of solution modi�ers M is

m(Ω) =


Slice(nO ,nL,FilterDups(Project(X ,Sort(〈O〉,Ω)))) if distinct ∈ M
Slice(nO ,nL,Project(X ,Sort(〈O〉,Ω))) otherwise,

where nO = n if offset(n) ∈ M or 0 otherwise, nL = n if limit(n) ∈ M or ∞
otherwise, X is the set given by project(X ) if project(X ) ∈ M or V otherwise, 〈O〉
is the sequence given by order(〈O〉) if order(〈O〉) ∈ M or the empty sequence
otherwise.

De�nition 2.15. The evaluation of a query instance (Q ,G ), with Q = (P ,M ), is the
sequence of solution mappingsm(~P�G ), wherem is the modi�er function associated
to M .
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P1
p a

phd:Cecilia 26
phd:Mike 35
phd:Tajel 29

P2
p t

phd:Cecilia dbp:Procrastination

phd:Mike dbp:Procrastination

phd:Mike phd:Free Food

phd:Smith dbp:Research

P1 and P2
p a t

phd:Cecilia 26 dbp:Procrastination

phd:Mike 35 dbp:Procrastination

phd:Mike 35 phd:Free Food

P1 union P2
p a t

phd:Cecilia 26
phd:Mike 35
phd:Tajel 29
phd:Cecilia dbp:Procrastination

phd:Mike dbp:Procrastination

phd:Mike phd:Free Food

phd:Smith dbp:Research

P1 diff P2
p a

phd:Tajel 29

P1 opt P2
p a t

phd:Cecilia 26 dbp:Procrastination

phd:Mike 35 dbp:Procrastination

phd:Mike 35 phd:Free Food

phd:Tajel 29

Figure 2.7: Examples of pa�ern evaluation on the example graph of fig. 2.2 for

combinations of the BGPs P1 ≡ {(p,foaf:member,phd:Students), (p,foaf:age,a)}

and P2 ≡ {(p,foaf:interest,t )}. Each row is a solution. A blank cell indicates that

the variable is not present in the solution.
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Example 2.4. Consider the solution set Ω of the graph pattern P1 opt P2 in �g. 2.7,
and the solution modi�ers

M =
{
project({p,a}),distinct,order(〈(a,asc)〉),limit(2),offset(1)

}
.

The associated modi�er function is

m(Ω) = Slice(1,2,FilterDups(Project({p,a},Sort(〈(a,asc)〉,Ω)))) .

Figure 2.8 shows the intermediate result for each function.

Ω0 = ~P�G
p a t

phd:Cecilia 26 dbp:Procrastination

phd:Mike 35 dbp:Procrastination

phd:Mike 35 phd:Free Food

phd:Tajel 29

Ω1 = Sort(〈(a,asc)〉,Ω0)

p a t

phd:Cecilia 26 dbp:Procrastination

phd:Tajel 29
phd:Mike 35 dbp:Procrastination

phd:Mike 35 phd:Free Food

Ω2 = Project({p,a},Ω1)

p a

phd:Cecilia 26
phd:Tajel 29
phd:Mike 35
phd:Mike 35

Ω3 = FilterDups(Ω2)

p a

phd:Cecilia 26
phd:Tajel 29
phd:Mike 35

Ω4 = Slice(1,2,Ω3)

p a

phd:Tajel 29
phd:Mike 35

Figure 2.8: The solution set of the graph pa�ern is transformed by the modifier

function into the solution sequence of the query. The set Ω0 is the evaluation result

of the P1 opt P2 pa�ern from fig. 2.7. The sequence Ω4 is the result of the query.



Chapter 3

Relational Databases Technology

used in SPARQL Engines

State-of-the-art SPARQL engines rely on relational database technology. This chapter
will explain how such engines store RDF graphs and how they evaluate SPARQL
queries. As a running example, we will consider the dataset shown in the previous
chapter in �g. 2.2, and the query of �g. 3.1. This chapter is based on surveys by Sakr
and Al-Naymat [SA10], Hose et al. [Hos+11], and Luo et al. [Luo+12].

The �rst section will provide a broad overview of state-of-the-art SPARQL engines.
The following sections will dive into the details of data storage (section 3.2) and query
processing (section 3.3).

3.1 Overview of State-of-the-art SPARQL Engines

State-of-the-art SPARQL engines based on relational database technology store the
triples of an RDF graph in relational tables. A SPARQL query can then be seen as an
SQL query over those tables. The SQL query is evaluated using standard techniques.

Hose et al. [Hos+11] divides state-of-the-art systems in three classes, based on
the structure of the relational tables:

1. triple stores that store the whole dataset in one three-column table,

2. vertically partitioned tables that maintain one table for each predicate, and

3. property tables where several predicates are jointly represented.

This section gives an overview of each class.
Because of their popularity, the next sections will focus on triple stores. Vertically

partitioned tables have few advantages over triple stores with e�cient indexes. Prop-
erty tables are a middle-ground between the open nature of the semantic web and
the structured data of relational databases.
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SELECT ?p1 ?p2 WHERE {

?p1 foaf:member phd:Students . (t1)

?p1 foaf:age ?a1 . (t2)

?p2 foaf:member phd:Students . (t3)

?p2 foaf:age ?a2 . (t4)

FILTER (?a1 < ?a2) (E)

}

(a) SPARQL �ery

a1 a2

p1 p2

phd:Students

f
o
a
f
:
a
g
e

f
o
a
f
:
a
g
e

fo
af
:m
em
be
r foaf:member

<

(b) Associated BGP

Figure 3.1: The example query finds all pairs of PhD students where the first one is

strictly younger than the second one. Such inequality filters are common to break

symmetries.

subject predicate object
phd:Students rdf:type foaf:group

phd:Tajel foaf:member phd:Students

phd:Tajel foaf:name ("Tajel", "")
phd:Tajel foaf:age ("29",xsd:integer)
phd:Tajel foaf:knows phd:Cecilia

phd:Tajel foaf:knows phd:Mike

phd:Cecilia foaf:member phd:Students

phd:Cecilia foaf:name ("Cecilia",xsd:string)
. . . . . . . . .

Figure 3.2: A triple store stores all triples in one single triple table. To save space,

terms are usually mapped to identifiers (not shown here).

3.1.1 Triple Stores

Triple stores store the whole dataset in one giant table, called the triple table. Each
row in the table represents one triple. Figure 3.2 shows a part of the triple table for the
dataset of our running example (see �g. 2.2). Examples of SPARQL engines which use
triple stores are Sesame [BKH02], 4store [HLS09], Virtuoso [EM09], RDF-3X [NW08],
and Hexastore [WKB08].

To save space and improve e�ciency, most systems assign an integer identi�er
to every RDF term appearing in the dataset, e.g., with a hashing function or with
consecutive integers. The triple table then contains only the identi�ers, making it
more compact. Of course, the mapping has to be stored in an additional table.

Some systems, e.g., Sesame, 4store or Virtuoso, are able to store multiple RDF
graphs at once. The relational table is extended with a fourth column, identifying for
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each triple the provenance graph by its IRI. Such extended table is called a quadruple
table. In this thesis, we will focus on triple tables. In most cases, the extension to
quadruple tables is straightforward.

The basic query operation on a triple store is to retrieve all triples matching a
triple pattern. Remember a triple pattern is a triple where each component is either a
constant term or a variable, meaning any term can appear at that place. To answer
such queries e�ciently, indexes are maintained on (a subset of) all combinations of
columns of the triple table. The size of an index is approximately as large as the triple
table. Thus, the number of indexes maintained in a system is usually limited, or the
index has to be stored in a compressed format. Section 3.2 will provide more details.

A SPARQL query can be translated to an SQL query on the triple table. For each
triple pattern of the query, a copy of the triple table is included in the query. Whenever
a common variable is used in two triple patterns, a join is introduced between the two
corresponding table instances on the columns where the variable occurs. A condition
is added for every constant. Filters are translated to an equivalent SQL condition.

Example 3.1. The query in �g. 3.1 is translated to the following SQL query.

SELECT t1.s, t3.s

FROM triples t1, triples t2, triples t3, triples t4

WHERE t1.p = ’foaf:member’

AND t1.o = ’phd:Students’

AND t2.p = ’foaf:age’

AND t3.p = ’foaf:member’

AND t3.o = ’phd:Students’

AND t4.p = ’foaf:age’

AND t1.s = t2.s

AND t3.s = t4.s

AND t2.o < t4.o

A copy of the triple table, named triples, is included for each triple pattern. Four
copies are included, named t1, t2, t3, and t4. Conditions are stated on the subject (s),
predicate (p), and object (o) columns. In a real system, the constants would be �rst
mapped to the corresponding identi�ers. Similarly, the results would be translated
back to RDF terms.

The obtained SQL query can be evaluated using standard relational database
techniques. This involves converting the query in an equivalent tree of abstract
operators, i.e., join, projection, and selection operators. The abstract operators are
then mapped to physical operators that are executed. Key choices are the ordering
of the operators and the choice of the physical operators. Standard heuristics for
relational databases rely on statistics on the columns of the tables. However, such
statistics do not provide enough information when applied on the single triple table.
Speci�c heuristics are thus needed for SPARQL processing. Such heuristics, along
with a more detailed description of the query processing, are described in section 3.3.
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foaf:member

subject object
phd:Tajel phd:Students

phd:Cecilia phd:Students

phd:Mike phd:Students

foaf:age

subject object
phd:Tajel ("29",xsd:integer)
phd:Cecilia ("26",xsd:integer)
phd:Mike ("35",xsd:decimal)
phd:Smith ("56",xsd:integer)

foaf:name

subject object
phd:Tajel ("Tajel", "")
phd:Cecilia ("Cecilia",xsd:string)
phd:Mike ("Michael Slackenerny", "")
phd:Smith ("Brian B. Smith", "")

. . .

Figure 3.3: A system with vertically partitioned tables groups the triples by predicate

(not all tables are shown). The evaluation of triple pa�erns with constant predicate

involves much smaller tables than in a triple store. As for triple stores, terms are

usually mapped to identifiers (not shown here).

3.1.2 Vertically Partitioned Tables

In most real-world SPARQL queries, predicates are constant. Vertically partitioned
tables exploit this property. A two-column table is created for each predicate p,
containing the subject-object pairs of the triples with predicate p. Figure 3.3 shows
how the RDF graph of �g. 2.2 is stored in such scheme. SW-Store [Aba+09] is an
example of vertically partitioned system.

Instead of storing the tables in a traditional relational database, i.e., a row store, one
can also rely on a column store. A row store considers a table as a collection of rows.
A column store stores a table as a collection of columns. As all data within a column
have the same type, such columns can be compressed e�ciently. MonetDB [Idr+12]
is the prime example of column store. Recently, Virtuoso has added support for
column-wise tables [Erl12].

Vertically partitioned tables have two main advantages with respect to query
processing. Triple patterns with constant predicate can be evaluated e�ciently by
scanning the table of the predicate, which is much smaller than the triple table
of triple stores. However, such advantage is limited when using e�cient indexes
in triple stores (see section 3.2). Statistics on the vertically partitioned tables give
more accurate estimations when using standard heuristics. Specialized heuristics are
thus less needed. On the other hand, queries involving variable predicates are very
expensive to compute because they need to iterate over all two-column tables and
return the union of the results.
Example 3.2. The query in �g. 3.1 is translated to the following SQL query.

SELECT t1.s, t3.s
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FROM ‘foaf:member‘ t1, ‘foaf:age‘ t2, ‘foaf:member‘ t3, ‘foaf:age‘ t4

WHERE t1.o = ’phd:Students’

AND t3.o = ’phd:Students’

AND t1.s = t2.s

AND t3.s = t4.s

AND t2.o < t4.o

3.1.3 Property Tables

While RDF does not require any structure for the data, most datasets have an implicit
structure. Many resources appearing as subjects in the dataset can be partitioned in
a set of classes. Subjects in a class share the same, or a largely overlapping, set of
properties. For example, in �g. 2.2 every person has a name and an age. Property
tables group together all the properties of a subject in one row. Jena [Car+04] is an
example of such system.

A row in a property table represents a set of triples with the same subject. The
�rst column is the subject s . The other columns represent various predicates. The
value of a column p is the object p if the triple (s,p,o) exists in the dataset or NULL
otherwise. Figure 3.4 shows the property tables of the people and the web pages of
�g. 2.2.

Queries often access multiple properties of a subject. This is the case in our
running example of �g. 3.1, where we access the group and the age of each person.
Property tables are able to handle queries more e�ciently by avoiding to join tables to
combine multiple properties. For this reason, property tables are able to outperform
triple stores and vertically partitioned tables on very structured datasets [LM09].

Example 3.3. The query in �g. 3.1 is translated to the following SQL query.

SELECT p1.subject, p2.subject

FROM Person p1, Person p2

WHERE p1.‘foaf:member‘ = ’phd:Students’

AND p2.‘foaf:member‘ = ’phd:Students’

AND p1.‘foaf:age‘ < p2.‘foaf:age‘

The above query is very similar to what one may obtain when using standard relational
databases instead of RDF.

Property tables have a number of limitations however. Because RDF has a schema-
less nature, the structure of the data needs to be (re)discovered. If the user provides a
schema, e.g., with RDF-Schema or OWL, such information can be used. Otherwise,
heuristics are needed. There should not be too many NULLs in the tables as they
increase the storage space. Thus, storing the whole dataset in one table is not an
option. Instead, the triples need to be clustered heuristically in some way.

Another problem comes with multi-valued properties, i.e., triples with the same
subject and predicate, but di�erent objects. In our example, this happens with the
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Person
subject foaf:member foaf:name foaf:age foaf:weblog

phd:Tajel phd:Students "Tajel" 29 NULL
phd:Cecilia phd:Students "Cecilia" 26 http://...

phd:Mike phd:Students "Mike" 35 NULL
phd:Smith NULL "Brian B. Smith" 56 NULL

Web page
subject foaf:topic dc:created dc:subject

http://... dbp:Procrastination 2005-07-10 _:a

...
Remainder
subject predicate object
phd:Tajel foaf:knows phd:Cecilia

phd:Tajel foaf:knows phd:Mike

phd:Cecilia foaf:knows phd:Tajel

phd:Mike foaf:knows phd:Smith

. . . . . . . . .

Figure 3.4: Property tables group together the properties of a subject in a single row

(not all tables are shown). Such tables reflect the underlying structure of the data.

They are very close to the tables of a standard relational database. To fit on the page,

the datatypes of the literals are omi�ed.
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foaf:knows predicate. One solution would be to duplicate the columns to accommo-
date for multiple values. However, this can only be done if we know the maximum
number of values in advance. The other solution is to resort to a triple table to store
the remainder triples that cannot be expressed inside property tables. Such solution
is shown in �g. 3.4.

3.2 Triple Indexes

The simplest queries consist of a single triple pattern. Such queries are the basis of
more complex queries. To answer them e�ciently, triple stores make use of indexes.
An index is an auxiliary data structure that helps to e�ciently retrieve triples satisfying
some conditions, e.g., all triples whose predicate is foaf:member and whose object is
phd:Students. Note that our de�nition of index is intentionally large. Not all indexes
return full triples. For example, an index could return only the subjects that appear in
triples whose predicates are foaf:member.

In this section, we will �rst introduce the underlying data structures. Then, we
will show how they are used in state-of-the-art triple stores.

3.2.1 Data Structures

Conceptually, the data structures used for indexes are maps. They map keys (e.g.,
a predicate) to values (e.g., the triples with the given predicate). In the context of
databases, a value is also called a payload. Maps can also be used as mathematical
sets by using an empty payload. Table 3.1 shows an overview of the data structures
presented in this section.

B-trees

B-trees [Com79] are the most common data structures used for indexing in relational
databases. The complexity of a look-up is O (logn), with n the number of indexed
keys. B-trees are designed to work well when the cost of reading a node is high, e.g.,
it has to be read from the hard disk. We will discuss a particular variant, B+-trees,
that often occur in relational databases.

B-tree Radix trie Hash table Bitmap

Use Map or set Map or set Map or set Set
Look-up complexity O (logn) O (k ) O (1) O (1)
In-order traversal Yes Yes No Yes

Table 3.1: Indexes can be implemented with various data structures having di�erent

strengths and weaknesses.
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Figure 3.5: In a B
+
-tree, the key-value pairs are stored in the leaf nodes, i.e., the

bo�om level (only the keys are shown here). Internal nodes have multiple keys. Leaf

nodes are usually linked together to allow e�icient in-order traversal (shown with

do�ed arrows).

A B+-tree distinguishes between internal nodes and leaf nodes. Leaf nodes contain
consecutive keys along with their values. Internal nodes contain only keys. An
internal node with k keys has k + 1 children, partitioning the keys of its children.
For example, an internal node with keys ‘O’ and ‘R’ will have three child subtrees.
The �rst one will have all keys smaller than ‘O’, the second one keys between ‘O’
(inclusive) and ‘R’ (exclusive), and a third one with keys greater than or equal to ‘R’. To
provide e�cient in-order traversal, leaf nodes are usually linked together. Figure 3.5
shows an example of a B+-tree.

In a B+-tree, all nodes take the same amount of space on disk, called a page. The
time to read a page includes access time, i.e., the time to �nd the page on the disk, and
read time, i.e., the time to actually read the content of the page. On traditional hard
disks, the access time is not negligible, and the page size is a trade-o� between access
time and read time. Typical page sizes are 8 or 16 KB. The number of keys stored in a
node depends on the compression scheme inside the pages.

To ensure good look-up performances, the tree has to be balanced. Updating the
tree, i.e., inserting or removing keys, may involve splitting or merging nodes up to the
root in order to keep the balanced property. Because such operations can be costly,
engines sometimes resort to tricks to reduce the number of balancing operations
that have to be performed. One trick is to leave some empty space in all nodes to
accommodate for small insertions [Erl12]. Another trick is to maintain a small delta
structure that is periodically merged into the B+-tree [Hém+08; NW10].

Radix tries

A radix trie, also known as a Patricia tree [Mor68], is a pre�x tree where a node with
a single child is merged with its child. The worst-case complexity of a look-up is
O (k ), with k the size of the keys. This is worse than the complexity of B-trees since
k > logn (we need at least logn bits to distinguish between n elements). On the other
hand, updates to the data structure do not need costly balancing operations.
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Figure 3.6: A radix trie is a prefix tree where edge labels may be sequences of elements,

i.e., strings, instead of a single element. Values are a�ached to the leaf nodes (not

shown here).

In a radix trie, edges are labeled with sequences of elements. An element is a part
of a key, e.g., a character, a bit, a byte, etc. The key corresponding to a leaf node can
be reconstructed by concatenating the labels on the path to the leaf. Internal nodes
are empty. The leaves contain the payloads. Figure 3.6 shows an example of a radix
trie.

Hash tables

In a hash table, a key is transformed to a table index by applying successively a
hashing and a compression function. That index points to an entry of the hash table.
A collision occurs when two di�erent keys map to the same index. An entry can be a
list, also known as a bucket, of key-value pairs with all colliding keys. Alternatively,
an entry can also be a single key-value pair. A new key having the same index will
then be stored in the nearest empty entry. Such method is called open addressing.

The average time complexity of a look-up is O (1) if there are not too many
collisions. When inserting new keys, the table sometimes has to be extended. The
extension is a very costly operation as all items have to be rehashed and moved to
the new index.

Bitmaps

Bitmaps can only represent mathematical sets, i.e., maps with no payloads. A bitmap
consists of a bit array, also called a bit vector. A key is a natural number, representing
the index of a bit in the bit vector. The set contains the key if and only if its associated
bit is 1. Such look-up is performed in constant time.

A big advantage of bitmaps is the ability to perform bit-wise operations. For
example joining two bitmaps, i.e., computing the intersection of two sets, involves a
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bit-wise AND operation. Computers perform such operations very e�ciently.

3.2.2 Mapping RDF Terms to Identifiers

Before diving into the details of how triple stores store their indexes, we will brie�y
explain how RDF terms are mapped to integer identi�ers. Handling identi�ers has two
major advantages over dealing with terms directly. First, identi�ers have �xed length
in contrast to the variable length of RDF terms. More e�cient �xed-length records
can thus be used. Second, IRIs often appear multiple times in an RDF graph. Storing
them only once and replacing them with shorter identi�ers results in signi�cant
space savings. There are two general approaches to the problem: hash-based and
counter-based.

Hash-based approaches apply a hash function to the RDF terms. For example,
4store [HLS09] uses a 64-bit key to identify the terms. Care must be taken to distin-
guish between the various types of RDF terms, e.g., IRIs and literals. In 4store, such
information is encoded in the most signi�cant bits. Hash collisions must be handled
to avoid wrong query results. Because collisions are unlikely, 4store refuses to load a
triple if it detects a collision.

Counter-based approaches simply assign consecutive integers to RDF terms. When
a new term is encountered, a counter is incremented and the value of the counter is
the new identi�er. Such approach is chosen by RDF-3X [NW08].

To translate identi�ers back to their original term, a dictionary table is needed.
The dictionary can use various data structures. For example, 4store uses a hash table,
and RDF-3X uses a B+-tree.

Variations on the general approaches are possible. For instance, Virtuoso [Erl12]
uses small terms (up to 8 bytes) directly as identi�ers. Common pre�xes of IRIs can
also be compressed more e�ciently.

3.2.3 Indexes in Triple Stores

State-of-the-art triple stores have di�erent approaches to index the triple table. In
this section, we will give an overview of the indexes used by Virtuoso, 4store, and
RDF-3X.

As noted above, an index is basically a key-value map. We will denote keys by
combinations of the following letters: S (subject), P (predicate), O (object), and G
(graph IRI). For example, the keys of an SP index are pairs of subjects and predicates.
In a B-tree, the order of the components specify the lexical ordering in the tree. For
example, keys in an SP index will �rst be ordered by subject, then by predicate.

We distinguish between full and partial indexes. In a full index, it is possible to
reconstruct full triples with the keys and their payloads. A full index is e�ectively
a complete copy of the triple table, albeit ordered di�erently. On the other hand, a
partial index alone does not allow to reconstruct the triple table.
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Virtuoso

Virtuoso [Erl12] is very �exible and allows the database administrator to specify the
indexes to create. The default indexing scheme includes 2 full indexes and 3 partial
indexes.

The �rst full index is a B-tree with PSOG keys and no payload. This index is used
to answer triple patterns with constant predicate, and possibly constant subject. To
handle patterns with constant predicate and object, the second full index is a B-tree
with POG keys and S bitmaps as payloads. Hence, for every combination of predicate,
object, and graph IRI appearing in the dataset, a bitmap containing the associated
subjects is stored.

To answer queries with variable predicates or constant graph IRI, the OP, SP, and
GS partial indexes are introduced. E.g., the OP index maps an object to predicates.
The full PSOG index can then be queried with the resulting predicates to retrieve the
full triples. The OP index is a B-tree with OP keys and no payloads. The SP (resp. GS)
index is a B-tree with S (resp. G) keys and P (resp. S) bitmap payloads.

4store

Even though 4store [HLS09] is considered as a triple store, its index structure resembles
vertically partitioned tables. For each predicate, two radix tries are built, one with
the subjects as keys, the other with predicates. The payloads contain lists of triples
matching the predicate and subject/object. Because the indexes are full indexes, the
triple table is not stored on disk.

A hash table maps graph IRIs to lists of triples. This full index allows to e�ciently
retrieve the triples of one graph. As a side e�ect, it also allows to quickly delete a
whole graph.

The authors of 4store have chosen radix tries over B-trees for their easy insertions
without costly balancing operations. Because identi�ers are evenly distributed thanks
to the hashing function, the worst-case conditions of radix tries should be uncommon.

RDF-3X

In contrast to the previous engines, RDF-3X does not support multiple graphs. The
triple table is not materialized. Instead, full B+-tree indexes with no payloads are
maintained for all six permutations of the columns: SPO, SOP, PSO, POS, OSP, and
OPS. While three indexes are enough to handle any triple pattern, the additional
indexes allow for di�erent orderings of the results. For example, for a triple pattern
with constant predicate, the PSO index will return triples ordered �rst by subject,
then by object. The POS index will instead return triples ordered �rst by object, then
by subject. The order of the results have an impact on the join operators described in
section 3.3.

RDF-3X also stores aggregated (partial) indexes for all possible pairs of columns:
SP, SO, PS, PO, OS, and OP. A payload in one of those indexes consists of the number
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of triples with the components speci�ed by the key. For example, the PO index of the
graph shown in �g. 2.2 will return 3 for key (foaf:member,phd:Student), because
there are three triples with that predicate and object. Similar aggregated indexes are
also created for S, P, and O, returning the number of triples with the given subject,
predicate, or object.

Aggregated indexes are used to e�ciently answer queries such as SELECT ?s ?o

WHERE { ?s ?p ?o }. Scanning through the SOP index would unnecessarily return
all predicates for each SO pair. Using the SO index instead skips over the predicates.
Aggregated indexes also give useful statistics to use during the query execution (see
section 3.3).

To reduce the space requirements of the indexes, RDF-3X compresses the leaf
pages of the B+-trees. Because all identi�ers are consecutive integers and the triples
in a leaf are sorted, a delta-compression scheme is applied. The leaf starts with a full
triple. For the next triples, only the di�erence with the previous triple is stored.

3.3 �ery Execution and Optimization

Thanks to the indexes described in the previous section, triples matching a triple
pattern can be e�ciently retrieved. From each triple, a solution mapping can be
constructed, assigning RDF terms to the variables. In order to evaluate a complete
query, the result sets of the triple patterns must be combined. The �rst step in the
query execution is to convert the SPARQL query into a tree of abstract operators. A
physical operator, i.e., an implementation, is then chosen for each abstract operator,
and the tree is executed bottom-up. The result set of the query is the result set of the
root operator.

In this section, we will �rst describe the two steps of the query execution, i.e., the
abstract and physical operators. Then, we will explain how state-of-the-art systems
optimize the query execution.

3.3.1 Abstract Operators

An abstract operator transforms/combines the result sets of its operand(s) and returns
a new result set. A SPARQL query is transformed in a tree of abstract operators.
Such a tree is very similar to the input query as described in section 2.3.2. However,
basic graph patterns are split into their triple patterns, which are combined with and
operators.

Figure 3.7 shows the abstract operator tree for the query of �g. 3.1. The leaves
of the abstract operator tree are the triple patterns. The inner nodes are one of the
following operators. The projection operator (π ) restricts the domain of the solutions
to a set of variables. The join (Z), union (∪), di�erence (\), left-join (X), and selection
(σ ) operators correspond respectively to the SPARQL and, union, diff, opt, and
filter operators.
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By evaluating the abstract operator tree bottom-up, we obtain the solutions of the
query. Figure 3.8 shows the intermediate result tables of the abstract operators when
evaluating the tree of �g. 3.7 on the RDF graph of �g. 2.2. Depending on the physical
operators chosen to implement the abstract operators (see section 3.3.2), some of the
intermediate result tables need to be materialized, while others do not. Materializing
an intermediate result involves computing the complete result set and storing it in
memory or on disk for further processing by the parent operator.

Splitting a basic graph pattern into a tree of joined triple patterns can be done in
various ways. Choosing the right tree has a great impact on the performances. For
example, if we had chosen to �rst join t1 and t3, which have no common variable, the
intermediate result tables would have been larger. Some ways of dealing with this
problem are explained in section 3.3.3.

3.3.2 Physical Operators

Each abstract operator can be implemented in various ways. An implementation is
called a physical operator. In the best case, an operator does not need to materialize
the result tables of its operands. In such cases, the operator is applied on iterators
that compute the solutions lazily. Hence, only one solution per operator needs to be
kept in memory.

Some operators, such as the projection or the selection operators, are trivial to
implement. In contrast, there exist a lots of physical operators implementing the join
operator. The choice of physical operator depends on the operators lower in the tree
and on the available indexes. We will describe the three fundamental physical join
operators: nested loop join, hash join, and merge join. In what follows, we consider
the join A Z B of two tables, such that variable x is shared between the two tables.
One can easily generalize to multiple shared variables.

The nested loop join is the simplest implementation. For each solution µA ∈ A,
we iterate over the solutions µB ∈ B. If the two solutions are compatible, µA ∪ µB is
returned. The nested loop join requires one of the two result tables to be materialized,
as we need to traverse it multiple times.

The hash join also requires one of the tables, e.g., B, to be materialized. We �rst
build a hash table, mapping values for x to solutions of table B. Then, we traverse
table A. For each solution µA, we look up µA(x ) in the hash table. If we �nd a solution
µB , we return µA ∪ µB . Otherwise, no compatible solution exist and we advance to
the next solution of A.

The merge join is the most e�cient implementation. No table needs to be materi-
alized. However, the tables A and B are required to be sorted by x . Let µA (resp. µB)
be the current solution of the iterator on table A (resp. B). There are three cases:

1. If µA(x ) = µB (x ), both solutions are compatible and we return µA ∪ µB . The
iterators on either A or B is advanced.

2. If µA(x ) < µB (x ), we advance the iterator on A.
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SELECT ?p1 ?p2 WHERE {

?p1 foaf:member phd:Students . (t1)

?p1 foaf:age ?a1 . (t2)

?p2 foaf:member phd:Students . (t3)

?p2 foaf:age ?a2 . (t4)

FILTER (?a1 < ?a2) (E)

}

(a) SPARQL query from fig. 3.1

πp1,p2

σE

ZC

ZB

t4t3

ZA

t2t1

(b) Abstract operator tree

Figure 3.7: A SPARQL query is converted to an abstract operator tree. Such a tree is

similar to the SPARQL query with the exception of basic graph pa�erns, which are

decomposed into triple pa�erns.

t1
p1
phd:Cecilia

phd:Mike

phd:Tajel

t2
p1 a1
phd:Cecilia 26
phd:Tajel 29
phd:Mike 35
phd:Smith 56

t3
p2
phd:Cecilia

phd:Mike

phd:Tajel

t4
p2 a2
phd:Cecilia 26
phd:Tajel 29
phd:Mike 35
phd:Smith 56

ZA

p1 a1
phd:Cecilia 26
phd:Mike 35
phd:Tajel 29
ZB

p2 a2
phd:Cecilia 26
phd:Mike 35
phd:Tajel 29

ZC
p1 a1 p2 a2
phd:Cecilia 26 phd:Cecilia 26
phd:Cecilia 26 phd:Mike 35
phd:Cecilia 26 phd:Tajel 29
phd:Mike 35 phd:Cecilia 26
phd:Mike 35 phd:Mike 35
phd:Mike 35 phd:Tajel 29
phd:Tajel 29 phd:Cecilia 26
phd:Tajel 29 phd:Mike 35
phd:Tajel 29 phd:Tajel 29

σE
p1 a1 p2 a2
phd:Cecilia 26 phd:Mike 35
phd:Cecilia 26 phd:Tajel 29
phd:Tajel 29 phd:Mike 35

πp1,p2

p1 p2
phd:Cecilia phd:Mike

phd:Cecilia phd:Tajel

phd:Tajel phd:Mike

Figure 3.8: The abstract operator tree in fig. 3.7 is evaluated bo�om-up. The solutions

of the query are the results of the root operator πp1,p2 . Because ZA and ZB do

not share any variable, the result set of ZC is the Cartesian product of both tables.

Depending on the physical operators, the intermediate result tables are not always

materialized. Note that the datatypes of literals have been omi�ed in the tables.
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3. If µA(x ) > µB (x ), we advance the iterator on B.

The algorithm is repeated until one of the two iterators reaches the end of the table.

3.3.3 �ery Optimization

Building an e�cient query plan, i.e., constructing the abstract operator tree and
assigning physical operators, has a high impact on the query evaluation performances.
Relational database systems resort to dynamic programming or randomized search to
select the best plan [NW09]. Such techniques need to estimate the cost of a query
plan. The cost of a query plan is directly related to the number of solutions generated
by each operator, i.e., the selectivity of the operator.

A standard technique used in o�-the-shelf relational databases involves attribute-
level histograms. Such histograms represent the distribution of the values for each
column of each table. However, the histograms ignore the correlation of columns.
Therefore, the estimates are often wrong for the single triple table of our triple stores.

RDF-3X uses the counts stored in the aggregated indexes as better histograms.
With these indexes, it can accurately predict the number of triples that a triple pattern
will generate. The information is then used to infer estimates for the join operators.

Virtuoso relies on query-time sampling. For triple patterns with constant predicate
and object, Virtuoso loads the �rst page of the bitmap in the POGS index. Based on
this page, it extrapolates the number of results that the triple pattern would generate.

Many other optimization techniques exist for processing SPARQL queries, in-
cluding algebraic rewriting (e.g., pushing �lters down the operator tree) [SML10]
and sideways information passing letting join operators communicate with each
other [NW09].
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Chapter 4

Constraint Programming

Constraint Programming (CP) is a programming paradigm designed to solve combi-
natorial NP-hard problems. CP has been shown to be e�cient for graph matching
problem [CDS09], which are closely related to SPARQL queries [Bag05].

The �rst section gives a general overview of CP. The following sections focus on
essential aspects of the CP framework: variables (section 4.2), constraints (section 4.3),
and search (section 4.4). Finally, section 4.5 presents the Comet solver, and section 4.6
gives a short overview of existing CP approaches for solving graph matching problems.

4.1 Overview of Constraint Programming

Constraint Programming is basically a technique to solve Constraint Satisfaction
Problems (CSPs). A CSP is a declarative way to state a problem where one has to
assign values to variables, such that a set of constraints are satis�ed. The domain of
each variable restricts the set of values that can be assigned to that variable. In this
chapter, we consider �nite domains and, without loss of generality, we assume that
domains are sets of integer values.

De�nition 4.1. A Constraint Satisfaction Problem (CSP) is a triple (X ,D,C ) where

• X is a set of variables,

• D : X → PN is a function mapping each variable to a domain, i.e., the �nite
set of integer values that can be assigned to the variable,

• C is a set of constraints on the variables of X .

De�nition 4.2. A constraint c over a set of variables vars(c ) = { x1, . . . ,xk } is a
mathematical relation c ⊂ Nk . An assignment µ : vars(c ) → N satis�es the constraint
c if (µ (x1), . . . ,µ (xk )) ∈ c .
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De�nition 4.3. A solution of a CSP (X ,D,C ) is an assignment µ : X → N of all the
variables in X , such that ∀x ∈ X ,µ (x ) ∈ D (x ) and all the constraints inC are satis�ed
by µ.

Example 4.1. A Latin square is an n × n grid that contains numbers from 1 to n such
that each number appears only once on any row and any column. Figure 4.1 shows
an example. Finding a Latin square amounts to solving the CSP (X ,D,C ) such that

• X = { xi j | 1 6 i 6 n,1 6 j 6 n },

• D (x ) = { 1, . . . ,n } ∀x ∈ X ,

• C = { xi j , xik | 1 6 i 6 n,1 6 j 6 n, j < k 6 n }

∪ { xi j , xkj | 1 6 i 6 n,1 6 j 6 n,i < k 6 n }.

Every cell of the grid corresponds to a variable. Each cell can take any value between
1 and n. The constraints ensure that two cells on the same row or on the same column
are assigned di�erent values. Alternatively, we could also have written the constraints

C = { allDi� (xi1, . . . ,xin ) | 1 6 i 6 n } ∪ { allDi� (x1j , . . . ,xnj ) | 1 6 j 6 n } ,

where the allDi� constraint is satis�ed when all its arguments are assigned di�erent
values.

Solving general CSPs is an NP-complete problem. Constraint Programming (CP)
is a complete technique to solve CSPs. Complete means that CP guarantees to �nd all
solutions given enough time.

CP uses a divide-and-conquer strategy. A CSP A is split into smaller CSPs Bi , such
that the solution set of A is equal to the union of the solution sets of all Bi . A CSP is
smaller if the domain of at least one variable is smaller and the domains of the other
variables are smaller or equal.

By recursively splitting the CSPs into smaller CSPs, we obtain a tree. The child
nodes are either inconsistent CSPs, or CSPs where the domain of each variable
is a singleton. Such a CSP has one trivial solution if the assignment satis�es all

2 1 4 3

1 2 3 4

3 4 1 2

4 3 2 1

Figure 4.1: A Latin square is a simplified Sudoku. Numbers from 1 to n have to be

placed in an n × n grid such that all numbers are di�erent in any row or any column.
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the constraints, or no solution otherwise. Solving the original CSP, i.e., �nding all
solutions, amounts to traversing the whole tree.

To speed up the search, CP exploits the constraints to prune parts of the search
tree. At every node, propagators try to detect inconsistent values from the domains
of the variables and remove them. A value is inconsistent if it is part of no solution of
the CSP. Thus, after a propagation step, the resulting CSP is equivalent, i.e., it has the
same solution set, but the domains are smaller than or equal to the original domains.
Propagators are called until a �x-point is reached. If a domain becomes empty as a
result of propagation, the CSP has no solution and the corresponding node can be
pruned.

Detecting inconsistent values may be a hard problem. A trade-o� has to be found
between the time spent propagating and the time spent searching.

The following sections present the main aspects of a CP solver, i.e., how variables
and their domains are represented, how propagators remove inconsistent values, and
how the search tree is constructed and traversed.

4.2 Variables and Domains

Variables in CSPs can be of many types: integers, �oating-point numbers, sets, graphs,
etc. Each variable has an associated domain, i.e., a representation of the set of values
that can be assigned to the variable. The representation may be exact or approximate,
e.g., by remembering only a lower and upper bound.

Typical implementations of domains include [SC06]:

• Bitsets: the presence of each value in the domain is represented by a bit.

• Bounds: only the lowest and highest values of the domain are remembered.
Values in between the bounds are assumed to be present in the domain. With
the bounds implementation, we cannot represent holes in the domain.

• Range sequences: an extension of the bounds implementation, allowing holes
in the domain. Consecutive values are grouped in a range. The domain is
represented by a set of such ranges.

Each node of the search tree is a CSP and should have its own domains. Copying
the whole domains for each node is the easiest way to achieve this. However, the
search only looks at one node at a time. Thus, only one copy of the domains could
be present in memory, along with enough information to restore the domains to any
previous node. Such technique is called trailing.

A generic trail contains all operations that were performed on the domain, e.g.,
removing a value. When restoring the domain, the inverse operations are applied.
Some domain implementations allow for more e�cient specialized trails. For example,
the trail of a bitset consists of copies of the bytes that have changed. Hence, multiple
operations can be compressed.
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4.3 Propagators

The constraints de�ne which assignments of values to the variables are solutions of
the CSP. A constraint is a relation between two or more variables. An assignment is a
solution of the CSP if it satis�es all the constraints (see de�nitions 4.2 and 4.3). Some
values, called inconsistent values, can never be part of a solution and can be removed
early on. For example, if x is assigned to 3 and we have the constraint x , y, we can
remove the value 3 from the domain of y.

De�nition 4.4. A couple (x ,v ) is inconsistent with respect to constraint c if the CSP
(X ,D, { c }) has no solution µ such that µ (x ) = v .

The process of removing inconsistent values from the domains of the variables is
called propagation. At every node of the search tree, propagation is performed for
each constraint individually and is iterated until no values are removed anymore and
a �x-point has been reached.

A propagator is an algorithm that performs the propagation for a constraint. The
rest of this section presents the properties of propagators and how the propagators
are called.

4.3.1 Properties of Propagators

Finding all inconsistent values for a constraint can be an NP-hard problem in itself.
Propagators can achieve di�erent levels of consistency, depending on how much
values they prune [Bes06]. A consistency level is a property of the domains after the
propagator has run.

• Checking: no pruning. The propagator only checks if the constraint is satis�ed
once all variables are assigned.

∀xi ∈ vars(c ),D (xi ) = {vi } ⇒ c (v1, . . . ,vk )

• Forward checking: as soon as all variables of the constraint but one are assigned,
remove inconsistent values from the domain of the unbound variable.

∃x ′ ∈ vars(c ),∀xi ∈ vars(c ) \ { x ′ } ,D (xi ) = {vi }

⇒ ∀v ′ ∈ D (x ′),c (v1, . . . ,v
′, . . . ,vk )

• Bound consistency: considering a bound approximation of the domains of the
involved variables, ensure the lower and upper bounds are consistent.

∀x ′ ∈ vars(c ),∀v ′ ∈ {min(D (x ′)),max(D (x ′)) } ,

∀xi ∈ vars(c ) \ { x ′ } ,∃vi ,min(D (xi )) 6 vi 6 max(D (xi )),

c (v1, . . . ,v
′, . . . ,vk )
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• Domain consistency: ensure every value of the domains of the involved variables
appear in at least one solution of the constraint.

∀x ′ ∈ vars(c ),∀v ′ ∈ D (x ′),

∀xi ∈ vars(c ) \ { x ′ } ,∃vi ∈ D (xi ),

c (v1, . . . ,v
′, . . . ,vk )

Note that if all constraints of a CSP are domain consistent, it does not mean that there
exists a solution for the CSP. Domain consistent propagators always perform at least
the same amount of pruning than the other consistency levels (see �g. 4.2). Forward
checking and bound consistency are not comparable (see �g. 4.3).

Two desired properties of propagators are monotonicity and idempotency. Propaga-
tors are monotonic if the order in which they are called does not a�ect the performed
pruning. A propagator is idempotent if it will not perform any more pruning if called
immediately after itself.

Like mathematical relations, constraints may be described in intension or in exten-
sion. When described in intension, a specialized propagator is needed to implement
the semantics of the constraint. When described in extension, a generic propagator
can be used [CY10; Lec11]. Such constraints are called table constraints, as the whole
table of valid tuples is known in advance.

At some point during the search, a constraint may become entailed. An entailed
constraint is satis�ed by any combination of values from the domains of the variables.
For example, if all variables on which the constraint is stated, are assigned, and the
constraint is satis�ed, then the constraint is entailed.

4.3.2 How Propagators are Called

The general propagation algorithm is responsible for calling all propagators until a
�x-point is reached. The general propagation algorithm can be constraint-based or
value-based.

Constraint-based propagation maintains a queue of propagators, while value-
based propagation maintains a queue of propagator-variable-value tuples. In order
to prioritize some propagators, multiple queues can be used. As an optimization,
entailed constraints may be ignored.

Constraint-based propagation

The constraint-based propagation algorithm maintains a queue of propagators to be
called. On initialization, propagators register themselves to events of variables, e.g.,
when a value is assigned to the variable. When an event occurs, the propagator is
added to the queue. Propagators are removed from the queue and called until the
queue is empty.



48 CHAPTER 4. CONSTRAINT PROGRAMMING

2 1 �1 �2
3 4

�1 �2
3 4

1 2 �1 �2
3 4

�1 �2
3 4

�1 �2
3 4

�1 �2
3 4

1 2
3 4

1 2
3 4

�1 �2
3 4

�1 �2
3 4

1 2
3 4

1 2
3 4

(a) Forward checking

2 1 �1 �2
3 4

�1 �2
3 4

1 2 �1 �2
3 4

�1 �2
3 4

�1 �2
3 4

�1 �2
3 4

1 2

�3 �4
1 2

�3 �4

�1 �2
3 4

�1 �2
3 4

1 2

�3 �4
1 2

�3 �4

(b) Domain consistency

Figure 4.2: Domain consistent propagators can perform more pruning than forward

checking propagators. For the domain consistency example, the global allDi� con-

straint is used on whole rows and whole columns.
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(b) Bound consistency

Figure 4.3: When the upper le� corner is assigned to the value 2, the forward-checking

propagator removes that value from the domains of the variables on the same row and

on the same column. As the lower bound (1) and upper bound (4) are still consistent,

the bound consistent propagator cannot perform any pruning.
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The events which the propagators can register to, vary by variable type and
domain implementation. For integer variables, standard events are

• bind: when a value has been assigned to the variable, i.e., the domain has
become a singleton;

• remove: when a value has been removed from the domain;

• updateBound: when the lower or upper bound has been changed.

While solving a CSP, a propagator can be in one of the following three states:

• propagating, when the propagator is currently being executed (only during the
propagation phase),

• queued, when the propagator is in the propagation queue, and

• unqueued, otherwise.

When an event occurs to which a propagator is registered, the propagator will be added
to the queue if it is currently unqueued. If the propagator is currently propagating, it
will also be added to the queue if it is not idempotent. If the propagator is idempotent,
calling it again would perform no more pruning and would only waste time. At last,
if the propagator is already queued, nothing is done.

In the worst case, all propagators are queued. Considering only one propagator
per constraint, the size of the queue is thus O (m), withm the number of constraints.

Value-based propagation

A value-based propagation algorithm maintains a queue of propagator-variable-value
tuples. On initialization, propagators register themselves to variables. When a value
v is removed from a variable x , the tuple (p,x ,v ) is added to the queue for each
registered propagator p.

The general propagation algorithm removes a tuple (p,x ,v ) from the queue and
calls the propagator p with arguments x and v . Thus, the propagator only handles
the removal of value v from D (x ). Such operation can sometimes be done e�ciently
without traversing the whole domains of the variables. For example, the propagator
of constraint x = y removes the value v from the domain of the other variable in
constant time. Tuples are removed and propagators are called until the queue is
empty.

Tuples are added to the queue unless they are already queued. Because propagators
only handle the removal of one value, there is no concept of idempotency unlike for
constraint-based propagation.

The queue in value-based propagation is much bigger than the queue in constraint-
based propagation. The space complexity isO (mnd ), withm the number of constraints,
n the number of variables, and d the size of the largest domain.
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4.4 Search

The propagation phase, explained in the previous section, allows to reduce the domains
of a CSP. Once the �x-point is reached, one has to search for solutions in the remaining
solution space. In the search phase, CP divides the solution space by splitting the
CSP into smaller CSPs. Propagation is applied on each smaller CSP, which are then
split again. By alternating between propagation and search phases, we build a tree of
CSPs. The leaf nodes are either solutions, i.e., assignments satisfying all constraints,
or a failure. A failure occurs when a propagator detects that a constraint cannot be
satis�ed.

The search tree can be explored using any standard tree enumeration algorithm,
such as breath-�rst search (BFS) or depth-�rst search (DFS). To avoid high space
complexity, DFS is most often used. Because we have a �nite number of variables,
the depth of the search tree is also �nite. Thus, the DFS algorithm cannot be stuck in
an in�nite branch. The search is complete.

Along one branch of the depth-�rst traversal, propagation and search decision
operations are applied successively on the domains resulting from the previous
operation. Thus, the same domain structures can be used for each node along the
branch. When the search backtracks, the structures can be restored using the trailing
information.

How the search tree is constructed, is de�ned by a search heuristic. At each node,
the search heuristic selects a variable and splits its domain to generate the child nodes.
The search heuristic is thus a combination of a variable selection heuristic and a value
selection heuristic. Note that the search tree is never constructed entirely in memory,
but rather on-demand while traversing the tree.

Variable selection heuristics follow the �rst-fail principle. Variables leading to
failures quicker should be selected �rst. The earlier a failure appears in the search tree,
the larger the pruned search space and the more e�cient the search will be. Some
standard variable selection heuristics following the �rst-fail principle are [Lec09]:

• dom: select the variable with the smallest domain;

• deg: select the variable with the highest degree, i.e., the variable involved in
the most constraints;

• ddeg: select the variable with the highest dynamic degree, i.e., the variable
involved in the most constraints that are not entailed;

• dom/deg: select the variable with the smallest domain size over degree ratio;

• dom/ddeg: select the variable with the smallest domain size over dynamic
degree ratio.

All the above heuristics, except deg, are dynamic so that the ordering of the variables
selected by the heuristic depends on the state of the search. The deg heuristic is static
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as the degree of a variable does not change during the search, except when adding
new constraints during the search.

Search heuristics can also be adaptive. An adaptive heuristic learns which variables
are di�cult during the search. It then changes its behavior to select those variables
as early as possible. For example, the wdeg heuristic maintains a weight for each
constraint. When a constraint causes the search to fail, its weight is increased. The
weight of a variable is de�ned as the sum of the weights of the constraints in which it
is involved. Over time, di�cult variables will receive a larger weight.

The value selection heuristic splits the domain of the chosen variable into smaller
domains. When every resulting domain is a singleton, the heuristic is called a labeling
heuristic. Labeling heuristics are common for �nite domains. An alternative is to split
the domain in two even parts.

Value selection heuristics are less important than variable selection heuristics
when searching for all solutions. Indeed, the order in which the branches will be
explored is not important as they will all be explored. This does not hold however
when using an adaptive variable selection heuristic. In such cases, or when searching
for one solution, the value selection heuristic should select the value that has the
greatest probability of participating in a solution.

Finally, one can add constraints during the search. A useful application is the
branch-and-bound technique, where we look for the solution minimizing some objec-
tive function f . As soon as we have found a solution µ, we can post an additional
constraint f (X ) < f (µ ) in each unexplored node. Next solutions are then guaranteed
to have a smaller f -value. The additional constraint can be exploited during the
propagation phase to further prune the search space.

4.5 The Comet System

Comet [Dyn10] is a constraint-based optimization system supporting constraint
programming, local search, linear programming and mixed integer programming.
Optimization problems are encoded in the system with the Comet language. The
language is object-oriented and resembles C++ and Java. One notable feature is the
ability to write non-deterministic programs to describe the search tree. Because of
this, we will use Comet to describe our CP model in chapter 5. This section will brie�y
present the syntax and core features of Comet with a focus on CP.

A Comet CP program consists of two parts. The �rst part allows the user to state
the problem by means of constraints in a declarative way. The second part is a non-
deterministic program that constructs the search tree. Listing 4.1 shows an example
solving the Latin square problem of example 4.1. The solve<cp>{. . .} using {. . .}

construct partitions the program in the two parts. The solve keyword searches for
the �rst solution. To explore the whole search tree for all solutions, one can use the
solveall keyword instead.

Constraints are posted with the post method. As shown in listing 4.1, constraints
may be posted in the declarative part at the root node, or during the search. Constraints
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1 Solver<CP> cp();

2 int N = 4;

3 var<CP>{int} X[1..N,1..N](cp, 1..N);

4 solve<cp> {

5 forall(i in 1..N, j in 1..N, k in (j+1)..N) {

6 cp.post(X[i,j] != X[i,k]);

7 cp.post(X[i,j] != X[k,j]);

8 }

9 } using {

10 forall(i in 1..N, j in 1..N) {

11 tryall<cp>(v in 1..N : X[i,j].memberOf(v))

12 cp.post(X[i,j] == v);

13 }

14 cout << X << endl;

15 }

Listing 4.1: A Comet CP program consists of a declarative part where the user posts

the constraints (lines 5–8), and a non-deterministic program defining the search tree

(lines 10–13). This example solves the Latin square problem formulated in example 4.1.

that are posted during the search are removed when backtracking to an ancestor
node.

During the search, a binary choice point is introduced with the following structure.

try<cp> {

// left branch
}|{

// right branch
}

In a depth-�rst search, Comet will �rst execute the left branch and continue the
execution after the try block. When backtracking, CP variables and local variables
are restored to their state before the try block. The right branch is then executed,
followed by the code after the try block.

A backtrack occurs when a domain becomes empty due to constraint propaga-
tion, i.e., the branch has failed. One can also force a branch to fail by calling the
cp.fail() method. When using the solveall structure, the search also backtracks
when reaching the end of the using block in order to search for other solutions. The
whole search can be interrupted with the cp.exit() method.

When backtracking, both CP variables (e.g., X) and local variables (e.g., i and
j) are restored. However, referenced objects are not restored. Hence, one can use
objects to transfer information, such as the number of solutions found so far, between
branches. To this end, primitive types (e.g., int and bool) also exist in object form
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(e.g., Integer and Boolean).
The tryall structure of lines 11–12 in listing 4.1 is similar to the try structure, but

introduces a variable number of child nodes. The algorithm described in lines 10–13
of the example is very basic and could be abbreviated by label(X). The built-in label

function asks Comet to label all the variables, i.e., to try all possible assignments for
those variables.

The Solution class creates a snapshot of the current solution. That solution can
then be restored with the restore method.

4.6 Graph Matching with CP

SPARQL queries may be viewed as special kinds of graph matching problems. Graph
matching problems consist in �nding a matching function between the nodes of two
graphs. Let us consider two graphs G1 = (N1,E1) and G2 = (N2,E2), with N1 and
N2 the sets of nodes, and E1 ⊆ N 2

1 and E2 ⊆ N 2
2 the sets of edges. A matching is

a function µ : N1 → N2 satisfying some conditions. Common matching problems
include:

• graph homomorphism, when µ is a total function preserving the edges of G1,
i.e., ∀(u,v ) ∈ E1, (µ (u),µ (v )) ∈ E2;

• subgraph isomorphism, when µ is also injective so that each node of G1 is
matched to at most one node of G2, i.e., ∀(u,v ) ∈ N 2

1 ,u , v ⇒ µ (u) , µ (v );

• graph isomorphism, when µ is a total bijective function and both µ and µ−1 are
homomorphisms.

The graph homomorphism and subgraph isomorphism problems are known to be
NP-complete. Is is unknown if the graph isomorphism problem is NP-complete or in
P.

Graph matching problems can easily be modeled by means of CSPs [CDS09]. Each
node u of G1 is represented by a variable xu . The domain of every variable is the set
of nodes of G2. The constraints encode the speci�c matching problem. For example,
the following CSP models the graph homomorphism problem, which is closely related
to the evaluation of basic graph patterns in SPARQL queries.

• X = { xu | u ∈ N1 },

• D (xu ) = N2 ∀xu ∈ X ,

• C = { (xu ,xv ) ∈ E2 | (u,v ) ∈ E1 }.

Larrosa and Valiente [LV02] have proposed a domain-consistent propagator for
the edge preservation constraint. For the subgraph isomorphism problem, more
pruning can be obtained by exploiting the fact that a di�erent value must be assigned
to every variable [ZDS10; Sol10]. However, the propagators maintain auxiliary data
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structures that need to be trailed. As will be explained in chapter 6, such structures
are impracticable for solving SPARQL queries on large graphs.
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Chapter 5

CP Modeling of SPARQL �eries

This chapter covers the reformulation of SPARQL queries by means of Constraint
Satisfaction Problems (CSPs). The reformulation gives an alternative denotational
semantics of SPARQL. It is then turned into an operational semantics to solve SPARQL
queries with CP solvers.

5.1 Denotational CSP Formulation

This section gives a translation of SPARQL semantics for graph pattern evaluation
by means of CSPs. By doing so, we transform a declarative semantics (SPARQL) into
another declarative semantics (CSP). Hence, we use the term reformulation instead of
model.

To make the section easier to read, we build up the reformulation starting from
the straightforward case of basic graph patterns (section 5.1.1). Then, we add simple
compositions of basic graph patterns (section 5.1.2). Finally, section 5.1.3 shows the
complete semantics for the general case, and proves the equivalence with the SPARQL
semantics described in chapter 2.

5.1.1 Basic Graph Pa�erns and Filters

The translation of a basic graph pattern to a CSP is straightforward. Each variable of
the BGP is mapped to a CSP variable. Each triple pattern is a constraint.

De�nition 5.1. Let P be a basic graph pattern, i.e., a set of triple patterns, and G an
RDF graph. The CSP (X ,D,C ) associated with (P ,G ) is de�ned as follows.

• X = vars(P ),

• ∀x ∈ X ,D (x ) = TG , where TG is the set of all RDF terms appearing in G,

• C =
{

Member
(
(s,p,o),G

) ��� (s,p,o) ∈ P }
, where Member(x ,S ) is the set mem-

bership constraint which is satis�ed if x ∈ S .
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Theorem 5.1. Let P be a basic graph pattern, and G an RDF graph. The set ~P�G is
the set of solutions of the CSP associated with (P ,G ).

Proof. According to de�nition 2.13, ~P�G , { µ | dom(µ ) = vars(P ) ∧ µ[P] ⊆ G }. Let
µ be a solution mapping such that dom(µ ) = vars(P ) (but not necessarily µ ∈ ~P�G ).
Let fµ be an extension of µ such that

∀x ∈ dom(µ ) ∪ T, fµ (x ) =

µ (x ) if x ∈ dom(µ )

x if x ∈ T.

We can rewrite the second condition of the de�nition.

µ[P] ⊆ G ⇔ ∀(s,p,o) ∈ µ[P], (s,p,o) ∈ G
⇔ ∀(s,p,o) ∈ P , ( fµ (s ), fµ (p), fµ (o)) ∈ G

⇔ ∀(s,p,o) ∈ P ,Member
(
(s,p,o),G

)
is satis�ed by solution µ.

By de�nition, variables appearing in a Member constraint cannot be assigned a value
that does not occur in G. Thus, the domains of the variables can be restricted to TG .
Hence, the set ~P�G is equivalent to the set of solutions of the CSP associated with
(P ,G ). �

In the semantics of de�nition 2.13, the expression in a constrained graph pattern
is checked for every solution of the sub-pattern in a post-processing step. When the
sub-pattern is a basic graph pattern, such post-processing is equivalent to adding the
expression to the set of constraints of the associated CSP. By doing so, the expression
can be used to reduce the search space of the CSP.

De�nition 5.2. Let P be a basic graph pattern, E an expression, andG an RDF graph.
The CSP (X ,D,C ) associated with (P filter E,G ) is de�ned as follows.

• X = vars(P ),

• ∀x ∈ X ,D (x ) = TG , where TG is the set of all RDF terms appearing in G,

• C =
{

Member
(
(s,p,o),G

) ��� (s,p,o) ∈ P }
∪ { IsTrue(E) }, where Member is the

set membership constraint, and IsTrue is a constraint ensuring the e�ective
Boolean value of an expression is true.

Theorem 5.2. Let P be a basic graph pattern, E an expression and G an RDF graph.
The set ~P filter E�G is the set of solutions of the CSP associated with (P filter E,G ).

Proof. Trivial from de�nition 2.13 and theorem 5.1. �

5.1.2 Simple Compound Pa�erns

Contrarily to classical CSPs, a solution of a compound graph pattern does not have to
cover all the variables appearing in the pattern. For example, if a variable x appears
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1 2 3 4 5

µA µB µC

P1 P2

(a) Without replacement semantics

1

A
µA

B
µB

3

C
µC

2
P1

P2

(b) With replacement semantics

Figure 5.1: Evaluating a compound pa�ern can be done by solving smaller CSPs for

every solution of the first sub-pa�ern. Triangles represent the search trees of the

CSP associated with the basic graph pa�erns.

only in an optional part that is not matched in a solution µ, then x < dom(µ ). Such
variables are said to be unbound. Hence, compound patterns cannot be directly
translated to CSPs. This section explains how to handle such patterns e�ciently in
the case where the sub-patterns are basic graph patterns. The next section will show
the full reformulation for more complex patterns.

To solve compound graph patterns, we could solve all the basic graph patterns
separately with CSPs. Then, we can merge the solution sets together following
de�nition 2.13, as illustrated in �g. 5.1a. However, such procedure is ine�cient as it
keeps all the solution sets in memory, and merging two sets can be costly if the sets
are not ordered.

A better way to handle a compound pattern with two sub-patterns P1 and P2 is to
solve the sub-pattern P1 �rst. For every solution µ1, we solve the sub-pattern µ1[P2],
obtained by replacing the variables of µ1 in P2 by their values (see �g. 5.1b). The CSPs
for µ1[P2] will be smaller and thus usually more e�cient to solve.

Disjunctions are introduced by the union operator. The solution set of the union
of two patterns is the union of the solution sets of both patterns. Basically, the
solutions of the two patterns are computed separately.

~P1 union P2�G = ~P1�G ∪ ~P2�G
P1

1
µA

2
µB

P2
3
µC

The �gure on the right depicts an example. A triangle represents the search tree of
the CSP associated to a basic graph pattern. Circles at the bottom of a triangle are the
solutions of the CSP. Circles 1 and 2 represent ~P1�G . Circle 3 is the only element in
~P2�G .

Two patterns can be concatenated with the and operator. The solution set of a
concatenation is the cartesian product of the solution sets of both patterns. Such
cartesian product is obtained by merging every pair of solutions assigning the same
values to the common variables. Note that the operator is commutative, i.e., P1 andP2
is equivalent to P2 and P1. The set of solutions is de�ned as follows.
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~P1 and P2�G =

{ µ1 ∪ µ2 | µ1 ∈ ~P1�G ,µ2 ∈
�
µ1[P2]�G } . 1

4
µA

5
µB

3

6
µC

2
P1

P2

In the example, circles 1, 2 and 3 represent ~P1�G . Solution 1 is extended into the
solutions 4 and 5 in the search tree of �µ1 (P2)

�
G . Solutions 4, 5 and 6 are the solutions

of the concatenation.
As P1 and P2 are both basic graph patterns, we can compute the concatenation

more e�ciently by merging both sets of triple patterns. Then, the resulting basic
graph pattern can be solved as shown in section 5.1.1. However, such method cannot
be extended to the case where P1 or P2 are themselved compound patterns. Hence,
we have provided the above de�nition.

The di�erence of two patterns P1 and P2, introduced by the diff operator, returns
the solutions of P1 that cannot be extended into a solution of P2, i.e., each solution
µ such that µ[P2] is inconsistent. Such inconsistency check makes the search dif-
�cult. Indeed, because checking the consistency of a CSP is NP-hard, checking its
inconsistency is coNP-hard.

~P1 diff P2�G = { µ ∈ ~P1�G |
�
µ (P2)

�
G = ∅ }

1

4 5

3

6

2
µA

P1

P2

Only circle 2 is a solution of the diff pattern because the underlying CSP is inconsis-
tent.

The opt operator is a combination of the and and diff operators. Intuitively, it
solves its left-hand side subpattern P1 and tries to solve its right-hand side subpattern
P2. If a solution of P1 cannot be extended into a solution of P1 and P2, then that
solution of P1 becomes a solution of the pattern too.

~P1 opt P2�G = ~P1 and P2�G ∪ ~P1 diff P2�G
1

4
µA

5
µB

3

6
µD

2
µC

P1

P2

Compared to the example for the concatenation operator, circle 2 in the �gure becomes
a solution of the compound pattern.

5.1.3 Complete CSP Formulation

The reformulation described in section 5.1.2 can be directly extended to the general
case, where compound patterns may be composed of compound patterns. However,
care must be taken with variables that appear in di�erent basic graph patterns. The
SPARQL semantics described in section 2.3.2 considers each basic graph pattern
separately, and merges the results afterwards. Thus, variables appearing in di�erent
basic graph patterns are completely independent until the result sets are joined.
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The replacement semantics introduced in section 5.1.2 propagates partial assign-
ments to basic graph patterns before those are evaluated. Hence, variables appearing
in di�erent basic graph patterns are not independent anymore. This is not a problem
if the solutions have to be compatible anyway, e.g., in an and pattern. However, in
patterns of the form P1 diff P2, a variable x of P2 may only be replaced by a value v if
x is guaranteed to be part of every solution of P1. If this is not the case, a solution
µ1 of P1 that does not assign x might be compatible with a solution µ2 of P2, where
µ2 (x ) , v . But that solution does not appear in the evaluation of the substituted P2.
Hence, µ1 can wrongly become a solution of the pattern. The same condition on the
variables of P2 holds for patterns of the form P1 opt P2. Constrained patterns of the
form P ′ filter E have a similar condition on the variables of E.
Example 5.1. Let us consider the RDF graph { (:s,:p,:a), (:t,:p,:b) } and three BGPs
P1 ≡ (x ,:p,:a), P2 ≡ (y,:p,:a), and P3 ≡ (x ,:p,:b). We want to evaluate P ≡ P1 and
(P2 diff P3). The sub-pattern P3 will yield solution { (x ,:t) }, which is compatible
with any solution of P2 as P2 and P3 do not share any variables. Hence, the evaluation
of P2 diff P3 is the empty set. The whole pattern P has no solution. Now, if we solve
P1 �rst and replace every occurrence of x by :s in P2 and P3, then P3 has no solutions.
The evaluation of P2 diff P3 returns a solution { (y,:s) }. The whole pattern then has
a solution { (x ,:s), (y,:s) }, which is wrong.

To precisely de�ne which variables may be substituted, we introduce the notion
of unsafe variables. Intuitively, an unsafe variable is a variable that must not be
substituted in order to keep the SPARQL semantics. In example 5.1, variable x is
an unsafe variable. The de�nition of unsafe variables uses another notion, certain
variables. A certain variable of a pattern is a variable that is always assigned in any
solution of the pattern. Note that the notions of unsafe and certain variables are
orthogonal. Variable x in example 5.1 is both a certain and an unsafe variable.

De�nition 5.3. Let P be a graph pattern, the set of certain variables cvars(P ) is
recursively de�ned as follows.

1. If P is a basic graph pattern, cvars(P ) , vars(P ).
2. If P ≡ (P1 and P2), cvars(P ) , cvars(P1) ∪ cvars(P2).
3. If P ≡ (P1 union P2), cvars(P ) , cvars(P1) ∩ cvars(P2).
4. If P ≡ (P1 diff P2) or P ≡ (P1 opt P2), cvars(P ) , cvars(P1).
5. If P ≡ (P ′ filter E), cvars(P ) , cvars(P ′).

Corollary. Given a graph pattern P , an RDF graph G and a variable x ∈ cvars(P ), we
have ∀µ ∈ ~P�G ,x ∈ dom(µ ).

De�nition 5.4. Let P be a graph pattern, the set of unsafe variables unsafe(P ) is
recursively de�ned as follows.

1. If P is a basic graph pattern, unsafe(P ) , ∅.
2. If P ≡ (P1 and P2) or P ≡ (P1 union P2), unsafe(P ) , unsafe(P1) ∪ unsafe(P2).
3. If P ≡ (P1 diff P2) or P ≡ (P1 opt P2),

unsafe(P ) , unsafe(P1) ∪ unsafe(P2) ∪ (vars(P2) \ cvars(P1)).
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4. If P ≡ (P ′ filter E), unsafe(P ) , unsafe(P ′) ∪ (vars(E) \ cvars(P ′)).

The cornerstone of the CSP declarative semantics is lemma 5.5. Basically, the
lemma states that the replacement semantics is correct provided we do not substitute
unsafe variables. Given a solution mapping µ∗, evaluating a pattern P and keeping
only solutions compatible with µ∗, is the same as evaluating P where all variables of
µ∗ have been replaced by their values.

Before stating lemma 5.5, we �rst show the distributivity property on the compat-
ibility relation (lemma 5.3) which is needed for the proof. Then, we show a relaxed
version (lemma 5.4) when substituting only one variable. Finally, we show the full
lemma 5.5.

Lemma 5.3 (Distribution of ∼ over ∪). Given three solution mappings µ1, µ2 and µ3,
(µ1 ∼ µ2) ∧ ((µ1 ∪ µ2) ∼ µ3) ⇔ (µ1 ∼ µ2) ∧ (µ1 ∼ µ3) ∧ (µ2 ∼ µ3).

Proof. We �rst prove (µ1 ∼ µ2)∧ ((µ1∪µ2) ∼ µ3) ⇒ (µ1 ∼ µ2)∧ (µ1 ∼ µ3)∧ (µ2 ∼ µ3).
By de�nition, µ1 ∼ µ3 ⇔ ∀x ∈ dom(µ1) ∩ dom(µ3),µ1 (x ) = µ3 (x ). As µ1 ∼ µ2, we
have (µ1 ∪ µ2) (x ) = µ1 (x ). As (µ1 ∪ µ2) ∼ µ3, we have (µ1 ∪ µ2) (x ) = µ3 (x ), and thus
µ1 (x ) = µ3 (x ). The same holds for µ2 ∼ µ3.

We now prove (µ1 ∼ µ2) ∧ (µ1 ∼ µ3) ∧ (µ2 ∼ µ3) ⇒ (µ1 ∼ µ2) ∧ ((µ1 ∪ µ2) ∼ µ3).
As µ1 ∼ µ2, the construction µ1 ∪ µ2 is valid. By de�nition, (µ1 ∪ µ2) ∼ µ3 ⇔ ∀x ∈

dom(µ1 ∪ µ2) ∩ dom(µ3), (µ1 ∪ µ2) (x ) = µ3 (x ). If x ∈ dom(µ1), the condition is true
because µ1 ∼ µ3. If x ∈ dom(µ2), the condition is true because µ2 ∼ µ3. �

Lemma 5.4. Let P be a graph pattern,G an RDF graph, and µ∗ = { (x∗,v∗) } a solution
mapping such that x∗ < unsafe(P ),

{ µ∗ ∪ µ | µ ∈ ~P�G ∧ µ
∗ ∼ µ } = { µ∗ ∪ µ ′ | µ ′ ∈

�
µ∗[P]�G } .

Proof. There are two cases, depending on µ∗. First, when µ∗ does not share any
variable with P , i.e., x∗ < vars(P ), then µ∗[P] = P and µ∗ is compatible with any
solution of ~P�G . Thus, lemma 5.4 holds. Second, when x∗ ∈ vars(P ), we build the
proof by induction on the number of composition operators in P , i.e., the number of
and, union, diff, opt, and filter operators appearing in P .
Base case. Let us show that lemma 5.4 holds when P has no composition operator, i.e.,
P is a basic graph pattern.1

LHS = { µ∗ ∪ µ | µ ∈ ~P�G ∧ µ
∗ ∼ µ }

= { µ∗ ∪ µ | dom(µ ) = vars(P ) ∧ µ[P] ⊆ G ∧ µ∗ ∼ µ } (de�nition 2.13)

= { µ∗ ∪ µ | dom(µ ) = vars(P ) ∧ µ[P] ⊆ G ∧ (x∗ < dom(µ ) ∨ µ (x∗) = v∗) }

(de�nition 2.8)

= { µ∗ ∪ µ | dom(µ ) = vars(P ) ∧ µ[P] ⊆ G ∧ µ (x∗) = v∗ } (x∗ ∈ vars(P ) ⇒ x∗ ∈ dom(µ ))

1Throughout the proofs in this chapter, we will use LHS (resp. RHS) to refer to the left-hand side (resp.
right-hand side) of the theorem or lemma.
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= { µ∗ ∪ µ ′ | dom(µ ′) = vars(P ) \ {x∗} ∧ µ ′[µ∗[P]] ⊆ G } (let µ ′ = µ \ µ∗ ; µ = µ ′ ∪ µ∗)

= { µ∗ ∪ µ ′ | dom(µ ′) = vars(µ∗[P]) ∧ µ ′[µ∗[P]] ⊆ G }

= { µ∗ ∪ µ ′ | µ ′ ∈
�
µ∗[P]�G } = RHS (de�nition 2.13)

Induction hypothesis. Let k > 0. Let us assume that lemma 5.4 holds when P has at
most k composition operators.
Inductive step. Let us show that lemma 5.4 holds when P hask+1 composition operators.
We have either P ≡ (P1 • P2) with • ∈ { and,union,diff,opt }, or P ≡ (P1 filter E).
In both cases, P1 and P2 have at most k composition operators.
If P ≡ (P1 and P2):

LHS = { µ∗ ∪ µ | µ ∈ ~P�G ∧ µ
∗ ∼ µ }

=
{
µ∗ ∪ µ ��� µ ∈ { µ1 ∪ µ2 | µ1 ∈ ~P1�G ∧ µ2 ∈ ~P2�G ∧ µ1 ∼ µ2 } ∧ µ

∗ ∼ µ
}

(de�nition 2.13)

= { µ∗ ∪ µ1 ∪ µ2 | µ1 ∈ ~P1�G ∧ µ2 ∈ ~P2�G ∧ µ1 ∼ µ2 ∧ µ
∗ ∼ (µ1 ∪ µ2) }

= { µ∗ ∪ µ1 ∪ µ2 | µ1 ∈ ~P1�G ∧ µ
∗ ∼ µ1 ∧ µ2 ∈ ~P2�G ∧ µ

∗ ∼ µ2 ∧ µ1 ∼ µ2 }

(distribution)

= { µ∗ ∪ µ1 ∪ µ2 | µ1 ∈ ~P1�G ∧ µ
∗ ∼ µ1 ∧ µ2 ∈ ~P2�G ∧ µ

∗ ∼ µ2

∧ (µ∗ ∪ µ1) ∼ (µ∗ ∪ µ2) } (inverse distribution)

=
{
µ ′′1 ∪ µ

′′
2
��� µ ′′1 ∈ { µ∗ ∪ µ1 | µ1 ∈ ~P1�G ∧ µ

∗ ∼ µ1 }

∧ µ ′′2 ∈ { µ
∗ ∪ µ2 | µ2 ∈ ~P2�G ∧ µ

∗ ∼ µ2 } ∧ µ
′′
1 ∼ µ

′′
2 )

}
= { µ ′′1 ∪ µ

′′
2 | µ

′′
1 ∈ { µ

∗ ∪ µ ′1 | µ
′
1 ∈
�
µ∗[P1]�G }

∧ µ ′′2 ∈ { µ
∗ ∪ µ ′2 | µ

′
2 ∈
�
µ∗[P2]�G } ∧ µ ′′1 ∼ µ ′′2 } (induction hypothesis)

= { µ∗ ∪ µ ′1 ∪ µ
′
2 | µ

′
1 ∈
�
µ∗[P1]�G ∧ µ ′2 ∈ �µ∗[P2]�G ∧ (µ∗ ∪ µ ′1) ∼ (µ∗ ∪ µ ′2) }

= { µ∗ ∪ µ ′1 ∪ µ
′
2 | µ

′
1 ∈
�
µ∗[P1]�G ∧ µ ′2 ∈ �µ∗[P2]�G

∧ µ∗ ∼ µ ′1 ∧ µ
∗ ∼ µ ′2 ∧ µ

′
1 ∼ µ

′
2 } (distribution)

= { µ∗ ∪ µ ′1 ∪ µ
′
2 | µ

′
1 ∈
�
µ∗[P1]�G ∧ µ ′2 ∈ �µ∗[P2]�G ∧ µ ′1 ∼ µ ′2 }

(dom(µ∗ ) ∩ vars(µ∗[P1]) = ∅⇒ dom(µ∗ ) ∩ dom(µ ′1 ) = ∅⇒ µ∗ ∼ µ ′1 ; same for µ ′2)

=
{
µ∗ ∪ µ ′ ��� µ ′ ∈ { µ ′1 ∪ µ ′2 | µ ′1 ∈ �µ∗[P1]�G ∧ µ ′2 ∈ �µ∗[P2]�G ∧ µ ′1 ∼ µ ′2 } }

= { µ∗ ∪ µ ′ | µ ′ ∈
�
µ∗[P1] and µ∗[P2]�G } (de�nition 2.13)

= { µ∗ ∪ µ ′ | µ ′ ∈
�
µ∗[P]�G } = RHS

If P ≡ (P1 union P2):

LHS = { µ∗ ∪ µ | µ ∈ ~P�G ∧ µ
∗ ∼ µ }

=
{
µ∗ ∪ µ ��� µ ∈ { µ | µ ∈ ~P1�G ∨ µ ∈ ~P2�G } ∧ µ

∗ ∼ µ
}

(de�nition 2.13)

= { µ∗ ∪ µ | (µ ∈ ~P1�G ∨ µ ∈ ~P2�G ) ∧ µ
∗ ∼ µ }

= { µ∗ ∪ µ | (µ ∈ ~P1�G ∧ µ
∗ ∼ µ ) ∨ (µ ∈ ~P2�G ∧ µ

∗ ∼ µ ) } (distribution)
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= { µ∗ ∪ µ | µ ∈ ~P1�G ∧ µ
∗ ∼ µ } ∪ { µ∗ ∪ µ | µ ∈ ~P2�G ∧ µ

∗ ∼ µ }

= { µ∗ ∪ µ ′ | µ ′ ∈
�
µ∗[P1]�G } ∪ { µ∗ ∪ µ ′ | µ ′ ∈ �µ∗[P2]�G } (induction hypothesis)

= { µ∗ ∪ µ ′ | µ ′ ∈
�
µ∗[P1]�G ∨ µ ′ ∈ �µ∗[P2]�G }

= { µ∗ ∪ µ ′ | µ ′ ∈ { µ ′ | µ ′ ∈
�
µ∗[P1]�G ∨ µ ′ ∈ �µ∗[P2]�G } }

= { µ∗ ∪ µ ′ | µ ′ ∈
�
µ∗[P1] union µ∗[P2]�G } (de�nition 2.13)

= { µ∗ ∪ µ ′ | µ ′ ∈
�
µ∗[P]�G } = RHS

If P ≡ (P1 diff P2):

LHS = { µ∗ ∪ µ | µ ∈ ~P�G ∧ µ
∗ ∼ µ }

=
{
µ∗ ∪ µ ��� µ ∈ { µ1 | µ1 ∈ ~P1�G ∧ ¬∃µ2 ∈ ~P2�G ,µ1 ∼ µ2 } ∧ µ

∗ ∼ µ
}

(de�nition 2.13)

= { µ∗ ∪ µ1 | µ1 ∈ ~P1�G ∧ µ
∗ ∼ µ1 ∧ ¬∃µ2 ∈ ~P2�G ,µ1 ∼ µ2 }

= { µ∗ ∪ µ1 | µ1 ∈ ~P1�G ∧ µ
∗ ∼ µ1 ∧ ¬∃µ2 ∈ ~P2�G , (µ

∗ ∪ µ1) ∼ µ2 }

(x∗ < unsafe(P ); by de�nition 5.4, either x∗ < vars(P2 ) and µ∗ ∼ µ2 , or x∗ ∈ cvars(P1 ) and µ∗ ⊆ µ1)

=
{
µ ′′1

��� µ ′′1 ∈ { µ∗ ∪ µ1 | µ1 ∈ ~P1�G ∧ µ
∗ ∼ µ1 } ∧ ¬∃µ2 ∈ ~P2�G ,µ

′′
1 ∼ µ2

}
=
{
µ ′′1

��� µ ′′1 ∈ { µ∗ ∪ µ ′1 | µ ′1 ∈ �µ∗[P1]�G } ∧ ¬∃µ2 ∈ ~P2�G ,µ
′′
1 ∼ µ2

}
(induction hypothesis on P1)

= { µ∗ ∪ µ ′1 | µ
′
1 ∈
�
µ∗[P1]�G ∧ ¬∃µ2 ∈ ~P2�G , (µ

∗ ∪ µ ′1) ∼ µ2 }

= { µ∗ ∪ µ ′1 | µ
′
1 ∈
�
µ∗[P1]�G ∧ ¬∃µ2 ∈ ~P2�G ,µ

∗ ∼ µ2 ∧ µ
′
1 ∼ µ2 } (distribution)

= { µ∗ ∪ µ ′1 | µ
′
1 ∈
�
µ∗[P1]�G ∧ ¬∃µ2 ∈ ~P2�G ,µ

∗ ∼ µ2 ∧ µ
′
1 ∼ (µ∗ ∪ µ2) }

(inverse distribution)

= { µ∗ ∪ µ ′1 | µ
′
1 ∈
�
µ∗[P1]�G ∧ ¬∃µ∗ ∪ µ2,µ2 ∈ ~P2�G ∧ µ

∗ ∼ µ2 ∧ µ
′
1 ∼ (µ∗ ∪ µ2) }

=
{
µ∗ ∪ µ ′1

��� µ ′1 ∈ �µ∗[P1]�G
∧ ¬∃µ ′′2 ,µ

′′
2 ∈ { µ

∗ ∪ µ2 | µ2 ∈ ~P2�G ∧ µ
∗ ∼ µ2 } ∧ µ

′
1 ∼ µ

′′
2
}

=
{
µ∗ ∪ µ ′1

��� µ ′1 ∈ �µ∗[P1]�G ∧ ¬∃µ ′′2 ,µ ′′2 ∈ { µ∗ ∪ µ ′2 | µ ′2 ∈ �µ∗[P2]�G } ∧ µ ′1 ∼ µ ′′2 }
(induction hypothesis on P2)

= { µ∗ ∪ µ ′1 | µ
′
1 ∈
�
µ∗[P1]�G ∧ ¬∃µ∗ ∪ µ ′2,µ ′2 ∈ �µ∗[P2]�G ∧ µ ′1 ∼ (µ∗ ∪ µ ′2) }

= { µ∗ ∪ µ ′1 | µ
′
1 ∈
�
µ∗[P1]�G ∧ ¬∃µ ′2 ∈ �µ∗[P2]�G ,µ ′1 ∼ (µ∗ ∪ µ ′2) }

= { µ∗ ∪ µ ′1 | µ
′
1 ∈
�
µ∗[P1]�G ∧ ¬∃µ ′2 ∈ �µ∗[P2]�G ,µ ′1 ∼ µ∗ ∧ µ ′1 ∼ µ ′2 ∧ µ∗ ∼ µ ′2 }

(distribution)

= { µ∗ ∪ µ ′1 | µ
′
1 ∈
�
µ∗[P1]�G ∧ ¬∃µ ′2 ∈ �µ∗[P2]�G ,µ ′1 ∼ µ ′2 }

(x∗ < dom(µ ′1 ) ∧ x
∗ < dom(µ ′2 ))

=
{
µ∗ ∪ µ ′ ��� µ ′ ∈ { µ ′1 | µ ′1 ∈ �µ∗[P1]�G ∧ ¬∃µ ′2 ∈ �µ∗[P2]�G ,µ ′1 ∼ µ ′2 } }

= { µ∗ ∪ µ ′ | µ ′ ∈
�
µ∗[P1] diff µ∗[P2]�G } (de�nition 2.13)

= { µ∗ ∪ µ ′ | µ ′ ∈
�
µ∗[P]�G } = RHS
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If P ≡ (P1optP2), then ~P�G =
�
(P1 and P2) union (P1 diff P2)

�
G . Lemma 5.4 holds

because of the cases above.
If P ≡ (P1 filter E):

LHS = { µ∗ ∪ µ | µ ∈ ~P�G ∧ µ
∗ ∼ µ }

=
{
µ∗ ∪ µ ��� µ ∈ { µ | µ ∈ ~P1�G ∧ EBV(

�
µ[E]�) = true } ∧ µ∗ ∼ µ

}
(de�nition 2.13)

= { µ∗ ∪ µ | µ ∈ ~P1�G ∧ EBV(
�
µ[E]�) = true ∧ µ∗ ∼ µ }

= { µ∗ ∪ µ | µ ∈ ~P1�G ∧ EBV(
�
µ[µ∗[E]]�) = true ∧ µ∗ ∼ µ }

(x∗ < unsafe(P ); by de�nition 5.4, either x∗ < vars(E) and µ∗[E] = E, or x∗ ∈ cvars(P1 ) and µ∗ ⊆ µ)

= { µ∗ ∪ µ | µ ∈ ~P1�G ∧ EBV(
�
(µ ∪ µ∗)[E]�) = true ∧ µ∗ ∼ µ }

=
{
µ ′′ ��� µ ′′ ∈ { µ∗ ∪ µ | µ ∈ ~P1�G ∧ µ

∗ ∼ µ } ∧ EBV(
�
µ ′′[E]�) = true

}
=

{
µ ′′ ��� µ ′′ ∈ { µ∗ ∪ µ ′ | µ ′ ∈ �µ∗[P1]�G } ∧ EBV(

�
µ ′′[E]�) = true

}
(induction hypothesis)

= { µ∗ ∪ µ ′ | µ ′ ∈
�
µ∗[P1]�G ∧ EBV(

�
(µ ′ ∪ µ∗)[E]�) = true }

=
{
µ∗ ∪ µ ′ ��� µ ′ ∈ { µ ′ | µ ′ ∈ �µ∗[P1]�G ∧ EBV(

�
µ ′[µ∗[E]]�) = true }

}
= { µ∗ ∪ µ ′ | µ ′ ∈

�
µ∗[P1] filter µ∗[E]�G } (de�nition 2.13)

= { µ∗ ∪ µ ′ | µ ′ ∈
�
µ∗[P]�G } = RHS

�

Lemma 5.5. Let P be a graph pattern, G an RDF graph, and µ∗ a solution mapping
such that dom(µ∗) ∩ unsafe(P ) = ∅,

{ µ∗ ∪ µ | µ ∈ ~P�G ∧ µ
∗ ∼ µ } = { µ∗ ∪ µ ′ | µ ′ ∈

�
µ∗[P]�G } .

Proof. We build the proof by induction on the cardinality of µ∗.
Base case. Let us show that lemma 5.5 holds when |µ∗ | = 0, i.e., µ∗ = ∅. As the empty
mapping is compatible with any mapping and µ∗[P] = P , we have

LHS = { µ∗ ∪ µ | µ ∈ ~P�G ∧ µ
∗ ∼ µ } = { µ∗ ∪ µ | µ ∈ ~P�G }

= { µ∗ ∪ µ | µ ∈
�
µ∗[P]�G } = RHS .

Inductive hypothesis. Let k > 0. Let us assume that lemma 5.5 holds when |µ∗ | 6 k .
Inductive step. Let us show that lemma 5.5 holds when |µ∗ | = k + 1. Let (xi ,vi ) ∈ µ∗,
and µk = µ∗ \ { (xi ,vi ) }. We have |µk | = k . Because dom(µ∗) ∩ unsafe(P ) = ∅,
xi < unsafe(P ). We denote µi = { (xi ,vi ) }. Hence, µ∗ = µk ∪ µi . We can rewrite the
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left-hand side of the lemma.

LHS = { µ∗ ∪ µ | µ ∈ ~P�G ∧ µ
∗ ∼ µ }

= { µk ∪ µi ∪ µ | µ ∈ ~P�G ∧ (µk ∪ µi ) ∼ µ }

= { µk ∪ µi ∪ µ | µ ∈ ~P�G ∧ µk ∼ µ ∧ µi ∼ µ } (distribution)

= { µk ∪ µi ∪ µ | µ ∈ ~P�G ∧ µk ∼ µ ∧ µi ∼ (µk ∪ µ ) } (inverse distribution)

=
{
µ ′′ ∪ µi

��� µ ′′ ∈ { µk ∪ µ | µ ∈ ~P�G ∧ µk ∼ µ } ∧ µi ∼ µ ′′ }
= { µ ′′ ∪ µi | µ

′′ ∈ { µk ∪ µ
′ | µ ′ ∈

�
µk[P]�G } ∧ µi ∼ µ ′′ } (induction hypothesis)

= { µk ∪ µi ∪ µ
′ | µ ′ ∈

�
µk[P]�G ∧ µi ∼ (µk ∪ µ

′) }

= { µk ∪ µi ∪ µ
′ | µ ′ ∈

�
µk[P]�G ∧ µi ∼ µk ∧ µi ∼ µ ′) } (distribution)

= { µk ∪ µi ∪ µ
′ | µ ′ ∈

�
µk[P]�G ∧ µi ∼ µ ′) } (µ i ∼ µk by construction)

Let P ′ = µk[P]. We have µ∗[P] = µk[µi[P]] = µi[µk[P]] = µi[P ′]. As µk and µi do
not share any variable, the order in which we apply the substitutions does not matter.
We have to prove

{ µk ∪ µi ∪ µ
′ | µ ′ ∈

�
P ′
�
G ∧ µi ∼ µ

′ } = { µk ∪ µi ∪ µ
′′ | µ ′′ ∈

�
µi[P ′]

�
G } .

As the domain of µk is disjoint from the domain of µi (by construction) and from the
domain of any µ ′ and µ ′′ (because dom(µk ) ∩ vars(P ′) = ∅), the following equation
is equivalent.

{ µi ∪ µ
′ | µ ′ ∈

�
P ′
�
G ∧ µi ∼ µ

′ } = { µi ∪ µ
′′ | µ ′′ ∈

�
µi[P ′]

�
G }

This equation is veri�ed by lemma 5.4, because xi < unsafe(P ′). �

Thanks to lemma 5.5, we can now de�ne the evaluation of compound patterns
using replacement semantics. The de�nitions are the same as the ones presented in
section 5.1.2, except that unsafe variables must not be replaced. Such condition limits
the SPARQL queries that our semantics can handle. However, unsafe variables are a
counter-intuitive corner case. Real queries are usually free of unsafe substitutions.

Theorem 5.6. Given a compound pattern P ≡ P1 and P2, such that vars(P1) ∩

unsafe(P2) = ∅, and an RDF graph G,

~P�G = { µ1 ∪ µ2 | µ1 ∈ ~P1�G ∧ µ2 ∈
�
µ1[P2]�G } .

Proof. By applying lemma 5.5 in de�nition 2.13, we obtain

LHS = ~P�G = { µ1 ∪ µ
′
2 | µ1 ∈ ~P1�G ∧ µ

′
2 ∈ ~P2�G ∧ µ1 ∼ µ

′
2 } (de�nition 2.13)

=
{
µ ��� µ1 ∈ ~P1�G ∧ µ ∈ { µ1 ∪ µ

′
2 | µ

′
2 ∈ ~P2�G ∧ µ1 ∼ µ

′
2 }

}
=
{
µ ��� µ1 ∈ ~P1�G ∧ µ ∈ { µ1 ∪ µ2 | µ2 ∈

�
µ1[P2]�G } }

(lemma 5.5; vars(P1 ) ∩ unsafe(P2 ) = ∅⇒ dom(µ1 ) ∩ unsafe(P2 ) = ∅)

= { µ1 ∪ µ2 | µ1 ∈ ~P1�G ∧ µ2 ∈
�
µ1[P2]�G } = RHS .

�
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Theorem 5.7. Given a compound pattern P ≡ P1 union P2, and an RDF graph G,

~P�G = ~P1�G ∪ ~P2�G .

Proof. Trivial from de�nition 2.13. �

Theorem 5.8. Given a compound pattern P ≡ P1 diff P2, such that vars(P1) ∩

unsafe(P2) = ∅, and an RDF graph G,

~P�G = { µ1 | µ1 ∈ ~P1�G ∧
�
µ1[P2]�G = ∅ } .

Proof. By applying lemma 5.5 in de�nition 2.13, we obtain

LHS = ~P�G = { µ1 | µ1 ∈ ~P1�G ∧ ¬∃µ2 ∈ ~P2�G ,µ1 ∼ µ2 } (de�nition 2.13)

=
{
µ1

��� µ1 ∈ ~P1�G ∧ ¬∃µ ∈ { µ1 ∪ µ2 | µ2 ∈ ~P2�G ,µ1 ∼ µ2 }
}

=
{
µ1

��� µ1 ∈ ~P1�G ∧ ¬∃µ ∈ { µ1 ∪ µ
′
2 | µ

′
2 ∈
�
µ1[P2]�G } }

(lemma 5.5; vars(P1 ) ∩ unsafe(P2 ) = ∅⇒ dom(µ1 ) ∩ unsafe(P2 ) = ∅)

= { µ1 | µ1 ∈ ~P1�G ∧ ¬∃µ
′
2 ∈
�
µ1[P2]�G }

= { µ1 | µ1 ∈ ~P1�G ∧
�
µ1[P2]�G = ∅ } = RHS .

�

An opt pattern can be rewritten as a combination of and, union, and diff op-
erators (see de�nition 2.13). Hence, the evaluation of the pattern is handled by the
theorems above.

Filters on compound patterns cannot be added to the constraint set as in sec-
tion 5.1.1. Instead, the standard SPARQL semantics have to be applied, i.e., post-
processing the �lters. For each solution of the pattern, we check if the �lter expression
is satis�ed.

To avoid the post-processing, �lters can sometimes be pushed down onto the
sub-patterns [SML10]. For example, (P1 union P2) filter E can be rewritten as
(P1 filter E) union (P2 filter E). When P1 or P2 is a basic graph pattern, E can be
added to the constraint set of the associated CSP.

5.2 Operational CP Modeling

The denotational semantics of SPARQL can be turned into an operational semantics
using conventional CP solvers, provided they allow posting constraints during the
search.

We will explain the posting of the constraints and the search by means of a non-
deterministic program. A non-deterministic program can introduce choice points. At
such point, the execution will continue in either the left or the right branch. When
the execution arrives at the end of the program or at an explicit failure point, all data
structures are restored up to a previous choice point and the execution continues
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in the other branch. In the pseudo-codes throughout this section, we will use the
Comet [Dyn10] notation, introduced in section 4.5.

The proposed operational semantics assumes a depth-�rst execution. At each
choice point, the left branch is explored �rst. At the end of the program or at a failure
point, the search backtracks to the most recently created choice point.

To solve a query instance ((P ,M ),G ), we de�ne a global array of CP variables
X = vars(P ). The initial domain of each variable x ∈ X is D (x ) = TG , i.e., all the
RDF terms appearing in G. The set of constraints C is initially empty. When no
solution modi�ers are used, the program solving the query instance is

1 solveall<cp> {

2 } using {

3 eval(P);

4 output(X);

5 }

where line 3 evaluates the graph pattern and line 4 is called for each solution. Note that
we do not post any constraint in the declarative part of the program. All constraints
are posted during the search.

The next section describes the evaluation of the graph pattern, i.e., the imple-
mentation of the eval method. Section 5.2.2 explains how solution modi�ers are
handled.

5.2.1 Graph Pa�ern Evaluation

The eval method is recursively de�ned for every type of graph pattern. Listing 5.1
shows the eval method for basic graph patterns. Filters on a basic graph pattern
are posted with the triple patterns. Simple compound graph patterns are shown in
listing 5.2. For the concatenation pattern P1andP2, we solve P1 �rst. For every solution
µ1, P2 is evaluated without restoring the domains of the variables. This e�ectively
computes µ1[P2]. The union pattern solves the two sub-patterns independently in
separate branches.

function eval(P) {

forall((s,p,o) in P) {

cp.post(Member((s,p,o),G ));

}

label(vars(P ));
}

(a) P is a basic graph pa�ern

function eval(P filter E) {

forall((s,p,o) in P) {

cp.post(Member((s,p,o),G ));

}

cp.post(IsTrue(E));
label(vars(P ));

}

(b) A constrained basic graph pa�ern

Listing 5.1: A basic graph pa�ern is a straightforward CP program.
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function eval(P1 and P2) {

eval(P1);

eval(P2);

}

(a) Concatenation

function eval(P1 union P2) {

try<cp> {

eval(P1);

}|{

eval(P2);

}

}

(b) Union

Listing 5.2: The and and union operators are easy to implement thanks to the re-

placement semantics.

The diff and opt patterns, shown in listing 5.3, are similar to the and pattern. First,
P1 is solved. For every solution µ1, before evaluating P2, a choice point is introduced.
The left branch computes �µ1[P2]�G , hence providing solutions to (P1 and P2). If it
succeeds, the right branch is pruned. Otherwise, the right branch is empty and µ1
is returned as a solution of the opt pattern. In the case of the diff pattern, the left
branch is also pruned after the �rst solution found. Note that the eval method here
relies on a depth-�rst search strategy. The left branch must be fully explored before
the right branch.

Not every variable is labeled along every branch. The domain of some variables
may be untouched when outputting the solution. Such variables are considered
unbound and are not part of the solution. Indeed, we always label all variables of a
basic graph pattern. Unbound variables do not appear in the basic graph patterns
along one branch, due to disjunctions introduced by union or di�erences introduced
by diff. No constraints are posted on such variables. Their domains are not reduced.

Filters on a compound pattern can only be checked after each solution of the
pattern, as shown in listing 5.4. The condition E is not posted as a constraint. Indeed,
some variables may be unbound and need to be handled as such.

5.2.2 Handling Solution Modifiers

The complete algorithm for solving a query instance depends on the solution modi-
�ers. In the simpler cases, the solutions are output during the search and forgotten
immediately. In more complex cases, e.g., involving sorting, the solutions found need
to be stored in memory.

LetXS ,nO ,nL and 〈O〉 be respectively the arguments of the project, offset, limit
and order modi�ers. In the absence of the corresponding modi�er,XS = X = vars(P ),
nO = 0, nL = ∞ and 〈O〉 is the empty sequence. Listing 5.5 shows the pseudo-code
corresponding to the two cases. The simple variant handles the project, offset and
limit modi�ers as well as the distinct modi�er in some cases. The complete variant
solves any case at the expense of keeping all the solutions in memory.
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function eval(P1 diff P2) {

eval(P1);

Boolean consistent(false);

try<cp> {

eval(P2);

consistent := true;

cp.fail();

}|{

if(consistent)

cp.fail();

}

}

(a) Di�erence

function eval(P1 opt P2) {

eval(P1);

Boolean consistent(false);

try<cp> {

eval(P2);

consistent := true;

}|{

if(consistent)

cp.fail();

}

}

(b) Optional

Listing 5.3: Compound pa�erns checking the consistency of a sub-pa�ern exploit the

depth-first search strategy.

function eval(P ′ filter E) {

eval(P ′);

if(EBV(
�
µ[E]�) , true)

cp.fail();

}

Listing 5.4: Filters on compound pa�erns need to be post-processed.
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Integer nsols(0);

solveall<cp> {

} using {

eval(P);

if(distinct) {

Solution µ(cp);

cp.postStatic(
∨

x ∈XS x , µ (x ));

}

if(nsols > nO)

output(XS);

nsols := nsols + 1;

if(nsols > nO + nL)

cp.exit();

}

(a) Simple variant: solutions are output during the

search.

if(distinct)
SortedSet S(〈O〉, XS);

else

SortedList S(〈O〉);

solveall<cp> {

} using {

eval(P);

Solution µ(cp);

if(distinct ∧ XS ∩ unsafe(P ) = ∅)
cp.postStatic(

∨
x ∈XS x , µ (x ));

S.insert(µ);

if(|S | > nO + nL)

S.removeLast();

}

forall(µ in S[nO .. nO + nL]) {

µ.restore();

output(XS);

}

(b) Complete variant: solutions are stored in mem-

ory and output at the end.

Listing 5.5: The complete algorithm for solving a query instance depends on the used

solution modifiers.
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The SortedSet and SortedList data structures insert solutions in the speci�ed
order. The SortedSet data structure does not insert solutions that are already present
in the set, considering only the speci�ed variables (here,XS ). The postStatic method
allows to post constraints that will not be removed when backtracking. Instead, those
static constraints are reposted after restoring the domains. The postStatic method
does not exist directly in Comet, but the same e�ect can be obtained with more
complicated structures.

When no selected variables are unsafe, i.e., XS ∩ unsafe(P ) = ∅, the distinct
modi�er can be translated to additional static constraints posted after every solution.
Such constraints state that any further solution must be di�erent from the solutions
so far, considering only the variables in XS . If a variable in XS is unsafe, reducing
its domain may alter the solutions of a diff or filter pattern. In such cases, the
complete variant without postStatic must be used. The SortedSet data structure
handles the distinctness of the solutions.

When an order is given, the complete variant must be used. Solutions are inserted
in a list (or a set if the distinct modi�er is speci�ed) at their right places according
to the order. If the list grows larger than the o�set plus the limit, the extra solutions
at the end of the list are discarded.

If the order and limit modi�ers are used together, the search can be further
optimized with the branch-and-bound technique. After nO + nL solutions have been
found, we can post an additional static constraint stating that any further solution must
be better than the worst solution found so far. The meaning of better is de�ned by the
ordering expressions and their directions. Such optimization may only be performed
when no variables appearing in the ordering expressions are unsafe. Otherwise,
the pruning of the additional constraints may alter the solutions of diff or filter
patterns.



Chapter 6

Castor,

a Specialized Lightweight Solver

The operational model described in chapter 5 can be used to solve SPARQL queries
with o�-the-shelf CP solvers. However, due to the huge domains and triple table, such
solvers may not be e�cient for the task. This chapter presents Castor, a specialized
solver designed to solve SPARQL queries. This solver is experimentally compared
with state-of-the-art SPARQL engines and with the Comet CP solver in chapter 7.

The �rst section presents the data structures that represent the RDF graph. Sec-
tion 6.2 explains how the domains are implemented in order to cope with their large
size. Section 6.3 shows the constraints and their propagators. Section 6.4 describes
the search process. Section 6.5 presents the prototype implementation.

6.1 Dataset Representation

The representation of the dataset in Castor is inspired by the RDF-3X engine [NW08].
The main di�erence is the representation of the values. RDF-3X focuses on triple
patterns and does not implement many �lters. It considers values to be strings without
further interpretation. One of the goals of Castor is to provide e�cient �ltering. Hence,
it needs more information about the values and their interpretation.

The dataset is represented using an on-disk data structure. When Castor loads
the dataset, the whole �le is memory-mapped. We can thus access any part of the
�le as if it was in main memory, letting the operating system handle the reading and
caching of the �le. For performance reasons, it is obviously better to avoid reading
the dataset randomly on traditional hard disk drives. The �le is partitioned in pages
of 16 KB.
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Order Category Values Intra-category ordering

1 Blank nodes b ∈ B internal identi�er of b
2 IRIs i ∈ I str(i )

3 Simple literals a ∈ Lps str(a)

4 Typed strings a ∈ Lts str(a)

5 Booleans a ∈ Ltb (value(a),str(a))

6 Numbers a ∈ Ltn (value(a),datatype(a),str(a))

7 Dates a ∈ Ltd (value(a),str(a))

8 Other plain literals a ∈ Lpl (lang(a),str(a))

9 Other typed literals a ∈ Lto (datatype(a),str(a))

Table 6.1: Values are partitioned in nine categories, which are shown in ascending

order. Inside each category, values are ordered according to the key given in the

last column. When a couple of keys is given, the order is lexicographic. Because

multiple literals can have the same interpreted value, we break ties by ordering on

the uninterpreted lexical form.

6.1.1 Mapping RDF Values to Integer Identifiers

Like in RDF-3X, values are mapped to consecutive integers. The mapping function,
however, di�ers from RDF-3X. Let id(v ) be the identi�er mapped to the RDF value v .
To e�ciently implement a bound consistent propagator for inequality �lters, we want
v1 <F v2 ⇒ id(v1) < id(v2), where <F is the partial order operator for comparing
SPARQL expressions (see de�nition 2.11). The SPARQL speci�cation only de�nes <F
between numerical values, between simple literals, between strings, between Boolean
values, and between dates.

To e�ciently implement the order solution modi�er, we also want v1 <O v2 ⇒

id(v1) < id(v2), where <O is the partial order de�ned in the SPARQL speci�cation.
This order introduces a precedence between blank nodes, URIs and literals. Literals
are ordered with respect to <F , so that v1 <F v2 ⇒ v1 <O v2.

To map each RDF value to a unique identi�er, we introduce a total order <T that
is compatible with both partial orders, i.e.,

∀(v1,v2) ∈ T × T,v1 <O v2 ⇒ v1 <T v2 .

Values are partitioned into categories as shown in table 6.1. Inside each category,
values are ordered according to the rules speci�c to the category. The total order <T
is de�ned as the lexicographic order of the inter- and intra-category ordering.

We map the values of a dataset to consecutive integers starting from 1, such that
v1 <T v2 ⇔ id(v1) < id(v2). Table 6.2 shows the mapping of the terms appearing
in our running example to identi�ers. Identi�ers in Castor are encoded with 32 bits.
Hence, a dataset cannot contain more than 4 billion values. If more values are needed,
one could enlarge identi�ers to 64 bits.
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Category Identi�er Term

1 1 _:a

2 2 http://dbpedia.org/resource/Procrastination

2 3 http://dbpedia.org/resource/Research

2 4 http://phdcomics.com/#Cecilia

2 5 http://phdcomics.com/#Free Food

2 6 http://phdcomics.com/#Mike

2 7 http://phdcomics.com/#Smith

2 8 http://phdcomics.com/#Students

2 9 http://phdcomics.com/#Tajel

2 10 http://purl.org/dc/terms/created

2 11 http://purl.org/dc/terms/subject

2 12 http://www.phdcomics.com/blog.php

2 13 http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq

2 14 http://www.w3.org/1999/02/22-rdf-syntax-ns#_1

2 15 http://www.w3.org/1999/02/22-rdf-syntax-ns#_2

2 16 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2 17 http://www.w3.org/2001/XMLSchema#dateTime

2 18 http://www.w3.org/2001/XMLSchema#decimal

2 19 http://www.w3.org/2001/XMLSchema#integer

2 20 http://www.w3.org/2001/XMLSchema#string

2 21 http://xmlns.com/foaf/0.1/Group

2 22 http://xmlns.com/foaf/0.1/age

2 23 http://xmlns.com/foaf/0.1/interest

2 24 http://xmlns.com/foaf/0.1/knows

2 25 http://xmlns.com/foaf/0.1/member

2 26 http://xmlns.com/foaf/0.1/name

2 27 http://xmlns.com/foaf/0.1/topic

2 28 http://xmlns.com/foaf/0.1/weblog

3 29 ("Brian B. Smith", "")
3 30 ("Michael Slackenerny", "")
3 31 ("Tajel", "")
3 32 ("comics", "")
3 33 ("procrastination", "")
4 34 ("Cecilia",xsd:string)
6 35 ("26",xsd:integer)
6 36 ("29",xsd:integer)
6 37 ("35",xsd:decimal)
6 38 ("56",xsd:integer)
7 39 ("2005-07-10T08:20:00",xsd:dateTime)

Table 6.2: The RDF terms appearing in the running example of fig. 2.2 are mapped to

consecutive integers.
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Categories that can be interpreted by SPARQL, i.e., strings, booleans, numbers
and dates, are ordered by their interpreted value. Hence, equivalent values that are
not identical, are assigned to consecutive identi�ers. For example, ("1",xsd:integer),
("1",xsd:float), and ("1.0",xsd:float) will have consecutive identi�ers.

6.1.2 Representing an RDF Value

The strings appearing in the dataset, i.e., IRI strings, lexical forms and language
tags, are stored separately from values. As for values, each string is mapped to a
consecutive integer identi�er, starting from 1. The string table is stored on disk along
with a B+-tree mapping hash values to the corresponding string identi�ers.

A value on disk is a �xed-size data structure with the following �elds.

• the 32-bits identi�er,

• the category (see table 6.1),

• the numerical subcategory for numbers: integers, �oating point numbers or
decimal numbers with arbitrary precision,

• the identi�er of the datatype (pointing to an IRI value),

• the identi�er of the language tag or the lexical form of the datatype (pointing
to a string),

• the identi�er of the lexical form (pointing to a string),

• a 64-bit integer approximation if the value is a number.

The numerical subcategory indicates how the lexical form must be converted to a
number. For typed literals, the lexical form of the datatype gives quick access to the
string representation of the datatype IRI. It is redundant with the datatype in the
previous �eld. The integer part of a numeric value is encoded in the last �eld. Such
approximation is used to propagate arithmetic constraints.

The value table is stored on disk along with a B+-tree mapping hash values to the
corresponding value identi�ers. The hash value of an RDF value is computed with
the category, numerical subcategory, language tag or lexical form of the datatype,
and lexical form �elds.

Values that are not identical, may still be equivalent. For example, the integer
("1",xsd:integer) and the �oating-point number ("1.0",xsd:float) are equivalent,
but are di�erent values with di�erent identi�ers. The equivalence class of a value
v is the set of values that are equivalent to v . Equivalent values have neighboring
identi�ers. Thus, the equivalence class of a value is represented as a simple range of
identi�ers.

To quickly look up the equivalence class of a value, we store a bitmap on disk
with one bit per value. Bit i is 1 if the value with identi�er i is the �rst value in its
equivalence class, and 0 otherwise. Hence, �nding the range of identi�ers that are
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equivalent to a value, amounts to �nding the indexes of the preceding and following
bit 1. Such bit-wise operations are handled e�ciently by the CPU.

Example 6.1. Consider the numeric values ("0",xsd:integer), ("1",xsd:integer),
("1.0",xsd:float), ("1.00",xsd:float), and ("2",xsd:float). The associated bitmap
is 11001. The equivalence class for the third value (1.0) is represented by the identi�er
range [2,4].

6.1.3 Representing Triples

RDF triples are represented by three integers. To provide e�cient look-up, triples
are stored three times in di�erent lexicographical orders: SPO, POS and OSP, where
S stands for subject, P for predicate and O for object. For example, SPO means the
triples are ordered �rst by subject, then by predicate and �nally by object.

The sorted triples are written on disk as B+-trees. One page corresponds to one
node of the tree. Leaves are linked together to allow e�cient in-order traversal. The
triples inside a leaf are compressed using the delta-algorithm described in Neumann
and Weikum [NW08].

Because the same leaf pages are often used in the propagators, and decompressing
a leaf is costly, Castor keeps a small cache of the most recently used decompressed
pages.

Given two triples tmin = (smin,pmin,omin ) and tmax = (smax ,pmax ,omax ), the
Fetch(tmin,tmax ) operation returns the set of triples between tmin and tmax , accord-
ing to the lexicographic order of the index speci�ed in table 6.3. When all components
are �xed, i.e., tmin = tmax , the set is a singleton if the triple appears in the dataset
and empty otherwise. When only one component is not �xed, e.g., smin = smax and
pmin = pmax but omin < omax , that component is guaranteed to be within its bounds
in the returned triples. However, when more than one component is not �xed, no
such property can be guaranteed, due to the in-order traversal of the B+-tree.

Example 6.2. Consider the graph G = {(1,2,5), (1,2,7), (1,3,4), (1,3,8)}. Executing
the Fetch((1,2,3), (1,2,6)) operation will use the SPO index because both subject and
predicate are �xed. The single result is the triple (1,2,5). The Fetch((1,2,7), (1,3,8))
operation will also use the SPO index because only the subject is �xed. In this case,
the result set is {(1,2,7), (1,3,4), (1,3,8)}. Note the presence of triple (1,3,4) even
though object 4 is smaller than the requested lower bound 7.

In addition to the triple indexes, the whole table is also stored uncompressed. The
table is used by propagators needing direct access to the whole table, such as the
domain-consistent triple propagator (see section 6.3.1).

6.2 Variables and Domains

Each variable in a SPARQL query is a decision variable in Castor. Domains of decision
variables are identi�ers of all RDF values appearing in the dataset, along with the
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smin = smax pmin = pmax omin = omax Index

Yes Yes Yes POS
Yes Yes No SPO
Yes No Yes OSP
Yes No No SPO
No Yes Yes POS
No Yes No POS
No No Yes OSP
No No No POS

Table 6.3: Given the triples tmin = (smin,pmin,omin ) and tmax = (smax ,pmax ,omax ),

the index is chosen so that the fixed components come first in the ordering. Three

di�erent orderings are su�icient to cover all cases. Note that the index of the first

and last row does not ma�er for correctness. POS has been chosen to maximize the

cache usage.

special value 0. As long as 0 is in the domain of a variable, that variable is considered
unbound in the SPARQL semantics and is not part of the solution mapping.

When posting �lters, auxiliary variables are introduced, as explained in sec-
tion 6.3.2. The results of predicates are represented by Boolean variables. To conform
to the SPARQL semantics, the domain of Boolean variables have three values: true,
false and error. Arithmetic constraints are posted on numeric variables whose do-
mains only contain integers. Integers were chosen over �oating point numbers to
avoid numerical instabilities.

During the search, domains get reduced at each choice point and restored when
backtracking. The data structures representing domains should perform such opera-
tions e�ciently. There are two kinds of representations. The discrete representation
keeps track of every single value in the domain. The bound representation only keeps
the lowest and highest value of the domain.

Boolean auxiliary variables use the discrete representation. Numeric auxiliary
variables use the bound representation, as it is impossible to store all possible integers
in main memory. For decision variables, we propose a dual view, leveraging the
strengths of both representations.

6.2.1 Discrete Representation

The discrete representation is based on sparse sets presented by Briggs and Torczon
[BT93]. The domain of each variable x is represented by its size sizex and two arrays
domx and mapx . The sizex �rst elements of domx are in the domain of x , the others
have been removed (see �g. 6.1). The mapx array maps values to their position in the
domx array.

Note that this is not the standard representation of discrete domains in CP. How-
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ddomx = д f c b h a e i
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Figure 6.1: Example representation of the domain {b,c,d , f ,д,h }, such that sizex = 6,

when the initial domain is { a, . . . ,i }. The sizex first values in domx belong to the

domain; the other values have been removed earlier. The mapx array maps values to

their position in domx . For example, value b has index 4 in the domx array. In such

representation, only the size needs to be kept in the trail.

ever, the trail, i.e., the data structure needed to restore the domain to any ancestor
node of the search tree, of standard representations is too heavy for our purpose and
size of data.

For a variable x , the following invariants hold:

• D (x ) = { domx [i] | 0 6 i < sizex }

• mapx [v] = i ⇔ domx [i] = v

• The values in domx [sizex .. capx −1] are not modi�ed by any operation, where
capx is the size of the domx array, i.e., the size of the initial domain.

Thanks to the last invariant, the domain can be restored in constant time by setting
the sizex marker back to its previous position. The trail is thus a stack of the sizes.

To remove a value, we swap it with the last value of the domain (i.e., the value
directly to the left of the sizex marker), reduce sizex by one and update the mapx
array. Such operation is done in constant time, as shown in algorithm 6.1.

Alternatively, we can restrict the domain to the intersection of itself and a set
M . We �rst move all values of M which belong to the sizex �rst elements of domx ,
i.e., which are still in the domain, at the beginning of domx . Such operation is called
Mark in algorithm 6.1. The markx counter keeps track of the marked values (see
�g. 6.2). We denote the set of marked values by Mx . Once all values are marked, we
set sizex to the size of the intersection, i.e., markx . The whole operation is done in
O ( |M |), with |M | the size of M . Castor uses the restriction operation in propagators
achieving forward-checking consistency.

Operations on the bounds however are ine�cient. This major drawback is due to
the unsorted domx array. Searching for the minimum or maximum value requires the
traversal of the whole domain. Increasing the lower bound or decreasing the upper
bound involves removing every value between the old and new bound one by one.
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function Contains(x ,v) . v ∈ D (x )

Return mapx [v] < sizex
end function

procedure Swap(x ,i, j) . Swap elements at positions i and j in domx .
domx [i],domx [j]← domx [j],domx [i]
mapx [domx [i]]← i

mapx [domx [j]]← j

end procedure

procedure Bind(x ,v) . D (x ) ← D (x ) ∩ {v }

if mapx [v] > sizex then
sizex ← 0

else
Swap(x ,mapx [v],0)
sizex ← 1

end if
end procedure

procedure Remove(x ,v) . D (x ) ← D (x ) \ {v }

if mapx [v] < sizex then
Swap(x ,mapx [v], sizex −1)
sizex ← sizex −1

end if
end procedure

procedure ClearMarks(x ) . Mx ← ∅

markx ← 0
end procedure

procedure Mark(x ,v) . Mx ← Mx ∪ (D (x ) ∩ {v })

if mapx [v] < sizex ∧mapx [v] >= markx then
Swap(x ,mapx [v],markx )
markx ← markx +1

end if
end procedure

procedure Restrict(x ) . D (x ) ← Mx

sizex ← markx
end procedure

Algorithm 6.1: Operations on the discrete representation of variables involve swapping

values in the domx array. All procedures have O (1) time complexity.
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Figure 6.2: Values can be marked in the discrete representation of a domain by moving

them to the beginning of the domx array and increasing the markx marker. To restrict

the domain to only the marked values, we set sizex to markx .

6.2.2 Bound Representation

The domain of every variable x is also represented by its bounds, i.e., its minimum and
maximum values. In contrast to the discrete representation, the bound representation
is an approximation of the exact domain. We assume all values between the bounds
are present in the domain.

In such a representation, we cannot remove a value in the middle of the domain as
we cannot represent a hole inside the bounds. However, increasing the lower bound
or decreasing the upper bound is done in constant time.

The data structure for this representation being small (only two numbers), the
trail contains copies of the whole data structure. Restoring the domains involves
restoring both bounds.

6.2.3 Dual View

Propagators achieving forward-checking or domain consistency remove values from
the domains. Thus, they require a discrete representation. However, propagators
achieving bound consistency only update the bounds of the domains. For them to be
e�cient, we need a bound representation. Hence, Castor creates two variables xD
and xB (resp. with discrete and bound representation) for every SPARQL variable x .
Constraints are stated using only one of the two variables, depending on which repre-
sentation is the most e�cient for the associated propagator. In particular, arithmetic
inequality constraints are stated on xB whereas triple pattern constraints are stated
on xD .

An additional constraint xD = xB ensures the correctness of the dual approach.
Achieving domain consistency for this constraint is too costly, as it amounts to
perform every operation on the bounds also on the discrete representation. Instead,
the propagator in Castor achieves forward-checking consistency, i.e., once one variable
is assigned, the same value will be assigned to the other variable.

For practical reasons, the two representations xD and xB are implemented as one
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procedure ClearMarks(x ) . Mx ← ∅

markx ← 0
markmin

x ,markmax
x ← +∞,−∞

end procedure

procedureMark(x ,v) . Mx ← Mx ∪ (D (x ) ∩ {v })

if mapx [v] < sizex ∧mapx [v] >= markx ∧minx 6 v 6 maxx then
Swap(x ,mapx [v],markx )
markx ← markx +1
markmin

x ← min(markmin
x ,v )

markmax
x ← max(markmax

x ,v )

end if
end procedure

procedure Restrict(x ,v) . D (x ) ← Mx

sizex ← markx
minx ,maxx ← markmin

x ,markmax
x

end procedure

Algorithm 6.2: In the dual representation, the Restrict operation is done on both

representations at the same time without additional complexity.

object. The propagation of the channeling constraint xD = xB is embedded inside the
Bind operation. As an optimization, when restricting a domain to its intersection with
a set M , we �lter out values of M which are outside the bounds and update the bounds
of xB . Such optimization does not change the complexity of the operation, as it has to
traverse the whole set M anyway. The new operation is shown in algorithm 6.2.

6.3 Constraints and Propagators

The domains of the variables can be huge. A value-based propagation queue can grow
very large. To avoid this problem, Castor uses constraint-based propagation queues.
There are three priority levels and a separate queue for each of them. Constraints with
higher priority are always propagated before lower-priority constraints. Constraints
are given priorities based on the consistency level they achieve:

• Highest priority: domain consistent and bound consistent propagators. Such
propagators are very fast. Bound consistent propagators have constant time
complexity. Domain consistent propagators behave linearly with respect to the
number of removed values.

• Medium priority: forward checking propagators. Such propagators are entailed
after they are called. They do not need to be called again later in the branch.
However, they have to iterate over all the values of a domain.
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Figure 6.3: If “old sizex” was the size of the domain of x on the last propagation

of a constraint, the values c , b and h have been removed since then. To perform

value-based propagation, the propagator only has to check the values for which c , b

or h was a support. Note that the “old sizex ” marker is a property of the propagator

and is di�erent for each propagator, while sizex is a property of the domain of x .

• Lowest priority: non-monotonic propagators. The order in which they are
called a�ect the amount of pruning they perform. The smaller the domains,
the better the pruning. Because they also have a high complexity, similar to
forward checking propagators, they are called last.

While the propagation queues are constraint-based, it is still possible to perform
value-based propagation in a constraint. At the end of the propagation of a constraint,
we remember the sizes of the domains. On the next propagation, the values that have
been removed from the domains will be between the saved sizex and the new sizex , as
shown in �g. 6.3. By iterating over the values between the two markers, we e�ectively
perform value-based propagation. When backtracking, the saved sizes must be reset.

All propagators in Castor are considered to be idempotent, i.e., calling the same
propagator again immediately after it has �nished, does not perform any more pruning.
Thus, the currently running propagator is never added back in the propagation queue.

6.3.1 Triple Pa�erns

The most used constraint when solving a SPARQL query is the triple pattern. A triple
pattern involves three variables xs , xp and xo . It is satis�ed if the triple (xs ,xp ,xo ) is
present in the dataset. Basically, a triple pattern is a table constraint with arity 3 and
the table being the whole dataset. The di�culty arises from the size of the domains and
of the table. Propagators maintaining supports for every variable-value pair, require
too much memory and are too heavy to backtrack. Thus, they are not considered. In
this section, we present three propagators for the triple pattern constraint, achieving
di�erent levels of consistency.

The forward-checking propagator (FC) is shown in algorithm 6.3. When all
variables but one are assigned, the domain of the unassigned variable is restricted to
the values for which there exists a support triple in the dataset. The Fetch operation
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procedure TripleFC((xs ,xp ,xo ))
if there is at most one unassigned variable in { xs ,xp ,xo } then

tmin ← (minxs ,minxp ,minxo )
tmax ← (maxxs ,maxxp ,maxxo )
T ← Fetch(tmin,tmax )

ClearMarks(xs )
ClearMarks(xp)
ClearMarks(xo)
for all (s,p,o) ∈ T do

Mark(xs ,s)
Mark(xp ,p)
Mark(xo ,o)

end for
Restrict(xs )
Restrict(xp)
Restrict(xo)

end if
end procedure

Algorithm 6.3: The forward-checking propagator for a triple pa�ern waits for all but

one variable to be assigned.

is called to fetch the support triples (see section 6.1.3). The time complexity of the
propagator is O (t ) with t the number of triples fetched from the store.

Additional pruning can be obtained by propagating as soon as one variable is
assigned. Such a propagator, called FC+, is shown in algorithm 6.4. The propagator
achieves forward-checking consistency, like the FC propagator. However, when
one variable is bound, it also achieves one-time domain consistency. The domain
consistency is not maintained in further propagation calls. This is similar to nFC2
described by Bessière et al. [Bes+99]. As more than one variable may be unassigned,
the database Fetch operation may return triples that are outside the given bounds,
as explained in section 6.1.3. Thus, we check that every component of the support
triple does appear in the domain of the corresponding variable. Consider for example
the domains D (xs ) = { 1 }, D (xp ) = { 2,3 }, D (xo ) = { 2,4 } and the support triples
T = { (1,2,3), (1,3,4) }. Without the check, the domain of xp would not be reduced,
even though there are no supports in D (xo ) for xp = 2.

Even more pruning can be obtained with the domain-consistent propagator (DC)
shown in algorithm 6.5. The propagator is an instance of the STR algorithm [Lec11]
for tables of arity 3. The trailable set of support triples S initially contains all the
triples of the dataset. The set is implemented as a sparse set, similar to the discrete
representation of variable. Hence, only its size has to be trailed. The time complexity
of the DC propagator is O (t ) with t the number of triples in the support set. As the
propagator is called whenever a domain changes, the cost is quite high, as will be
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procedure TripleFC+((xs ,xp ,xo ))
if there are at most two unassigned variables in { xs ,xp ,xo } then

tmin ← (minxs ,minxp ,minxo )
tmax ← (maxxs ,maxxp ,maxxo )
T ← Fetch(tmin,tmax )

ClearMarks(xs )
ClearMarks(xp)
ClearMarks(xo)
for all (s,p,o) ∈ T do

if s ∈ D (xs ) ∧ p ∈ D (xp ) ∧ o ∈ D (xo ) then
Mark(xs ,s)
Mark(xp ,p)
Mark(xo ,o)

end if
end for
Restrict(xs )
Restrict(xp)
Restrict(xo)

end if
end procedure

Algorithm 6.4: The extended forward-checking propagator for a triple pa�ern addi-

tionally achieve domain consistency once when at least one variable is assigned. It

does not maintain the domain consistency property.
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procedure TripleDC((xs ,xp ,xo ))
ClearMarks(xs )
ClearMarks(xp)
ClearMarks(xo)
for all (s,p,o) ∈ S do

if s ∈ D (xs ) ∧ p ∈ D (xp ) ∧ o ∈ D (xo ) then
Mark(xs ,s)
Mark(xp ,p)
Mark(xo ,o)
if ∀x ∈ { xs ,xp ,xo } ,mark(x ) = size(x ) then

Return
end if

else
S ← S \ { (s,p,o) }

end if
end for
Restrict(xs )
Restrict(xp)
Restrict(xo)

end procedure

Algorithm 6.5: The domain-consistent propagator is an instance of the STR algo-

rithm [Lec11]. It maintains a support set S using a sparse set data structure similar

to the discrete domains.

shown in section 7.4.3. Hence, the DC propagator is not used in Castor.

6.3.2 Filter Expressions

The second type of constraints in Castor are expressions used as �lters. Such �lter
constraints have the form

filter(E,b) ≡ EBV(
�
µ[E]�) = b

where µ is the solution mapping that maps each variable x ∈ vars(E) to its value.
Filter constraints are rei�ed constraints, with b as their truth value. The variable b is
a Boolean variable using SPARQL semantics. Hence, its domain contains three states,
including the error state.

Considering an implementation computing EBV(
�
µ[E]�) using the semantics

described in chapter 2, we have a generic forward-checking propagator for any �lter
constraint. As soon as all variables but one are assigned, we iterate over all values
of the domain of the unassigned variable. Only values for which the evaluation
has a truth value that is in the domain of b are kept. The propagator is shown in
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procedure FilterFC(E,b)
if all variables of vars(E) are assigned then

µ ← { (x ,v ) | x ∈ vars(E),v ∈ D (x ) }

Bind(b,EBV(
�
µ[E]�))

else if only one variable of vars(E) is unassigned then
xu ← the unassigned variable of vars(E)
µ ← { (x ,v ) | x ∈ vars(E) \ { xu } ,v ∈ D (x ) }

ClearMarks(xu )
for all v ∈ D (xu ) do . E�cient iteration over domxu [0 .. sizexu −1]

µ ′ ← µ ∪ { (xu ,v ) }

if EBV(
�
µ ′[E]�) ∈ D (b) then

Mark(xu ,v)
end if

end for
Restrict(xu )

end if
end procedure

Algorithm 6.6: The generic forward-checking propagator for filter constraints allows

Castor to handle any SPARQL filter, provided we can evaluate expressions. The

propagator is however much less e�icient than specialized propagators.

algorithm 6.6. While this provides a fallback for full SPARQL compliance, we can use
more e�cient propagators in some cases.

For Boolean operators (¬b), (b1∧b2) and (b1∨b2), domain-consistent propagators
are easily written. However, special care needs to be taken with the error state. Thanks
to the rei�cation of the �lter constraints, any Boolean combination of expressions
can be propagated in this way.

Comparisons between two variables can also be handled e�ciently by specialized
propagators. The sameTerm(x ,y) �lter is true if x and y are assigned the same value,
i.e., the same identi�er. Such constraint is implemented with value-based domain-
consistency. When an identi�er is removed from x , it is also removed from y and
conversely. If the constraint is false, a forward-checking propagator is used. When
one variable is assigned, we remove the assigned identi�er from the domain of the
other variable.

The equality �lter x = y is similar to the sameTerm �lter, but we must take into
account the fact that identity is not the same as equality in SPARQL. Two values with
di�erent identi�ers may still be equivalent. To propagate the equality �lter, we use
a property of the value ordering, stating that equivalent values have neighboring
identi�ers. For each value, we can retrieve its equivalence class. Hence, the equality
�lter means that x must be an identi�er in the equivalence class of y and conversely.

Inequality �lters between two variables, like x < y, are easily implemented with
bound-consistent propagators. As for the equality �lter, care must be taken to use the
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equivalence classes of the values.

For arithmetic expressions, like x1 + x2 = y, we introduce numerical auxiliary
variables. The domains of the auxiliary variables are integer numbers and are im-
plemented with the bound representation. Bound-consistent channeling constraints
map RDF variables to numerical auxiliary variables. Bound-consistent propagators
for the arithmetic constraints are posted on the auxiliary variables. An integer value
i in the domain of a numerical variable is interpreted as the range [i,i + 1), i.e., all
integer, �oating-point or decimal numbers whose integer part is i . The auxiliary
variables thus represent an approximation of the real value. For correctness, the
generic forward-checking propagator described above is used. The propagators for
arithmetic constraints are used for additional pruning.

6.4 Search

The search tree is de�ned by using a labeling strategy. At each node, an unassigned
decision variable is chosen and a child node is created for each value in the domain of
the variable. All the variable selection heuristics presented in section 4.4 have been
implemented in Castor. First experiments have not shown much di�erences between
the various standard heuristics (see also section 7.4.1). Hence, research on the search
heuristics in Castor has been left for future work. The default variable selection heuris-
tic in Castor is dom/deg, which was marginally better on one query. The ordering of
the values is de�ned by their current order in the domx array representation.

The search tree is explored with a depth-�rst search algorithm. Such exploration is
required for e�cient inconsistency check of optional subqueries (see section 5.2.1) and
e�cient restore of the domains. To restore the discrete representation of a domain,
we only reset its size. This assumes that removed values, i.e., values above sizex
in domx , have not changed. Operations on the domain do not change the order of
removed values, but do move values that are still in the domain. Restoring a domain,
i.e., resetting its size, invalidates any later checkpoints, i.e., whose size is smaller.
Hence, only a depth-�rst search algorithm can be used.

To enable posting constraints during the search, we introduce subtrees. A subtree
consists of a set of constraints and a set of decision variables to label. Each subtree
in Castor corresponds to a BGP of the query. It iterates over all assignments of the
variables satisfying the constraints, i.e., the solutions of the BGP, taking into account
the variables that were assigned previously. At each solution, Castor can create a
new subtree or output the solution, according to the operational semantics described
in section 5.2.1. When a subtree has been completely explored, the domains of the
variables are restored to their state when the subtree was created and the constraints
are removed. The search can then continue in the previous subtree.
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6.5 The Castor Open Source System

The system described in the previous sections of this chapter has been implemented
as an open-source library.1 It is written in C++11 and contains about 16,000 lines of
code. The library relies on the the raptor and rasqal libraries [Bec01] to parse the
RDF and SPARQL syntax.

This section describes the implementation of the system. Section 6.5.1 shows the
working of the library. Section 6.5.2 present the tools shipped with Castor. Finally,
section 6.5.3 discusses some limitations of the system.

6.5.1 The Library

The main classes of the library are Store and Query. The Store class contains all the
operations for reading the on-disk dataset presented in section 6.1. The Query class
implements query parsing and evaluation. An instance of the Query class is bound to
a speci�c query and is discarded after execution. An instance of the Store class may
be reused for di�erent queries, thus keeping the cache of decompressed triple pages.
Currently, Castor does not allow concurrent access to the store.

Because a dataset can contain a huge number of values, the domain initialization
can take some time. To avoid performing the initialization again for every query, the
store keeps a pool of domains. When creating a query, domains are requested from
the store. They are returned to the store when the query is done. Such optimization
is possible because the domain initialization depends solely on the dataset and not on
the query to be solved.

Listing 6.1 shows an example usage of the Castor library. Lines 2 and 3 respectively
create the store and the query. The query creation does not start the CP search. Lines 4–
12 iterate over the solutions and print them out. Each time the next() function is
called, a portion of the search space is explored. If a solution is found, the execution
is halted and next() returns true. The next call to the function resumes the search,
starting from that solution. When the whole search space is explored, next() returns
false.

The call to ensureDirectStrings on line 9 is needed to print out the value. Re-
member that strings in values are represented by identi�ers. Value look-ups happen
often when evaluating SPARQL expressions. In such cases, string identi�ers often
su�ce. Looking up the content of the string would add an unneeded cost. Hence,
string identi�ers are not resolved automatically when looking up values.

6.5.2 Tools

Along with the library, Castor provides a set of tools. The castorld program (“ld”
stands for “load”) transforms an RDF dataset from any syntax understood by raptor
to the Castor representation explained in section 6.1. It is responsible for sorting the

1available on https://github.com/vianney/castor

https://github.com/vianney/castor
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1 int main(int argc, char* argv[]) {

2 castor::Store store("dataset.db");

3 castor::Query query(&store, "SELECT * WHERE { ?s ?p ?o }");

4 while(query.next()) {

5 cout << "Solution:" << endl;

6 for(int i = 0; i < query.requested(); i++) {

7 castor::Variable* x = query.variable(i);

8 castor::Value val = store.lookupValue(x->valueId());

9 val.ensureDirectStrings(store);

10 cout << " " << x->name() << ": " << val << endl;

11 }

12 }

13 cout << "Found " << query.count() << " solutions." << endl;

14 return 0;

15 }

Listing 6.1: Example code solving a simple query with the Castor library. The store

may be reused for other queries.

strings, the values and the triples and for constructing the B+-trees. As the dataset may
not �t entirely in main memory, an external sort algorithm is used. Thus, the memory
consumption of castorld is constant with respect to the dataset size, assuming raptor
can read the input syntax incrementally.

The castor and castord programs solve SPARQL queries on a dataset generated
by castorld. The castor tool executes a single query, received as an argument,
and outputs the solutions on the standard output. The castord tool (“d” stands
for “daemon”) implements a SPARQL endpoint. It launches a basic HTTP server
answering queries following the SPARQL Protocol [CFT08]. Note that this server
is not production-ready. A query will block the whole server until completion. No
limitations, e.g., a timeout or a limit on the number of results, are enforced, and
concurrent queries are not supported.

6.5.3 Limitations

Castor is a research prototype. It is not yet suitable for real-world applications. In
this section, we discuss some limitations of the current implementation.

Castor targets the SPARQL 1.0 speci�cation [PS08]. The following parts are
however not yet implemented.

• Named graphs. A SPARQL query can be performed over multiple datasets. A
graph operator allows to restrict part of the query to one of the datasets. Such
functionality can be implemented by extending our triple store into a quad
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store, i.e., storing (д,s,p,o) quads instead of (s,p,o) triples. The д component
corresponds to the IRI of the originating graph.

• construct queries. The results of a select query can be easily transformed
into an RDF graph with the construct template.

• describe queries. Like for the construct query form, a describe query returns
an RDF graph instead of a solution mapping. The graph should contain a
description of the result values. The precise de�nition of the description is not
speci�ed.

• Casting operators. In a SPARQL �lter, values can be interpreted as another
type. For example, xsd:integer("42") will evaluate to the numerical literal 42.
Such operators should not be di�cult to add to the generic forward-checking
propagator.

Thanks to the generic forward-checking propagator, most SPARQL �lters are
supported. However, the generic propagator is not e�cient. Specialized propagators
exist for arithmetic constraints, variable-to-variable comparisons and variable-to-
value comparisons. More complex �lters will likely be slow due to the generic
propagator.

The dataset representation is read-only. To add a triple to the dataset, the entire
on-disk structure must be recreated. Castor relies on the ordering of values and triples
to e�ciently retrieve data of interest. Adding a value or a triple involves rebuilding the
B+-trees. One possible solution is to use deferring indexes [NW10], keeping updates
in additional trees. Such trees are then periodically merged with the main indexes
when the server is idle.
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Chapter 7

Evaluation

In this chapter, we evaluate the performances of Castor. We �rst present the bench-
marks that will be used. Then, we compare Castor with state-of-the-art engines. The
third section brie�y compares Castor with the Comet CP solver. The last section
covers some technical design choices made by Castor.

7.1 Benchmarks

In order to evaluate the performances of Castor, we use standard benchmarks. The
SPARQL Performance Benchmark, presented in section 7.1.1, is especially interesting
as it contains di�cult queries. Even state-of-the-art engines have di�culties to solve
such queries. The Berlin SPARQL Benchmark, shown in section 7.1.2, is used to assess
the scalability of the engines. The queries are simpler, but the datasets are larger.

7.1.1 SPARQL Performance Benchmark

The SPARQL Performance Benchmark (SPPB) [Sch+09] is modeled after the DBLP
database [Ley13]. The DBLP database contains metadata about academic publications,
including their authors, the publishing journal, etc. The social-world distribution of
the DBLP database, i.e., most nodes have a low degree, captures the social network
aspect of the Semantic Web well. Indeed, the Semantic Web is built by combining
many small datasets.

The SPPB includes a deterministic generator that produces DBLP-like datasets
of arbitrary size. The benchmark uses sizes ranging from 10,000 to 5 million triples.
The values over triples ratio is roughly 0.6. Thus, for the 5 million triples dataset, the
initial domain of each variable contains 3 million values or so.

The benchmark provides 17 hand-made queries, designed to cover many use cases.
Some queries are variants of other queries. They are su�xed with a small letter.
Table 7.1 shows an overview of the queries and their general form.
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Query Description

S1 Single BGP with one result
S2 P1 opt P2, where P2 is a single triple pattern
S3a P filter (x = c ) with many results
S3b P filter (x = c ) with few results
S3c P filter (x = c ) with no results
S4 P filter (x < y) with a very large number of results
S5a P filter (x = y)

S5b Single BGP, same results as S5a
S6 P1 diff (P2 filter (x1 = x2 ∧ y1 < y2))

S7 P1 diff (P2 diff P3)

S8 P1 and ((P2 filter E1) union (P3 filter E2))

S9 P1 union P2 with unbound predicates
S10 Single triple pattern with unbound predicate
S11 Single triple pattern with limit and order modi�ers
S12a ask version of S5a
S12b ask version of S8
S12c ask query of a single triple not present in the dataset

Table 7.1: The queries provided by the SPARQL Performance Benchmark cover a wide

range of use cases. The authors of the benchmark have identified queries S4, S5a,

S6 and S7 as being the most challenging for current SPARQL engines. The complete

queries are included in appendix A.1.
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SELECT DISTINCT ?person ?name

WHERE {

?art rdf:type bench:Article .

?art dc:creator ?person .

?inproc rdf:type

bench:Inproceedings .

?inproc dc:creator ?person2 .

?person foaf:name ?name .

?person2 foaf:name ?name2

FILTER (?name=?name2)

}

(a) �ery S5a

SELECT DISTINCT ?person ?name

WHERE {

?art rdf:type bench:Article .

?art dc:creator ?person .

?inproc rdf:type

bench:Inproceedings .

?inproc dc:creator ?person .

?person foaf:name ?name

}

(b) �ery S5b

Listing 7.1: �ery S5a returns the names of all persons that occur as author of at

least one inproceeding and at least one article. The filter involving two variables

is challenging for SPARQL engines. �ery S5b computes the same set of results

without the filter.

Query S1 is a simple basic graph pattern with only one result. With e�cient
indexes, the execution time is expected to be constant with respect to the dataset size.

Query S2 has an optional pattern consisting of a single triple pattern with a shared
variable. For every solution of P1, there is at most one solution for P2.

Queries S3a, S3b and S3c are small basic graph patterns with a �lter assigning a
constant value to a variable. The queries di�er only by the constant value appearing
in the �lter.

Query S4 has the particularity of computing a very large result set, two orders of
magnitude larger than the other queries.

Query S5a, shown in listing 7.1, is a basic graph pattern with an equality �lter
between two variables. As shown in chapter 2, the equivalence between two values
does not always mean that those two values are identical. However, in this particular
dataset, there is a one-to-one mapping between the persons and their names. Query
S5a can thus be rewritten as query S5b, without a �lter.

Queries S6 and S7 make use of negations. The �lters in S6 always involve a
variable of P1 and a variable of P2.

Query S8 involves an union pattern with �lters. The �lters are all of the form
x , y.

Queries S9 and S10 involve unbound predicates, i.e., triple patterns with a variable
as predicate. SPARQL engines tend to be less optimized for such less common queries.

Query S11 returns the top-n results of a query by combining an order and a limit
solution modi�er.

Queries S12a, S12b and S12c are ask queries, i.e., limited to the �rst result found.
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The authors of the benchmark have found that queries S4, S5a, S6 and S7 are the
most challenging ones for current SPARQL engines. Those queries involve �lters with
more than one variable and/or diff patterns. Engines based on relational database
technology usually post-process �lters. Constraint programming, however, can exploit
�lters during the search.

The benchmark procedure is to run each query on a freshly started store. The
system cache should be cleared between each query. Such procedure is motivated
because the queries are not randomized. An engine could cache the results for a query
and serve it back when called again. Measuring such behavior would not be relevant.

7.1.2 Berlin SPARQL Benchmark

The Berlin SPARQL Benchmark (BSBM) [BS09] is described as follows on its website1.

The Berlin SPARQL Benchmark (BSBM) de�nes a suite of benchmarks
for comparing the performance of [SPARQL endpoints] across architec-
tures. The benchmark is built around an e-commerce use case in which a
set of products is o�ered by di�erent vendors and consumers have posted
reviews about products. The benchmark query mix illustrates the search
and navigation pattern of a consumer looking for a product.

The BSBM includes a deterministic data generator that produces datasets of
arbitrary size, speci�ed by a scale factor. The experiments conducted by the authors
of the benchmark use datasets with 25 million, 50 million, 100 million, and 200 million
triples. The values over triples ratio is about ¼. Thus, the 100 million triples dataset
contains 25 million values or so.

The BSBM covers three use cases.

• The Explore use case simulates a consumer looking for a product.

• The Explore and Update use case simulates a read/write scenario using SPARQL
1.1 Update queries.

• The Business Intelligence use case rely on SPARQL 1.1 features such as grouping
and aggregation.

Because Castor does not support the additional SPARQL 1.1 features, we focus on the
Explore use case.

The Explore use case contains 12 SPARQL query patterns to be instantiated by
the test driver, by replacing placeholders with random values. The test driver sends
queries successively to the tested SPARQL engine and measures the total time taken
for the whole query mix, as well as the execution time of each query.

In contrast to the SPPB, the BSBM is designed to evaluate engines with a warm
cache. It does so by �rst running 2000 warm-up query mixes without measuring

1http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
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Query Description distinct order + limit

B1 P filter (x > c ) X X

B2 BGP with simple opt patterns
B3 diff pattern X

B4 union pattern X X

B5 BGP with arithmetic constraints X X

B7 Complex opt patterns
B8 langMatches �lter X

B11 Unbound predicates

Table 7.2: The queries provided by the Berlin SPARQL Benchmark are similar to

relational database access. The complete queries are given in appendix A.2.

the performances. Then it performs the real benchmark with 500 query mixes. The
procedure is sound because the queries are randomized. Measuring warm-cache
performance gives a better insight on real-world performances than cold-cache per-
formances. In real-world applications, SPARQL engines are often long-lasting servers.

The queries are very similar to relational database accesses. Table 7.2 shows an
overview of the queries. Four queries out of 12 were left out:

• Query B6 has a regular expression �lter and is deprecated by the authors of the
benchmark.

• Queries B9 and B12 respectively use the describe and construct query forms.

• Query B10 uses a casting operator in a SPARQL expression.

Such features are unsupported by Castor (see section 6.5.3).
As shown in table 7.2, most queries include an order and a limit solution modi�er.

In such queries, the highest limit is 20 solutions. A simple opt pattern consists of a
single triple pattern with only one non-shared variable.

Query B1 searches for products with speci�c features. Hence, it touches a lot
of data across the whole RDF graph. Query B2 gathers information about a single
product. The evaluation only covers a small subgraph of the dataset.

Query B5 is interesting as it uses arithmetic constraints. It is shown in listing 7.2.
The arithmetic constraints can be e�ciently exploited by Castor during the search.

7.2 SPARQL Engine Comparison

To evaluate the performances of Castor, we compare against state-of-the-art SPARQL
engines on the benchmarks described above. In the �rst part of the section, we present
the contenders. Then, we show the results of the SPPB and the BSBM benchmarks.
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SELECT DISTINCT ?product ?productLabel

WHERE {

?product rdfs:label ?productLabel .

FILTER (%ProductXYZ% != ?product)

%ProductXYZ% bsbm:productFeature ?prodFeature .

?product bsbm:productFeature ?prodFeature .

%ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 .

?product bsbm:productPropertyNumeric1 ?simProperty1 .

FILTER (?simProperty1 < (?origProperty1 + 120) &&

?simProperty1 > (?origProperty1 - 120))

%ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 .

?product bsbm:productPropertyNumeric2 ?simProperty2 .

FILTER (?simProperty2 < (?origProperty2 + 170) &&

?simProperty2 > (?origProperty2 - 170))

}

ORDER BY ?productLabel

LIMIT 5

Listing 7.2: �ery B5 searches for products that are similar to another one. The

arithmetic filter can be e�iciently exploited in constraint programming.

7.2.1 Considered SPARQL Engines

We consider three well-known open-source SPARQL engine.
Sesame [BKH02] is a modular Java API to access the Semantic Web, developed

by Aduna. It includes an in-memory and an on-disk triple store capable of solving
SPARQL queries. The store can be swapped with another implementation by using
plugins, such as Ontotext’s proprietary OWLIM. In this chapter, we use the built-in
on-disk triple store.

Sesame is not known for stellar performances, but it gives a baseline of the
performances of common non-optimized engines. We use Sesame 2.6.1 running on
Java 1.6.0 update 30. The native on-disk store is con�gured with 3 indexes: SPOG,
POSG, and OSPG.

4store [HLS09] is an e�cient SPARQL engine written in C, developed at Garlik
with a focus on scalability. It is designed to operate in large clusters on datasets with
billions of triples. We use 4store 1.1.5 with the default con�guration.

Virtuoso [EM09] is a large database system written in C, developed by OpenLink
Software. It is both a relational database system and an RDF triple store. The main
DBPedia servers are powered by Virtuoso. We use the open-source edition of Virtuoso,
version 6.1.6, with the default con�guration.

Virtuoso is known to have good performances due to aggressive optimization.
However, such optimization does not always respect the SPARQL speci�cation. For
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example, Virtuoso does not distinguish between the values ("1",xsd:integer) and
("1.0",xsd:float).

Even though Castor borrows some concepts from RDF-3X, we do not compare
with it. RDF-3X implements only basic graph patterns and does not handle �lters.

7.2.2 SPARQL Performance Benchmark

We have generated 5 datasets with 10k, 25k, 250k, 1M and 5M triples. We have
performed cold runs of each query over all the generated datasets, i.e., between two
runs the engines were restarted and the system caches were cleared with “sysctl -w

vm.drop_caches=3”. We have set a timeout of 30 minutes.
Each query is run three times for each dataset to exclude variations incurred by

the operating system. We have observed no signi�cant variance in query execution
time.

Note that cold runs may not give the most signi�cant results for some engines.
E.g., Virtuoso aggressively �lls its cache on the �rst query in order to perform better
on subsequent queries. However, such setting is required by the non-randomized
queries.

All experiments were conducted on an Intel Pentium 4 3.2 GHz computer running
ArchLinux 64bits with kernel 3.8.8, 3 GB of DDR-400 RAM and a 40 GB Samsung
SP0411C SATA/150 disk with ext4 �lesystem. We report the time spent to execute the
queries, not including the time needed to load the datasets. The mean execution times
are shown in �g. 7.1. We do not show the standard deviation of the measurements, as
it was negligible for all instances.

Exploiting the constraints during the search gives an advantage to Castor. Queries
S5a and S5b compute the same set of solutions. S5a enforces the equality of two
variables with a �lter, whereas S5b uses a single variable for both. Note that such
optimization is di�cult to do automatically, as equivalence does not imply identity in
SPARQL (see chapter 2). Detecting whether one can replace the two equivalent vari-
ables by a single one requires a costly analysis of the dataset, which is not performed
by any of the tested engines. Sesame and 4store timed out when trying to solve query
S5a on the 250k and above datasets. Because Virtuoso breaks the SPARQL standard
and treats equality as identity, it performs as well on both queries S5a and S5b. Castor
does no query optimization, but still performs equally well on both variants thanks
to its ability to exploit the �lter at every node of the search tree.

Query S12a replaces the select query form by ask in S5a. The solution is a
boolean value re�ecting whether there exists a solution to the query. Thus, we only
have to look for the �rst solution. However, Castor still needs to initialize the search
tree, which is the greatest cost. A similar behavior is observed in query S1. Sesame
and 4store show a near-constant execution time, while Castor has to go through the
entire CP process.

Executing query S4 results in many solutions (e.g., for the 1M dataset, S4 results
in 2.5 × 106 solutions versus 3.5 × 104 solutions for S5a). The �lter does not allow for
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Figure 7.1: Castor outperforms state-of-the-art engines on queries from SPPB with

filters. It is competitive on other queries. The x-axis shows the dataset sizes. The

y-axis shows the query execution time. Note that both axes have a logarithmic scale.



CHAPTER 7. EVALUATION 101

10ms

100ms

1s

10s

1min

10min

Castor
4store

Virtuoso
Sesame

S9

P1 union P2
10ms

100ms

1s

10s

1min

10min

Castor

4store
Virtuoso

Sesame

S8

P1 and ((P2 filter E1 ) union (P3 filter E2 ))

10ms

100ms

1s

10s

1min

10min

Castor
4store

Virtuoso
Sesame

S11

limit and order modi�ers
10ms

100ms

1s

10s

1min

10min

Castor
4store

Virtuoso
Sesame

S10

Unbound predicate

10k 50k 250k 1M 5M

10ms

100ms

1s

10s

1min

10min

Castor

4store

Virtuoso

Sesame

S12b

ask variant of S8
10ms

100ms

1s

10s

1min

10min

Castor

4store

Virtuoso
Sesame

S12a

ask variant of S5a

10k 50k 250k 1M 5M

10ms

100ms

1s

10s

1min

10min

Castor4store

Virtuoso, Sesame
S12c

ask query, no results

Figure 7.2: Comparison of SPARQL engines on the SPPB benchmark (continued)
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much pruning. Nevertheless, Castor is still competitive with the other engines. None
of the engines were able to solve the query for the 5M dataset in less than 30 minutes.

Queries with negations, i.e., S6 and S7, are not handled well by Castor, nor by
Sesame or 4store. Only Virtuoso is able to return results in a reasonable amount of
time.

On other queries, Castor is very competitive with state-of-the-art engines. How-
ever, the execution time increases quicker than for other engines (see for example
queries S2, S8, S10 and S12b). This observation leads to the question whether the con-
straint programming approach scales to large datasets. Such question is investigated
in the next section.

7.2.3 Berlin SPARQL Benchmark

We have generated 4 datasets with 25M, 50M, 100M, and 200M triples. The provided
test driver is used to run 2000 warm-up query mixes and 500 benchmark query mixes.
For each combination of dataset and engine, we followed the following procedure.

1. Start the server.

2. Create a new database and import the RDF graph.

3. Shutdown the server, clear caches with “sysctl -w vm.drop_caches=3”, and
restart the server.

4. Launch the BSBM test driver.

All experiments were conducted on a KVM virtual machine running on an AMD
Opteron 6284 2.7 GHz computer with ArchLinux 64bits, kernel 3.9.3, 16 GB of main
memory, and 500 GB of disk space with ext4 �lesystem. The virtual disk partition
was directly mapped to an LVM volume, using the virtio driver, providing low virtual-
ization overhead. One core was allocated to the virtual machine. To make better use
of the available RAM, Castor was con�gured to keep a cache of 50,000 triple pages,
amounting to 9.2 GB. We report the average time spent to execute the queries, not
including the time needed to load the datasets. The mean execution times are shown
in �g. 7.3.

Overall, Castor is competitive with state-of-the-art engines on these larger graphs.
As expected, Castor is able to outperform other engines on query B5 by e�ciently
exploiting the arithmetic constraints. Surprisingly, Castor is also able to best Virtuoso
and 4store on query B11. Query B11 is a union of two single triple patterns with
unbound predicates. We suspect the performances of Castor can be attributed to the
more complete RDF-3X indexes.

7.3 The Need for a Specialized Solver

The model described in chapter 5 can be used to solve SPARQL queries with an
o�-the-shelf CP solver. However, the huge domains and large triple table make their
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Figure 7.3: Castor is competitive with state-of-the-art engines on large datasets from
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The x-axis shows the dataset size in number of triples. The y-axis shows the average

query execution time. Both axes have a logarithmic scale.
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use impractical.
To show this point, we have implemented the model in Comet [Dyn10]. Values

are mapped to integer identi�ers as described in section 6.1.1. The built-in table
constraint is used. The entire triple table is loaded in memory. The loading itself is
not included in the execution time. Built-in constraints are used for the �lters. Such
constraints do not respect the SPARQL speci�cation entirely, but nevertheless return
correct results in our particular test settings. The built-in labelFF search strategy is
used.

We have run a subset of the SPPB benchmark, including the challenging queries.
As we have not implemented solution modi�ers in our Comet model, we have modi�ed
the queries to remove any solution modi�er.

The Comet implementation performs very badly on all queries as shown in �g. 7.4.
The results are worse than state-of-the-art SPARQL engines on all queries, except
S5a′, where Comet e�ciently exploits the equality �lter during the search.

A specialized solver is thus needed in Castor in order to compete with state-of-
the-art SPARQL engines.

7.4 Impact of Technical Choices

Chapter 6 presented alternative design choices of some aspects. In this section, we
evaluate the various alternatives and show the rationale behind the default choices
made by Castor.

The following subsections deal with the search heuristics, the propagation of the
triple constraints, the propagation of the �lter constraints and the size of the triple
cache.

7.4.1 Search Heuristics

To evaluate the impact of the variable selection heuristic on the query execution time,
we have run the SPPB benchmark with the following heuristics.

• dom: select the variable with the smallest domain,

• deg: select the variable with the highest degree,

• ddeg: select the variable with the highest dynamic degree,

• dom/deg: select the variable with the smallest domain size over degree ratio,

• dom/ddeg: select the variable with the smallest domain size over dynamic
degree ratio.

• random: select an unassigned variable at random. Results for the random
heuristic are averaged over 10 runs.
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The deg heuristic is static, i.e., the ordering of the variables does not change during
the search. The other heuristics are dynamic.

The search for a solution of query S1, S3b, S3c, S10, S12a, S12b, or S12c, is (mostly)
backtrack-free. Hence, the chosen search heuristic has no impact on the performances
of solving the query. The results for the other queries are shown in �g. 7.5. Generally,
all search heuristics perform equally well, with a slight advantage for the dom/deg
heuristic. It is thus the default heuristic in Castor.

Heuristics based on variable degree alone have a slight disadvantage. Considering
the small number of constraints involved in a query, this is not surprising. The degrees
are not di�erent enough to di�erentiate between the variables. On the other hand,
the domain size gives an e�ective measure. Due to the large number of values in the
dataset, the domain size can vary widely from one variable to another.

Query S11 has only two variables and only one triple, involving both variables.
As the order and limit solution modi�ers are used together, the branch-and-bound
technique described in section 5.2.2 is used. The variable to be minimized has degree
2, because it is also involved in the bounding constraint. Hence, it is chosen �rst by
the variable selection heuristics deg and dom/deg, which obviously is the right choice.

7.4.2 Consistency Level of the Triple Constraint

Section 6.3.1 presented three di�erent propagators for the triple pattern constraint. To
evaluate which consistency level should be achieved, we have run the SPPB benchmark
using the following three propagators.

• FC: simple forward checking,

• FC+: forward checking with one-time domain consistency when only two
variables are unassigned,

• DC: full domain consistency.

The FC+ propagator is always better than the DC propagator, as shown in �g. 7.6.
This is expected, as the DC propagator is called on each variable modi�cation and has
to traverse the whole table. The FC+ propagator only achieves domain consistency
once, when one variable is bound.

Compared to the simpler FC propagator, the FC+ propagator performs better in the
challenging queries S5a and S7, as well in queries S5b, S9, S10 and S11. The additional
propagation performed higher up in the tree (when two variables are unassigned)
allows FC+ to prune larger parts of the search tree. Triple patterns in SPARQL queries
often have at least one constant component. Hence, the FC+ propagator can often
achieve its one-time domain consistency at the very beginning of the search.

The FC propagator performs slightly better on ask queries where we stop after
the �rst solution found. The additional pruning performed by the FC+ propagator
is unnecessary if the solution can be reached without too many backtracks. Such
behavior also appears in the challenging query S6. When evaluating the P1 diff P2
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However, the FC propagator is clearly be�er on the challenging query S6.
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pattern, we only want to know whether P2 is satis�able. Hence, we also stop after the
�rst solution. While we gain some performances by using FC if there is a solution,
we may also loose e�ciency if there are no solutions. In such cases, the whole search
(sub)tree must be explored. The FC+ propagator is then more e�cient, as shown by
the results of query S7.

No easy rule could be found for choosing between FC and FC+. The FC+ propagator
is however more e�cient than FC in most cases. Hence, it was chosen as default
propagator in Castor.

7.4.3 Propagation of Filter Constraints

Exploiting �lters during the search is one of the main interests of using constraint
programming to solve SPARQL queries. To assess such claim, we have run the SPPB
benchmark with three con�gurations of Castor.

• Post-process: all �lters are post-processed as current SPARQL engines without
optimization would do. In this con�guration, the P1 diff P2 pattern is handled
as a (P1 opt P2) filter (¬ bound(x )) pattern, where the �lter is post-processed.

• FC: the diff pattern is handled as explained in chapter 5. All other �lters are
enforced using the generic forward-checking propagator shown in section 6.3.2.

• Specialized: �lters are enforced using specialized propagators. Equality con-
straints achieve domain consistency. Inequality constraints achieve bound
consistency.

The con�guration with specialized propagators outperforms the other con�gu-
rations on all queries with �lters, as shown in �g. 7.8. On challenging queries like
S5a and S6, having specialized propagators is especially important. In such queries,
the specialized propagators achieve a higher consistency level than the generic FC
propagator. Hence, more pruning is performed higher up the search tree.

Note that the generic forward checking propagator has a high cost due to the
traversing of the whole domain of the unbound variable. It is sometimes better to
post-process the �lters, as demonstrated by the challenging queries S4 and S6. Both
queries have inequality �lters x < y. We speculate that the cost of performing the
generic forward checking propagator on such �lters is too high compared to the few
pruning gained.

7.4.4 Impact of the Triple Cache

The propagation of the triple constraints accesses the triple store. Such propagation
is performed many times during the evaluation of a query. Leaf pages in the triple
store are compressed. To avoid decompressing the same leaf pages over and over,
Castor maintains a cache of recently decompressed leaf pages.

To evaluate the impact of the cache size, we have run the BSBM benchmark on
the 100M dataset with varying sizes. The results in �g. 7.9 show little impact of the
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cache size on the query execution time. As expected, the performances are slightly
improving with higher cache sizes.

However, with very large sizes, i.e., 50k and 100k, the query execution times are
slightly increasing again. Higher cache size implies higher memory usage. Hence,
less memory is left for the system cache and disk reads are slower.
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Chapter 8

Conclusion

The goal of this thesis is to evaluate the feasibility and e�ciency of solving SPARQL
queries using Constraint Programming (CP). To this e�ect, we proposed a reformula-
tion of SPARQL semantics by means of CSPs, and an operational semantics that can
be implemented in o�-the-shelf CP solvers. We also introduced Castor, a SPARQL
engine implementing our semantics with a lightweight specialized solver. Section 8.1
recalls the main achievements of this thesis. Section 8.2 outlines the limitations of
our approach, as well as possible directions for future research.

8.1 Results

The �rst step in solving SPARQL queries with CP consists in reformulating the
semantics by means of Constraint Satisfaction Problems (CSPs). This is done in
chapter 5. A basic graph patterns (BGP) is translated directly into a CSP with table
constraints. Filters on BGPs are added to the set of constraints, and are thus exploited
during the search.

Compound patterns cannot always be translated to pure CSPs. Unlike CSPs, not
all variables need to be assigned in the solutions of SPARQL queries. The SPARQL
semantics for compound patterns is de�ned by merging the result sets of BGPs.
We proposed replacement semantics to solve the CSPs associated with the BGPs
sequentially, taking into account the partial solution found so far. Such semantics is
better suited for use in a tree search. We proved that the semantics are correct, under
some conditions that are not restrictive in real-life queries.

Based on the denotational CSP semantics, we proposed an operational CP se-
mantics that can be implemented with o�-the-shelf CP solvers that allow posting
constraints during the search. Experimental evaluation with the Comet [Dyn10]
solver shows us that such approach is feasible, albeit not e�cient (see chapter 7). The
problem is that o�-the-shelf solvers are not optimized for handling huge domains and
tables.
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In chapter 6, we introduced Castor embedding a specialized CP solver designed
with large domains in mind. The key idea is to avoid as much as possible data
structures and algorithms whose time or space complexity is proportional to the
database size. The table constraints achieve forward-checking consistency with an
on-disk table structure borrowed from RDF-3X [NW08].

We use a sparse set representation for �nite domains. We complemented the
representation with a bound representation that is synchronized lazily with the sparse
set representation. Thanks to the dual representation, all operations on the domains
are performed in constant time. We also extended the sparse set representation to
allow for value-based propagation with a constraint-based queue.

Experimental evaluation (see chapter 7) shows the e�ciency of our lightweight
approach. Castor is competitive with state-of-the-art SPARQL engines, even on large
databases. On complex queries with �lters involving multiple variables, Castor is able
to outperform state-of-the-art engines. However, we also observed that the perfor-
mances of Castor on simple queries degrade quicker than state-of-the-art engines
when increasing the database size. Our approach does not scale as well as relational
database technology.

8.2 Perspectives

Castor is a research prototype and has several limitations as detailed in chapter 6.
Apart from those implementation limitations, two research directions emerge for
future work: increasing the performances and improving the expressiveness.

8.2.1 Performances

On the performance side, one open research question is how to deal with �lters on
compound patterns that cannot be pushed down onto basic graph patterns. If we
exploit such �lters during the search, solutions of an opt or diff pattern could be
pruned, yielding erroneous results. Hence, those �lters are currently post-processed.
However, one could investigate whether there are cases where some amount of
pruning could be performed.

The search heuristics used by Castor are very basic. While the standard heuristics
all seem more or less equally good (see chapter 7), we did not evaluate specialized
heuristics. One could use the statistics generated by relational databases, such as
selectivity estimates, to provide such specialized search heuristics. The statistics could
also be used to order the propagators that are waiting to be called in the propagation
queue. As we do not maintain domain consistency, the order in which the propagators
are called may impact the resulting pruning.

A broader question is the potential combination of relational database technol-
ogy (RDB) and constraint programming. RDB gives one point of view on how to solve
SPARQL queries. This thesis provides an alternative point of view based on CP. Some
features are considered an optimization in one domain, while they come standard in



CHAPTER 8. CONCLUSION 117

the other. For example, exploiting �lters during the search is standard in CP, while it
is an optimization in RDB.

By propagating each triple pattern separately, Castor basically performs a kind of
nested loop join. There are much more e�cient join operators in relational databases.
To take advantage of such operators, one could group multiple triple patterns and
propagate those together using RDB techniques. An open question is how many and
which triple patterns should be grouped.

Similarly, we could use RDB to pre-process the query. In such case, RDB would
process the query, joining result sets together, up to the point where the results of a
join would grow too large. Then, CP would take over the search with the hope that
�lters would be able to reduce the search space.

8.2.2 Expressiveness

Castor currently implements most of SPARQL 1.0 features. Recently, the W3C has
standardized an update to the language, SPARQL 1.1 [HS13]. One notable new feature
is the ability to specify property paths in place of triples in basic graph patterns. Such
property paths describe a path in the RDF graph with a language that is similar to
regular expressions. Specialized propagators could be designed to handle such path
constraints e�ciently.

The SPARQL language allows for engine-speci�c extensions through custom func-
tions in �lter expressions. Using this facility, a large number of additional constraints
could be provided to the user. However, the propagators of such constraints would
have to be able to handle the large domains of the variables.

Throughout the thesis, we have ignored reasoning mechanisms, such as RDF-
Schema and OWL. By applying rules, such mechanisms can infer additional triples in
an RDF graph. To use Castor with the additional triples, we could compute the full
deductive closure of the input graph. However, such approach is very ine�cient. A
better alternative would be to somehow integrate the inference rules in the CP model.
We would need to rede�ne how a triple pattern is translated to constraints in the CSP
corresponding to the basic graph pattern.

For example, if we consider an RDF Schema class hierarchy, a triple pattern
(p,rdf:type,foaf:Agent) could be translated to the Member((p,rdf:type,x ),G ) con-
straint, introducing an additional variable x . The domain of x would be foaf:Agent

and all of its subclasses.
One could also be interested in the qualitative aspects of the solutions. SPARQL

allows to order the solutions by some criteria, de�ned as expressions involving
the query variables. We could enhance the ordering by taking into account other
parameters, such as the trustworthiness or the relevance of the involved triples.

Finally, the SPARQL standard only de�nes complete evaluation of queries, i.e.,
we are looking for all the solutions. Doing so makes sense under a closed-world
assumption, where an absent statement means the statement is false. The graph is
thus assumed to contain all the knowledge. However, under an open-world assump-
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tion, we cannot guarantee that we dispose of the entire knowledge. The open-world
assumption is common in the Semantic Web. In such a setting, �nding all the so-
lutions might be irrelevant, because there is no guarantee that there cannot be any
more solutions. Instead, one might be interested in solving the query approximately.
Random restarts or large neighborhood search can greatly increase the speed of the
CP search, at the cost of losing completeness.



Appendices

119





Appendix A

Benchmark �eries

This appendix contains the complete SPARQL queries that were used in the bench-
marks described in chapter 7. To improve clarity, the pre�x de�nitions are omitted.

A.1 SPARQL Performance Benchmark

Here, we present the queries of the SPARQL Performance Benchmark [Sch+09]. The
descriptions of the queries are those given by the authors of the benchmark. Where
applicable, we also show the simpli�ed queries that were used to compare with Comet
(see section 7.3).

S1

Return the year of publication of “Journal 1 (1940)”.

SELECT ?yr

WHERE {

?journal rdf:type bench:Journal .

?journal dc:title "Journal 1 (1940)"^^xsd:string .

?journal dcterms:issued ?yr

}

S2

Extract all inproceedings with properties dc:creator, bench:booktitle, dc:title,
swrc:pages, dcterms:partOf, rdfs:seeAlso, foaf:homepage, dcterms:issued, and
optionally bench:abstract, including these properties.

SELECT ?inproc ?author ?booktitle ?title

?proc ?ee ?page ?url ?yr ?abstract
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WHERE {

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?author .

?inproc bench:booktitle ?booktitle .

?inproc dc:title ?title .

?inproc dcterms:partOf ?proc .

?inproc rdfs:seeAlso ?ee .

?inproc swrc:pages ?page .

?inproc foaf:homepage ?url .

?inproc dcterms:issued ?yr

OPTIONAL {

?inproc bench:abstract ?abstract

}

}

ORDER BY ?yr

Simpli�ed query S2′:

SELECT ?inproc ?author ?booktitle ?title

?proc ?ee ?page ?url ?yr ?abstract

WHERE {

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?author .

?inproc bench:booktitle ?booktitle .

?inproc dc:title ?title .

?inproc dcterms:partOf ?proc .

?inproc rdfs:seeAlso ?ee .

?inproc swrc:pages ?page .

?inproc foaf:homepage ?url .

?inproc dcterms:issued ?yr

OPTIONAL {

?inproc bench:abstract ?abstract

}

}

S3a

Select all articles with property swrc:pages.

SELECT ?article

WHERE {

?article rdf:type bench:Article .

?article ?property ?value

FILTER (?property = swrc:pages)

}
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S3b

Select all articles with property swrc:month.

SELECT ?article

WHERE {

?article rdf:type bench:Article .

?article ?property ?value

FILTER (?property = swrc:month)

}

S3c

Select all articles with property swrc:isbn.

SELECT ?article

WHERE {

?article rdf:type bench:Article .

?article ?property ?value

FILTER (?property = swrc:isbn)

}

S4

Select all distinct pairs of article author names for authors that have published in the
same journal.

SELECT DISTINCT ?name1 ?name2

WHERE {

?article1 rdf:type bench:Article .

?article2 rdf:type bench:Article .

?article1 dc:creator ?author1 .

?author1 foaf:name ?name1 .

?article2 dc:creator ?author2 .

?author2 foaf:name ?name2 .

?article1 swrc:journal ?journal .

?article2 swrc:journal ?journal

FILTER (?name1 < ?name2)

}

Simpli�ed query S4′:

SELECT ?name1 ?name2

WHERE {

?article1 rdf:type bench:Article .

?article2 rdf:type bench:Article .
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?article1 dc:creator ?author1 .

?author1 foaf:name ?name1 .

?article2 dc:creator ?author2 .

?author2 foaf:name ?name2 .

?article1 swrc:journal ?journal .

?article2 swrc:journal ?journal

FILTER (?name1 < ?name2)

}

S5a

Return the names of all persons that occur as author of at least one inproceeding and
at least one article.

SELECT DISTINCT ?person ?name

WHERE {

?article rdf:type bench:Article .

?article dc:creator ?person .

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?person2 .

?person foaf:name ?name .

?person2 foaf:name ?name2

FILTER (?name = ?name2)

}

Simpli�ed query S5a′:

SELECT ?person ?name

WHERE {

?article rdf:type bench:Article .

?article dc:creator ?person .

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?person2 .

?person foaf:name ?name .

?person2 foaf:name ?name2

FILTER (?name = ?name2)

}

S5b

Return the names of all persons that occur as author of at least one inproceeding and
at least one article (same as S5a).

SELECT DISTINCT ?person ?name

WHERE {
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?article rdf:type bench:Article .

?article dc:creator ?person .

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?person .

?person foaf:name ?name

}

Simpli�ed query S5b′:

SELECT ?person ?name

WHERE {

?article rdf:type bench:Article .

?article dc:creator ?person .

?inproc rdf:type bench:Inproceedings .

?inproc dc:creator ?person .

?person foaf:name ?name

}

S6

Return, for each year, the set of all publications authored by persons that have not
published in years before.

SELECT ?yr ?name ?document

WHERE {

?class rdfs:subClassOf foaf:Document .

?document rdf:type ?class .

?document dcterms:issued ?yr .

?document dc:creator ?author .

?author foaf:name ?name

OPTIONAL {

?class2 rdfs:subClassOf foaf:Document .

?document2 rdf:type ?class2 .

?document2 dcterms:issued ?yr2 .

?document2 dc:creator ?author2

FILTER (?author = ?author2 && ?yr2 < ?yr)

} FILTER (!bound(?author2))

}

S7

Return the titles of all papers that have been cited at least once, but not by any paper
that has not been cited itself.

SELECT DISTINCT ?title
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WHERE {

?class rdfs:subClassOf foaf:Document .

?doc rdf:type ?class .

?doc dc:title ?title .

?bag2 ?member2 ?doc .

?doc2 dcterms:references ?bag2

OPTIONAL {

?class3 rdfs:subClassOf foaf:Document .

?doc3 rdf:type ?class3 .

?doc3 dcterms:references ?bag3 .

?bag3 ?member3 ?doc

OPTIONAL {

?class4 rdfs:subClassOf foaf:Document .

?doc4 rdf:type ?class4 .

?doc4 dcterms:references ?bag4 .

?bag4 ?member4 ?doc3

} FILTER (!bound(?doc4))

} FILTER (!bound(?doc3))

}

Simpli�ed query S7′:

SELECT ?title

WHERE {

?class rdfs:subClassOf foaf:Document .

?doc rdf:type ?class .

?doc dc:title ?title .

?bag2 ?member2 ?doc .

?doc2 dcterms:references ?bag2

OPTIONAL {

?class3 rdfs:subClassOf foaf:Document .

?doc3 rdf:type ?class3 .

?doc3 dcterms:references ?bag3 .

?bag3 ?member3 ?doc

OPTIONAL {

?class4 rdfs:subClassOf foaf:Document .

?doc4 rdf:type ?class4 .

?doc4 dcterms:references ?bag4 .

?bag4 ?member4 ?doc3

} FILTER (!bound(?doc4))

} FILTER (!bound(?doc3))

}
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S8

Compute authors that have published with “Paul Erdoes”, or with an author that has
published with “Paul Erdoes”.

SELECT DISTINCT ?name

WHERE {

?erdoes rdf:type foaf:Person .

?erdoes foaf:name "Paul Erdoes"^^xsd:string .

{

?document dc:creator ?erdoes .

?document dc:creator ?author .

?document2 dc:creator ?author .

?document2 dc:creator ?author2 .

?author2 foaf:name ?name

FILTER (?author != ?erdoes &&

?document2 != ?document &&

?author2 != ?erdoes &&

?author2 != ?author)

} UNION {

?document dc:creator ?erdoes.

?document dc:creator ?author.

?author foaf:name ?name

FILTER (?author != ?erdoes)

}

}

Simpli�ed query S8′:

SELECT ?name

WHERE {

?erdoes rdf:type foaf:Person .

?erdoes foaf:name "Paul Erdoes"^^xsd:string .

{

?document dc:creator ?erdoes .

?document dc:creator ?author .

?document2 dc:creator ?author .

?document2 dc:creator ?author2 .

?author2 foaf:name ?name

FILTER (?author != ?erdoes &&

?document2 != ?document &&

?author2 != ?erdoes &&

?author2 != ?author)

} UNION {

?document dc:creator ?erdoes.
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?document dc:creator ?author.

?author foaf:name ?name

FILTER (?author != ?erdoes)

}

}

S9

Return incoming and outcoming properties of persons.

SELECT DISTINCT ?predicate

WHERE {

{

?person rdf:type foaf:Person .

?subject ?predicate ?person

} UNION {

?person rdf:type foaf:Person .

?person ?predicate ?object

}

}

Simpli�ed query S9′:

SELECT ?predicate

WHERE {

{

?person rdf:type foaf:Person .

?subject ?predicate ?person

} UNION {

?person rdf:type foaf:Person .

?person ?predicate ?object

}

}

S10

Return all subjects that stand in any relation to “Paul Erdoes”. In our scenario, the
query might also be formulated as: return publications and venues in which “Paul
Erdoes” is involved either as author or as editor.

SELECT ?subject ?predicate

WHERE {

?subject ?predicate person:Paul_Erdoes

}
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S11

Return (up to) 10 electronic edition URLs starting from the 51th publication, in
lexicographical order.

SELECT ?ee

WHERE {

?publication rdfs:seeAlso ?ee

}

ORDER BY ?ee

LIMIT 10

OFFSET 50

A.2 Berlin SPARQL Benchmark

Here, we present the queries of the Berlin SPARQL Benchmark [BS09]. The descrip-
tions of the queries are those given by the authors of the benchmark.

B1

Find products for a given set of generic features.

SELECT DISTINCT ?product ?label

WHERE {

?product rdfs:label ?label .

?product a %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productFeature %ProductFeature2% .

?product bsbm:productPropertyNumeric1 ?value1 .

FILTER (?value1 > %x%)

}

ORDER BY ?label

LIMIT 10

B2

Retrieve basic information about a speci�c product for display purposes.

SELECT ?label ?comment ?producer ?productFeature

?propertyTextual1 ?propertyTextual2 ?propertyTextual3

?propertyNumeric1 ?propertyNumeric2 ?propertyTextual4

?propertyTextual5 ?propertyNumeric4

WHERE {

%ProductXYZ% rdfs:label ?label .
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%ProductXYZ% rdfs:comment ?comment .

%ProductXYZ% bsbm:producer ?p .

?p rdfs:label ?producer .

%ProductXYZ% dc:publisher ?p .

%ProductXYZ% bsbm:productFeature ?f .

?f rdfs:label ?productFeature .

%ProductXYZ% bsbm:productPropertyTextual1 ?propertyTextual1 .

%ProductXYZ% bsbm:productPropertyTextual2 ?propertyTextual2 .

%ProductXYZ% bsbm:productPropertyTextual3 ?propertyTextual3 .

%ProductXYZ% bsbm:productPropertyNumeric1 ?propertyNumeric1 .

%ProductXYZ% bsbm:productPropertyNumeric2 ?propertyNumeric2 .

OPTIONAL {

%ProductXYZ% bsbm:productPropertyTextual4 ?propertyTextual4

}

OPTIONAL {

%ProductXYZ% bsbm:productPropertyTextual5 ?propertyTextual5

}

OPTIONAL {

%ProductXYZ% bsbm:productPropertyNumeric4 ?propertyNumeric4

}

}

B3

Find products having some speci�c features and not having one feature.

SELECT ?product ?label

WHERE {

?product rdfs:label ?label .

?product a %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productPropertyNumeric1 ?p1 .

FILTER (?p1 > %x%)

?product bsbm:productPropertyNumeric3 ?p3 .

FILTER (?p3 < %y%)

OPTIONAL {

?product bsbm:productFeature %ProductFeature2% .

?product rdfs:label ?testVar

}

FILTER (!bound(?testVar))

}

ORDER BY ?label

LIMIT 10
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B4

Find products matching two di�erent sets of features.

SELECT DISTINCT ?product ?label ?propertyTextual

WHERE {

{

?product rdfs:label ?label .

?product rdf:type %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productFeature %ProductFeature2% .

?product bsbm:productPropertyTextual1 ?propertyTextual .

?product bsbm:productPropertyNumeric1 ?p1 .

FILTER (?p1 > %x%)

} UNION {

?product rdfs:label ?label .

?product rdf:type %ProductType% .

?product bsbm:productFeature %ProductFeature1% .

?product bsbm:productFeature %ProductFeature3% .

?product bsbm:productPropertyTextual1 ?propertyTextual .

?product bsbm:productPropertyNumeric2 ?p2 .

FILTER (?p2 > %y%)

}

}

ORDER BY ?label

OFFSET 5

LIMIT 10

B5

Find product that are similar to a given product.

SELECT DISTINCT ?product ?productLabel

WHERE {

?product rdfs:label ?productLabel .

FILTER (%ProductXYZ% != ?product)

%ProductXYZ% bsbm:productFeature ?prodFeature .

?product bsbm:productFeature ?prodFeature .

%ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 .

?product bsbm:productPropertyNumeric1 ?simProperty1 .

FILTER (?simProperty1 < (?origProperty1 + 120) &&

?simProperty1 > (?origProperty1 - 120))

%ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 .

?product bsbm:productPropertyNumeric2 ?simProperty2 .

FILTER (?simProperty2 < (?origProperty2 + 170) &&
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?simProperty2 > (?origProperty2 - 170))

}

ORDER BY ?productLabel

LIMIT 5

B7

Retrieve in-depth information about a speci�c product including o�ers and reviews.

SELECT ?productLabel ?offer ?price ?vendor ?vendorTitle

?review ?revTitle ?reviewer ?revName ?rating1 ?rating2

WHERE {

%ProductXYZ% rdfs:label ?productLabel .

OPTIONAL {

?offer bsbm:product %ProductXYZ% .

?offer bsbm:price ?price .

?offer bsbm:vendor ?vendor .

?vendor rdfs:label ?vendorTitle .

?vendor bsbm:country

<http://downlode.org/rdf/iso-3166/countries#DE> .

?offer dc:publisher ?vendor .

?offer bsbm:validTo ?date .

FILTER (?date > %currentDate%)

}

OPTIONAL {

?review bsbm:reviewFor %ProductXYZ% .

?review rev:reviewer ?reviewer .

?reviewer foaf:name ?revName .

?review dc:title ?revTitle .

OPTIONAL { ?review bsbm:rating1 ?rating1 . }

OPTIONAL { ?review bsbm:rating2 ?rating2 . }

}

}

B8

Give me recent reviews in English for a speci�c product.

SELECT ?title ?text ?reviewDate ?reviewer ?reviewerName

?rating1 ?rating2 ?rating3 ?rating4

WHERE {

?review bsbm:reviewFor %ProductXYZ% .

?review dc:title ?title .

?review rev:text ?text .
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FILTER (langMatches(lang(?text), "EN"))

?review bsbm:reviewDate ?reviewDate .

?review rev:reviewer ?reviewer .

?reviewer foaf:name ?reviewerName .

OPTIONAL { ?review bsbm:rating1 ?rating1 . }

OPTIONAL { ?review bsbm:rating2 ?rating2 . }

OPTIONAL { ?review bsbm:rating3 ?rating3 . }

OPTIONAL { ?review bsbm:rating4 ?rating4 . }

}

ORDER BY DESC(?reviewDate)

LIMIT 20

B11

Get all information about an o�er.

SELECT ?property ?hasValue ?isValueOf

WHERE {

{ %OfferXYZ% ?property ?hasValue }

UNION

{ ?isValueOf ?property %OfferXYZ% }

}
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